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ENUMERATING NUMBER FIELDS

JEAN-MARC COUVEIGNES

ABSTRACT. We construct small models of number fields and deduce a better bound for the num-
ber of number fields of given degree and bounded discriminant.
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1. INTRODUCTION

We prove the two theorems below.

Theorem 1 (Number fields have small models). There exists a positive constant Q such that the
following is true. Let K be a number field of degree n ⩾ Q and root discriminant δK over Q.
There exist integers r ⩽ Q logn and d ⩽ Q logn such that (

d+r
r
) ⩽ Qn logn and there exists r

polynomials E1, E2, . . . , Er of degree ⩽ d in Z[x1, . . . , xr] all having coefficients bounded in
absolute value by (nδK)Qlogn such that the (smooth and zero-dimensional affine) scheme with
equations

E1 = E2 = ⋅ ⋅ ⋅ = Er = 0 and det (∂Ei/∂xj)1⩽i, j⩽r /= 0
contains Spec K as one of its irreducible components.

Theorem 2 (Number fields with bounded discriminant). There exists a positive constant Q such
that the following is true. Let n ⩾ Q be an integer. Let H ⩾ 1 be an integer. The number of
isomorphism classes of number fields with degree n and discriminant ⩽H is ⩽ nQn log3 nHQ log3 n.

The meaning of Theorem 1 is that we can describe a number field using few parameters in
some sense. We have a short description of it as a quotient of a finite algebra : the smooth zero-
dimensional part of a complete intersection of small degree and small height in a projective space
of small dimension.

Theorem 2 improves on previous results by Schmidt [18] and Ellenberg-Venkatesh [12].
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Schmidt uses Minkowski theorem on successive minima of the lattice of integers and obtains
a bound H

n+2
4 times a function of n for the number Nn(H) of number fields with degree n and

discriminant bounded by H in absolute value.
Ellenberg and Venkatesh consider r-uples of small integers (αi)1⩽i⩽r in K and define the mixed

trace χσ = Tr(∏iα
σi
i ) for every r-uple σ = (σi)i of rational integers. They show how to re-

construct the multiplicative structure of K from a collection of χσ where σ runs over a subset
Σ ∈ Nr of managable size. As a result they prove Nn(H) ≪n Hexp(Q

√
logn) with a subexpo-

nential (halfway between n and polynomial in logn) exponent in H . The semigroup Nr of all
possible σ plays an important role in their proof.

We too make use of a few small integers in K. We find small algebraic relations between
them using Minkowski theorem. Proving that the ideal of relations can be generated by a few
of such small relations seems out of reach to us but we can cope with local equations. Familiar
generic well-posedness results in multivariate Lagrange interpolation shows through Ellenberg
and Venkatesh’s work e.g. in the proof of [12, Lemma 2.3]. Similarly the key to find local
equations is a generic well-posedness result in multivariate Hermite interpolation. Such a result
has been proven by Alexander and Hirschowitz. We use it to produce a small projective model of
Spec K in dimension and degree O(logn) and with bit size of order n(logn)3(log δK + logn).
As a consequence one can lower the exponent of H in an upper bound for Nn(H) down to a
polynomial in logn, namely O(log3 n).

Following the pre-publication of the present text Lemke and Thorne [17] improved the latter
exponent toO(log2 n) by applying the Alexander-Hirshowitz theorem to prove the local smooth-
ness of the multisymmetric map of Ellenberg and Venkatesh.

It is sometimes conjectured that Nn(H) ∼ cnH for n ⩾ 2 where cn does not depend on H .
This is known for 2 ⩽ n ⩽ 5 according to work by Davenport and Heilbronn [11] for n = 3, and
Bhargava [4, 5] for n = 4, 5. Cohen, Diaz and Olivier have collected experimental data e.g. in
[8, 9, 10] suggesting that Nn(H) should grow linearly in H for fixed n ⩾ 2. Malle has stated in
[14] a more general and accurate conjecture on the distribution of Galois groups of number fields
that would confirm this intuition.

