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Abstract

We consider the problem of online reinforcement learning when several state
representations (mapping histories to a discrete state space) are available to the
learning agent. At least one of these representations is assumed to induce a Markov
decision process (MDP), and the performance of the agent is measured in terms of
cumulative regret against the optimal policy giving the highest average reward in
this MDP representation. We propose an algorithm (UCB-MS) with Õ(

√
T ) regret

in any communicating MDP. The regret bound shows that UCB-MS automatically
adapts to the Markov model and improves over the currently known best bound of
order Õ(T 2/3).

1 Introduction
In reinforcement learning, an agent aims to learn a task while interacting with an unknown environ-
ment. We consider online learning (i.e., non-episodic) problems where the agent has to trade off the
exploration needed to collect information about rewards and dynamics and the exploitation of the
information gathered so far. In this setting, it is commonly assumed that the agent knows a suitable
state representation which makes the process on the state space Markovian. However, designing
such a representation is often highly non-trivial since many “reasonable” representations may lead to
non-Markovian models.

The task of selecting or designing a (suitable and compact) state representation of a dynamical
system is a well-known problem in engineering, especially in robotics. This setting has received a
lot of attention in recent years due to the growing number of applications using images or videos as
observations [e.g., 1, 2, 3]. It is possible to come up with different approaches for extracting features
from such high-dimensional observation spaces, but not all of them describe the problem well or
exhibit Markovian dynamics. Indeed, the Markovian assumption that transitions and rewards are
independent of history is frequently violated in real-world applications where there is often rather
a dependence on the last k > 1 observations. To deal with this scenario Markov models have been
extended from first-order models to kth-order models. The problem of selecting the right order of the
model is a special case of the selection of the correct state representation. In both cases, the goal is to
perform as well as when the true order or compact features of the Markov model are known. For
more details and further examples we refer to [4, 5, 6].

We consider the following setting that was introduced by Hutter [7], where it was called feature
reinforcement learning. The agent is provided with a finite set Φ of representations mapping histories
(sequences of actions, observations, and rewards) to a finite set of states, such that at least one model
φ◦ ∈ Φ induces a Markov decision process (MDP) [8]. The goal of the agent is to learn to solve the
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task under an appropriate representation. The ability of testing and quickly discarding non-Markovian
representations (not compatible with the observed dynamics) is fundamental for learning efficiently.
This efficiency is measured in terms of cumulative regret, which compares the reward collected by
the learner to the one of an agent knowing the Markovian representation and playing the associated
optimal policy (i.e., the policy giving the highest average reward).

This problem was initially studied by Maillard et al. [4]. Given a finite set of representations Φ, after
T steps the regret of the Best Lower Bound (BLB) algorithm w.r.t. any optimal policy associated
to a Markov model is upper bounded by Õ(

√
|Φ|T 2/3). The BLB algorithm is based on random

exploration of the models and uses properties of UCRL2 [9] —an efficient algorithm for exploration-
exploitation in communicating MDPs— to control the amount of time spent in non-Markovian
models. BLB requires to estimate the diameter [9] of the true MDP, which leads to an additional
additive term in the regret bound that may be exponential in the true diameter. BLB was successively
extended by Nguyen et al. [6] to the case of countably infinite sets of models. The suggested IBLB
algorithm removes the guessing of the diameter —thus avoiding the additional exponential term in
the regret— but its regret bound is still of order T 2/3. For the Optimistic Model Selection (OMS)
algorithm [5] a regret bound of Õ(

√
|Φ|T ) has been claimed that matches the optimal dependence

in terms of T . However, algorithm and analysis were based on the REGAL.D algorithm [10], and
recently it has been pointed out that the proof of the regret bound for REGAL.D contains a mistake
that invalidates also the result for OMS, see App. A of [11]. Accordingly, it still has been an open
question whether it is possible to achieve regret bounds of order

√
T in the considered setting.

In this paper we introduce UCB-MS, an optimistic elimination algorithm that performs efficient
exploration of the representations. For this algorithm we prove a regret bound of order Õ(

√
|Φ|T ).

