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Introduction

Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 on the complex projective space P k . A compact subset A of P k is called an attracting set if it has a trapping neighborhood U i.e. f (U ) U and A = ∩ n≥0 f n (U ) where

f n := f • • • • • f, n times. It follows that A is invariant, f (A) = A.
Furthermore, if A contains a dense orbit then A is a trapped attractor. Typical examples of such objects are fractal and their underlying dynamics are hard to study. We refer to [START_REF] Milnor | On the concept of attractor[END_REF], [START_REF] Ruelle | Elements of differentiable dynamics and bifurcation theory[END_REF] for general discussions on attractors and to [START_REF] Fornaess | Attractors in P 2 . In Several complex variables[END_REF], [START_REF] Jonsson | A nonalgebraic attractor in P 2[END_REF], [START_REF] Fornaess | Dynamics of P 2 (examples)[END_REF], [START_REF] Bonifant | Elliptic curves as attractors in P 2 . I. Dynamics[END_REF], [START_REF] Taflin | Invariant elliptic curves as attractors in the projective plane[END_REF] and references therein for examples of different types of attractors in P 2 .

Attracting sets are stable under small perturbations. Indeed, if f has an attracting set A = ∩ n≥0 f n (U ) then any small perturbation f of f has an attracting set defined by A = ∩ n≥0 f n (U ). For example, when f restricted to C k defines a polynomial self-map then the hyperplane at infinity P k \ C k is an attracting set. In the same way, it is easy to create examples where the attracting set is a projective subspace of arbitrary dimension. In this paper, we consider a family of endomorphisms, stable under small perturbations, which contains these examples. It was introduced by Dinh in [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF] and we briefly recall the context.

In the sequel, we always assume that f possesses an attracting set A which has a trapped neighborhood U satisfying the following properties. There exist an integer 1 ≤ p ≤ k -1 and two projective subspaces I and L of dimension p -1 and k -p respectively such that I ∩ U = ∅ and L ⊂ U. We do not assume that L and I are invariant. Since I ∩ L = ∅, for each x ∈ L there exists a unique projective subspace I(x) of dimension p which contains I and such that L∩I(x) = {x}. Furthermore, for each x ∈ L we ask that U ∩I(x) is strictly convex as a subset of I(x) \ I C p . All these assumptions are stable under small perturbations of f. The geometric assumption on U is slightly stronger than the one of Dinh, who only requires U ∩ I(x) to be star-shaped at x. We need convexity in order the solve the ∂-equation on U. Indeed, under our assumption U is a (p -1)-convex domain in the sense of [START_REF] Henkin | Andreotti-Grauert theory by integral formulas[END_REF].

If E is a subset of P k , let C q (E) denote the set of all positive closed currents of bidegree (q, q), supported in E and of mass 1. It is well known that for any integer 1 ≤ q ≤ k and any smooth form S in C q (P k ), the sequence d -qn (f n ) * (S) converges to a positive closed current T q of bidegree (q, q) called the Green current of order q of f. We refer to [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] for a detailed exposition on these currents and their effectiveness in holomorphic dynamics.

When q = k, it gives the equilibrium measure of f, µ := T k . It is exponentially mixing and it is the unique measure of maximal entropy k log d on P k . Moreover, it is hyperbolic and all its Lyapunov exponents are larger or equal to (log d)/2. The dynamics outside the support of µ is not very well understood. The aim of this paper is to continue the investigation started in [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF] on the attracting sets described above, which do not intersect supp(µ). Indeed, since I ∩ U = ∅, by regularization there exists a smooth form S ∈ C k-p+1 (Ω), where Ω :

= P k \ U . As f -1 (Ω) ⊂ Ω, it follows that supp(T k-p+1 ) ∩ U = ∅, and hence supp(T q ) ∩ U = ∅ if q ≥ k -p + 1.
The set C p (U ) is non-empty since it contains the current [L] of integration on L and its regularizations in U. In the situation described above, Dinh proved that if R is a continuous element of C p (U ) then its normalized push-forwards by f n , d -(k-p)n (f n ) * (R), converge to a current τ which is independent of the choice of R. Moreover, the current τ gives us information on the geometry of A and on the dynamics of f |A : it is woven, supported in A and invariant i.e. f * (τ ) = d k-p τ. Our main result is that, with a natural additional assumption on f |U , stable under small perturbations, we obtain an explicit exponential speed of the above convergence for any R in C p (U ).