In Section 2 we recall notation, definitions and elementary results from the geometry of num-
bers. In Section 3 we construct models for number fields as irreducible components of complete
intersections with small height in low dimensional projective spaces. The last section is devoted
to the proof of Theorem 1 and Theorem 2.

The author thanks Pascal Autissier, Karim Belabas, Georges Gras and Christian Maire for
their comments and suggestions. This study has been carried out with financial support from the
French State, managed by the French National Research Agency(ANR) in the frame of the Pro-
grammes FLAIR (ANR-17-CE40-0012 ANR-10-IDEX-03-02) and CLapCLap (ANR-18-CE40-
0026).

2. SHORT INTEGERS

Let K be a number field and let n be the degree of K over Q. Let O be the ring of integers of
K. Let (ρi)1⩽i⩽r be the r real embeddings of K. Let (σj, σ̄j)1⩽j⩽s be the 2s complex embeddings
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of K. We also denote by (τk)1⩽k⩽n the n = r + 2s embeddings of K. Let

KR = K⊗Q R = Rr ×Cs

be the Minkowski space. We follow the presentation in [16, Chapitre 1, §5]. An element x of
KR can be given by r real components (xρ)ρ and s complex components (xσ)σ. So we write
x = ((xρ)ρ, (xσ)σ). For such an x in KR we denote by ∣∣x∣∣ the maximum of the absolute values
of its r + s components. The canonical metric on KR is defined by

< x, y >= ∑
1⩽i⩽r

xiyi + ∑
1⩽j⩽s

xj ȳj + x̄jyj.

In particular the contribution of complex embeddings is counted twice

< x,x >= ∑
1⩽i⩽r

x2
i + 2 ∑

1⩽j⩽s
∣xj ∣

2.

The corresponding Haar measure is said to be canonical also. The canonical measure of the
convex body {x, ∣∣x∣∣ ⩽ 1} is

2r(2π)s ⩾ 2n.
The map a↦ a⊗ 1 injects K and O into KR. For every non-zero x in O we have

∣∣x∣∣ ⩾ 1.
Let (αi)1⩽i⩽n be any Z-basis of O. Set A = (τj(αi))1⩽i,j⩽n. The product AĀt is the Gram matrix
B = (< αi, αj >)1⩽i,j⩽n of the canonical form in the basis (αi)i. This is a real symmetric positive
matrix. The volume of O according to the canonical Haar measure is

vO =
√

det(B) = ∣det(A)∣.

We let
dK = det(AAt)

be the discriminant of K and we denote by

δK = ∣dK∣
1
n

the root discriminant. The square of the volume of O is ∣dK∣. Applying Minkowski’s second
theorem [19, Lecture III, §4, Theorem 16] to the gauge function x↦ ∣∣x∣∣ we find that O contains
n linearly independant elements ω1, ω2, . . . , ωn such that

∏
1⩽i⩽n

∣∣ωi∣∣ ⩽ vO = δ
n/2
K .

We assume that the sequence i↦ ∣∣ωi∣∣ is non-decreasing and deduce that

∣∣ωi∣∣ ⩽ v
1/(n+1−i)
O

for every 1 ⩽ i ⩽ n. This inequality is a bit unsatisfactory because it provides little information
on the largest ωi. To improve on this estimate we use the fact that O is an integral domain. We
let m = ⌈(n + 1)/2⌉ be the smallest integer bigger than n/2. On the one hand

∣∣ωi∣∣ ⩽ δK
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for every 1 ⩽ i ⩽m. On the other hand the products

(ωiωj)1⩽i,j⩽m

generate a Z-module of rank n. Otherwise there would exist a non-zero linear form f ∶ O → Z
vanishing on these products. So the m forms f ○ ωi would be orthogonal to the m vectors ωj .
Then m +m ⩽ n. A contradiction. We deduce that all the successive minima of O are

⩽ δ 2
K.

