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a DNa barcode reference library of 
French Polynesian shore fishes
Erwan Delrieu-trottin  1,2,3,4, Jeffrey T. Williams5, Diane Pitassy5, Amy Driskell6, 
Nicolas Hubert1, Jérémie Viviani3,7,8, Thomas H. Cribb9, Benoit Espiau3,4, René Galzin3,4, 
Michel Kulbicki10, Thierry Lison de Loma3,4, Christopher Meyer11, Johann Mourier  3,4,12, 
Gérard Mou-Tham10, Valeriano Parravicini  3,4, Patrick Plantard3,4, Pierre Sasal3,4, 
Gilles Siu3,4, Nathalie Tolou3,4, Michel Veuille4,13, Lee Weigt6 & Serge Planes3,4

The emergence of DNA barcoding and metabarcoding opened new ways to study biological diversity, 
however, the completion of DNA barcode libraries is fundamental for such approaches to succeed. 
This dataset is a DNA barcode reference library (fragment of Cytochrome Oxydase I gene) for 2,190 
specimens representing at least 540 species of shore fishes collected over 10 years at 154 sites 
across the four volcanic archipelagos of French Polynesia; the Austral, Gambier, Marquesas and 
Society Islands, a 5,000,000 km2 area. At present, 65% of the known shore fish species of these 
archipelagoes possess a DNA barcode associated with preserved, photographed, tissue sampled and 
cataloged specimens, and extensive collection locality data. This dataset represents one of the most 
comprehensive DNA barcoding efforts for a vertebrate fauna to date. Considering the challenges 
associated with the conservation of coral reef fishes and the difficulties of accurately identifying 
species using morphological characters, this publicly available library is expected to be helpful for both 
authorities and academics in various fields.

Background & Summary
DNA barcoding aims to identify individuals to the species level by using a short and standardized portion of 
a gene as a species tag1. This standardized procedure has revolutionized how biodiversity can be surveyed as 
the identification of a species then becomes independent of the level of taxonomic expertise of the collector2, 
the life stage of the species3,4 or the state of conservation of the specimen5,6. Due to its large spectrum of poten-
tial applications, DNA barcoding has been employed in a large array of scientific fields such as taxonomy7, bio-
geography, biodiversity inventories8 and ecology9; but see Hubert and Hanner for a review10. In the genomic 
era, this approach has been successfully applied to the simultaneous identification of multiple samples (i.e. the 
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metabarcoding approach), extending its applications to surveys of whole ecological communities11, but also mon-
itoring species diet12,13, identifying the presence of specific species in a region14, or studying changes in the com-
munity through time by sampling environmental DNA15,16.

By design, DNA barcoding has proved to be fast and accurate, but its accuracy is highly dependent on the 
completeness of DNA barcode reference libraries. These libraries turn surveys of Operational Taxonomic Units 
(OTUs) into species surveys through the assignment of species names to OTUs17,18, hence giving meaning to data 
for ecologists, evolutionary biologists and stakeholders. Taxonomists increasingly provide DNA barcodes of new 
species they are describing; but thousands of species of shore fishes still lack this diagnostic molecular marker.

In the South Pacific, an early initiative led by the CRIOBE Laboratory was successfully carried out for French 
Polynesian coral reef fishes at the scale of one island, Moorea (Society Island)19. The fish fauna of Moorea’s waters 
is one of the best known of the region given the historical operation of research laboratories and long term 
surveys20,21. The Moorea project revealed a high level of cryptic diversity in Moorea’s fishes19 and motivated 
the CRIOBE Laboratory to extend this biodiversity survey of shore fishes to the remaining islands of French 
Polynesia. French Polynesia (FP) is a 5,000,000 km2 region located between 7° and 27° South Latitude that con-
stitutes a priority area for conducting a barcoding survey. This region is species rich due to its position at the 
junction of several biogeographic areas with varying levels of endemism. For example, the Marquesas Islands 
(northeastern FP) rank as the third highest region of endemism for coral reef fishes in the Indo-Pacific (13.7%22). 
The Austral Islands (southwestern FP) and Gambier Islands (southeastern FP) host numerous southern sub-
tropical endemic species23–25. Finally, the Society Islands (western FP) possess the highest species richness (877 
species) and the highest number of widespread species in French Polynesia26.