Our algorithm as well as our results are based on and generalize the regret bounds achieved for
the UCRL2 algorithm in [9]. In particular, if Φ consists of a single Markov model we obtain the
same regret bound as for UCRL2. UCB-MS employs optimism to choose a model from Φ. To avoid
suffering too large regret from choosing a non-Markov model, the collected rewards are compared to
regret bounds that are known to hold for Markov models. If a model fails to give sufficiently high
reward, it is eliminated. On the other hand, UCB-MS is happy to employ a non-Markov model as
long as it gives as much reward as it would be expected from a corresponding Markov model.

While UCB-MS shares some basic ideas with BLB and OMS, it is simpler than OMS, however
recovers the same regret bounds that have been claimed for OMS. As BLB, UCB-MS has to guess the
diameter, however the guessing scheme we employ comes at little cost w.r.t. regret and in particular
does not cause any additive constants in the bounds that are exponential in the diameter. We also
show how to modify the guessing scheme to guess diameter and the size of the state space of the
Markov model φ◦ at the same time. Last but not least, we introduce the notion of the effective size SΦ

of the state space induced by the model set Φ and give regret bounds in terms of SΦ. This yields
improvements depending on the structure of Φ (like for hierarchical models).

Overview. We start with a detailed description of the learning setting in the following section. In
Section 3, we give some preliminaries concerning the UCRL2 algorithm. Our UCB-MS algorithm is
introduced in Section 4 where we also give the regret analysis in case the diameter of the underlying
Markov model is known. The following Section 5 shows how to guess the diameter otherwise.
Section 6 gives some further improvements and also introduces the notion of effective state space.

2 Setting
The details of the considered learning setting are as follows. At each time step t = 1, 2, . . ., the
learner receives an initial observation ot and has to choose an action at from a finite set of actions A.
In return, the learner receives a reward rt taken fromR = [0, 1] and the next observation ot+1.

We denote by O the set of observations and define the history ht up to step t as the sequence
o1, a1, r1, o2, . . . , at, rt, ot+1 of observations, actions and rewards. The set Ht := O × (A×R×
O)t−1 contains all possible histories up to step t and we set H :=

⋃
t≥1Ht to be the set of all

possible histories.

2.1 Models and MDPs

A state-representation model (in the following short: model) φ is a function that maps histories to
states, that is, φ : H → Sφ. If a model φ induces a Markov decision process (MDP) we call it a
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Markov model. An MDP has the Markov property that any time t, the probability of reward rt and
next state st+1 = φ(ht+1), given the past history ht, only depends on the current state st = φ(ht)
and the chosen action at, i.e., P (st+1, rt|ht, at) = P (st+1, rt|st, at). We assume that for MDPs this
probability is also independent of t.

Usually, an MDP M with state space S and action space A is denoted as a tuple M = (S,A, r, p),
where r(s, a) is the mean reward and p(s′|s, a) the probability of a transition to state s′ ∈ S when
choosing action a ∈ A in state s ∈ S . MDPs are called communicating if for any two states s, s′ it is
possible to reach s′ from s with positive probability by choosing appropriate actions. The smallest
expected time it takes to connect any two states is called the diameter D of the MDP, cf. [9]. In
communicating MDPs, the optimal average reward ρ∗ is independent of the initial state and will be
achieved by a stationary deterministic policy π∗ ∈ ΠSD that maps states to actions.

For a Markov model φ, we writeM(φ) for the induced MDP. Its diameter and optimal average reward
will be denoted as D(φ) and ρ∗(φ), respectively. For all models φ, we abbreviate Sφ := |Sφ|.

2.2 Problem setting

The learning setting we consider is the following. As already described before, the learner chooses
actions at and obtains a reward rt and an observation ot+1 in return. We assume that the learner has
a finite set Φ of models at her disposal and at least one model φ◦ in Φ is a Markov model. The goal is
to provide algorithms that perform well with respect to the optimal policy π∗ in the MDP M(φ◦),
that is, the optimal strategy when the Markov model and the induced underlying MDP are completely
known. Accordingly, the performance of a learning algorithm will be measured by considering its
regret after any T steps defined as (cf. [9, 10, 4])

Tρ∗(φ◦)−
T∑
t=1

rt ,

where rt is the reward received by the learning algorithm at step t.