In other words O is well balanced.

Proposition 1 (Number fields have small integers). The ring of integers O of a number field K
with degree n and root discriminant δK contains n linearly independant elements (αi)1⩽i⩽n over
Z such that all the absolute values of all the αi are ⩽ δ 2

K.

Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and ZhaoSee prove in [3][Theorem 3.1] a
similar statement which is somewhat stronger but less accurate.

3. SMALL MODELS

Let
KC = K⊗Q C = Cn.

Let d ⩾ 5 and r ⩾ 1 be two integers. We assume that

n(r + 1) ⩽ (
d + r

d
).

Let M be the set of monomials of total degree ⩽ d in the r variables x1, . . . , xr. We have

Ar
C = Spec C[x1, . . . , xr] ⊂ Proj C[x0, x1, . . . , xr] = Pr

C.

Let VC be the C-linear space generated by M . We may associate to every element in M the
corresponding degree d monomial in the r + 1 variables x0, x1, . . . , xr. We thus identify VC with
H0(OPr

C
(d)), the space of homogeneous polynomials of degree d.

Let (Pτ)τ be n pairwise distinct points in

Cr = Ar(C).

The Pτ are indexed by the n embeddings of K. These n points form a set (a reduced zero-
dimensional subscheme of Pr

C) called P . We call I the corresponding ideal sheaf on Pr
C. We

denote by 2P the scheme associated with I2. It consists of n double points. We say that the
scheme 2P is well poised (or non-special) in degree d if it imposes n(r + 1) independent condi-
tions on degree d homogeneous polynomials. Equivalently, the map

H0(OPr(d))→H0(O2P (d))

is surjective. This is the case if and only if the n(r + 1) × (
d+r
d
) matrix

M1
P = [(m(Pτ))τ,m∈M , (∂m/∂x1(Pτ))τ,m∈M , (∂m/∂x2(Pτ))τ,m∈M , . . . , (∂m/∂xr(Pτ))τ,m∈M]

has maximal rank n(r + 1). We note that M1
P consists of r + 1 blocks of size n × (

d+r
d
) piled

vertically. It has maximal rank for a generic P when d ⩾ 5, according to a theorem of Alexander
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[1], generalized by Alexander and Hirschowitz [2]. Chandler [7, Theorem 1] provides a simpler
statement and proof. The recent exposition and simplification by Brambilla and Ottaviani [6] is
very useful also.

We now let (αi)1⩽i⩽n be n linearly independant short elements in O as in Proposition 1. We
pick rn rational integers (ui,j)1⩽i⩽n,1⩽j⩽r and we set

κj = ∑
1⩽i⩽n

ui,jαi

for 1 ⩽ j ⩽ r. Let
εQ ∶ Q[x1, . . . , xr]→K

be the homomorphism of Q-algebras sending xj to κj for 1 ⩽ j ⩽ r. Let

eQ ∶ Spec K→Ar
Q ⊂ Pr

Q

be the corresponding morphism of schemes. Tensoring εQ by R we obtain an homomorphism

εR ∶ R[x1, . . . , xr]→KR

sending xj to ((ρ(κj))ρ, (σ(κj))σ). We call

eR ∶ Spec KR →Ar
R ⊂ Pr

R

the corresponding morphism of schemes. We define

εC ∶ C[x1, . . . , xr]→KC

and
eC ∶ Spec KC →Ar

C ⊂ Pr
C

similarly. In particular εC maps xj onto (τ(κj))τ .
We now consider the points (Pτ)τ such that x0(Pτ) = 1 and

(xj(Pτ))τ = ( ∑
1⩽i⩽n

ui,jτ(αi))
τ

,

for 1 ⩽ j ⩽ r or equivalently

Pτ = ( ∑
1⩽i⩽n

ui,jτ(αi))1⩽j⩽r ∈ Cr = Ar(C) ⊂ Pr(C).