Here, we present the result of a large-scale effort to DNA barcode the shore fishes in French Polynesia. 
Conducted between 2008 and 2014, a total of 154 sites were inventoried across these four archipelagoes. Islands 
of varying ages and topographies were visited ranging from low-lying atolls to high islands surrounded by a bar-
rier reef, or solely fringing reefs. Furthermore, inventories were conducted across different habitats at each island 
(i.e. sand bank, coral reefs, rubble, rocky, etc.). In total, 2,190 specimens were identified, preserved, photographed, 
tissue sampled, DNA barcoded and cataloged with extensive metadata to build a library representing at least 540 
species, 232 genera and 61 families of fishes (Fig. 1). Merged with previous sampling efforts at Moorea, a total of 
3,131 specimens now possess a DNA barcode representing at least 645 nominal species for a coverage of approxi-
mately 65% of the known shore fish species diversity of these four archipelagoes. These biodiversity surveys have 
already resulted in the publication of updated species checklists22,26 and in the description of 17 new species27–34. 
This comprehensive library for French Polynesia shore fishes will certainly benefit a wide community of users 
with different interests, ranging from basic to applied science, and including fisheries management, functional 
ecology, taxonomy and conservation. Furthermore, many newly detected taxa for science are revealed here, along 
with complete collection data and DNA barcodes, which should facilitate their formal description as new species. 
While shedding new light on the species diversity of the Pacific region, this publicly available library is expected 
to fuel the development of DNA barcode libraries in the Pacific Ocean and to provide more accurate results for 
the growing number of studies using DNA metabarcoding in the Indo-West Pacific.
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Fig. 1 Overview of data generation. From collection of specimen to the validation of data generation.
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Methods
Sampling strategy. We explored a diversity of habitats across the four corners of French Polynesia with 
shallow and deep SCUBA dives (down to 50–55 m) for a total of 154 sampled sites (Fig. 2, Table 1). A total of 2,190 
specimens, representing at least 540 species, 232 genera and 61 families (Fig. 3a) have been collected across four 
archipelagos representing the four corners of French Polynesia (FP), through six scientific expeditions: Marquesas 
Islands (1) in 2008 at Mohotani and (2) in 2011 at every island of the archipelago aboard the M.V. Braveheart 
(Clark Bank, Motu One, Hatutaa, Eiao, Motu Iti, Nuku-Hiva, Ua-Huka, Ua-Pou, Fatu-Huku, Hiva-Oa, Tahuata, 
Fatu-Hiva; 52 sites), (3) in 2010 at Gambier Islands aboard the M.V. Claymore (Mangareva, Taravai, Akamaru, 
and all along the barrier reef; 53 sites), (4) at Austral Islands in 2013 aboard the Golden Shadow (Raivavae, 
Tubuai, Rurutu, Rimatara, Maria Islands; 25 sites), (5) at westernmost atolls of the Society Islands in 2014 aboard 
the M.V. Braveheart (Manuae and Maupiha’a; 20 sites). A sixth scientific expedition took place on Moorea’s deep 
reefs in 2008 (Society Islands) as a small scale scientific expedition that included the exploration and sampling of 
some of the deep reefs of Moorea (53 to 56 m depth; 4 sites) (Fig. 2).

Specimen collection. Specimens were captured using rotenone (powdered root of the Derris plant) and 
spear guns while SCUBA diving. These complementary sampling methods35 allowed us to sample both the cryp-
tic and small fish fauna as well as the larger specimens of species not susceptible to rotenone collecting. Four 
individuals per species were collected on average. Fishes were sorted and identified onboard to the species level 
using identification keys and taxonomic references23,36 and representative specimens of all species collected were 
photographed in a fish photo tank to capture fresh color patterns, labeled and tissue sampled for genetic analy-
ses (fin clip or muscle biopsies preserved in 96% ethanol). The photographed/sampled voucher specimens were 
preserved in 10% formalin (3.7% formaldehyde solution) and later transferred into 75% ethanol for permanent 

Fig. 2 Sampling localities across French Polynesia. The number of sampling sites and the number of specimens 
collected are displayed for each archipelago. Several sampling localities may be represented by a single dot due 
to the geographic scale of French Polynesia. Map data: Google, DigitalGlobe.

