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IDENTIFICATION OF TIME-VARYING SOURCE TERM IN

TIME-FRACTIONAL DIFFUSION EQUATIONS

YAVAR KIAN1, ÉRIC SOCCORSI1, QI XUE2 AND MASAHIRO YAMAMOTO3,4,5

Abstract. This paper is concerned with the inverse problem of determining the time and

space dependent source term of diffusion equations with constant-order time-fractional deriv-

ative in (0, 2). We examine two different cases. In the first one, the source is the product of

two spatial and temporal terms, and we prove that both of them can be retrieved by knowl-

edge of one arbitrary internal measurement of the solution for all times. In the second case,

we assume that the first term of the product varies with one fixed space variable, while the

second one is a function of all the remaining space variables and the time variable, and we

show that both terms are uniquely determined by two arbitrary lateral measurements of the

solution over the entire time span. These two source identification results boil down to a weak

unique continuation principle in the first case and a unique continuation principle for Cauchy

data in the second one, that are preliminarily established. Finally, numerical reconstruction

of spatial term of source terms in the form of the product of two spatial and temporal terms,

is carried out through an iterative algorithm based on the Tikhonov regularization method.
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1. Introduction

1.1. Settings. Let Ω be a bounded and connected open subset of Rd, d > 2, with C2 boundary

∂Ω. Given a := (ai,j)16i,j6d ∈ C1(Ω;Rd2), symmetric, i.e.,

ai,j(x) = aj,i(x), x ∈ Ω, i, j = 1, . . . , d,

and fulfilling the ellipticity condition

∃c > 0,

d∑
i,j=1

ai,j(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd, (1.1)

we introduce the formal differential operator

A0u(x) := −
d∑

i,j=1

∂xi
(
ai,j(x)∂xju(x)

)
, x := (x1, . . . , xd) ∈ Ω,

where ∂xi denotes the partial derivative with respect to xi, i = 1, . . . , d. We perturb A0 by a

potential function q ∈ Lκ(Ω), κ ∈ (d,+∞], that is lower bounded by some positive constant,

∃r ∈ (0,+∞), q(x) > r, x ∈ Ω, (1.2)

and define the operator Aq := A0 +q, where the notation q is understood as the multiplication

operator by the corresponding function.

Next, for T ∈ (0,+∞), α ∈ (0, 2) and ρ ∈ L∞(Ω) obeying

0 < ρ0 6 ρ(x) 6 ρM < +∞, x ∈ Ω, (1.3)

we consider the following initial boundary value problem (IBVP) with source term f ∈

L1(0, T ;L2(Ω)),
(ρ(x)∂αt +Aq)u(t, x) = f(t, x), (t, x) ∈ Q := (0, T )× Ω,

B?u(t, x) = 0, (t, x) ∈ Σ := (0, T )× ∂Ω,

∂kt u(0, x) = 0, x ∈ Ω, k = 0, . . . , Nα,

(1.4)

where

Nα :=

 0 if α ∈ (0, 1],

1 if α ∈ (1, 2),

and ∂αt denotes the fractional Caputo derivative of order α with respect to t, defined by

∂αt u(t, x) :=
1

Γ(Nα + 1− α)

∫ t

0
(t− s)Nα−α∂Nα+1

s u(s, x)ds, (t, x) ∈ Q, (1.5)

when α ∈ (0, 1) ∪ (1, 2), while ∂αt is the usual first order derivative ∂t when α = 1. In the

second line of (1.4), B? is either of the two following boundary operators:
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(a) B?u := u,

(b) B?u := ∂νau, where ∂νa stands for the normal derivative with respect to a = (ai,j)16i,j6d,

expressed by

∂νah(x) :=
d∑

i,j=1

ai,j(x)∂xjh(x)νi(x), x ∈ ∂Ω,

and ν = (ν1, . . . , νd) is the outward unit normal vector to ∂Ω.

Otherwise stated, the IBVP (1.4) is endowed with homogeneous Dirichlet (resp., Neumann)

boundary condition when B? is given by (a) (resp., (b)).

1.2. Weak solution. With reference to [21, 34], we say that u is a weak solution to (1.4)

if u is the restriction to Q of a function v ∈ L∞loc(R+;L2(Ω)), i.e. u = v|Q, fulfilling the two

following conditions:

(a) inf{ε > 0 : e−εtv ∈ L1(R+;L2(Ω))} = 0;

(b) For all p ∈ (0,+∞), the Laplace transform of v with respect to t, computed at p,

V (p) = L[v](p) :=

∫ +∞

0
e−ptv(t, .)dt,

solves the following boundary value problem (BVP) (Aq + ρpα)V (p) = F (p), in Ω,

B?V (p) = 0, on ∂Ω,
(1.6)

where F denotes the Laplace transform with respect to t of f multiplied by the character-

istic function t 7→ 1(0,T )(t) of the interval (0, T ), i.e.

F (p) := L[f1(0,T )](p) =

∫ T

0
e−ptf(t, .)dt. (1.7)

Here and in the remaining part of this text, we use the notation v(t, ·) as a shorthand for the

function x 7→ v(t, x).

The weak solution to (1.4) exists and is unique within the class C((0, T ], L2(Ω)), and it

enjoys a Duhamel representation formula, given in Section 2. We refer the reader to [21, 20,

34] for the existence and the uniqueness issue of such a solution to (1.4), as well as for its

classical properties. We point out that for α = 1, the weak solution to (1.4) coincides with

the classical variational C1([0, T ];H−1(Ω)) ∩ C([0, T ];H1(Ω))-solution to the corresponding

parabolic equation.
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1.3. Inverse problem. In this paper we examine the inverse problem of determining the

source term f appearing in the first line of (1.4), from either internal or lateral measurement

of the weak solution u to (1.4). But it turns out that this problem is ill-posed in the sense

that the above data do not uniquely determine f .

1.3.1. A natural obstruction to identifiability. This can be seen upon taking a proper subset Ω′

of Ω, picking a function u0 ∈ C∞0 ((0, T )× (Ω\Ω′)) that is not identically zero, and considering

the IBVP (1.4) associated with the source term f0 := ρ∂αt ũ0−Aqũ0, where ũ0 is the extension

by zero of u0 on (0, T )× Ω′, i.e.

ũ0(t, x) :=

 u0(t, x) if (t, x) ∈ (0, T )× (Ω \ Ω′),

0 if (t, x) ∈ (0, T )× Ω′.

Evidently, ũ0 is a weak solution to (1.4), so we have u = ũ0 from the uniqueness of the

solution to (1.4) with f = f0. Moreover, since ũ0 is not identically zero in Q, then the same is

true for f0 (otherwise ũ0 would be zero everywhere by uniqueness of the solution to (1.4), in

contradiction to the definition of u0). Thus, we have u|(0,T )×Ω′ = 0, despite of the fact that f0

is not identically zero in Q. This establishes that the recovery of the unknown source term f

by partial knowledge of u, is completely hopeless, or, otherwise stated, that full knowledge of

the solution u to (1.4) (i.e. measurement of u performed on the entire time-space cylinder Q)

is needed in order to uniquely determine general unknown source terms f in L1(0, T ;L2(Ω)).

As a consequence, the inverse source problem under investigation has to be reformulated.

Different lines of research can be pursued. One possible direction is the one of assuming that

the unknown function f : Q→ R depends on a restricted number of parameters of (t, x) ∈ Q.

Another direction is the one of considering source terms with separated variables. In this

paper, we follow the second direction.

1.3.2. Motivations. Depending on whether α = 1 or α ∈ (0, 1) ∪ (1, 2), the system (1.4)

models typical or anomalous diffusion phenomena appearing in several areas of applied sciences,

such as geophysics, environmental science and biology, see e.g. [17, 31]. In this context,

sub-diffusive (resp., super-diffusive) processes are described by (1.4) with α ∈ (0, 1) (resp.,

α ∈ (1, 2)), and kinetic equation (1.4) may be seen as a corresponding macroscopic model to

microscopic diffusion phenomena driven by continuous time random walk, see e.g., [30]. The

inverse problem under examination here, is to know whether time and space varying source

terms can be retrieved by either internal or lateral data, in presence of typical or anomalous
4



diffusion. We point out that such a framework can be adapted to the recovery of moving

sources as in [23].

1.4. A short review of inverse source problems. Inverse problems are generally nonlinear

in the sense that the unknown parameter of the problem depends in a nonlinear way on the

data. For instance, this is the case for inverse coefficients problems or inverse spectral problems,

see e.g. [13, 27]. However, this is no longer true for inverse source problems, as the dependence

of the unknown source term is linear with respect to the (internal or lateral) data. When this

remarkable feature of inverse source problems does not guarantee that they are easy to solve,

it certainly does explain why they have become increasingly popular among the mathematical

community.

This is particularly true when typical diffusion is considered, i.e. when α = 1 in (1.4),

where the inverse problem of determining a time independent source term has been extensively

studied by several authors in [5, 6, 19, 38, 39] and in [12], which is based on the celebrated

Bukhgeim-Klibanov approach introduced in [3], the list being non exhaustive. As for inverse

time independent source problem with α ∈ (0, 1) ∪ (1, 2), we refer the reader to [15], and to

[16, 17, 18, 20, 26, 33] for inverse coefficient problems in the context of anomalous diffusion

equations.

In all the above mentioned inverse source results, the source term was stationary. The

stability issue in determining the temporal source term of time-fractional diffusion equations

was examined in [7, 34], and in the same context, the time and space dependent factor of

suitable source terms is reconstructed in [22]. As for the determination of time dependent

sources in parabolic equations, we refer the reader to [1, 9, 14, 24], and to [2, 10, 11] for the

same problem with hyperbolic equations.

Let us now collect the main achievements of this article in the coming section.

1.5. Main results. We start by stating a weak uniqueness principle (UP) for the IBVP (1.4)

whose source term f is the product of two functions, each of them depending only on either

the time-variable or the space-variable.

Theorem 1.1. Let σ ∈ L1(0, T ) be supported in [0, T ), let g ∈ L2(Ω) and assume that

f(t, x) := σ(t)g(x), (t, x) ∈ Q. (1.8)
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Denote by u the weak solution to (1.4). Then, for all α ∈ (0, 2) and an arbitrary non-empty

open subset Ω′ ⊂ Ω, we have:

(u|(0,T )×Ω′ = 0) =⇒ (f = 0 in Q).