The maximal minors of the corresponding matrixM1
P are polynomials of degree ⩽ dn(r + 1) in

each of the ui,j and one of them is not identically zero. The latter determinant cannot vanish on
the cartesian product [0, dn(r + 1)]nr. Thus there exist nr rational integers ui,j in the range

[0, dn(r + 1)]
such that the corresponding scheme 2P is well poised. We assume that the ui,j meet these
conditions.

Since 2P is well poised, P is well poised also. So eQ, eR and eC are closed immersions. In
order to describe them efficiently we look for polynomials with degree ⩽ d and small integer co-
efficients vanishing at P . We denote by VR = R[x1, . . . , xr]d the R-vector space of polynomials
in R[x1, . . . , xr] of degree ⩽ d. There is a unique R-bilinear form on VR that turns the set M
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of monomials into an orthonormal basis. The lattice of relations with integer coefficients and
degree ⩽ d is the intersection between Ker εR and

VZ = Z[x1, . . . , xr]d.

This is a free Z-module L ⊂ VR of rank

` = (
d + r

d
) − n.

We set L = L⊗Q R the underlying R-vector space and L⊥ its orthogonal complement in VR. We
denote by L⊥ the intersection L⊥ = L⊥ ∩ VZ. Since VZ is unimodular, L and L⊥ have the same
volume. See [15, Corollary 1.3.5.]. We denote by Ô = Hom(O,Z) the dual of O, the ring of
integers of K, as a Z-module. We call

εZ,d ∶ Z[x1, . . . , xr]d →O

the evaluation map in degree ⩽ d. We observe that L⊥ contains the image of Ô by the transpose
map

ε̂Z,d ∶ Ô→ Z[x1, . . . , xr]d

where we have identified Z[x1, . . . , xr]d with its dual thanks to the canonical bilinear form. So
the volume of L is bounded from above by the volume of ε̂Z,d(Ô). We consider the matrix

M0
P = [(m(Pτ))τ,m∈M]

of the map εC,d = εZ,d ⊗Z C in the canonical bases. If we prefer to use an integral basis of O
on the right we should multiplyM0

P on the left by the inverse T of the matrix of a basis of O
in the canonical basis. We deduce that the square of the volume of ε̂Z,d(Ô) is the determinant of
TM0

P (M
0
P )

tT t. Since TM0
P has real coefficients we have

det(TM0
P (M

0
P )

tT t) = det(TM0
P (M0

P)
t
T̄ t) = det(M0

P (M0
P)

t
) /∣dK∣.

So the square of the volume of the lattice of relations is bounded by the determinant of the

hermitian positive definite matrixM0
P (M0

P)
t

divided by ∣dK∣.
Recall that the coefficients in M0

P are degree ⩽ d monomials in the κj = ∑1⩽i⩽n ui,jαi. The
coefficients ui,j are bounded form above by dn(r + 1). All the absolute values of the αi are
bounded from above by δ2

K. So the coefficients inM0
P are bounded from above by

(n2d(r + 1))dδ2d
K .

The coefficients inM0
P (M0

P)
t

are bounded from above by

D = (
d + r

d
)(n2d(r + 1))2dδ4d

K .

The matrixM0
P (M0

P)
t

being hermitian positive definite, its determinant is bounded from above
by the product of the diagonal terms. We deduce that the volume of the lattice L of relations is
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bounded from above by Dn/2. Recall that the dimension of L is

` = (
d + r

d
) − n.

For any x in VR we denote by ∣∣x∣∣ the `2-norm in the monomial basis. The volume of the
sphere {x ∈ L, ∣∣x∣∣ ⩽ 1} is ⩾ 2``−`/2. Applying Minkowski’s second theorem [19, Lecture III,
§4, Theorem 16] to the gauge function x ↦ ∣∣x∣∣ we find that L contains ` linearly independant
elements E1, E2, . . . , E` such that

∏
1⩽i⩽`

∣∣Ei∣∣ ⩽ `
`/2Dn/2.