3 UCRL2 Preliminaries
The algorithm we propose is based on the UCRL2 algorithm of [9]. Accordingly, we start with some
respective preliminaries.

UCRL2 is an algorithm that generalizes the optimism in the face of uncertainty idea of UCB [12] from
the bandit setting to reinforcement learning in MDPs. In the following, we assume an underlying
MDP M with S states, A actions, and diameter D. The UCRL2 algorithm uses confidence intervals
to define a set of plausible MDPsM. That is, acting in the unknown MDP M , UCRL2 maintains
estimates r̂(s, a) and p̂(·|s, a) of rewards and transition probabilities, respectively. The setMt of
plausible MDPs at step t contains all MDPs with rewards r̃(s, a) and transition probabilities p̃(·|s, a)
satisfying1

∣∣r̂(s, a)− r̃(s, a)
∣∣ ≤ √

7 log(4SAt3/δ)
2N(s,a) , (1)

∥∥p̂(·|s, a)− p̃(·|s, a)
∥∥

1
≤

√
14S log(4At3/δ)

2N(s,a) , (2)

where N(s, a) denotes the number of times a has been chosen in s (and is set to 1, if a has not been
chosen in s so far). The true MDP M is inM with high probability.

Lemma 1 (Lemma 17 in the appendix of [9]2). With probability at least 1− δ
30t8 , at step t the true

MDP M is contained in the setMt.

The UCRL2 algorithm proceeds in episodes k = 1, 2, . . .. In each episode k starting at step tk the
algorithm plays a fixed policy π̃k, which is chosen to maximize the optimal average reward of an
MDP inMk :=Mtk . That is, writing ρ(π,M) for the average reward of policy π in MDP M we

1The confidence intervals shown here are the ones we use in the following and slightly differ from the
confidence intervals given for UCRL2 in [9]. That is, the confidence δ of the original values is replaced by δ/2t2

to guarantee smaller error probability, which is needed in our analysis.
2As noted before, the error probability δ has been changed from δ to δ/2t2 here.
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set ρ̃k := maxπ,M∈Mk
{ρ(π,M)} = ρ(π̃k, M̃k), where M̃k is an optimistic MDP chosen fromMk

to maximize ρ̃k. As the true MDP M is inMk with high probability, we also have that ρ̃k ≥ ρ∗.
Let vk(s, a) denote the number of times a has been chosen in s in episode k, while Nk(s, a) denotes
the number of times a has been chosen in s before episode k (i.e., in episodes 1 to k − 1). If there
were no visits in (s, a) before episode k, then Nk(s, a) is set to 1. Episode k is terminated by UCRL2
when a state s is reached in which vk(s, π̃k(s)) = Nk(s, π̃k(s)).

One can show the following upper bound on the regret of UCRL2.

Theorem 2 (Theorem 2 of [9]). With probability 1 − δ, the regret of UCRL2 after any T steps is
bounded by

34DS

√
AT log

(
2T 3

δ

)
.

The bound is based on an episode-wise decomposition of the regret, which we will use for our
algorithm. Let Tk be the (current) length of episode k. In the following, we abuse notation for Tk as
well as for vk(s, a) by using the same notation for the number of steps in a terminated episode as
well as for the current number of steps in an ongoing episode. Further, recall that tk denotes the time
step when episode k starts. The regret of UCRL2 in any episode k is bounded as follows.

Lemma 3. Consider an arbitrary episode k started at step tk. With probability 1− δ
2t2k

, the regret of
UCRL2 at each step Tk in this episode is bounded by(

2D

√
14S log

( 4At3k
δ

)
+ 2

)∑
s,a

vk(s,a)√
Nk(s,a)

+ 4D

√
Tk log

( 16t2kTk
δ

)
+D.

Proof. The bound in Lemma 3 is not explicitly stated for single episodes in [9] but easily follows
from equations (8), (9), (15)–(17), and the argument given before equation (18), choosing confidence
δ/t2 instead of δ. For the sake of completeness, we give a brief proof sketch.