As a corollary, we have the following unique identification result for the corresponding

inverse source problem.

Corollary 1.2. For j = 1, 2, let σj ∈ L1(0, T ) be such that suppσj ⊂ [0, T ), let gj ∈ L2(Ω),

and assume that either of the two following conditions is fulfilled:

(i) σ1 = σ2 is not identically zero in (0, T ),

(ii) g1 = g2 is not identically zero in Ω.

Let uj denote the solution to (1.4) with f = fj, where

fj(t, x) := σj(t)gj(x), (t, x) ∈ Q.

Then, the following implication holds for any non-empty open subset Ω′ ⊂ Ω:(
u1 = u2 in (0, T )× Ω′

)
=⇒ (σ1 = σ2 in (0, T ) and g1 = g2 in Ω) . (1.9)

Actually, the result of Corollary 1.2 remains valid upon removing the hypothesis on the

support of σj , j = 1, 2, which was inherited from Theorem 1.1, but this is at the expense of a

greater regularity assumption on these two functions.

Theorem 1.3. For j = 1, 2, let gj ∈ L2(Ω) and let σj ∈ L1(0, T ) fulfill

σ1(t) = σ2(t) = σ(t), t ∈ (0, t0),

where t0 ∈ (0, T ) and σ is a non-zero holomorphic function in the complex half-strip Sδ :=

{x+ iy : x ∈ (−δ,+∞), y ∈ (−δ, δ)} of fixed width δ ∈ (0,+∞), which grows no faster than

polynomials, i.e. such that

|σ(t)| 6 C(1 + t)N , t ∈ (0,+∞), (1.10)

for some positive constant C and some natural number N , that are both independent of t. We

assume also that g1 is not identically zero in Ω. Then (1.9) holds true.

We also investigate the case where the function g, appearing in (1.8), depends on one real

parameter only, assumed to be, without restricting the generality of the foregoing, the last

component xn of the space variable x = (x1, . . . , xn−1, xn) ∈ Ω, while α is a function of the
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time variable t and x′ := (x1, . . . , xn−1). More precisely, we assume existence of L ∈ (0,+∞)

and of ω ⊂ Rd−1, open and bounded, such that Ω0 := ω × (−L,L) verifies

Ω0 ⊂ Ω, (1.11)

and we consider source terms f supported in [0, T ]× Ω0, of the following form,

f(t, x′, xn) :=

 σ(t, x′)g(xn) if (t, x′, xn) ∈ Q0 := (0, T )× Ω0,

0 if (t, x′, xn) ∈ Q \Q0,
(1.12)

where σ and g will be made precise below. In this case, we have the following UP for local

Cauchy data:

Theorem 1.4. Assume (1.11) and assume that Ω \ Ω0 is connected. For ζ ∈
(

3
4 , 1
)

and

r ∈
(

1
α(1−ζ) ,+∞

)
, let σ ∈ Lr(0, T ;L2(ω)) be supported in [0, T ) × ω, and let g ∈ L2(−L,L).

Then for each α ∈ (0, 2), there exists a unique solution u ∈ C([0, T ];H2ζ(Ω)) to the IBVP

(1.4) associated with density ρ = 1 a.e. in Ω, elliptic operator Aq = −∆, and source term f

defined by (1.12). Moreover, the following implication

(
u|(0,T )×γ = ∂νu|(0,T )×γ = 0

)
=⇒ (f = 0 in Q) (1.13)

holds for any non-empty subset γ of ∂Ω.

We point out that the statement of Theorem 1.1 (resp., Theorem 1.4) can be adapted to

the framework of distributed order fractional diffusion equations, and we refer to Theorem 6.2

(resp., Theorem 6.3) in Section 6 for the corresponding result.

The coming result is a byproduct of Theorem 1.4, likewise Corollary 1.2 follows from

Theorem 1.1.

Corollary 1.5. Let Ω be the same as in Theorem 1.4. For j = 1, 2, let σj ∈ Lr(0, T ;L2(ω))

be such that suppσj ⊂ [0, T )×ω, where r is as in Theorem 1.4, and let gj ∈ L2(−L,L), fulfill

either of the two following conditions:

(i) σ1 = σ2,

(ii) g1 = g2.

Denote by uj, j = 1, 2, the solution to (1.4) associated with ρ = 1 a.e. in Ω, Aq = −∆ and

f = fj, where fj is obtained by substituting (σj , gj) for (σ, g) in the right hand side of (1.12).
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Then, we have σ1 = σ2 in (0, T )× ω and g1 = g2 in (−L,L), whenever the two following

identities

∂kνu1(t, x) = ∂kνu2(t, x), (t, x) ∈ (0, T )× γ, k = 0, 1, (1.14)

hold for an arbitrary non-empty subset γ of ∂Ω.

In a similar fashion as the identification result of Corollary 1.2 was adapted to non-

compactly supported time-dependent source terms of the form (1.8) in Theorem 1.3, we trans-

late Corollary 1.5 into the following statement for non-compactly supported sources of the

form (1.12).

Theorem 1.6. For j = 1, 2, let gj ∈ L2(−L,L) and let σj ∈ L1(0, T ;L2(ω)) fulfill

σ1(t, x′) = σ2(t, x′) = σ(t), t ∈ (0, t0)× ω, (1.15)

where t0 ∈ (0, T ) and t 7→ σ(t, ·) is a non-zero holomorphic L2(ω)-valued function in the

complex half-strip Sδ introduced in Theorem 1.3, which grows no faster than polynomials:

‖σ(t, ·)‖L2(ω) 6 C(1 + t)N , t ∈ (0,+∞),

for some positive constant C and some natural number N , that are both independent of t. We

assume also that g1 is not identically zero in Ω. Then (1.14) implies that σ1 = σ2 and g1 = g2.

In the particular case where α = 1, the PDE in the first line of (1.4) is of parabolic type,

and the obstruction to unique determination of f by partial measurement of the solution,

manifested in Section 1.1, can be further described for source terms of the form

f(t, x) := σ(t)g(x) + β(t)h(x). (1.16)

Namely, given a suitable internal boundary observation of the solution to (1.4), we aim to

characterize all source terms of the form (1.16), generating the exact same data. To this

purpose, we define Aq as the self-adjoint operator in L2(Ω), generated by the closed sesquilinear

form

(u, v) 7→
d∑

i,j=1

(
ai,j(x)∂xiu(x)∂xjv(x) + q(x)u(x)v(x)

)
dx, u, v ∈ V,

where V := H1
0 (Ω) if Aq is endowed with a homogeneous Dirichlet boundary condition, while

V := H1(Ω) if the boundary condition attached to Aq is of Neumann type. Otherwise stated,

Aq is the (positive) self-adjoint operator in L2(Ω), acting as Aq on its domain D(Aq), dense in
8



L2(Ω). We denote by A0 the operator Aq when q = 0 a.e. in Ω. In light of (1.1)-(1.2), D(Aq)

is independent of q (see e.g. [20, Section 2.1]) and it is embedded in H2(Ω):

D(Aq) = D(A0) ⊂ H2(Ω). (1.17)

Next we introduce the operator Aq,ρ := ρ−1Aq, with domain

D(Aq,ρ) = D(Aq), (1.18)

positive and self-adjoint in the weighted-space L2
ρ(Ω) := L2(Ω; ρdx). Evidently, Aq,ρ is self-

adjoint in L2
ρ(Ω). If we suppose that the function β does not change sign and that it is not-

identically zero in (0, T ), then the operator
∫ T

0 β(t)eAq,ρtdt is boundedly invertible in L2
ρ(Ω).

Let us denote its inverse by
(∫ T

0 β(t)eAq,ρtdt
)−1

. Then, by the operatorial calculus, the fol-

lowing operator

Hq,ρ := −
(∫ T

0
β(t)eAq,ρtdt

)−1(∫ T

0
σ(t)eAq,ρtdt

)
, (1.19)

is self-adjoint in L2
ρ(Ω).

Theorem 1.7. Let σ ∈ L2(0, T ) and β ∈ L1(0, T ) be supported in [0, T ). Assume further that

β is not-identically zero and does not change sign in (0, T ). Given g and h in L2(Ω), denote

by u the solution to (1.4) associated with α = 1 and source term f expressed by (1.16). Then,

for any non-empty open subset Ω′ ⊂ Ω, we have the implication:(
u|(0,T )×Ω′ = 0

)
=⇒

(
h = ρHq,ρρ

−1g in Ω
)
, (1.20)

where Hq,ρ is the operator defined in (1.19).

Although Theorem 1.7 is interesting in its own right, the main benefice of the above

statement is the following characterization of the set of source terms expressed by (1.8), which

generate the same specified data.

Corollary 1.8. For ` ∈ N fixed, let β be in H`
0(0, T ), the closure of C∞0 (0, T ) in the H`(0, T )-

norm topology. Assume that β is supported in [0, T ), that it is not-identically zero and that

it does not change sign in (0, T ). Suppose moreover that α = 1 and that ρ(x) = 1 for a.e.

x ∈ Ω. For g and h in L2(Ω), let ug denote the weak-solution to (1.4) associated with f(t, x) =

d`β
dt`

(t)g(x) and uh be the weak-solution to (1.4) with source term f(t, x) = −β(t)h(x). Then,

for any non-empty open subset Ω′ ⊂ Ω, we have the implication:(
ug = uh in (0, T )× Ω′

)
=⇒

(
h = (−1)`+1A`q g in Ω

)
. (1.21)

9



Moreover, in the particular case where ` = 1, we have in addition:

g = h = 0 in Ω′. (1.22)

Having stated the main results of this article, we briefly comment on them in the coming

section.

1.6. Comments. The derivation of a source identification result such as Corollary 1.2 from

a UP such as the one stated in Theorem 1.1, is rather standard in the analysis of inverse

source problems for diffusion equations, see e.g. [5, 6, 10, 15]. The strategy used in these

four articles to determine the spatial part of the source (1.8) under the assumption that its

temporal part σ is known, is to turn the non-homogeneous diffusion equation under study

into a homogeneous one, by moving the source information into the initial data. This firstly

requires that σ(0) 6= 0, and secondly that σ ∈ C1([0, T ]). The condition σ(0) 6= 0 suggests that

the source should be switched on before the data are collected. This is surprising considering

that only the (stationary) spatial part of the source is retrieved here. Indeed, from a practical

point of view, one may wonder why starting the observation early might be a problem for

determining g. In any case, it turns out that this rather unnatural condition σ(0) 6= 0 was

removed for an evolutionary equation in the infinite time range (0,+∞) in [10, Theorem 2].