We assume that the sequence i ↦ ∣∣Ei∣∣ is non-decreasing and deduce that the size of the i-th
equation is bounded from above

∣∣Ei∣∣ ⩽ `
`

2(`+1−i)D
n

2(`+1−i)

for every 1 ⩽ i ⩽ `. Again, this inequality is a bit unsatisfactory because it provides little infor-
mation on the largest equations. This time we see no other way around than forgetting the last
n − 1 equations. On the one hand

∣∣Ei∣∣ ⩽ `
`/2nD1/2

for every 1 ⩽ i ⩽ ` + 1 − n.
On the other hand the scheme 2P is well poised and the C-vector space generated by the Ei

for 1 ⩽ i ⩽ `+ 1−n has codimension n− 1 < n in L⊗R C. So there exists at least one embedding
τ such that the (` + 1 − n) × r matrix

((∂Ei/∂xj)(Pτ))1⩽i⩽`+1−n,1⩽j⩽r

has maximal rank r. In more geometric terms the C-vector space generated by the ` + 1 − n first
equations (Ei)1⩽i⩽`+1−n surjects onto the cotangent space to Pr

C at the geometric point Pτ for at
least one τ . This means that there exist r integers 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < ir ⩽ ` + 1 − n such that the
minor determinant

det ((∂Eik/∂xj)(Pτ))1⩽k, j⩽r
is non-zero for some τ and thus for all τ by Galois action.

Proposition 2 (Number fields have small models). Let K be a number field of degree n and root
discriminant δK over Q. Let d ⩾ 5 and r ⩾ 1 be rational integers such that

n(r + 1) ⩽ (
d + r

d
).

There exists r polynomials E1, E2, . . . , Er of degree ⩽ d in Z[x1, . . . , xr] having coefficients
bounded in absolute value by

``/2n × (
d + r

d
)

1/2
(n2d(r + 1))dδ2d

K

where

` = (
d + r

d
) − n,



8 JEAN-MARC COUVEIGNES

and such that the (smooth and zero-dimensional affine) scheme with equations

E1 = E2 = ⋅ ⋅ ⋅ = Er = 0 and det (∂Ei/∂xj)1⩽i, j⩽r /= 0
contains Spec K as one of its irreducible components.

4. PROOF OF MAIN RESULTS

In this section, the notationQ stands for a positive absolute constant. Any sentence containing
this symbol becomes true if the symbol is replaced in every occurrence by some large enough
real number.

We specialize the values of the parameters r and d in Proposition 2. We will take d = r. It is
evident that (2r

r
) ⩾ 2r so

1
r + 1(

2r
r
) ⩾ 2 r

2

for r large enough. Further
1

r + 2(
2r + 2
r + 1 ) ⩽

1
r + 1(

2r
r
) × 4.

We choose r to be the smallest positive integer such that n(r + 1) ⩽ (
2r
r
). We have

(1) n(r + 1) ⩽ (
2r
r
) ⩽ 4n(r + 1) and r ⩽ 3 logn

for n large enough. We deduce that ` = (
2r
r
) − n ⩽ 4n(r + 1) ⩽ Qn logn. So

``/2n ⩽ nQ logn.

From Equation (1) we deduce that (2r
r
) ⩽ Qn logn. Also n2d(r + 1) ⩽ Qn2 log2 n and

(n2d(r + 1))r ⩽ nQ logn.

So the coefficients of equations Ei are bounded in absolute value by

nQ lognδQ logn
K .

This proves Theorem 1. Theorem 2 follows because there are r(2r
r
) coefficients to be fixed. We

note also that there may appear several number fields in the smooth zero dimensional part of the
complete intersection E1 = E2 = ⋅ ⋅ ⋅ = Er = 0. However the Chow class of this intersection is
rr ⩽ (logn)Q logn and the number of isolated points is bounded by this intersection number [13,
Chapter 13].
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