Theorem 1.1. Let f and τ be as above and assume that ∧ k-p+1 Df (z) < 1 on U . There is a constant 0 < λ < 1 such that for each 0 < α ≤ 2 the following property holds. There exists C > 0 such that for any element R of C p (U ) and any (k -p, k -p)-form ϕ of class C α on P k we have

| d -(k-p)n (f n ) * (R) -τ, ϕ | ≤ Cλ nα/2 ϕ C α .
(1.1)

In particular, τ is the unique invariant current in C p (U ) and d

-(k-p)n (f n ) * (R) converge to τ uniformly on R ∈ C p (U ).
Recall that f induces a self-map Df on the tangent bundle T P k which also gives a self-map ∧ q Df on the exterior power ∧ q T P k , 1 ≤ q ≤ k. In the sequel, all the norms on C α , L r , etc. are with respect to the Fubini-Study metric on P k . It also gives a uniform norm which induces an operator norm for ∧ q Df.

In the same spirit as Theorem 1.1, we proved in [START_REF] Taflin | Equidistribution speed towards the Green current for endomorphisms of P k[END_REF] that for a generic current S in C 1 (P k ), the sequence d -n (f n ) * (S) converges to T exponentially fast. However, the contexts are quite different. Here, we consider currents of arbitrary bidegree which are in general much harder to handle. Moreover, in [START_REF] Taflin | Equidistribution speed towards the Green current for endomorphisms of P k[END_REF] we deeply use that T has Hölder continuous local potentials. In the present situation, we can expect that the attracting current τ is always more singular. The idea to prove Theorem 1.1 is to use Henkin-Leiterer's solution with estimates of the dd c -equation on U in order to study separately the harmonic and non-harmonic parts of the left hand side term of (1.1). When dd c ϕ = 0 on U, we use the "geometry" of C p (U ), introduced in [Din07] and [START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontal-like maps[END_REF], and Harnack's inequality to obtain exponential estimates. In order to deal with the non-harmonic part, we use the assumption on ∧ k-p+1 Df . This assumption comes naturally in several basic examples and their perturbations.

In [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF], Dinh also showed that the equilibrium measure associated to A, defined by ν := τ ∧ T k-p , is invariant, mixing and of maximal entropy (k -p) log d on A. Theorem 1.1 is a first step in order to obtain other ergodic and stochastic properties on ν as exponential mixing or central limit theorem. We postpone this question in a future work.

Under the same assumptions, we deduce from the work of de Thélin [dT08], see also [START_REF] Dupont | Large entropy measures for endomorphisms of CP(k)[END_REF], the following result on ν.

Theorem 1.2. If f is as in Theorem 1.1, then the measure ν is hyperbolic. More precisely, counting with multiplicity it has k -p Lyapunov exponents larger than or equal to (log d)/2 and p Lyapunov exponents strictly smaller than -(k -p)(log d)/2.

Structural discs of currents

In this section we recall the notion of structural varieties of currents. It was introduced by Dinh and Sibony in order to put a geometry on the space C p (U ) which is of infinite dimension, see [START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontal-like maps[END_REF] and [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]. The definition of structural varieties is based on slicing theory and they can be seen as complex subvarieties inside C p (U ). In [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF], the authors developed the notion of super-potential which involves more deeply this geometry.

Slicing theory can be seen as a generalization to currents of restriction of smooth forms to submanifolds. We will briefly explain it in our context and refer to [START_REF] Federer | Geometric measure theory[END_REF] for a more complete account.

Let U be an open subset of P k satisfying the geometric hypothesis as above. Let V be a complex manifold of dimension l. We denote by π U and

π V the canonical projections of U × V to U and V respectively. If R is a positive closed current of bidegree (p, p) on U × V with π U (supp(R)) U then, for all θ in V , the slice R, π V , θ is well defined. For any (k -p, k -p)- form φ on U × V we have R, π V , θ (φ) = lim →0 R ∧ π * V (ψ θ, ), φ ,
where ψ θ, is an appropriate approximation in V of the Dirac mass at θ. It is a (p + l, p + l)-current on U × V supported on U × {θ} which can be identified to a (p, p)-current on U. A family of currents

(R θ ) θ∈V in C p (U ) is a structural variety if there exists a positive closed current R in U × V such that R θ = R, π V , θ . When V is isomorphic to the unit disc of C, we call (R θ ) θ∈V a structural disc.
Recall that in our situation f (U ) U. Under the geometrical assumption on U, Dinh constructed in [Din07, p.233] a family of structural discs in C p (U ). He uses that for each x ∈ L the set I(x) ∩ U is star-shaped at x to obtain a property similar to star-sharpness for C p (U ).