As far as we know, Theorem 1.1 is the first mathematical result doing the same when the time

evolution is restricted to a bounded interval (0, T ). Furthermore, we stress out that the second

condition σ ∈ C1([0, T ]) requested by [5, 6, 10, 15] is weakened to σ ∈ L1(0, T ) in Theorem 1.1

and Corollary 1.2. In this paper, we assume only that σ ∈ L1(0, T ). This regularity is weak

and for example, the method in [15] does not work directly and so we need extra arguments.

In Theorem 1.1, either of the two terms σ or g appearing in the right hand side of (1.8), is

retrieved when the other one is known, which, in this connection, is very similar to the results

of [5, 6, 10, 15]. On the other hand, in Theorem 1.3, we are able to identify simultaneously

σ and g, but this is at the expense of greater regularity on α and upon assuming partial

knowledge of σ, as it is requested that up to some fixed time t0 ∈ (0, T ), the function t 7→ σ(t)

be known and depend analytically on t. In this respect, Theorem 1.4 and Corollary 1.5 may

be seen as an alternative approach to Theorem 1.3 for recovering a source term depending on

the time variable and all the space variables excepting one.

A key ingredient in the derivation of Theorems 1.1 and 1.4 is the time analyticity property

of the solution to (1.4), exhibited in Proposition 2.1. While this is classical for α = 1, the proof
10



requires a more careful treatment for α ∈ (0, 1) ∪ (1, 2), which is based on the representation

formula [20, Theorem 1.1 and Remark 1] of the solution to (1.4).

Notice that the obstruction to identifiability manifested in Section 1.3.1 is made explicit

in Theorem 1.7 and Corollary 1.8 for source terms expressing as the superposition of two

functions of the form (1.8), as we are able in this case to characterize the set of all source

terms of this type, which are associated with the same data.

1.7. Outline. The proofs of Theorems 1.1, 1.4 and 1.7 rely on suitable analytic properties of

the solution to (1.4), that are established in Section 2. The proofs of Theorem 1.1, Corollary

1.2 and Theorem 1.3 can be found in Section 3, while the ones of Theorem 1.4, Corollary 1.5

and Theorem 1.6 are displayed in Section 4. Section 5 contains the proofs of Theorem 1.7 and

Corollary 1.8. In Section 6, the UP stated in Theorem 1.1 and the UP for local Cauchy data

of Theorem 1.4 are adapted to the framework of distributed order diffusion equations. Finally,

numerical reconstruction of the unknown spatial term of sources identified by Corollary 1.2 is

carried out in Section 7, by means of an iterative method.

2. Direct problem: representation and time-analyticity of the solution

In this section we establish time-analytic properties of the weak solution u to (1.4). Their

derivation is based on an appropriate representation formula of u, that is borrowed from [20].

2.1. A representation formula. Assume (1.1), let α ∈ (0, 2), let ρ ∈ L∞(Ω) fulfill (1.3),

and let q ∈ Lκ(Ω), with κ ∈ (d,+∞], satisfy (1.2). Then, for all p ∈ C \ R−, the operator

Aq +ρpα, where Aq is defined in Section 1.5, is boundedly invertible in L2(Ω), by virtue of [20,

Proposition 2.1]. Moreover, in view of [20, Eq. (2.4)-(2.5)], the following resolvent estimate

∥∥(Aq + ρpα)−1
∥∥
B(L2(Ω))

6 C |p|−α , p ∈ C \ R−, (2.1)

holds with C = ρ−1
0 max

(
2, sin(α arctan((3ρM )−1ρ0))−1

)
. Here, (Aq + ρpα)−1 denotes the

resolvent operator of Aq + ρpα and B(L2(Ω)) is the space of linear bounded operators in

L2(Ω). These two results were established for α ∈ (0, 1) and for the form domain V = H1
0 (Ω)

in [20], but they extend to α ∈ [1, 2) and V = H1(Ω) in a straightforward way.

Next, for all f ∈ L1(0, T ;L2(Ω)), the weak solution u to (1.4) reads

u(t, ·) =

∫ t

0
S(t− s)f(s, ·)ds, t ∈ (0, T ), (2.2)
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where we have set

S(t)h :=

∫
γ(ε,θ)

etp(Aq + ρpα)−1hdp, t ∈ (0,+∞), h ∈ L2(Ω). (2.3)

Here, ε is arbitrary in (0,+∞), θ can be any angle in
(
π
2 ,min

(
π, πα

))
and γ(ε, θ) is the following

modified Haenkel contour in C,

γ(ε, θ) := γ−(ε, θ) ∪ γ0(ε, θ) ∪ γ+(ε, θ), (2.4)

where

γ±(ε, θ) := {se±iθ : s ∈ [ε,+∞)} and γ0(ε, θ) := {εeiβ : β ∈ [−θ, θ]} (2.5)

are traversed in the positive sense. The Duhamel representation formula (2.2)-(2.3) is a di-

rect consequence of [20, Theorem 1.1 and Remark 1] and the density of L∞(0, T ;L2(Ω)) ∩

C((0, T ], L2(Ω)) in L1(0, T ;L2(Ω)). It is our main tool in the derivation of the time-analytic

properties of the weak solution u to the IBVP (1.4).

2.2. Time-analyticity. The main result of this section is as follows.

Proposition 2.1. Assume that f ∈ L1(0, T ;L2(Ω)) is supported in [0, T − 3ε?]×Ω, for some

fixed ε? ∈
(
0, T4

)
. Then, there exists θ? ∈

(
0,min

(
π
4 ,

π
2α −

π
4

))
, such that the weak solution

u to (1.4), given by (2.2)-(2.3), extends to a L2(Ω)-valued map still denoted by u, which is

analytic in Cθ?, where Cθ? := {τeiψ : τ ∈ (T − ε?,+∞), ψ ∈ (−θ?, θ?)}.

Moreover, t 7→ u(t, ·) is holomorphic in Cθ?, its Laplace transform p 7→ U(p) = L[u](p) :

x 7→
∫ +∞

0 e−ptu(t, x)dt is well defined for all p ∈ (0,+∞), and each U(p) is a solution to the

following BVP  (Aq + ρpα)U(p) = F (p), in Ω,

B?U(p) = 0, on ∂Ω,
(2.6)

where F (p) is the Laplace transform defined in (1.7).

Proof. Bearing in mind that the weak solution u to (1.4) is expressed by (2.2)-(2.3) for some

fixed (ε, θ) ∈ (0, 1)×
(
π
2 ,min

(
π, πα

))
, we pick θ? ∈

(
0, θ−π/22

)
in such a way that

(T − ε?) cos(θ − θ?) 6 (T − 2ε?) cos θ. (2.7)

Then, for all p = re±iθ ∈ γ±(ε, θ), all z = τeiψ ∈ Cθ? and all s ∈ (0, T − 3ε?), we have

R((z − s)p) = r (τ cos(ψ ± θ)− s cos θ) 6 r ((T − ε?) cos(θ − θ?)− (T − 3ε?) cos θ) ,
12



where the symbol R denotes the real part. This and (2.7) yield

R((z − s)p) 6 ε? |p| cos θ, p ∈ γ±(ε, θ), z ∈ Cθ? , s ∈ (0, T − 3ε?). (2.8)

Hence, in light of (2.1) and (2.4)-(2.5), we see for every z ∈ Cθ? that the function

v(z, ·) :=

∫ T−3ε?

0

∫
γ(ε,θ)

e(z−s)p(Aq + ρpα)−1f(s, ·)dp ds, (2.9)

is well-defined in Ω. Further, since f(t, ·) = 0 for all t ∈ (T − 3ε?, T ), we infer from this and

(2.2)-(2.3) that

v(t, ·) =

∫ T−3ε?

0
S(t− s)f(s, ·)ds =

∫ t

0
S(t− s)f(s, ·)ds = u(t, ·), t ∈ (T − 3ε?, T ).

Therefore, putting v := u on (0, T − ε?) × Ω, we obtain that u = v|Q. Moreover, by [20,

Theorem 1.1 and Remark 1], the Laplace transform V (p) =
∫ +∞

0 e−ptv(t, ·)dt of v, is solution

to the BVP (1.6).

It remains to show that z 7→ v(z, ·) is a holomorphic L2(Ω)-valued function in Cθ? . To do

that, we refer to (2.4) and (2.9), and we decompose v into the sum v0 + v+ + v−, where

vj(z, ·) :=

∫ T−3ε?

0

∫
γj(ε,θ)

e(z−s)p(Aq + ρpα)−1f(s, ·)dp ds, j = 0,+,−.

Since z 7→ v0(z, ·) is obviously holomorphic in Cθ? , we are thus left with the task of proving that

this is also the case for z 7→ v±(z, ·). This can be done upon noticing that the L2(Ω)-valued

function

z 7→ e(z−s)p(Aq + ρpα)−1f(s, ·), p ∈ γ±(ε, θ), s ∈ (0, T − 3ε?),

is holomorphic in Cθ? , that the two following estimates,∥∥∥∂kz e(z−s)p(Aq + ρpα)−1f(s, ·)
∥∥∥
L2(Ω)

6 C(1 + |p|) |p|−α eε?|p| cos θ ‖f(s, ·)‖L2(Ω) , z ∈ Cθ?

hold for k = 0, 1 and some constant C that is independent of p and s, by virtue of (2.1) and

(2.8), and that the function (r, s) 7→ (1 + r)r−αeε?r cos θ ‖f(s, ·)‖L2(Ω) belongs to L1((ε,+∞)×

(0, T − 3ε?)). �

Remark 1. Since F (p) ∈ L2(Ω) for all p ∈ (0,+∞), then, in accordance with Section 2.1, we

may reformulate the claim of Proposition 2.1 that U(p) solves (2.6), as:

U(p) = (Aq + ρpα)−1F (p). (2.10)
13



Since the multiplication operator by ρ is invertible in B(L2(Ω)), according to (1.3), then Aq,ρ+

pα is boundedly invertible in L2
ρ(Ω) for each p ∈ (0,+∞), and (2.10) may thus be equivalently

rewritten as

U(p) = (Aq,ρ + pα)−1ρ−1F (p).

