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INTRODUCTION

We prove the two theorems below.

Theorem 1 (Number fields have small models). There exists a positive constant Q such that the following is true. Let K be a number field of degree n ⩾ Q and root discriminant δ K over Q. There exist integers r ⩽ Q log n and d ⩽ Q log n such that d+r r ⩽ Qn log n and there exists r polynomials E 1 , E 2 , . . . , E r of degree ⩽ d in Z[x 1 , . . . , x r ] all having coefficients bounded in absolute value by (nδ K ) Qlog n such that the (smooth and zero-dimensional affine) scheme with equations E 1 = E 2 = ⋅ ⋅ ⋅ = E r = 0 and det (∂E i ∂x j ) 1⩽i, j⩽r = 0 contains Spec K as one of its irreducible components.

Theorem 2 (Number fields with bounded discriminant). There exists a positive constant Q such that the following is true. Let n ⩾ Q be an integer. Let H ⩾ 1 be an integer. The number of isomorphism classes of number fields with degree n and discriminant ⩽ H is ⩽ n Qn log 3 n H Q log 3 n .

The meaning of Theorem 1 is that we can describe a number field using few parameters in some sense. We have a short description of it as a quotient of a finite algebra : the smooth zerodimensional part of a complete intersection of small degree and small height in a projective space of small dimension.

Theorem 2 improves on previous results by Schmidt [START_REF] Schmidt | Number fields of given degree and bounded discriminant[END_REF] and Ellenberg-Venkatesh [START_REF] Ellenberg | The number of extensions of a number field with fixed degree and bounded discriminant[END_REF].

Schmidt uses Minkowski theorem on successive minima of the lattice of integers and obtains a bound H n+2 4

times a function of n for the number N n (H) of number fields with degree n and discriminant bounded by H in absolute value.

Ellenberg and Venkatesh consider r-uples of small integers (α i ) 1⩽i⩽r in K and define the mixed trace χ σ = Tr(∏ i α σ i i ) for every r-uple σ = (σ i ) i of rational integers. They show how to reconstruct the multiplicative structure of K from a collection of χ σ where σ runs over a subset Σ ∈ N r of managable size. As a result they prove N n (H) ≪ n H exp(Q √ log n) with a subexponential (halfway between n and polynomial in log n) exponent in H. The semigroup N r of all possible σ plays an important role in their proof.

We too make use of a few small integers in K. We find small algebraic relations between them using Minkowski theorem. Proving that the ideal of relations can be generated by a few of such small relations seems out of reach to us but we can cope with local equations. Familiar generic well-posedness results in multivariate Lagrange interpolation shows through Ellenberg and Venkatesh's work e.g. in the proof of [START_REF] Ellenberg | The number of extensions of a number field with fixed degree and bounded discriminant[END_REF]Lemma 2.3]. Similarly the key to find local equations is a generic well-posedness result in multivariate Hermite interpolation. Such a result has been proven by Alexander and Hirschowitz. We use it to produce a small projective model of Spec K in dimension and degree O(log n) and with bit size of order n(log n) 3 (log δ K + log n). As a consequence one can lower the exponent of H in an upper bound for N n (H) down to a polynomial in log n, namely O(log 3 n).

Following the pre-publication of the present text Lemke and Thorne [START_REF] Robert | Upper bounds on number fields of given degree and bounded discriminant[END_REF] improved the latter exponent to O(log 2 n) by applying the Alexander-Hirshowitz theorem to prove the local smoothness of the multisymmetric map of Ellenberg and Venkatesh.

It is sometimes conjectured that N n (H) ∼ c n H for n ⩾ 2 where c n does not depend on H. This is known for 2 ⩽ n ⩽ 5 according to work by Davenport and Heilbronn [START_REF] Davenport | On the density of discriminants of cubic fields[END_REF] for n = 3, and Bhargava [START_REF] Bhargava | The density of discriminants of quartic rings and fields[END_REF][START_REF] Bhargava | The density of discriminants of quintic rings and fields[END_REF] for n = 4, 5. Cohen, Diaz and Olivier have collected experimental data e.g. in [START_REF] Cohen | A course in computational algebraic number theory[END_REF][START_REF] Cohen | Advanced topics in computational number theory[END_REF][START_REF] Cohen | Counting discriminants of number fields[END_REF] suggesting that N n (H) should grow linearly in H for fixed n ⩾ 2. Malle has stated in [START_REF] Malle | On the distribution of Galois groups[END_REF] a more general and accurate conjecture on the distribution of Galois groups of number fields that would confirm this intuition.

In Section 2 we recall notation, definitions and elementary results from the geometry of numbers. In Section 3 we construct models for number fields as irreducible components of complete intersections with small height in low dimensional projective spaces. The last section is devoted to the proof of Theorem 1 and Theorem 2.