More precisely, up to an automorphism, we can assume that

I = {x ∈ P k | x i = 0, 0 ≤ i ≤ k-p}, L = {x ∈ P k | x i = 0, k-p+1 ≤ i ≤ k}, where x = [x 0 : • • • : x k ] are the homogeneous coordinates of P k . For θ ∈ C, A θ (x) := [x 0 : • • • : x k-p : θx k-p+1 : • • • : θx k ] is an automorphism of P k except for θ = 0 where it is the projection of P k \ I on L. Let set U := f (U ). As I(x) ∩ U is star-shaped at x ∈ L, there exists a simply connected open neighborhood V ⊂ C of [0, 1] such that A θ (U ) U for all θ in V . If S is in C p (U )
then the family (S θ ) θ∈V with S θ := (A θ ) * (S) defined a structural disc. Indeed, if Λ : P k × V → P k is the meromorphic map defined by Λ(x, θ) = (A θ ) -1 (x) and S := Λ * S then S θ = S , π V , θ , see [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF] for more details. For any S in C p (U ), we have that S 1 = S and S 0 = [L] which is independent of S. In other words, any current in C p (U ) is linked to [L] by a structural disc in C p (U ). Moreover, S θ depends continuously on θ and we have the following important property.

Lemma 2.1 ( [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]). Let S be in C p (U ) and (S θ ) θ∈V be the structural disc described above. If φ is a real continuous (k -p, k -p)-form with dd c φ = 0 on U then the function θ → S θ , φ is harmonic on V.

q-Convex set and d-bar equation

The concept of q-convexity generalizes both Stein and compact manifolds. Andreotti and Grauert [START_REF] Andreotti | Théorème de finitude pour la cohomologie des espaces complexes[END_REF] obtained vanishing or finiteness theorems for q-convex manifolds and, in [START_REF] Henkin | Andreotti-Grauert theory by integral formulas[END_REF], Henkin and Leiterer developed a similar theory using integral representations. In particular, they obtained solutions of the ∂-equation with explicit estimates, which play a key role in our proof. For this reason, we use the conventions of [START_REF] Henkin | Andreotti-Grauert theory by integral formulas[END_REF].

If 1 ≤ q ≤ k is an integer then a real C 2 function ρ on an open subset V ⊂ P k is called q-convex if, in any holomorphic local coordinates, the Hermitian form

L ρ (x)t = k i,j=1
∂ 2 ρ(x) ∂z i ∂z j t i t j has at least q strictly positive eigenvalues at any point x ∈ V. Let 0 ≤ q ≤ k -1. We say that an open subset D of P k is strictly q-convex if there exists a (q + 1)-convex function ρ in a neighborhood V of ∂D such that

D ∩ V = {x ∈ V | ρ(x) < 0}.
Moreover, if the same condition is satisfied with V a neighborhood of D then D is called completely strictly q-convex.

The strict q-convexity has the following important consequence, see [HL88, Theorem 11.2].

Theorem 3.1. Let D be a strictly q-convex open subset of P k with C 2 boundary. If φ is a continuous ∂-exact form of bidegree (r, s) in a neighborhood of D with 0 ≤ s ≤ k, k-q ≤ r ≤ k, then there exists a continuous (s, r-1)-form ψ on D such that ∂ψ = φ and

ψ ∞,D ≤ C φ ∞,D
for some C > 0 independent of φ.

Furthermore, Andreotti and Grauert proved the following vanishing theorem, see [START_REF] Andreotti | Théorème de finitude pour la cohomologie des espaces complexes[END_REF] and [HL88, Theorem 12.7].

Theorem 3.2. If D is a completely strictly q-convex open subset of P k with C 2 boundary then H s,r (D, C) = 0 for any 0 ≤ s ≤ k and k -q ≤ r ≤ k.