Armed with Proposition 2.1, we turn now to proving the main results of this article.

3. Proof of Theorems 1.1 and 1.3, and proof of Corollary 1.2

We start by establishing Theorem 1.1.

3.1. Proof of Theorem 1.1. We split the proof into 4 steps. In the first one, we establish

a family of resolvent identities for the Laplace transform of the solution to (1.4), indexed by

the Laplace variable p ∈ (0,+∞). The second step is to express these identities in terms of

the spectral decomposition of the operator Aq,ρ, introduced in Section 1.5. The third step,

based on a weak unique continuation principle for second order elliptic equations, provides the

desired result, while Step 4 contains the proof of a technical claim, used in Step 3.

3.1.1. Step 1: A p-indexed family of resolvent identities. As suppσ ⊂ [0, T ) by assumption,

we pick ε∗ ∈ (0, T/4) such that suppσ ⊂ [0, T − 3ε∗]. Then, with reference to Proposition

2.1, we extend the weak solution to (1.4) into a L2(Ω)-valued function z 7→ u(z, ·), defined in

(0, T − ε∗] ∪ Cθ? for some θ? ∈
(
0,min

(
π
4 ,

π
2 −

π
2α

))
, which is holomorphic in Cθ? . Evidently,

the L2(Ω′)-valued function z 7→ u(z, ·)|Ω′ is holomorphic in Cθ? as well. Bearing in mind that

u|Q′ = 0, where we have set Q′ := (0, T )×Ω′, and that (0, T ) ∩ Cθ? = [T − ε∗, T ), we get that

u(z, x) = 0, (z, x) ∈ ((0, T ) ∪ Cθ?)× Ω′,

from the unique continuation principle for holomorphic functions. In particular, this entails

that u(t, x) = 0 for all (t, x) ∈ (0 +∞)×Ω′ and consequently that the Laplace transform U(p)

of u with respect to t, vanishes a.e. in Ω′ for every p ∈ (0,+∞). Putting this together with

the second statement of Proposition 2.1, we obtain that each U(p), p ∈ (0,+∞), is solution to
(Aq + ρpα)U(p) = σ̂(p)f, in Ω,

B?U(p) = 0, on ∂Ω,

U(p) = 0, in Ω′,

(3.1)
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where we have set σ̂(p) :=
∫ T

0 e−ptσ(t)dt. Since f ∈ L2(Ω), then, in accordance with Remark

1, (3.1) may be equivalently reformulated , as U(p) = σ̂(p)(Aq,ρ + pα)−1ρ−1f in L2
ρ(Ω),

U(p) = 0 in L2
ρ(Ω

′).
(3.2)

3.1.2. Step 2: Spectral representation. Since the injection V ↪→ L2(Ω) is compact, the resolvent

of the operator Aq,ρ, defined in Section 1.5, is compact in L2
ρ(Ω). Let {λn : n ∈ N} be the

increasing sequence of the eigenvalues of Aq,ρ. For each n ∈ N, we denote by mn ∈ N the

algebraic multiplicity of the eigenvalue λn and we introduce a family {ϕn,k : k = 1, . . . ,mn}

of eigenfunctions of Aq,ρ, which satisfy

Aq,ρϕn,k = λnϕn,k,

and form an orthonormal basis in L2
ρ(Ω) of the eigenspace of Aq,ρ associated with λn (i.e. the

kernel of Aq,ρ−λnI, where the notation I stands for the identity operator of L2
ρ(Ω)). The first

line in (3.2) then yields for all p ∈ (0,+∞), that the following equality

U(p) = σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + pα

)
,

holds in L2
ρ(Ω) with gn,k := 〈ρ−1f, ϕn,k〉L2

ρ(Ω). From this, the second line of (3.2) and the

continuity of the projection from L2
ρ(Ω) into L2

ρ(Ω
′), it then follows that

σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x)

λn + pα

)
= 0, x ∈ Ω′, p ∈ (0,+∞). (3.3)

3.1.3. Step 3: End of the proof. Since p 7→ σ̂(p) is holomorphic in C+ := {z ∈ C : Rz > 0},

then either of the two following conditions is true:

(a) For all p ∈ C+ we have σ̂(p) = 0;

(b) There exists an open interval I ⊂ (0,+∞), such that σ̂(p) 6= 0 for each p ∈ I.

The first case is easily treated as we get that σ = 0 a.e. in (0, T ) from (a) and the

injectivity of the Laplace transform, which entails the desired result. In the second case, we

combine (b) with (3.3) and obtain that

+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x)

λn + pα
= 0, x ∈ Ω′, p ∈ I. (3.4)
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Let us introduce the following L2
ρ(Ω

′)-valued function,

R(z) :=
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + z

, z ∈ C \ {−λn : n ∈ N}, (3.5)

meromorphic in C \ {−λn : n ∈ N} with simple poles {−λn : n ∈ N}. Evidently, (3.4) can be

equivalently rewritten as

R(pα) =

+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + pα

= 0, p ∈ I,

the above identity being understood in L2
ρ(Ω

′). Therefore, we necessarily have R(z) = 0 for

all z ∈ C \ {−λn : n ∈ N}, and consequently it holds true for all n ∈ N that

mn∑
k=1

gn,kϕn,k(x) = 0, x ∈ Ω′. (3.6)

Assume for a while that for each n ∈ N, the eigenfunctions ϕn,k, k = 1, . . . ,mn, are linearly

independent in L2
ρ(Ω

′), the proof of this claim being postponed to Section 3.1.4, below. Then,

we infer from (3.6) that gn,k = 0 for all n ∈ N and all k = 1, . . . ,mn. Therefore, we find that

g =

+∞∑
n=1

mn∑
k=1

gn,kϕn,k = 0

in L2
ρ(Ω), which proves the desired result.

3.1.4. Step 4: The ϕn,k, k = 1, . . . ,mn, are linearly independent in L2
ρ(Ω

′). For n ∈ N fixed,

we consider mn complex numbers αk, for k = 1, . . . ,mn, such that

mn∑
k=1

αkϕn,k(x) = 0, x ∈ Ω′, (3.7)

and we put ϕ :=
∑mn

k=1 αkϕn,k. Since each ϕn,k lies in D(Aq,ρ), the domain of the operator

Aq,ρ, then the same is true for ϕ, i.e.

ϕ ∈ D(Aq,ρ) = D(Aq), (3.8)

according to (1.17), and we have Aq,ρϕ = λnϕ in L2
ρ(Ω). This and (3.7) translate into the fact

that  (Aq − λnρ)ϕ = 0, in Ω,

ϕ = 0, in Ω′.
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Moreover, as we have ϕ ∈ H2(Ω) from (1.17)-(1.18) and (3.8), the weak unique continuation

principle for second order elliptic partial differential equations (see e.g. [35, Theorem 1]) then

yields that ϕ = 0 a.e. in Ω, i.e.

ϕ(x) =

mn∑
k=1

αkϕn,k(x) = 0, x ∈ Ω.

Bearing in mind that {ϕn,k : k = 1, . . . ,mn} is orthonormal in L2
ρ(Ω), we deduce from the

above line that αk = 0 for all k = 1, . . . ,mn, which establishes that the ϕn,k, k = 1, . . . ,mn,

are linearly independent in L2
ρ(Ω

′).

Having completed the proof of Theorem 1.1, we turn now to showing Corollary 1.2.

3.2. Proof of Corollary 1.2 and Theorem 1.3. In light of (1.4), u := u1 − u2 is a weak

solution is solution to
(ρ(x)∂αt +Aq)u(t, x) = f(t, x), (t, x) ∈ Q,

B?u(t, x) = 0, (t, x) ∈ Σ,

∂kt u(0, ·) = 0, in Ω, k = 0, . . . , Nα,

(3.9)

with f(t, x) = σ1(t)g1(x)− σ2(t)g2(x) for a.e. (t, x) ∈ Q.

3.2.1. Proof of Corollary 1.2. In the first (resp., second) case (i) (resp., (ii)), we have f(t, x) =

σ1(t)(g1−g2)(x) where σ1 ∈ L1(0, T ) is supported in [0, T ) and g1−g2 ∈ L2(Ω) (resp., f(t, x) =

(σ1−σ2)(t)g1(x) where σ1−σ2 ∈ L1(0, T ) is supported in [0, T ) and g1 ∈ L2(Ω)). Since u = 0

in Q′, then, under Condition (i), an application of Theorem 1.1 yields σ1(t)(g1 − g2)(x) = 0

for a.e. (t, x) ∈ Q and hence g1 = g2 in Ω. Similarly, under Condition (ii), we obtain that

(σ1− σ2)(t)g1(x) = 0 for a.e. (t, x) ∈ Q and consequently that σ1 = σ2 in (0, T ). The proof of

Corollary 1.5 is thus complete and we turn now to proving Theorem 1.3.

3.2.2. Proof of Theorem 1.3. With reference to (3.9), we consider the following IBVP
(ρ(x)∂αt +Aq)w(t, x) = σ(t)(g1(x)− g2(x)), (t, x) ∈ (0,+∞)× Ω,

B?w(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

∂kt w(0, x) = 0, x ∈ Ω, k = 0, . . . , Nα,

(3.10)

for α ∈ (0, 2). With reference to Section 2.1, (3.10) admits a unique solution w ∈ C([0,+∞), L2(Ω)),

which is expressed by (2.2)-(2.3). Moreover, due to (1.10), we get upon arguing as in the deriva-

tion of [26, Theorem 1.4] that the L2(Ω)-valued function t 7→ w(t, ·) is analytic in (0,+∞).
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On the other hand, from the uniqueness of the solution to (3.9) with T = t0 and f(t, x) =

σ(t)(g1(x) − g2(x)), we get that w(t, x) = u(t, x) for a.e. (t, x) ∈ (0, t0) × Ω. Since u = 0 in

Q′, by assumption, the analyticity of t 7→ w(t, ·) in (0,+∞) then yields

w(t, x) = 0, (t, x) ∈ (0,+∞)× Ω′. (3.11)

Thus, taking the Laplace transform with respect to t ∈ (0,+∞) in (3.10) and in (3.11), we

obtain in the same way as in the derivation of (3.2) in Section 3.1.1, that for every p ∈ (0,+∞), W (p) = σ̂(p)(Aq,ρ + pα)−1ρ−1(g1 − g2) in L2
ρ(Ω),

W (p) = 0 in L2
ρ(Ω

′),

where W (p) :=
∫ +∞

0 e−tpw(t, ·)dt and σ̂(p) :=
∫ +∞

0 e−tpσ(t, ·)dt are the Laplace transforms of

w and σ, respectively. Notice from (1.10) that σ̂(p) is well-defined for each p ∈ (0,+∞).