First, by replacing the random rewards by the mean rewards r(s, a), the regret ∆k of episode k can
be bounded by (cf. Eq. 8 in [9])

∆k ≤
∑
s,a

vk(s, a)(ρ∗ − r(s, a)) +

√
5
8Tk log

( 16t2kTk
δ

)
. (3)

Let r̃ and p̃ denote the rewards and transition probabilities in the optimistic MDP M̃k. Then the
difference in the sum of (3) can be bounded and split up as

ρ∗ − r(s, a) ≤ ρ̃k − r(s, a) ≤ (ρ̃k − r̃(s, a)) + (r̃(s, a)− r(s, a)), (4)

where the last term is controlled by the confidence intervals in (1), cf. Eq. (15) in [9]. The other
term can be written as ρ̃k − r̃(s, a) =

∑
s′ p̃(s

′|s, a)w(s′)− w(s) for the shifted value vector w (cf.
p. 1576 of [9]) so that splitting up again one has (cf. Eq. 16 in [9])

ρ̃k − r̃(s, a) =
∑
s′

(
p̃(s′|s, a)− p(s′|s, a)

)
w(s′) +

(∑
s′

(
p̃(s′|s, a)− w(s)

)
. (5)

The first term is handled by the confidence intervals in (2) and the fact the w(s) ≤ D (cf. Eq. 17
in [9]), while the second term can be written as martingale difference sequence and bounded by

D

√
5
2Tk log

( 16t2kTk
δ

)
+D using Azuma-Hoeffding (cf. Eq. 18 in [9]). Finally taking into account

an additional regret term of
√
Tk caused by failing confidence intervals (cf. Eq. 9 in [9]) and

combining (3)–(5) gives the claimed bound, where the first term stems from the confidence intervals
(1) and (2).

4 The UCB-MS Algorithm
Now let us turn to the state representation learning setting introduced in Section 2. We start with
the simpler case when an upper bound D̄ on the diameter D := D(φ◦) of the Markov model φ◦ is
known (i.e., D̄ ≥ D). The case when no bound on the diameter is known is dealt with in Section 5.
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Algorithm 1 UCB-Model Selection (UCB-MS)
Input: set of models Φ, confidence parameter δ ∈ (0, 1), upper bound D̄ on diameter
Initialization: Let t := 1 be the current time step.
for episodes k = 1, 2, . . . do

Let tk := t be the initial step of the current episode k, and letMt,φ be the set of plausible
MDPs defined via the confidence intervals (1) and (2) for the estimates so far.

B For each φ ∈ Φ, use Extended Value Iteration (EVI) to compute an optimistic MDP M̃k,φ

in Mt,φ and a (near-)optimal policy π̃k,φ on M̃k,φ with approximate average reward ρ̃k,φ.
B Choose model φk ∈ Φ such that

φk = argmax
φ∈Φ

{
ρ̃k,φ

}
, (8)

and set ρ̃k := ρ̃k,φk , π̃k := π̃k,φk , and Sk := Sφk .
B Repeat till termination of the current episode k:

◦ Choose action at := πk(st), get reward rt and observe next state st+1 ∈ Sk.
◦ Set t := t+ 1.
◦ if vk(st, at) = Ntk(st, at) then terminate current episode.
◦ if

(t− tk + 1)ρ̃k −
t∑

τ=tk

rτ > Γt(D̄) (9)

then set Φ := Φ \ {φk} and terminate current episode.
end for

The UCB-MS algorithm we propose (shown as Alg. 1) basically performs the policy computation
of UCRL2 for each model φ. That is, in episodes k = 1, 2, . . ., UCB-MS constructs for each state
representation φ ∈ Φ a set of plausible MDPsMk,φ and computes the optimistic average reward

ρ̃k,φ = argmax
π∈ΠSD,M∈Mk,φ

{ρ(π,M)}. (6)

This problem can be solved using Extended Value Iteration (EVI) [9] up to an arbitrary accuracy.3
Among all the models, UCB-MS selects the one with highest average reward ρ̃k, cf. Eq. (8). The
associated optimistic policy π̃k is executed until the number of visits is doubled in at least one
state-action pair (UCRL2 stopping condition) or this policy does not provide sufficiently high average
reward (see Eq. 9), in which case the model φk is eliminated.