BOLD 
project

Geographical 
location

No. of specimen 
collected

No. of species 
collected

Sampling effort (No. of 
sampling days/No. of sites)

AUSTR Austral Islands 560 263 12/25

GAMBA Gambier Islands 705 290 18/53

MARQ Marquesas Islands 386 182 18/41

MOH Marquesas Islands 190 107 5/11

MOOP Society Islands 42 27 4/4

SCIL Society Islands 309 213 8/20

Table 1. Overview of the dataset. Number of specimens and species collected for each scientific expedition. 
Sampling effort expressed in number of sampling days and number of sites.
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archival storage. Preserved voucher specimens and tissues were deposited and cataloged into the fish collection at 
the Museum Support Center, National Museum of Natural History, Smithsonian Institution, Suitland, Maryland, 
USA. Nomenclature follows Randall23 and we followed recent taxonomic changes using the California Academy 
of Sciences Online Eschmeyer’s Catalog of Fishes37.

DNA barcode sequencing. We extracted whole genomic DNA using QIAxtractor (QIAGEN, Crawley) and 
Autogen AutoGenPrep 965 according to manufacturer’s protocols. A 655 bp fragment of the cytochrome oxidase 
I gene (COI) was amplified using Fish COI primers FISHCOILBC (TCAACYAATCAYAAAGATATYGGCAC) 
and FISHCOIHBC (ACTTCYGGGTGRCCRAARAATCA) and Polymerase Chain Reaction (PCR) and Sanger 
sequencing protocols as in Weigt et al.38. PCR products were Sanger sequenced bidirectionally and run on 
an ABI3730XL in the Laboratories of Analytical Biology (National Museum of Natural History, Smithsonian 
Institution). Sequences were edited using Sequencher 5.4 (Gene Codes) and aligned with Clustal W as imple-
mented in Barcode Of Life Datasystem (BOLD, http://www.boldsystems.org). Alignments were unambiguous 
with no indels or frameshift mutations. A total of 2,190 DNA barcodes have been generated.

Specimen identification. All morphological identifications were revised as needed after the specimens 
were deposited in the archival specimen collection to confirm initial identifications made in the field. Specimens 
of specific groups like Antennaridae, Bythitidae, Chlopsidae or Muraenidae were revised by additional taxono-
mist specialists (David Smith, John McCosker, Leslie W. Knapp, Werner Schwarzhans). After the morphological 
identification, we used the Taxon-ID Tree tool and Barcode Index Numbers (BIN) discordance tools as imple-
mented in the Sequence Analysis module of BOLD to check every identification using the DNA barcodes gen-
erated. The Taxon-ID tool consists of the construction of a neighbor-joining (NJ) tree using K2P (Kimura 2 
Parameter) distances by BOLD to provide a graphic representation of the species divergence39. The BIN discord-
ance tool uses the Refined Single Linkage algorithm (RESL40) to provide a total number of OTUs.

Data Records
This library is composed of three main components: (1) voucher specimens archived in the national fish col-
lection at the Smithsonian Institution (Washington, DC), which were photographed in the field, (2) complete 
collection data associated with each voucher specimen, and (3) DNA barcodes (Fig. 1).

All photographs, voucher collection numbers, DNA barcodes and collection data are publicly available in 
BOLD41 in the Container INDOF “Fish of French Polynesia” or by scientific expedition (“AUSTR”, “GAMBA”, 
“MARQ”, “MOH”, “MOOP” and “SCILL”) and in Figshare42. DNA barcodes have also been made availa-
ble in GenBank, and have accessions KC56766143 to KC56766344, KC68499045, KC68499146, KU90570947 to 
KU90572748, KY57069849, KY57070350 to KY57070551, KY57070852, KY68354953, MH70784654 to MH70788155, 
MK56677456 to MK56715357, MK65696958 to MK65871359 and this database is accessible through the CRIOBE 
portal (http://fishbardb.criobe.pf).