Now, arguing in the exact same way as in the three last steps of the derivation of Theorem

1.1, we obtain that g1 = g2 in Ω. Therefore, condition (ii) of Corollary 1.2 is fulfilled and, by

invoking Corollary 1.2, we deduce that (1.9) holds true.

4. Proof of Theorems 1.4 and 1.6, and proof of Corollary 1.5

4.1. Proof of Theorem 1.4. We split the proof into two main parts. The first one is to

prove existence of a C([0, T ];H2ζ(Ω))-solution to the IBVP (1.4) with ρ = 1 a.e. in Ω and

Aq = −∆.

4.1.1. Improved space-regularity result. We start by establishing that the weak-solution to (1.4)

associated with ρ = 1, q = 0 and source term f ∈ Lr(0, T ;L2(Ω)), lies in C([0, T ];H2ζ(Ω)).

As a preamble, we set A := A0, where we recall that A0 is the self-adjoint realization of

the (opposite of) the Laplace operator in L2(Ω), endowed with either Dirichlet or Neumann

boundary condition. Otherwise stated, A is the self-adjoint operator in L2(Ω), acting as −∆

on its domain D(A) = H2(Ω)∩H1
0 (Ω) when the boundary operator B? appearing in (1.4) reads

B?u = u, while it is D(A) = H2(Ω) when B?u = ∂νau. We denote by (λn)n∈N the sequence of

eigenvalues of A, arranged in non-decreasing order and repeated with the multiplicity, and we

introduce an orthonormal basis (ϕn)n ∈N in L2(Ω) of eigenfunctions of A, obeying Aϕn = λnϕn

for all n ∈ N.

Since the operator A is nonnegative, we recall from the functional calculus, that

(A+ 1)sh =
+∞∑
n=1

(1 + λn)s〈h, ϕn〉L2(Ω)ϕn, h ∈ D((1 +A)s), s ∈ [0,+∞),
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where D((1 + A)s) =
{
h ∈ L2(Ω) :

∑+∞
n=1

∣∣〈h, ϕn〉L2(Ω)

∣∣2 (1 + λn)2s <∞
}

. For further refer-

ence, we set

‖h‖D((A+1)s) :=

(
+∞∑
n=1

(1 + λn)2s
∣∣〈h, ϕn〉L2(Ω)

∣∣2) 1
2

, h ∈ D((A+ 1)s).

As f ∈ Lr(0, T ;L2(Ω)) with r > 1
α , then the weak solution u to (1.4) reads

u(t, ·) =

∞∑
n=1

un(t)ϕn, t ∈ (0, T ), (4.1)

where un(t) :=
∫ t

0 (t−s)α−1Eα,α(−λn(t−s)α)〈f(s, ·), ϕn〉L2(Ω)ds and Eα,β is the Mittag-Leffler

function:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α ∈ (0,+∞), β ∈ R.

We refer the reader to [34, Theorem 2.4], [21, Theorem 1.1] or [7, Lemma 3.3] for the derivation

of the representation formula (4.1) of u. Next, we recall from [32, Theorem 1.6] that

|Eα,α(−λntα)| 6 C t−αζ + 1

(1 + λn)ζ
, t ∈ (0, T ), n ∈ N,

for some positive constant C which is independent of n and t. Thus, for all n ∈ N we have∣∣∣tα−1(1 + λn)ζEα,α(−λntα)
∣∣∣ 6 Ctα(1−ζ)−1, t ∈ (0, T ),

and consequently t 7→ tα−1(1 + λn)ζEα,α(−λntα) ∈ Lr
′
(0, T ), where r′ is the real number

conjugated to r, i.e. r′ is such that 1
r′ = 1 − 1

r > 1 − α(1 − ζ). Therefore, using that

s 7→ 〈f(s, ·), ϕn〉L2(Ω) ∈ Lr(0, T ), we obtain that t 7→ (1 + λn)ζun(t) ∈ C([0, T ]), and the

following estimate∥∥∥∥∥
m∑
k=n

uk(t)ϕk

∥∥∥∥∥
D((1+A)ζ)

6
∫ t

0
(t− s)α−1

(
m∑
k=n

(1 + λn)2ζEα,α(−λn(t− s)α)2
∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) 1
2

ds

6 C

∫ t

0
(t− s)α(1−ζ)−1

(
m∑
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) 1
2

ds

6 C

(∫ T

0
s(α(1−ζ)−1)r′ds

) 1
r′
∫ T

0

(
m∑
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) r
2

ds

 1
r

, (4.2)

which is true for all t ∈ [0, T ] and for all natural numbers m and n with n 6 m.

On the other hand, since limn,m→+∞

(∫ T
0

(∑m
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) r2 ds) 1
r

= 0 as we

have f ∈ Lr(0, T ;L2(Ω)) by assumption, we derive from (4.2) that (
∑n

k=1 ukϕk)n∈N is a Cauchy
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sequence in C([0, T ];D((A+ 1)ζ)). Therefore, we have u ∈ C([0, T ], D((A+ 1)ζ))) by (4.1) and

consequently u ∈ C([0, T ], H2ζ(Ω)) from the embedding D((A+ 1)ζ)) ⊂ H2ζ(Ω).

Having established the first claim of Theorem 1.4, we turn now to proving (1.13).

4.1.2. Proof of the UP. Put Ω0 := ω × (−L,L) and pick an open subset Ω? ⊂ Rd with C2

boundary, fulfilling all the following conditions simultaneously:

(a) Ω ⊂ Ω?, (b) ∂Ω \∂Ω? ⊂ γ, (c) Ω′ := Ω? \Ω is not empty, (d) Ω? \Ω0 is connected. (4.3)

Notice that such a subset Ω? exists in Rd as Ω \ Ω0 is connected and ∂Ω is C2. We split the

proof into two steps.

Step 1: Elliptic BVPs indexed by p. Setting f(t, x) := 0 and u(t, x) := 0 for a.e. (t, x) ∈ Q′,

we infer from (4.3)(b) and the assumption u|(0,T )×γ = ∂νu|(0,T )×γ = 0, that
(∂αt −∆)u(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω?,

u = 0, (t, x) ∈ (0, T )× ∂Ω?,

∂kt u(0, ·) = 0, in Ω?, k = 0, . . . , Nα.

(4.4)

We have r > 2 as α(1 − ζ) < 1
2 , whence f ∈ L1(0, T ;L2(Ω?)). Moreover, f being supported

in [0, T )×Ω?, hence in [0, T − 3ε?]×Ω? for some fixed ε? ∈
(
0, T3

)
, we extend t 7→ u(t, ·) to a

L2(Ω?)-valued function in (0,+∞) which is analytic in (T − ε?,+∞), by invoking Proposition

2.1 where Ω is replaced by Ω?. Bearing in mind that u vanishes in Q′, by assumption, we find

that

u(t, x) = 0, (t, x) ∈ (0,+∞)× Ω′. (4.5)

Moreover, in light of Proposition 2.1, we get for all p ∈ (0,+∞) that the Laplace transform

U(p) =
∫ +∞

0 e−ptu(t)dt of u, is solution to the following BVP (−∆ + pα)U(p) = F (p), in Ω?,

U(p) = 0, on ∂Ω?,
(4.6)

where ν? is the outward unit normal vector to ∂Ω? and F is defined by (1.7). Since F (p) ∈

L2(Ω?) for each p ∈ (0,+∞) and since ∂Ω? is C2, then U(p) ∈ H2(Ω?) by elliptic regularity.

Next, as f is supported in [0, T ] × Ω0, we have F (p) = 0 in Ω? \ Ω0 for all p ∈ (0,+∞),

and consequently  (−∆ + pα)U(p) = 0, in Ω? \ Ω0,

U(p) = 0, on Ω′,
(4.7)
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by (4.5)-(4.6). Since Ω? \ Ω0 is connected and Ω′ ⊂ Ω? \ Ω0, and since U(p) ∈ H2(Ω? \ Ω0),

then the weak unique continuation principle for elliptic equations to (4.7) yields that U(p) = 0

in Ω? \ Ω0. Thus, taking into account that Ω0 ⊂ Ω? and that U(p) ∈ H2(Ω?), we have

U(p) = ∂ν0U(p) = 0 in ∂Ω0,

where ν0 denotes the outward unit normal vector to Ω0. From this and the first line of (4.6),

it then follows that (−∆ + pα)U(p, x) = G(p, x′)h(xn), x = (x′, xn) ∈ Ω0,

U(p) = ∂ν0U(p) = 0, on ∂Ω0,
(4.8)

where G(p) :=
∫ +∞

0 e−ptg(t)dt.

Step 2: Fourier transform. For all (k, θ) ∈ R × Sd−2, where Sd−2 is the unit sphere of Rd−1,

we notice that

(−∆ + pα)e−ikθ·x
′
eω(p,k)xn = (k2 − ω(p, k)2 + pα)e−ikθ·x

′
eω(p,k)xn = 0, p ∈ (0,+∞),

where ω(p, k) :=
(
pα + k2

) 1
2 . This and (4.8) yield∫

Ω0

G(p, x′)h(xn)e−ikθ·x
′
eω(p,k)xndx′dxn =

∫
Ω0

(−∆ + pα)U(p, x)e−ikθ·x
′
eω(p,k)xndx′dxn = 0,

upon integrating by parts, and hence we get that
(∫

ω G(p, x′)e−ikθ·x
′
dx′
)(∫ L

−L h(xn)eω(p,k)xndxn

)
=

0 from Fubini’s theorem. Putting G(p, ·) = 0 in Rd−1 \ ω and h = 0 in R \ (−L,L), we thus

find that (∫
Rn−1

G(p, x′)e−ikθ·x
′
dx′
)(∫

R
h(xn)eω(p,k)xndxn

)
= 0, θ ∈ Sd−2, k ∈ R. (4.9)

Next, h ∈ L1(R) being compactly supported and not identically zero in R, its Fourier transform

z 7→
∫
R h(xn)ezxndxn is holomorphic and not identically zero in C. Therefore, there exists a

non empty interval (a, b) ⊂ (0,+∞), with a < b, such that we have∫
R
h(xn)eω(p,k)xndxn 6= 0, k ∈ (a, b).