The function Γt in Eq. (9) defines the allowed deviation from the promised optimistic average
reward ρ̃k. We define Γt according to Lemma 3 as

Γt(D) :=

(
2D

√
14Sφt log

(
4At3k(t)

δ

)
+ 2

)∑
s,a

vk(t)(s,a)√
Nk(t)(s,a)

+ 4D

√
Tk(t) log

(
16t2k(t)Tk(t)

δ

)
+D,

(7)
where k(t) denotes the episode in which step t occurs. In Eq. 9 we exploit the prior knowledge
D̄ ≥ D in order to properly define the condition for model elimination. We will see below in
Section 5 that it is easy to adapt the algorithm to the case of unknown diameter.

If the set Φ consists only of a single Markov model, UCB-MS basically coincides with UCRL with
an additional checking step that will result in discarding the single model only with small probability.
Note that UCB-MS shares the optimistic model selection and the idea of eliminating underachieving
models with OMS, however its structure is much simpler.

Concerning the computational complexity of our algorithm, note that the EVI subroutine we use
for policy computation works just as ordinary value iteration with the same convergence properties
and the same computational complexity with an additional overhead of O(S2A) per iteration step,
cf. [9]. Further, policy computation is performed for each model φ at most |Φ|+ SφA log T times, cf.
Lemma 5 (c) below.

3As for UCRL2, we set the accuracy in episode k to be 1/
√
tk.
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Our first result is the following regret bound for UCB-MS. Here Smax := maxφ Sφ denotes the size
of state space of the largest model and SΣ :=

∑
φ Sφ the size of the total state space over all models.

Theorem 4. With probability 1− δ, the regret of UCB-MS using D̄ ≥ D is bounded by

const · D̄
√
SmaxSΣAT log

(
T
δ

)
.

Note that the bound of Theorem 4 holds for any Markov model in Φ. Thus, in case there is a
Markov model with smaller state space the regret bound shows that UCB-MS automatically adapts
to this preferable model. When Φ consists of a single Markov model we re-establish the bounds
for UCRL2 (however for an algorithm that unlike UCRL2 needs the diameter D as input). Most
importantly, the bound of Theorem 4 improves over the currently best known bound for BLB, which
is of order Õ(T 2/3). If all models induce a state space of equal size S, the bound in Theorem 4 is
Õ(DS

√
|Φ|AT ), which also improves over the claimed regret bound of OMS, which is of order

Õ(DS3/2A
√
|Φ|T ). We note however that in other cases the state space dependence of the OMS

bound may be better. In Section 6 below we show how to regain the OMS bound for our algorithm
and how SΣ in the bounds can be replaced by the effective size of the state space, which in some
cases (like for hierarchical models) can be considerably smaller.

While the
√
A-dependence is optimal as for UCRL2, by using a refined analysis (see [13]) it is also

possible to obtain an optimal
√
D-dependence. On the other hand, the optimality in S and |Φ| is

still an open question. While the S-dependence can be reduced using Bernstein inequality, we are
not aware of any lower bound for |Φ| in this setting. The closest result we know is for aggregation
techniques with full information where it is possible to obtain bounds of order log(|Φ|). Obviously,
in our setting we have less information and it is not clear if it is possible to obtain logarithmic
dependence.

Note that while the regret is measured w.r.t. the true Markov model φ◦, it is actually not necessary to
identify φ◦ to obtain the regret bound of Theorem 4. As long as a non-Markov model gives at least
the same reward that would be expected from a Markov model there is no need to discard it. Such a
model could be, for example, a good (non-Markovian) approximation.

4.1 Analysis (Proof of Theorem 4)

The following lemma collects some basic facts about UCB-MS.

Lemma 5. With probability 1− δ, all of the following statements hold:

(a) The confidence intervals (1) and (2) of the Markov model φ◦ hold for all time steps t = 1, . . . , T .