The library fulfills the BARCODE data standard60,61 which requires: 1) Species name, 2) Voucher data, 3) 
Collection data, 4) Identifier of the specimen, 5) COI sequence of at least 500 bp, 6) PCR primers used to gen-
erate the amplicon, 7) Trace files. In BOLD, each record in a project represents a voucher specimen with its 
photographs, voucher collection numbers, associated sequences and extensive collection data related to (1) 
the Voucher: Sample ID, Field ID, Museum ID, Institution Storing; (2) the Taxonomy: Phylum, Class, Order, 

Fig. 3 Species diversity and distribution of genetic distance across the DNA barcode library. (a) Species 
diversity by family for the four archipelagoes sampled; (b) Distribution of maximum intraspecific distances 
(K2P, percent); (c) Distribution of nearest neighbor distances (K2P, percent); (d) Relationship between 
maximum intraspecific and nearest neighbor distances. Points above the diagonal line indicate species with a 
barcode gap.
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Family, Subfamily, Genus, species, Identifier, Identifier E-mail, Taxonomy Notes; (3) Specimen Details: Sex, 
Reproduction, Life Stage, FAO Zone, Notes such as sizes of the specimens, Voucher Status, and (4) Collection 
Data: Collectors, Collection Date, Continent, Country/Ocean*, State/Province, Region, Sector, Exact Site, GPS 
Coordinates, Elevation, Depth, Depth Precision, GPS Source, and Collection Notes42.

Technical Validation
To test the robustness of our library, we first computed the distribution of the interspecific and intraspecific 
variability for all the described species (Fig. 3b–d). We found that there is little to no overlap in the distribution 
of divergence within and between species for the vast majority of the species identified morphologically (mean 
intra-specific divergence 0.66, min: 0.00, max: 21.56; mean inter-specific divergence 12.28, min: 0.00, max: 24.01). 
The RESL algorithm identified more BINs (617) than nominal species identified morphologically (540). The 
morphological reexamination of specimens in light of these results suggest that 65 taxa could be new species for 
science awaiting a formal description (Online-only Table 1) as they are morphologically distinguishable from 
other species and possess unique BIN numbers. Taxonomic paraphyly (i.e. potentially cryptic species) has been 
found for 18 additional species (Table 2) as they are divided in 37 different BINs, while no morphological char-
acter has been found so far to distinguish them. Finally, mixed genealogies between sister-species were observed 
for 17 species (Table 3), mostly between some of the Marquesan endemics and their closest relatives that are not 
currently observed in the Marquesas Islands. Considering the maternal inheritance of the mitochondrial genes 

BINs Taxa No. of specimens

BOLD:AAF8427 Apogon crassiceps 2

BOLD:ABW7007 Apogon crassiceps 4

BOLD:ACE7901 Apogon crassiceps 1

BOLD:ACX1964 Apogon doryssa 1

BOLD:ABW8494 Apogon doryssa 2

BOLD:AAF5636 Aporops bilinearis 1

BOLD:AAF5637 Aporops bilinearis 4

BOLD:AAD2580 Centropyge flavissima 2

BOLD:AAD9019 Centropyge flavissima 6

BOLD:ACD1956 Fusigobius duospilus 5

BOLD:AAD1050 Fusigobius duospilus 1

BOLD:AAA6306 Gnatholepis cauerensis 9

BOLD:AAC6155 Gnatholepis cauerensis 5

BOLD:ACC5235 Gymnothorax melatremus 3

BOLD:AAC8364 Gymnothorax melatremus 5

BOLD:AAF0704 Leiuranus semicinctus 3

BOLD:AAL6561 Leiuranus semicinctus 2

BOLD:ACD1820 Myrophis microchir 1

BOLD:AAE0976 Myrophis microchir 2

BOLD:AAB3862 Parupeneus multifasciatus 6

BOLD:ACD1989 Parupeneus multifasciatus 3

BOLD:ACD1988 Priolepis triops 3

BOLD:AAX7961 Priolepis triops 1

BOLD:AAB4082 Pristiapogon kallopterus 1

BOLD:ABZ7996 Pristiapogon kallopterus 7

BOLD:ACC5180 Pseudocheilinus octotaenia 10

BOLD:AAD3038 Pseudocheilinus octotaenia 9

BOLD:AAB4821 Pterocaesio tile 4

BOLD:ACK9118 Pterocaesio tile 1

BOLD:ACP9778 Scolecenchelys gymnota 1

BOLD:AAJ8783 Scolecenchelys gymnota 2

BOLD:AAC7090 Stegastes fasciolatus 11

BOLD:ABZ0285 Stegastes fasciolatus 2

BOLD:ACC5053 Uropterygius kamar 1

BOLD:ACC5109 Uropterygius kamar 1

BOLD:ACD1642 Uropterygius macrocephalus 1

BOLD:AAU1965 Uropterygius macrocephalus 2

Table 2. Potential cryptic species. Species with number of specimens collected displaying taxonomic paraphyly 
most likely representing undescribed cryptic species. Sample ID includes sampling location (AUST: Austral 
Islands, GAMB: Gambier Islands, MARQ and MOH: Marquesas Islands, SCIL and MOOP: Society Islands).