The author thanks Pascal Autissier, Karim Belabas, Georges Gras and Christian Maire for their comments and suggestions. This study has been carried out with financial support from the French State, managed by the French National Research Agency(ANR) in the frame of the Programmes FLAIR (ANR-17-CE40-0012 ANR-10-IDEX-03-02) and CLapCLap (ANR-18-CE40-0026).

SHORT INTEGERS

Let K be a number field and let n be the degree of K over Q. Let O be the ring of integers of K. Let (ρ i ) 1⩽i⩽r be the r real embeddings of K. Let (σ j , σj ) 1⩽j⩽s be the 2s complex embeddings of K. We also denote by (τ k ) 1⩽k⩽n the n = r + 2s embeddings of K. Let

K R = K ⊗ Q R = R r × C s
be the Minkowski space. We follow the presentation in [16, Chapitre 1, §5]. An element x of K R can be given by r real components (x ρ ) ρ and s complex components (x σ ) σ . So we write x = ((x ρ ) ρ , (x σ ) σ ). For such an x in K R we denote by x the maximum of the absolute values of its r + s components. The canonical metric on K R is defined by

< x, y >= 1⩽i⩽r x i y i + 1⩽j⩽s x j ȳj + xj y j .
In particular the contribution of complex embeddings is counted twice

< x, x >= 1⩽i⩽r x 2 i + 2 1⩽j⩽s x j 2 .
The corresponding Haar measure is said to be canonical also. The canonical measure of the convex body {x,

x ⩽ 1} is 2 r (2π) s ⩾ 2 n .
The map a ↦ a ⊗ 1 injects K and O into K R . For every non-zero x in O we have

x ⩾ 1. Let (α i ) 1⩽i⩽n be any Z-basis of O. Set A = (τ j (α i )) 1⩽i,j⩽n . The product A Āt is the Gram matrix B = (< α i , α j >) 1⩽i
,j⩽n of the canonical form in the basis (α i ) i . This is a real symmetric positive matrix. The volume of O according to the canonical Haar measure is

v O = det(B) = det(A) .
We let

d K = det(AA t )
be the discriminant of K and we denote by 

δ K = d K 1 n the root discriminant.
ω i ⩽ v O = δ n 2 K .
We assume that the sequence i ↦ ω i is non-decreasing and deduce that

ω i ⩽ v 1 (n+1-i) O
for every 1 ⩽ i ⩽ n. This inequality is a bit unsatisfactory because it provides little information on the largest ω i . To improve on this estimate we use the fact that O is an integral domain. We let m = ⌈(n + 1) 2⌉ be the smallest integer bigger than n 2. On the one hand

ω i ⩽ δ K
for every 1 ⩽ i ⩽ m. On the other hand the products (ω i ω j ) 1⩽i,j⩽m generate a Z-module of rank n. Otherwise there would exist a non-zero linear form f ∶ O → Z vanishing on these products. So the m forms f ○ ω i would be orthogonal to the m vectors ω j . Then m + m ⩽ n. A contradiction. We deduce that all the successive minima of O are ⩽ δ 2 K . In other words O is well balanced.

Proposition 1 (Number fields have small integers). The ring of integers O of a number field K with degree n and root discriminant δ K contains n linearly independant elements (α i ) 1⩽i⩽n over Z such that all the absolute values of all the α i are ⩽ δ 2 K . Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and ZhaoSee prove in [START_REF] Bhargava | Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves[END_REF][Theorem 3.1] a similar statement which is somewhat stronger but less accurate.

SMALL MODELS

Let K C = K ⊗ Q C = C n . Let d ⩾ 5 and r ⩾ 1 be two integers. We assume that n(r + 1) ⩽ d + r d .
Let M be the set of monomials of total degree ⩽ d in the r variables x 1 , . . . , x r . We have

A r C = Spec C[x 1 , . . . , x r ] ⊂ Proj C[x 0 , x 1 , . . . , x r ] = P r C .
Let V C be the C-linear space generated by M . We may associate to every element in M the corresponding degree d monomial in the r + 1 variables x 0 , x 1 , . . . , x r . We thus identify V C with H 0 (O P r C (d)), the space of homogeneous polynomials of degree d. Let (P τ ) τ be n pairwise distinct points in

C r = A r (C).
The P τ are indexed by the n embeddings of K. These n points form a set (a reduced zerodimensional subscheme of P r C ) called P . We call I the corresponding ideal sheaf on P r C . We denote by 2P the scheme associated with I 2 . It consists of n double points. We say that the scheme 2P is well poised (or non-special) in degree d if it imposes n(r + 1) independent conditions on degree d homogeneous polynomials. Equivalently, the map