(b) No Markov models are discarded in (9).

(c) The number of episodes of UCB-MS is bounded by |Φ|+ SΣA log T .

Proof. (a) follows from Lemma 1 by summing over the error probabilities giving a total error
probability of

∑
t

δ
30t8 <

δ
6 .

For (b), if UCB-MS chooses a Markov model, then the regret in the respective episode is bounded
according to Lemma 3. The sum over the respective error probabilities δ/2t2k over all episodes is
bounded by 5δ

6 , which proves (b).

If (b) holds, then there are at most |Φ|−1 episodes in which a model is discarded. For episodes which
are terminated by doubling the number of visits, we can use Proposition 18 of [9], as the episode
termination criterion of UCB-MS is the same as for UCRL2. Since we have to take into account all
states of all models, the size of the state space to be considered is the sum over the sizes of the state
spaces of the individual models.

The bound on the number of episodes in the worst case depends on SΣ. Under some assumptions on
the given models in Φ (like having hierarchical models) this can be reduced, see Section 6 for details.

Proof of Theorem 4. We assume that the statements of Lemma 5 all hold, which is the case with
probability 1 − δ. Let φ◦ be a Markov model in Φ and consider any episode k. By Lemma 5 (a),
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the optimistic estimate ρ̃k,φ◦ ≥ ρ∗(φ◦). By the optimism of the algorithm we further have that
ρ̃k ≥ ρ̃k,φ◦ . Hence, the regret ∆k in each episode k is bounded by

∆k := Tk · ρ∗(φ◦)−
tk+Tk∑
τ=tk

rτ ≤ Tk · ρ̃k −
tk+Tk∑
τ=tk

rτ .

By the definition of the algorithm, condition (9) does not hold at least up to the final step of the
episode, so that we obtain that (as rewards are upper bounded by 1)

∆k ≤ Γtk(D̄) + 1.

Using the definition of Γt(D̄) in (7) and summing over all K episodes, we obtain a regret bound of∑
k

∆k ≤
∑
k

(Γtk(D̄) + 1)

≤
(

2D̄

√
14Smax log

(
4AT 3

δ

)
+ 2

)∑
k

∑
s,a

vk(s,a)√
Nk(s,a)

+ 4D̄

√
log
(

16T 3

δ

)∑
k

√
Tk +KD̄.

Using that
∑
k Tk = T together with Jensen’s inequality, we have

∑
k

√
Tk ≤

√
KT . Further, as

for the analysis of UCRL2, we have that (cf. Eq. 20 of [9])∑
k

∑
s,a

vk(s,a)√
Nk(s,a)

≤
(√

2 + 1
)√

SΣAT.

Summarizing, we obtain using the bounds on the number of episodes of Lemma 5 (c) and noting that
|Φ| ≤ SΣ after some simplifications a regret bound of

const1 · D̄
√
SmaxSΣAT log

(
T
δ

)
+ const2 · D̄

√
SΣAT (log T )

(
log T

δ

)
+ const3 · D̄SΣA log T,

which completes the proof of the theorem.

5 Unknown Diameter
If the diameter is unknown we suggest the following guessing scheme. We run UCB-MS with some
initial value D̄ ≥ 1. If at some step all models have been eliminated then double the value of D̄ and
restart the algorithm, that is, start a new episode now considering all models again.

One can show that the regret of this doubling scheme is basically bounded as before unless D is very
large compared to T .
Theorem 6. With probability 1− δ, the regret of UCB-MS guessing D by doubling is bounded by

const ·D
√(

SmaxSΣA+ |Φ| logD
)
T log

(
T
δ

)
.

Proof. Let Dk denote the parameter D̄ used in episode k as an estimate for D. As in the proof of
Theorem 4 we have that a Markov model will not be eliminated with high probability once Dk ≥ D.
Hence, in total there cannot be more than d|Φ| log2De episodes that are terminated by discarding a
model.

Let Γt(D) be defined as in (7). Then the same argument as in the proof of Theorem 4 shows that the
regret in each episode k is bounded by Γtk(Dk) + 1.