This and (4.9) yield
∫
Rd−1 G(p, x′)e−ikθ·x

′
dx′ = 0 for all θ ∈ Sd−2 and k ∈ (a, b). Otherwise

stated, the partial Fourier transform of x′ 7→ G(p, x′) vanishes in the concentric ring Ca,b :=

{y ∈ Rd−1 : a < |y| < b}, where |y| denotes the Euclidian norm of y ∈ Rd−1, i.e.∫
Rd−1

G(p, x′)e−iξ·x
′
dx′ = 0, ξ ∈ Ca,b. (4.10)

Next, since x′ 7→ G(p, x′) is supported in the compact subset ω, then the function ξ 7→∫
Rd−1 G(p, x′)e−iξ·x

′
dx′ is real-analytic in Rd−1, so we infer from (4.10) that

∫
Rd−1 G(p, x′)e−iξ·x

′
dx′ =
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0 for all ξ ∈ Rd−1. Therefore, we have G(p, ·) = 0 in Rd−1, by the injectivity of the partial

Fourier transform with respect to x′, and since this equality holds for all p ∈ (0,+∞), we

obtain that g = 0 in (0, T )× ω, from the injectivity of the Laplace transform with respect to

t. This completes the proof of Theorem 1.4.

4.1.3. Proof of Corollary 1.4 and Theorem 1.6. The derivation of Corollary 1.5 from Theorem

1.4 follows the same path as the one of Corollary 1.2 from Theorem 1.1. Analogously, the

proof of Theorem 1.6 is easily adapted from the one of Theorem 1.3.

5. Proof of Theorem 1.7 and Corollary 1.8

In this section we display the proof of the UP of Theorem 1.7 and its byproduct stated

in Corollary 1.8. We start with Theorem 1.7.

5.1. Proof of Theorem 1.7. We argue as in the derivation of (3.2) and get for every p ∈

(0,+∞) that the Laplace transform U(p) of the solution u to to (1.4) with α = 1 and source

term f , given by (1.16), solves U(p) = σ̂(p)(Aq,ρ + pα)−1ρ−1f + β̂(p)(Aq,ρ + pα)−1ρ−1g in L2
ρ(Ω),

U(p) = 0 in L2
ρ(Ω

′).
(5.1)

Here we stick with the notations of Section 3.1.1 and denote by σ̂ the Laplace transform of σ,

i.e. σ̂(p) :=
∫ T

0 e−ptσ(t)dt, and we set β̂(p) :=
∫ T

0 e−ptβ(t)dt. From the spectral representation

of the operator Aq,ρ, introduced in Section 3.1.2, we infer from (5.1) that the identity

σ̂(p)

+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + p

+ β̂(p)

+∞∑
n=1

∑mn
k=1 hn,kϕn,k
λn + p

= 0, (5.2)

holds in L2
ρ(Ω

′) for every p ∈ (0,+∞), with gn,k := 〈ρ−1g, ϕn,k〉L2
ρ(Ω) and hn,k := 〈ρ−1h, ϕn,k〉L2

ρ(Ω).

Moreover, as p 7→ σ̂(p)
∑+∞

n=1

∑mn
k=1 gn,kϕn,k
λn+p and p 7→ β̂(p)

∑+∞
n=1

∑mn
k=1 hn,kϕn,k
λn+p can be meromor-

phically continued to C \ {−λn : n ∈ N}, then the same is true for the left-hand-side of (5.2).

Therefore, for each N ∈ N fixed, we get upon multiplying (5.2) by λN + p and sending p to

−λN , that
mN∑
k=1

(
σ̂(−λN )gN,k + β̂(−λN )hN,k

)
ϕN,k = 0,

in L2
ρ(Ω

′). Since the function β is not identically zero and does not change sign in (0, T ), we

have β̂(−λN ) 6= 0, so the above line can be reformulated as

mN∑
k=1

(
hN,k +

σ̂(−λN )

β̂(−λN )
gN,k

)
ϕN,k = 0,
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the equality being understood in the L2
ρ(Ω

′)-sense. Next, since the family {ϕN,k, k = 1, . . . ,mN}

is linearly independent in L2
ρ(Ω

′), by virtue of Section 3.1.4, we necessarily

σ̂(−λN )

β̂(−λN )
gN,k = −hN,k, k = 1, . . . ,mN . (5.3)

Now, as (5.3) is valid for all N ∈ N, it follows from the Parseval identity
∑+∞

n=1

∑mn
k=1 |hn,k|

2 =∥∥ρ−1h
∥∥2

L2
ρ(Ω)

for h ∈ L2(Ω), that ∣∣∣∣∣ σ̂(−λn)

β̂(−λn)

∣∣∣∣∣
2

|gn,k|2 <∞.

Therefore, g lies in the domain of the operator of Hρ,q and fulfills (1.20), by the operatorial

calculus.

5.2. Proof of Corollary 1.8. Since u := ug − uh is a solution to the IBVP (1.4) associated

with α = 1 and source term f of the form (1.16), where σ = d`β
dt`

, then we have h = Hq,1g by

Theorem 1.7. This entails that

−β̂(−λn)−1 d̂
`β

dt`
(−λn)〈g, ϕn,k〉L2(Ω) = 〈h, ϕn,k〉L2(Ω), n ∈ N, k = 1, . . . ,mn. (5.4)

Moreover, we have d̂`β
dt`

(p) = p`β̂(p) for each p ∈ R, as β ∈ H`
0(0, T ), so (5.4) becomes

(−1)`+1λ`n〈g, ϕn,k〉L2(Ω) = 〈h, ϕn,k〉L2(Ω), n ∈ N, k = 1, . . . ,mn.

This entails that g ∈ D(A`q) verifies (1.21).

In the particular case where ` = 1, we have h = −Aqg whence u is a solution to the IBVP

(1.4) with α = 1 and f(t, x) = (∂t −Aq)β(t)g(x) for a.e. (t, x) ∈ Q. As (t, x) 7→ β(t)g(x) is a

weak-solution to the exact same problem, we have u(t, x) = β(t)g(x) in Q, by uniqueness of

the solution to (1.4), and (1.22) follows directly from this.

6. UP for distributed order diffusion equations

In this section we consider the IBVP
(ρ(x)D(µ)

t +Aq)u(t, x) = f(t, x), (t, x) ∈ Q,

B?u(t, x) = 0, (t, x) ∈ Σ,

v(0, x) = 0, x ∈ Ω.

(6.1)

where D(µ)
t denotes the distributed order fractional derivative

D(µ)
t h(t) :=

∫ 1

0
µ(α)∂αt h(t)dα,
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induced by a non-negative weight function µ ∈ L∞(0, 1), obeying the following condition:

∃α0 ∈ (0, 1), ∃δ ∈ (0, α0), ∀α ∈ (α0 − δ, α0), µ(α) ≥ µ(α0)

2
> 0. (6.2)

Here and in the remaining part of this section, ρ and Aq are the same as in Section 1.1 and

∂αt is the Caputo derivative of order α defined by (1.5).

6.1. The direct problem. Let f ∈ L1(0, T ;L2(Ω)). We stick with the definition [26, Defini-

tion 1.1] of a weak solution to (6.1), that is to say that u is a weak solution to (6.1) if we have

u = v|Q for some v ∈ S ′(R+, L
2(Ω)) whose Laplace transform V verifies the following BVP for

all p ∈ (0,+∞),  (Aq + ρpϑ(p))V (p) = F (p) in Ω,

B?V (p) = 0 on ∂Ω,
(6.3)

where ϑ(p) :=
∫ 1

0 p
α−1µ(α)dα and F is given by (1.7).

We recall from [26, Theorems 1.1 and 1.2 ] that under the more restrictive assump-

tion f ∈ L∞(0, T ;L2(Ω)), the IBVP (6.1) admits a unique solution u ∈ C([0, T ], L2(Ω)) ∩

L1(0, T ;H2ζ(Ω)) for every ζ ∈ (0, 1). Moreover, by [26, Proposition 2.1], u enjoys the follow-

ing representation formula

u(t, ·) =

∫ t

0
Sµ(t− s)f(s, ·)ds, t ∈ (0, T ), (6.4)

where

Sµ(t)ψ :=
1

2iπ

+∞∑
n=1

mn∑
k=1

(∫
γ(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k, ψ ∈ L2(Ω). (6.5)

In (6.5), the pair (ε, θ) is arbitrary in (0,+∞) ×
(
π
2 , π

)
, the contour γ(ε, θ) is given by (2.4)-

(2.5), and the λn, mn and ϕn,k are the same as in Section 3.1.2.

Let us now extend (6.4)-(6.5) to the case of source terms f ∈ L1(0, T ;L2(Ω)).

Proposition 6.1. Assume (6.2) and let f ∈ L1(0, T ;L2(Ω)). Then, for every ζ ∈ (0, 1),

there exists a unique weak solution u ∈ C([0, T ], L2(Ω)) ∩ L1(0, T ;H2ζ(Ω)) to (6.1), which is

expressed by (6.4)-(6.5).

Proof. Let (fn)n∈N ∈ C∞0 (0, T ;L2(Ω))N be an approximating sequence of f in L1(0, T ;L2(Ω)),

i.e. such that

lim
n→∞

‖fn − f‖L1(0,T ;L2(Ω)) = 0. (6.6)
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Next, with reference to (6.4), we introduce for all n ∈ N

vn(t, ·) :=

∫ t

0
Sµ(t− s)1(0,T )(s)fn(s, ·)ds, t ∈ [0,+∞),

in S ′(R+, L
2(Ω)), where Sµ is given by (6.5) and 1(0,T ) denotes the characteristic function of

the interval (0, T ).