https://doi.org/10.1038/s41597-019-0123-5
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and the very shallow genealogies involved (maximum K2P genetic distances lower than 2%), both incomplete 
lineage sorting and past introgressive hybridization might be responsible of the mixing of species genealogies in 
those 17 cases. In summary, 94% of the BINs match species identified using morphological characters, meaning 
that it was possible to successfully identify a species using DNA barcodes in 94% of the cases.

Usage Notes
This Barcode release dataset is freely available to use in barcoding or metabarcoding surveys for specimen identi-
fication. Several approaches can be considered:

 (1) directly downloading the sequences in fasta format, and working offline by merging this dataset with an 
ongoing barcoding project;

 (2) working online, through the BOLD website (registration is free), and merging the Container INDOF “Fish 
of French Polynesia” or parts of the scientific expeditions (Table 1) with an ongoing BOLD project;

 (3) through online identification tools, as data are indexed in both BOLD and Genbank databases. This library 
will be considered when any queries of molecular identification will be made through the identification 
engine of BOLD (http://www.boldsystems.org/index.php/IDS-OpenIdEngine) or the standard nucleotide 
Basic Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov/). In the same manner, this 
dataset should also be indexed in the MIDORI database62,63. Composed of both endemic and widespread 
species, this library is expected to benefit a large community from academics to authorities who use molec-
ular data to monitor and survey biodiversity.
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Family Species
Mean 
Intra-Sp

Max 
Intra-Sp

Nearest 
Neighbour Nearest Species

Distance 
to NN

Acanthuridae Acanthurus reversus 0.08 0.15 AUSTR453-13 Acanthurus olivaceus 0

Holocentridae Myripristis earlei 0.28 0.62 SCILL065-15 Myripristis berndti 0

Monacanthidae Pervagor marginalis 0.36 0.62 SCILL083-15 Pervagor aspricaudus 0

Tetraodontidae Canthigaster criobe 0 0 MOH030-16 Canthigaster janthinoptera 0

Mullidae Mulloidichthys mimicus 0.52 0.52 AUSTR089-13 Mulloidichthys vanicolensis 0.17

Pomacentridae Chromis abrupta 0 0 SCILL209-15 Chromis margaritifer 0.31

Labridae Coris marquesensis 0 0 SCILL040-15 Coris gaimard 0.46

Apogonidae Ostorhinchus relativus N/A 0 SCILL142-15 Ostorhinchus angustatus 0.93

Tetraodontidae Canthigaster rapaensis 0.21 0.31 MARQ456-12 Canthigaster marquesensis 1.1

Pomacentridae Abudefduf conformis 0.15 0.15 GAMBA844-12 Abudefduf sexfasciatus 1.24

Monacanthidae Cantherhines nukuhiva 0.15 0.31 GAMBA711-12 Cantherhines sandwichiensis 1.4

Pomacentridae Plectroglyphidodon sagmarius 0.08 0.15 AUSTR222-13 Plectroglyphidodon imparipennis 1.56

Holocentridae Sargocentron caudimaculatum 0.68 1.1 SCILL104-15 Sargocentron tiere 1.57

Acanthuridae Zebrasoma rostratum 0 0 AUSTR376-13 Zebrasoma scopas 1.72

Apogonidae Apogon marquesensis 0.23 0.31 GAMBA657-12 Apogon susanae 1.88

Chaetodontidae Chaetodon flavirostris 0.08 0.15 SCILL269-15 Chaetodon lunula 1.88

Chaetodontidae Chaetodon lunula 0.1 0.15 GAMBA555-12 Chaetodon flavirostris 1.88

Table 3. Species displaying either incomplete lineage sorting or shallow inter-species divergence. Mean and 
Maximum intra-Species distances (Mean Intra-Sp and Max Intra-Sp), and Kimura 2 Parameter distances from 
the Nearest Neighbour (NN).
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