Henkin and Leiterer [HL88, Theorem 5.13] give the following criteria of q-convexity, which is closely related to our geometric assumption on U with q = p -1.

Theorem 3.3. Let D be an open subset of P k with C 2 boundary. If for each x ∈ ∂D there exists a complex submanifold Y ⊂ P k of dimension q + 1, transverse to ∂D and such that Y ∩ D is a strictly pseudoconvex domain in Y, then D is strictly q-convex.

This result applies to our trapping neighborhood U with q = p-1. Indeed, observe that, possibly by exchanging U by a slightly smaller open set which contains f (U ), we can assume that ∂U is smooth and the intersection of ∂U with I(x) is transverse for all x ∈ L. The projective space I(x) has dimension p = q + 1 and U ∩ I(x) is strictly convex in I(x) \ I C p , so in particular strictly pseudoconvex in I(x). Therefore, by Theorem 3.3, U is strictly (p -1)-convex. In the sequel, we always choose such an attracting neighborhood U.

Up to an automorphism of P k , I is defined in homogeneous coordinates by

I = {x ∈ P k | x i = 0, 0 ≤ i ≤ k -p}. The function η(x) = |x k-p+1 | 2 + • • • + |x k | 2 |x 0 | 2 + • • • + |x k-p | 2 ,
is a (q + 1)-convex exhausting function of P k \ I, i.e. P k \ I is completely qconvex. In general, strictly q-convex subsets of a completely q-convex domain are not completely strictly q-convex. However, in our case it is easy to construct from a q-convex function ρ such that

U ∩ V = {x ∈ V | ρ(x) < 0}
for some neighborhood V of ∂U, a q-convex defining function defined in a neighborhood of U . Indeed, it is enough to compose (η, ρ) with a good approximation of the maximum function (see [HL88, Definition 4.12]). It will give a (q + 1)-convex function since the positive eigenvalues of the complex Hessians of ρ and η are in the same directions. Therefore, U is completely strictly (p-1)-convex and we have the following solution for the dd c -equation in symmetric bidegrees.

Theorem 3.4. Let U be as above. If ϕ is a C 2 (r, r)-form in a neighborhood of U with k -p ≤ r ≤ k, then there exists a continuous (r, r)-form ψ on U such that dd c ψ = dd c ϕ and

ψ ∞,U ≤ C dd c ϕ ∞,U
for some C > 0 independent of ϕ.

Proof. The proof follows closely the proof of Theorem 2.7 in [START_REF] Dinh | Dynamics of horizontallike maps in higher dimension[END_REF].

Without loss of generality, we can assume that ϕ is real and therefore dd c ϕ is also real. First, we solve the equation dξ = dd c ϕ with estimates. Let W be a small neighborhood of U , with the same geometric property and such that ϕ is defined on W. The maps A θ defined in Section 2 give a homotopy A : [0, 1] × W → W, A(θ, x) = A θ (x), between A 1 = Id and the projection A 0 of W on L. Since L has dimension k -p, A * 0 vanish identically on (r +1, r +1)forms if r ≥ k -p. Therefore, by homotopy formula (see e.g [BT82, p38]), there exists a form ξ on W such that dξ = dd c ϕ and ξ ∞,U dd c ϕ ∞,U . Moreover, possibly by exchanging ξ by (ξ+ξ)/2, we can assume that ξ = Ξ+Ξ where Ξ is a (r, r + 1)-form. As dξ is a (r + 1, r + 1)-form, it follows that ∂Ξ = 0 and dξ = ∂Ξ + ∂Ξ. Therefore, by Theorem 3.2, Ξ is ∂-exact and by Theorem 3.1, there exists a continuous (r, r)-form Ψ such that ∂Ψ = Ξ and Ψ ∞,U Ξ ∞,U . Finally, if ψ = -iπ(Ψ -Ψ) we have

dd c ψ = ∂∂(Ψ -Ψ) = ∂Ξ + ∂Ξ = dd c ϕ, and ψ ∞,U Ξ ∞,U dd c ϕ ∞,U .

Attracting speed

For R in C p (U ), we denote by R n its normalized push-forward by f n , i.e.