H 0 (O P r (d)) → H 0 (O 2P (d))
is surjective. This is the case if and only if the n(r + 1) × d+r d matrix M 1 P = [(m(P τ )) τ, m∈M , (∂m ∂x 1 (P τ )) τ, m∈M , (∂m ∂x 2 (P τ )) τ, m∈M , . . . , (∂m ∂x r (P τ )) τ, m∈M ] has maximal rank n(r + 1). We note that M 1 P consists of r + 1 blocks of size n × d+r d piled vertically. It has maximal rank for a generic P when d ⩾ 5, according to a theorem of Alexander [START_REF] Alexander | Singularités imposables en position générale à une hypersurface projective[END_REF], generalized by Alexander and Hirschowitz [START_REF] Alexander | Polynomial interpolation in several variables[END_REF]. Chandler [7, Theorem 1] provides a simpler statement and proof. The recent exposition and simplification by Brambilla and Ottaviani [START_REF] Chiara | On the Alexander-Hirschowitz theorem[END_REF] is very useful also.

We now let (α i ) 1⩽i⩽n be n linearly independant short elements in O as in Proposition 1. We pick rn rational integers (u i,j ) 1⩽i⩽n, 1⩽j⩽r and we set

κ j = 1⩽i⩽n u i,j α i for 1 ⩽ j ⩽ r. Let Q ∶ Q[x 1 , . . . , x r ] → K be the homomorphism of Q-algebras sending x j to κ j for 1 ⩽ j ⩽ r. Let e Q ∶ Spec K → A r Q ⊂ P r Q
be the corresponding morphism of schemes. Tensoring Q by R we obtain an homomorphism

R ∶ R[x 1 , . . . , x r ] → K R sending x j to ((ρ(κ j )) ρ , (σ(κ j )) σ ). We call e R ∶ Spec K R → A r R ⊂ P r R
the corresponding morphism of schemes. We define

C ∶ C[x 1 , . . . , x r ] → K C and e C ∶ Spec K C → A r C ⊂ P r C
similarly. In particular C maps x j onto (τ (κ j )) τ . We now consider the points (P τ ) τ such that x 0 (P τ ) = 1 and

(x j (P τ )) τ = 1⩽i⩽n u i,j τ (α i ) τ ,
for 1 ⩽ j ⩽ r or equivalently

P τ = ( 1⩽i⩽n u i,j τ (α i )) 1⩽j⩽r ∈ C r = A r (C) ⊂ P r (C).
The maximal minors of the corresponding matrix M 1 P are polynomials of degree ⩽ dn(r + 1) in each of the u i,j and one of them is not identically zero. The latter determinant cannot vanish on the cartesian product [0, dn(r + 1)] nr . Thus there exist nr rational integers u i,j in the range [0, dn(r + 1)] such that the corresponding scheme 2P is well poised. We assume that the u i,j meet these conditions.

Since 2P is well poised, P is well poised also. So e Q , e R and e C are closed immersions. In order to describe them efficiently we look for polynomials with degree ⩽ d and small integer coefficients vanishing at P . We denote by V R = R[x 1 , . . . , x r ] d the R-vector space of polynomials in R[x 1 , . . . , x r ] of degree ⩽ d. There is a unique R-bilinear form on V R that turns the set M of monomials into an orthonormal basis. The lattice of relations with integer coefficients and degree ⩽ d is the intersection between Ker R and

V Z = Z[x 1 , . . . , x r ] d . This is a free Z-module L ⊂ V R of rank = d + r d -n.
We set L = L ⊗ Q R the underlying R-vector space and L ⊥ its orthogonal complement in V R . We denote by L ⊥ the intersection P on the left by the inverse T of the matrix of a basis of O in the canonical basis. We deduce that the square of the volume of ˆ Z,d ( Ô) is the determinant of T M 0 P (M 0 P ) t T t . Since T M 0 P has real coefficients we have

L ⊥ = L ⊥ ∩ V Z . Since V Z is
det(T M 0 P (M 0 P ) t T t ) = det T M 0 P M 0 P t T t = det M 0 P M 0 P t d K .
So the square of the volume of the lattice of relations is bounded by the determinant of the hermitian positive definite matrix M 0 P M 0 P t divided by d K . Recall that the coefficients in M 0 P are degree ⩽ d monomials in the κ j = ∑ 1⩽i⩽n u i,j α i . The coefficients u i,j are bounded form above by dn(r + 1). All the absolute values of the α i are bounded from above by δ 2 K . So the coefficients in M 0 P are bounded from above by

(n 2 d(r + 1)) d δ 2d K .
The coefficients in M 0 P M 0 P t are bounded from above by

D = d + r d (n 2 d(r + 1)) 2d δ 4d K .
The matrix M 0 P M 0 P t being hermitian positive definite, its determinant is bounded from above by the product of the diagonal terms. We deduce that the volume of the lattice L of relations is bounded from above by D n 2 . Recall that the dimension of L is

= d + r d -n.
For any x in V R we denote by x the 2 -norm in the monomial basis. 