As fn ∈ L∞(0, T ;L2(Ω)) for all n ∈ N, the Laplace transform Vn of vn, verifies

(Aq,ρ + pϑ(p))Vn(p) = Fn(p), p ∈ (0,+∞), (6.7)

according to [26, Proposition 2.1], where Fn is the expression obtained by substituting fn for

f in the right hand side of (1.7). Moreover, we have

lim sup
n→∞

‖Fn(p)− F (p)‖L2(Ω) 6 lim sup
n→∞

‖fn − f‖L1(0,T ;L2(Ω)) = 0, p ∈ (0,+∞), (6.8)

from (6.6).

The next step of the proof is to establish for all p ∈ (0,+∞) that the Laplace transform

V (p) of the L2(Ω)-valued tempered distribution in [0,+∞),

t 7→ v(t, ·) :=

∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds (6.9)

is well-defined in L2(Ω) and verifies

lim sup
n→∞

‖Vn(p)− V (p)‖L2(Ω) = 0. (6.10)

To this purpose, we recall the following estimate from [26, Lemma 2.2],

1

|ϑ(p) + λn|
6 C max(|p|−α0+δ , |p|−α0), p ∈ C \ (−∞, 0], n ∈ N, (6.11)

where the positive constant C is independent of n and p. Indeed, for all t ∈ (0,+∞) and all

ψ ∈ L2(Ω), we infer from (6.11) upon taking ε = t−1 in (2.5), that∥∥∥∥∥
+∞∑
n=1

mn∑
k=1

(∫
γ0(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k

∥∥∥∥∥
L2(Ω)

6 C max(tα0−δ−1, tα0−1)

∣∣∣∣∫ θ

−θ
ecosβdβ

∣∣∣∣2 ‖ψ‖L2(Ω)

and ∥∥∥∥∥
+∞∑
n=1

mn∑
k=1

(∫
γ±(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k

∥∥∥∥∥
L2(Ω)
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6 C

∣∣∣∣∫ +∞

t−1

max(r−α0+δ, r−α0)etr cos θdr

∣∣∣∣ ‖ψ‖L2(Ω)

6 Ct−1

∣∣∣∣∫ +∞

1
max((t−1r)−α0+δ, (t−1r)−α0)er cos θdr

∣∣∣∣ ‖ψ‖L2(Ω)

6 C max(tα0−δ−1, tα0−1)

∣∣∣∣∫ +∞

1
er cos θdr

∣∣∣∣ ‖ψ‖L2(Ω) .

Putting these two estimates together with (2.4) and (6.5), we obtain that

‖Sµ(t)‖B(L2(Ω)) 6 C max(tα0−δ−1, tα0−1), t ∈ (0,+∞), (6.12)

for some constant C that is independent of t. Thus, it holds true for all p ∈ (0,+∞), that

t 7→ yp(t) := e−pt ‖Sµ(t)‖B(L2(Ω)) ∈ L
1(0,+∞).

Moreover, setting f̃p(t) := 1(0,T )(t)e
−pt ‖f(t, ·)‖L2(Ω) for a.e. t ∈ (0,+∞), we get for each

p ∈ (0,+∞) that

e−pt
∥∥∥∥∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥∥
L2(Ω)

6
∫ t

0
e−p(t−s) ‖Sµ(t− s)‖B(L2(Ω)) 1(0,T )(s)e

−ps ‖f(s, ·)‖L2(Ω) ds

6 (yp ∗ f̃p)(t),

where the symbol ∗ denotes the convolution in (0,+∞). Therefore, we find for every fixed p ∈

(0,+∞) that
∫ +∞

0 e−pt
∥∥∥∫ t0 Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥
L2(Ω)

dt is upper bounded by
∥∥∥yp ∗ f̃p∥∥∥

L1(0,+∞)
,

and hence by ‖yp‖L1(0,+∞)

∥∥∥f̃p∥∥∥
L1(0,+∞)

, which combined with (6.12), yields

∫ +∞

0
e−pt

∥∥∥∥∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥∥
L2(Ω)

dt 6 C max(pδ−α0 , p−α0) ‖f‖L1(0,T ;L2(Ω)) ,

(6.13)

for some positive constant C that is independent of p. As a consequence V (p) is well-defined

in L2(Ω) and satisfies

‖V (p)‖L2(Ω) 6 C max(pδ−α0 , p−α0) ‖f‖L1(0,T ;L2(Ω)) , p ∈ (0,+∞).

Arguing as before with f − fn instead of f , we have

‖V (p)− Vn(p)‖L2(Ω) 6 C max(pδ−α0 , p−α0) ‖f − fn‖L1(0,T ;L2(Ω)) , p ∈ (0,+∞), n ∈ N,

which together with (6.6), yields (6.10).
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With reference to (6.3) we are left with the task of proving that V (p) lies in D(Aq,ρ), the

domain of the operator Aq,ρ, and verifies

(Aq,ρ + pϑ(p))V (p) = F (p), p ∈ (0,+∞), (6.14)

To do that, we recall from the very definition of the function ϑ that pϑ(p) > 0 for all p ∈

(0,+∞), and hence that the operator Aq,ρ + pϑ(p) is lower bounded by λ1 > 0 in L2
ρ(Ω),

according to (1.1), (1.2) and (1.3). Thus, Aq,ρ + pϑ(p) is boundedly invertible in L2
ρ(Ω) and

we have
∥∥(Aq,ρ + pϑ(p))−1

∥∥
B(L2

ρ(Ω))
6 λ−1

1 for all p ∈ (0,+∞). Therefore, since Vn(p) =

(Aq,ρ + pϑ(p))−1Fn(p) for all n ∈ N and all p ∈ (0 +∞), from (6.7), we get that∥∥(Aq,ρ + pϑ(p))−1F (p)− Vn(p)
∥∥
L2
ρ(Ω)

6
∥∥(Aq,ρ + pϑ(p))−1

∥∥
B(L2(Ω)

‖F (p)− Fn(p)‖L2
ρ(Ω)

6 ρ
1
2
Mλ1 ‖F (p)− Fn(p)‖L2(Ω) .

In light of (6.8), this entails that

lim
n→+∞

∥∥(Aq,ρ + pϑ(p))−1F (p)− Vn(p)
∥∥
L2(Ω)

= 0, p ∈ (0,+∞).

From this, (6.10) and the uniqueness of the limit in L2(Ω), it then follows that V (p) =

(Aq,ρ + pϑ(p))−1F (p), which is the claim of (6.14).

Therefore, u = v|Q, where v is defined by (6.9), is a weak solution to (6.1). Now, in

accordance with [26, Section 1.4], the end of the proof follows the same lines as the one in [26,

Theorem 1.2]. �

Remark 2. The representation formula (6.4)-(6.5) of the solution to (6.1) was obtained by

replacing S by Sµ in (2.2)-(2.3). Therefore, if f ∈ L1(0, T ;L2(Ω)) is supported in [0, T−3ε?]×Ω

for some ε? ∈
(
0, T4

)
, then by substituting Sµ for S in the derivation of Proposition 2.1, we see

that the weak solution u to (6.1) extends to a L2(Ω)-valued map which is analytic in Cθ?. Here,

θ? can be any angle in
(
0,min

(
π
4 ,

π
2α −

π
4

))
and Cθ? is defined in Proposition 2.1. Moreover,

the extended function t 7→ u(t, ·) is holomorphic in Cθ? and its Laplace transform U(p) is a

solution to (6.3) for all p ∈ (0,+∞).

6.2. Unique continuation. The first result is reminiscent of Theorem 1.1.

Theorem 6.2. Assume (6.2), let σ, g and f be as in Theorem 1.1, and denote by u the

weak-solution to (6.1). Then, for any non-empty open subset Ω′ ⊂ Ω, we have the implication:(
u = 0 in (0, T )× Ω′

)
=⇒ (f = 0 in Ω) .
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Proof. With reference to Remark 2 we get by following the same lines as in the derivation of

(3.3) that

σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x

′)

λn + ϑ(p)

)
= 0, x ∈ Ω′, p ∈ (0,+∞), (6.15)

where we used the notations introduced in Section 3.1.2. Since the function σ̂ is holomorphic

in C+, then, leaving aside the trivial case where σ̂ is identically zero, which yields σ = 0 in

(0, T ) by injectivity of the Laplace transform, we may assume that σ̂(p) 6= 0 for all p ∈ I,

where I is a non-empty subinterval of (0,+∞). In light of (6.15), this entails that

+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x

′)

λn + ϑ(p)
= 0, x ∈ Ω′, p ∈ I,

and consequently that

R(ϑ(p)) = 0, p ∈ I, (6.16)

in the L2
ρ(Ω

′)-sense, where the function R is defined by (3.5). Next, bearing in mind that

ϑ′(p) =
∫ 1

0 αp
α−1µ(α)dα, we infer from (6.2) that

ϑ′(p) >
∫ α0

α0−δ
αpα−1µ(α)dα >

δ(α0 − δ)µ(α0)

2
min
p∈I

(pα0−1, pα0−δ−1) > 0, p ∈ I.

From this, (6.16) and the fact that R is a meromorphic function in C \ {λn, n ∈ N}, it then

follows that
mn∑
k=1

gn,kϕn,k(x
′) = 0, x′ ∈ Ω′, n ∈ N.

Therefore, we have gn,k = 0 for all k = 0, . . . ,mn and all n ∈ N, from Section 3.1.4, and

consequently g =
∑+∞

n=1

∑mn
k=1 gn,kϕn,k = 0 in L2

ρ(Ω). �

The second statement is inspired by Theorem 1.4.

Theorem 6.3. Let T , Ω, ω, L, ρ and Aq be the same as in Theorem 1.4. Denote by u the

solution to (6.1) where f is defined by (1.12) for σ ∈ L1(0, T ;L2(ω)) and g ∈ L2(−L,L),

given by Proposition 6.1. Assume moreover that f is supported in [0, T ) × ω. Then, for any

non-empty open subset γ ⊂ ∂Ω, we have the implication:

(u = ∂νu = 0 on (0, T )× γ) =⇒ (f = 0 in (0, T )× Ω).