R n := d -(k-p)n (f n ) * (R).
To obtain (1.1), the first observation is that the norm of R n -τ, seen as a linear form on the space of continuous test (k -p, k -p)forms, is bounded independently of n and R. Therefore, it is sufficient to establish (1.1) for α = 2 and then apply interpolation theory between Banach spaces, see e.g. [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF], in order to obtain the general case. Let denote by X the set of all real continuous

(k -p, k -p)-forms φ on U such that dd c φ = 0 and | R -τ, φ | ≤ 1 for all R ∈ C p (U ). Observe that, since f (U ) U, if φ is in X then f * (φ)
is defined on U where it is still a real continuous form with dd c (f * (φ)) = 0. The set X is a truncated convex cone and the first part of the proof of Theorem 1.1 is to show that d -(k-p) f * acts by contraction on it. This result is available without any assumption on ∧ k-p+1 Df . It is based on Lemma 2.1 and Harnack's inequality for harmonic functions.

Lemma 4.1. There exists a constant 0 < λ 1 < 1 such that for any R in C p (U ), φ in X and n in N we have

| R n -τ, φ | ≤ λ n 1 . Proof. If R is in C p (U ) and φ in X, R 1 := d -(k-p) f * (R) is in C p (U )
and we define the function h R,φ on V by h R,φ (θ) := R 1,θ -τ, φ , where θ → R 1,θ is the structural disc described in Section 2. The definition of X implies that |h R,φ | ≤ 1 on V, for all R ∈ C p (U ) and φ ∈ X. Moreover, since R 1 is in C p (U ), it follows from Lemma 2.1 that all these functions are harmonic on V. Now, observe that if we take R = τ then h τ,φ (1) = 0 for all φ ∈ X, since d p-k f * τ = τ. Hence, as |h τ,φ | ≤ 1 on V, Harnack's inequality says that there exists 0 ≤ a < 1 such that |h τ,φ (0)| ≤ a for all φ in X. On the other hand, R 1,0 is a current independent of R. So, for all R ∈ C p (U ) and φ ∈ X we have h R,φ (0) = h τ,φ (0) and therefore |h R,φ (0)| ≤ a. Once again, we deduce from Harnack's inequality there exists 0 < λ 1 < 1, independent of R and φ, such that |h R,φ (1)| ≤ λ 1 or equivalently

R 1 -τ, φ λ 1 = | R -τ, φ 1 | ≤ 1,
where φ 1 = d -(k-p) f * (φ/λ 1 ). Moreover, φ 1 is defined on U and dd c φ 1 = 0. It follows that φ 1 is in X. Using the same arguments with φ 1 instead of φ gives

that | R 1 -τ, φ 1 | ≤ λ 1 which can be rewrite | R 2 -τ, φ | ≤ λ 2 1 . Inductively, we obtain that | R n -τ, φ | ≤ λ n 1 .
Remark 4.2. The constant λ 1 is not directly related to f. Indeed, it only depends on V i.e. on the size of U and the distance between ∂U and ∂f (U ).

If h is the unique biholomorphism between V and the unit disc in C such that h(0) = 0 and h(1) = α ∈]0, 1[ then Harnack's inequality gives explicitly that we can take a = 2α/(1 + α) and λ 1 = 4α/(1 + α) 2 .

In order to prove Theorem 1.1, we use Theorem 3.4 together with the assumption on ∧ k-p+1 Df and Lemma 4.1.

If ∧ k-p+1 Df (z) < 1 on U then by continuity, there exists a constant 0

< λ 2 < 1 such that ∧ k-p+1 Df (z) < λ 2 on U. Hence, if ϕ is a (k-p, k-p)- form of class C 2 , we have for ϕ i := d -i(k-p) (f i ) * (ϕ) with i ∈ N dd c ϕ i ∞,U λ 2i 2 d i(k-p) ϕ C 2 .
Here, the symbol means inequality up to a constant which only depends on our conventions and on U. By Theorem 3.4 with r = k -p, there exists a continuous (k -p, k -p)-form ψ i on U such that

dd c ψ i = dd c ϕ i and ψ i ∞,U dd c ϕ i ∞,U λ 2i 2 d i(k-p) ϕ C 2 .
We can now complete the proof of our main result.