The rest of the proof can be rewritten from Theorem 4 using that Dk < 2D for all k with high
probability. The only difference is that the bound on the number of episodes has an additional term of
d|Φ| log2De, so that one obtains a regret bound of

const1 ·D
√
SmaxSΣAT log

(
T
δ

)
+ const2 ·D

√(
SΣA(log T ) + |Φ| logD

)
T log T

δ +

const3 ·
(
DSΣA+ |Φ| logD

)
log T.

Summarizing the terms gives the claimed bound.

Theorem 6 shows that the cost of the guessing scheme w.r.t. the regret is small and, in particular, does
not result in any additive constant in the bound that is exponential in the diameter (in contrast to the
bound for BLB [4]). Thus, the improvements over OMS discussed after Theorem 4 hold also for
UCB-MS with guessing the diameter.
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6 Improving the Bounds
In this section, we consider further improvements of our bounds and introduce the notion of the
effective size of the state space for a set of models Φ.

6.1 Improving on the Number of Episodes

The regret bounds we obtain for UCB-MS are basically of the same order as for standard reinforcement
learning in MDPs (i.e. with a given Markov model) as achieved e.g. by [9]. However, the state space
dependence seems not completely satisfactory, as the bounds do not only depend on the state space
size of the Markov model, but on the total state space size SΣ over all models.

The appearance of the parameter SΣ in the bounds is due to the bound on the number of episodes
in Lemma 5 (c). In the worst case, this bound cannot be improved. That is, without any further
assumptions on the way models in Φ aggregate histories one cannot say how visits in a state under
some model φ translate into state visits under some other model φ′. For example, when under some
model φ all states have been visited so far, the respective histories may be mapped to just a single
state under some other model φ′. Consequently, one basically has to assume that the states of different
models φ, φ′ are completely independent of each other, which leads to the bound of Lemma 5 (c).

However, if there is some particular structure on the set of given models Φ, the bound on the number
of episodes can be improved to not depend on the total number of states SΣ.
Definition 7. Let Φ be a set of state representation models. We define the effective size SΦ of the
state space of Φ to be the number of states that are sufficient to cover all states under Φ in the sense
that visits in all SΦ covering states induce visits in all other states.

A simple example is when models are hierarchical. That is, there is some model φ in Φ, such that
all other models φ′ aggregate the states of φ, i.e., it holds that if φ(h) = φ(h′) then φ′(h) = φ′(h′)
for all histories h, h′ in H. In this case, SΦ = Sφ, while SΣ could be of order 2Sφ , as each subset
of Sφ may correspond to an aggregated state in some other model of Φ. Note that when considering
different orders for an MDP, this also results in a hierarchical model set.

In general, we obviously have that SΦ ≤ SΣ and the bound on the number of episodes of Lemma 5 (c)
can be improved to depend on SΦ instead of SΣ (with the same proof).
Lemma 8. The number of episodes of UCB-MS terminated by the doubling criterion is bounded by
SΦA log T .

Accordingly, we can strengthen the results of Theorems 4 and 6 as follows.
Theorem 9. The regret bounds of Theorems 4 and 6 hold with SΣ replaced by SΦ.

6.2 Improving Further on the State Space Dependence

Even after replacing SΣ by SΦ, there is still room for improvement of the bounds with respect to the
size of the state space. In principle, one would like to have a dependence on the size of the state space
of the Markov model φ◦. As we have seen, with the current analysis the dependence on the effective
number of states SΦ is unavoidable. However, we can improve over the second appearing state space
term Smax by guessing the right size of the state space (i.e., Sφ◦ ). We distinguish between two cases,
depending on whether a bound on the diameter is known.