Proof. Let the function u be extended as in Remark 2. Since its Laplace transform U(p),

p ∈ (0,∞), is solution to the BVP (−∆ + ϑ(p))U(p, ·) = F (p, ·), in Ω,

B∗U(p) = 0, on ∂Ω,
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where F (p) ∈ L2(Ω), then we have U(p) ∈ H2(Ω) by the elliptic regularity theorem. Therefore,

taking into account that

(−∆ + ϑ(p))e−ikθ·x
′
e(k2+ϑ(p))1/2xn =

(
k2 − (k2 + ϑ(p)) + ϑ(p)

)
e−ikθ·x

′
e(k2+ϑ(p))1/2xn = 0,

for any k ∈ R and any θ ∈ Sd−2, and that (−∆ + ϑ(p))U(p, x) = σ̂(p, x′)g(xn), x = (x′, xn) ∈ Ω0,

U(p, x) = ∂ν0U(p, x) = 0, x ∈ ∂Ω0,
(6.17)

for all p ∈ (0,+∞), we find upon multiplying the first line in (6.17) by e(k2+ϑ(p))1/2xn and

integrating by parts in Ω0, that:∫
Ω0

σ̂(p, x′)h(xn)g(xn)e−ikθ·x
′
e(k2+ϑ(p))1/2xndx′dxn = 0.

By the Fubini theorem, the above equality immediately leads to(∫
ω
σ̂(p, x′)e−ikθ·x

′
dx′
)(∫ L

−L
g(xn)e(k2+ϑ(p))1/2xndxn

)
= 0,

for all p ∈ (0,+∞), all k ∈ R and all θ ∈ Sd−2, so the result follows from this upon arguing in

the same as in the proof of Theorem 1.4. �

7. Numerical reconstruction method

In this section we reconstruct numerically the spatial part of the source term that was

identified through internal data by Corollary 1.2. This is by means of an iterative scheme

based on the Tikhonov regularization method, which is defined in the coming section.

7.1. Iterative method. We aim for building an efficient iterative scheme for numerical re-

construction of the spatial term g(x) of the source, from knowledge of the temporal term σ(t)

and internal measurements for all time in a subregion Ω′. A reconstruction algorithm in the

case α ∈ (0, 1) has been studied in [15]. We extend the algorithm to the case α ∈ (1, 2).

According to Theorem 1.1, we choose a compactly supported time component instead of the

non-supported one in [15]. Let us recall that, for α ∈ (1, 2), the fractional Caputo derivative

of order α is defined by

∂αt u(t, x) :=
1

Γ(2− α)

∫ t

0
(t− s)1−α∂2

su(s, x)ds, (s, x) ∈ Q,

and the backward fractional Caputo derivative is defined by

∂αt u(t, x) :=
1

Γ(2− α)

∫ T

t
(s− t)1−α∂2

su(s, x)ds, (s, x) ∈ Q.
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The backward Riemann-Liouville fractional derivative of order α is defined by

∂α∗t u(t, x) :=
1

Γ(2− α)
∂2
t

∫ T

t
(s− t)1−αu(s, x)ds, (s, x) ∈ Q.

We introduce also maps J0 and J1 given by

J0u(t, x) = lim
t→T

1

Γ(2− α)

∫ T

t
(s− t)1−αu(s, x)ds,

J1u(t, x) = lim
t→T

1

Γ(2− α)
∂t

∫ T

t
(s− t)1−αu(s, x)ds.

Considering the homogeneous Neumann boundary condition, the forward problem is given by
(∂αt +Aq)u(t, x) = g(x)σ(t), in Q,

∂νau(t, x) = 0, on (0, T )× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, in Ω,

(7.1)

The weak formula of the system (7.1) is given by∫
Q

∑
i,j

ai,j∂xiu∂xjw + quw + u∂α∗t w

 dxdt =

∫
Q
gσwdxdt.

for any test function w ∈ Hα(0, T ;L2(Ω))
⋂
L2(0, T ;H1(Ω)) with J0w = J1w = 0 in Ω.

Assume that we have noise contaminated measurement uδ in a subregion Ω′ ⊂ Ω with

characteristic function χΩ′ from t = 0 to t = T satisfying ‖uδ − u(ftrue)‖L2(Ω) 6 δ, where δ

is the noise level. The reconstruction of the source term can be formulated as a least squares

problem with Tikhonov regularization

min
g∈L2(Ω)

Φ(g), Φ(g) := ‖u(g)− uδ‖2L2((0,T )×Ω′) + ρ‖g‖2L2(Ω). (7.2)

Traditional iterative methods to solve the least squares problem (7.2) require the computation

of the Fréchet derivative Φ′(g) of the object function Φ(g). For an arbitrary direction h ∈

L2(Ω), Φ′(g)h is given by

Φ′(g)h = 2

∫ T

0

∫
Ω′

(u(g)− uδ)(u′(g)h)dxdt+ 2ρ

∫
Ω
ghdx (7.3)

= 2

∫ T

0

∫
Ω′

(u(g)− uδ)u(h)dxdt+ 2ρ

∫
Ω
ghdx (7.4)

because of the linear dependence of u on g. By defining the adjoint system
(∂α∗t +Aq)z(t, x) = χΩ′(u(g)− uδ), in Q,

∂νaz(t, x) = 0, on (0, T )× ∂Ω,

J0z = J1z = 0, in Ω,

(7.5)
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the first term of the equation (7.4) is equal to∫ T

0

∫
Ω′

(u(g)− uδ)u(h)dxdt =

∫
Q
χΩ′(u(g)− uδ)u(h)dxdt

=

∫
Q

(∂α∗t +Aq)z(t, x)u(h)dxdt

=

∫
Q
gσz(g)dxdt

implying

Φ′(g)h = 2

∫
Ω

(∫ T

0
σz(g)dt+ ρg

)
hdx.

Therefore at the optimal point we have

ρg = −
∫ T

0
σz(g)dt. (7.6)

By adding Mg on both sides of (7.6), an iterative algorithm from [8, 15] is used for the

reconstruction

gk+1 =
M

M + ρ
gk −

1

M + ρ

∫ T

0
σz(gk)dt, k = 0, 1, 2, . . . ,

where M > 0 is a parameter controlling the convergence. The iterative stops after

‖gk+1 − gk‖L2(Ω)/‖gk‖L2(Ω) < ε

with ε the precision parameter.

By careful choice of final conditions and integration by parts, we know that the adjoint

system (7.5) coincides with the following problem with a backward Caputo fractional derivative
(∂αt +Aq)z(t, x) = χΩ′(u(g)− uδ), in Q,

∂νaz(t, x) = 0, on (0, T )× ∂Ω,

z(T, x) = z(T, x) = 0, in Ω.

(7.7)

Therefore, during each iteration we solve the fractional derivative equation twice.

7.2. Numerical computations. This section provides several results of numerical computa-

tion of g by the iterative scheme introduced in Section 7.1, in the particular case where:

Ω = (0, 1)× (0, 1), T = 1, Aqu = −0.1∆u+ u.

The temporal term σ(t) of the source and the initial guess g0(x) are chosen as follows

σ(t) =
1√
2πs

e−
(t−0.4)2

2s2 , s = 0.12, g0(x) = 2.
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Notice that σ(t) ≈ 0 near t = 0 and t = T . From numerical point of view, σ is compactly sup-

ported in (0, T ). To obtain the noisy observation uδ, we solve the forward problem numerically

and add uniformly distributed random noise to the solution, i.e.,

uδ(t, x) =
(
1 + δrand(−1, 1)

)
u(gtrue)(t, x).

Here rand(−1, 1) is a uniformly distributed number in [−1, 1] and δ is the noise level. For

parameters in the iterative method, we fix ρ = 10−5 and M = 4. To evaluate the performance

of the reconstruction, we compute the relative error Res := ‖gk − gtrue‖L2(Ω)/‖gtrue‖L2(Ω).

Example 7.1. In this example we compare reconstructed results for different g with different

α. We choose the noise level δ = 2%, the stopping criterion ε = δ/50 and the observation

subregion Ω′ = Ω \ (0.1, 0.9)2. We choose two pairs of fractional orders α = 1.2 and α = 1.8,

and two true source terms

gtrue(x1, x2) = x1 + x2 + 1 and gtrue(x1, x2) = cos(πx1) cos(πx2) + 2.

Figure 1 demonstrates the result with iteration steps K and relative errors Res. Reconstruction

with α = 1.2 takes fewer steps and the result is more accurate than α = 1.8.
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(d) gtrue = cos(πx1) cos(πx2) + 2
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(f) α = 1.8

Figure 1. True solutions (left), reconstructions for α = 1.2 (middle) and recon-

structions for α = 1.8 (right). Figure (1b) corresponds to K = 91, Res = 2.71%;

Figure (1c) corresponds to K = 139, Res = 5.77%; Figure (1e) corresponds to

K = 113, Res = 3.65%; Figure (1f) corresponds to K = 166, Res = 7.07%.
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Example 7.2. In this example we fix α = 1.5, δ = 10%, ε = 10−3 and

gtrue = cos(πx1) cos(πx2) + 2.

We study the effect of observation regions to reconstructed results by choosing six different

regions:

Ω′ = Ω \ (0.2, 0.8)2, Ω′ = Ω \ (0.05, 0.95)2,

Ω′ = Ω \ [0, 0.8)2, Ω′ = Ω \ [0, 0.95)2,

Ω′ = Ω \ [0, 1]× [0, 0.8), Ω′ = Ω \ [0, 1]× [0, 0.95).

Figure (2) shows reconstructed results with different observation regions and Table (1) lists

the number of steps and relative errors. With the increasing of the observation region, the

reconstructed result becomes more accurate. If we are lack of observation near some boundaries,

it is hard to obtain a good reconstruction near those boundaries.
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(d) Ω′ = Ω \ (0.05, 0.95)2
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(e) Ω′ = Ω \ [0, 0.95)2

0.5

1

1

1.5

1

2

2.5

0.8
0.5

3

0.6

3.5

0.4

0.2
0 0

(f) Ω′ = Ω \ [0, 1]× [0, 0.95)

Figure 2. Effect of observation regions to reconstructed results.
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Ω′ K Res

Ω \ (0.2, 0.8)2 73 3.95%

Ω \ (0.05, 0.95)2 92 9.09%

Ω \ [0, 0.8)2 72 13.54%

Ω \ [0, 0.95)2 73 17.49%

Ω \ [0, 1]× [0, 0.8) 63 18.42%

Ω \ [0, 1]× [0, 0.95) 40 22.09%

Table 1. Number of steps and relative errors for different regions of observation.
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