End of the proof of Theorem 1.1. Let R be in C p (U ) and ϕ be a (k-p, k-p)form of class C 2 . Without loss of generality, we can assume that ϕ is real. Let 0 ≤ i ≤ n be two arbitrary integers. We set l := n -i. If R n , ϕ i and ψ i are defined as above then we have

R n -τ, ϕ = R l -τ, ϕ i = R l -τ, ϕ i -ψ i + R l -τ, ψ i , since τ is invariant. On the one hand, R l -τ, ψ i ψ i ∞,U λ 2i 2 d i(k-p) ϕ C 2 , (4.1) 
since R l and τ are supported on U. On the other hand, observe that there exists a constant M ≥ 1 independent of ϕ such that d

-(k-p) f * (ϕ) ∞ ≤ M ϕ ∞ . Therefore, ϕ i -ψ i ∞,U ≤ M i ϕ ∞ + ψ i ∞,U ≤ M i ϕ ∞ + C λ 2i 2 d i(k-p) ϕ C 2 M i ϕ C 2 , and in particular | S -τ, ϕ i -ψ i | M i ϕ C 2 ,
for any S in C p (U ). Moreover, ϕ i -ψ i is a real continuous (k -p, k -p)-form on U and dd c (ϕ i -ψ i ) = 0. Hence, (ϕ i -ψ i )/(CM i ϕ C 2 ) belongs to X where C > 0 is a constant depending only on U and on our conventions. It follows by Lemma 4.1 that | R l -τ, ϕ i -

ψ i | ≤ CM i ϕ C 2 λ l 1 . (4.2)
To summarize, equations (4.1) and (4.2) imply that there are constants 0 < λ 1 , λ 2 < 1, and M ≥ 1 such that

| R n -τ, ϕ | ϕ C 2 M i λ l 1 + λ 2i 2 d i(k-p) .
If q ∈ N is large enough then M λ q 1 < 1. Therefore, if we choose n (q + 1)i, we obtain l iq and

| R n -τ, ϕ | ϕ C 2 λ n ,
where λ := max(λ 2 2 d -(k-p) , M λ q 1 ) 1/(q+1) < 1. This estimate holds for arbitrary n in N and is uniform on ϕ R.

Remark 4.3. In Theorem 1.1, it is enough to assume that ∧ k-p+1 Df (z) < d (k-p)/2 on U . Moreover, it is easy using small perturbations of a suitable polynomial map to construct examples with ∧ k-p+1 Df (z) as small as we want on U .

Hyperbolicity of the equilibrium measure

In this section, we prove Theorem 1.2. Recall that the equilibrium measure associated to A is given by ν := τ ∧ T k-p . It has maximal entropy on A equal to (k -p) log d, [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]. On the other hand, we have the following powerful result, see [dT08] and [START_REF] Dupont | Large entropy measures for endomorphisms of CP(k)[END_REF].

Theorem 5.1. If the Lyapunov exponents of ν are ordered so that

χ 1 ≥ • • • ≥ χ a-1 > χ a ≥ • • • ≥ χ k , then h(ν) ≤ (a -1) log d + 2 k i=a χ + i , (5.1) 
where h(ν) denotes the entropy of ν and χ + i := max(χ i , 0). Now, let 1 ≤ c ≤ k be such that

χ 1 ≥ • • • ≥ χ c > 0 ≥ χ c+1 ≥ • • • ≥ χ k .
If we take a = c + 1 in Theorem 5.1, we obtain h(ν) ≤ c log d. Since h(ν) = (k-p) log d, it follows that c ≥ (k-p). It means there are at least k-p strictly

positive Lyapunov exponents. Moreover, if we have equality, c = k -p, Theorem 5.1 applied to the smallest a such that χ a = χ c gives

Hence, χ c ≥ (log d)/2. Note that in this part we do not need the assumption on ∧ k-p+1 Df .

It remains to prove that the assumptions of Theorem 1.1 imply that c ≤ k -p and χ c+1 < -(k -p)(log d)/2. It is not hard to deduce form Oseledec theorem [START_REF] Oseledec | A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems[END_REF] that the sum of the q largest Lyapunov exponents verifies

for ν-almost all z. Moreover, we have

Therefore, it follows that

Therefore, c ≤ k -p and we have seen above that in this case c = k -p and χ c ≥ (log d)/2. Finally, we have

Remark 5.2. Theorem 5.1 with a = 1 implies the Ruelle inequality, i.e.