6.2.1 Diameter Known
If there is a known bound on the diameter, we can guess the size of the state space by the same
scheme we have suggested for guessing the diameter in Section 5. That is, starting with S := 1 or
S := minφ Sφ we compare the collected rewards to the optimistic average reward ρ̃k of the current
episode k, as before eliminating underachieving models. As comparison term we choose now (in
accordance with the regret bound for UCRL2 in Theorem 2)

Γt(S) := 34DS

√
A(t− tk + 1) log

(
2t3

δ

)
. (10)

For this guessing scheme one can show the following regret bound.
Theorem 10. With probability 1− δ, the regret of UCB-MS guessing S by doubling is bounded by

const ·DSφ◦
√

(SΦA log T + |Φ| logSφ◦)AT log
(
T
δ

)
.
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Proof. The proof is like that for Theorem 6 only that now S instead of D is guessed and the
comparison term Γt is different. That is, any Markov model φ◦ will not be discarded with high
probability once S ≥ Sφ◦ . Therefore, there will be at most d|Φ| log2 Sφ◦e episodes that are terminated
by discarding a model.

Let Sk be the guess for the size of the state space in episode k. Then, similar to the proofs of
Theorems 4 and 6, the regret in each episode k is bounded by Γtk(Sk) + 1. As Sk ≤ 2Sφ◦ w.h.p.,
summing over all ≤ d|Φ| log2 Sφ◦e + SΦA log T episodes, Jensen’s inequality gives the claimed
regret bound.

We see that replacing Smax with Sφ◦ comes at a cost of worse dependence on the number of states
and actions, as the summing over episodes in the proof has to be done differently. Still, if Smax is
quite large, the bound of Theorem 10 can be an improvement over the previously presented bounds.

6.2.2 Unknown Diameter
If the diameter is not known, one can do the guessing for both D and S at the same time. More
precisely, in the comparison term one does not guess D and S separately but the factor DS instead.
That is, one starts with setting D̃S := 1 or some other fixed value like D̃S := minφ Sφ and defines
the comparison term as

Γt(D̃S) := 34D̃S

√
A(t− tk + 1) log

(
2t3

δ

)
. (11)

This leads to the following regret bound, which basically corresponds to the bound that has been
claimed for OMS, only with SΣ replaced by the potentially smaller SΦ.
Theorem 11. With probability 1− δ, the regret of UCB-MS guessing both D and S by doubling is
bounded by

const ·DSφ◦
√

(SΦA log T + |Φ| log(DSφ◦))AT log
(
T
δ

)
.

Proof. The proof is like that for Theorem 10. W.h.p. there will be at most d|Φ| log2(DSφ◦)e episodes
that are terminated by eliminating a model, while the regret in each episode k is bounded by
Γtk(D̃Sk) + 1, where D̃Sk ≤ 2DSφ◦ is the guess for episode k. A sum over the episodes gives the
claimed bound.

7 Discussion
While we have decided to use UCRL2 as reference algorithm for the definition of our UCB-MS
strategy, our approach can actually serve as a blueprint for adapting any optimistic algorithm with
known regret bounds to the state representation setting considered in this paper. In particular,
improved regret bounds (possible w.r.t. the parameters S and D, cf. [9]) for UCRL2 or a variation of
it (such as the recent [13]) automatically result in improved bounds for a corresponding variant of
UCB-MS.

The OMS algorithm [5] employs some form of regularization so that models with large state space
are less appealing. However, this did not avoid the dependence of the claimed bounds of [5] on SΣ.
It is an interesting question whether some improved regularization approach can give bounds that
only depend on Sφ◦ . In general, the right dependence of regret bounds on the size of the model set Φ
is also an open problem.

Another question that is still open also for the MDP setting is whether the diameter can be replaced
by the bias span λ∗ of the optimal policy [10, 14]. With an upper bound on λ∗, one could replace
UCRL2 by the SCAL algorithm of [14]. However, the guessing scheme we employ for the diameter
does not work for SCAL, as chosen policies may not be optimistic anymore, if the guess for λ∗ is too
small.

Another direction for future research are generalizations to infinite model sets, which for the case of
discrete sets has already been done for the BLB algorithm [6]. Parametric sets of models would be an
interesting next step from there. In this context, it also makes sense to consider approximate Markov
models, that is, the assumption that there is a Markov model is dropped. The results given in [15] for
this setting are also affected by the mentioned error in the proof of the OMS regret bound. We think
that our approach can be adapted, however the details still have to be worked out.
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