E i ⩽ 2 D n 2 .
We assume that the sequence i ↦ E i is non-decreasing and deduce that the size of the i-th equation is bounded from above

E i ⩽ 2( +1-i) D n 2( +1-i)
for every 1 ⩽ i ⩽ . Again, this inequality is a bit unsatisfactory because it provides little information on the largest equations. This time we see no other way around than forgetting the last n -1 equations. On the one hand

E i ⩽ 2n D 1 2 for every 1 ⩽ i ⩽ + 1 -n.
On the other hand the scheme 2P is well poised and the C-vector space generated by the E i for 1

⩽ i ⩽ + 1 -n has codimension n -1 < n in L ⊗ R C.
So there exists at least one embedding τ such that the ( + 1 -n) × r matrix ((∂E i ∂x j )(P τ )) 1⩽i⩽ +1-n, 1⩽j⩽r has maximal rank r. In more geometric terms the C-vector space generated by the + 1 -n first equations (E i ) 1⩽i⩽ +1-n surjects onto the cotangent space to P r C at the geometric point P τ for at least one τ . This means that there exist r integers

1 ⩽ i 1 < i 2 < ⋅ ⋅ ⋅ < i r ⩽ + 1 -n such that the minor determinant det ((∂E i k ∂x j )(P τ )) 1⩽k, j⩽r
is non-zero for some τ and thus for all τ by Galois action. 

× d + r d 1 2 (n 2 d(r + 1)) d δ 2d K where = d + r d -n,
and such that the (smooth and zero-dimensional affine) scheme with equations

E 1 = E 2 = ⋅ ⋅ ⋅ = E r = 0 and det (∂E i ∂x j ) 1⩽i, j⩽r = 0
contains Spec K as one of its irreducible components.

PROOF OF MAIN RESULTS

In this section, the notation Q stands for a positive absolute constant. Any sentence containing this symbol becomes true if the symbol is replaced in every occurrence by some large enough real number.

We specialize the values of the parameters r and d in Proposition 2. We will take d = r. It is evident that 2r r ⩾ 2 r so 1 r + 1 We choose r to be the smallest positive integer such that n(r + 1) ⩽ 2r r . We have This proves Theorem 1. Theorem 2 follows because there are r 2r r coefficients to be fixed. We note also that there may appear several number fields in the smooth zero dimensional part of the complete intersection E 1 = E 2 = ⋅ ⋅ ⋅ = E r = 0. However the Chow class of this intersection is r r ⩽ (log n) Q log n and the number of isolated points is bounded by this intersection number [START_REF] Fulton | Intersection theory[END_REF]Chapter 13].

  unimodular, L and L ⊥ have the same volume. See [15, Corollary 1.3.5.]. We denote by Ô = Hom(O, Z) the dual of O, the ring of integers of K, as a Z-module. We call Z,d ∶ Z[x 1 , . . . , x r ] d → O the evaluation map in degree ⩽ d. We observe that L ⊥ contains the image of Ô by the transpose map ˆ Z,d ∶ Ô → Z[x 1 , . . . , x r ] d where we have identified Z[x 1 , . . . , x r ] d with its dual thanks to the canonical bilinear form. So the volume of L is bounded from above by the volume of ˆ Z,d ( Ô). We consider the matrix M 0 P = [(m(P τ )) τ, m∈M ] of the map C,d = Z,d ⊗ Z C in the canonical bases. If we prefer to use an integral basis of O on the right we should multiply M 0

( 1 )

 1 n(r + 1) ⩽ 2r r ⩽ 4n(r + 1) and r ⩽ 3 log n for n large enough. We deduce that= 2r r -n ⩽ 4n(r + 1) ⩽ Qn log n. So 2n ⩽ n Q log n .From Equation (1) we deduce that 2r r ⩽ Qn log n. Also n 2 d(r + 1) ⩽ Qn 2 log 2 n and n 2 d(r + 1) r ⩽ n Q log n . So the coefficients of equations E i are bounded in absolute value byn Q log n δ Q log n K .

  The volume of the sphere {x ∈ L, x ⩽ 1} is ⩾ 2 -2 . Applying Minkowski's second theorem [19, Lecture III, §4, Theorem 16] to the gauge function x ↦ x we find that L contains linearly independant elements E 1 , E 2 , . . . , E such that

	1⩽i⩽

  There exists r polynomials E 1 , E 2 , . . . , E r of degree ⩽ d in Z[x 1 , . . . , x r ] having coefficients bounded in absolute value by

	n(r + 1) ⩽	d + r d	.
	2n		

Proposition 2 (Number fields have small models). Let K be a number field of degree n and root discriminant δ K over Q. Let d ⩾ 5 and r ⩾ 1 be rational integers such that