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INTRODUCTION

Neural circuits in the hypothalamus play a critical role in the regulation of energy homeostasis [START_REF] Elmquist | Unraveling the central nervous system pathways underlying responses to leptin[END_REF]. The hypothalamic melanocortin circuit is formed by leptin-responsive neurons in the arcuate nucleus of the hypothalamus (ARH) expressing either Pro-opiomelanocortin (POMC) or Neuropeptide Y (NPY)/Agouti-Related Protein (AgRP) which project to, and synapse with melanocortin-4 receptor (MC4R) expressing neurons in the paraventricular nucleus of the hypothalamus (PVH). In the nutritionally replete state, ARH POMC neurons release melanocortin peptides including α-melanocytestimulating hormone (α-MSH) which act as agonists at MC4R to reduce food intake and increase energy expenditure [START_REF] Cowley | Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus[END_REF]. Genetic disruption of POMC and MC4R leads to severe obesity in rodents [START_REF] Huszar | Targeted disruption of the melanocortin-4 receptor results in obesity in mice[END_REF][START_REF] Yaswen | Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin[END_REF] and humans [START_REF] Krude | Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans[END_REF][START_REF] Vaisse | A frameshift mutation in human MC4R is associated with a dominant form of obesity[END_REF][START_REF] Yeo | A frameshift mutation in MC4R associated with dominantly inherited human obesity[END_REF], emphasising the critical role of this melanocortin circuit in energy homeostasis.

Here, we studied the development of hypothalamic melanocortin circuits, focussing on the contribution of the Class 3 Semaphorins [START_REF] Pasterkamp | Getting neural circuits into shape with semaphorins[END_REF]) (SEMA3A-G) which direct the development of gonadotropin-releasing hormone (GnRH) neurons into the hypothalamus [START_REF] Cariboni | Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome[END_REF][START_REF] Hanchate | SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome[END_REF]. Disruption of Sema3 signaling impairs the development of GnRH projections in mice and rare variants that disrupt SEMA3 signaling are associated with hypogonadotropic hypogonadism in humans [START_REF] Cariboni | Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome[END_REF][START_REF] Young | SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development[END_REF]. We performed genetic studies in people with severe obesity to test whether there was an enrichment of rare potentially functional variants in genes encoding the SEMA3s and their receptors compared to controls. We found 40 rare variants in these genes; 34 altered the function of these proteins through multiple molecular mechanisms. To test whether disruption of Sema3 signaling can perturb energy homeostasis, we performed a CRISPR/Cas9 mutant screen of these genes in zebrafish. We showed that disruption of 7 genes caused increased somatic growth and/or adiposity. Using hypothalamic explants from mice, we demonstrated that Sema3 signaling via Nrp2 receptors drives the development of Pomc projections from the ARH to the PVH. Deletion of Nrp2 in Pomc neurons, reduced the density of Pomc projections and caused weight gain in young mice. Together, these findings demonstrate the role of Sema3 signaling in the development of melanocortin circuits that modulate energy homeostasis, findings that have relevance to the understanding of disorders of human hypothalamic development.

RESULTS

Identification of rare variants in Semaphorin 3 ligands and their receptors in severely obese individuals

We hypothesized that if the genes encoding Sema3s and their receptors (SEMA3A-G, NRP1-2 and PLXNA1-4) contribute to the development of neurons that regulate body weight in humans, we might identify functional variants in these genes in people with severe early onset obesity. We examined exome sequencing data from 573 individuals with severe early onset obesity (BMI SDS>3; onset under 10 years of age) recruited to the Genetics Of Obesity Study (GOOS) studied as part of the UK10K consortium [START_REF] Hendricks | Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity[END_REF][START_REF] Walter | The UK10K project identifies rare variants in health and disease[END_REF]. We found 40 rare variants in these 13 genes (Table 1). To test whether there was an enrichment for very rare (minor allele frequency < 0.025%) predicted functional variants in 13 genes involved in Semaphorin 3 signaling in severely obese cases compared to controls, we compared exome sequencing data from the final UK10K data release of 982 severely obese individuals (including the 573 individuals in whom the first 40 variants were identified) with that of 4449 healthy controls recruited to the INTERVAL study (Moore et al., 2014). After adjusting for multiple testing, we found that very rare predicted functional variants in this cluster of genes were enriched in severely obese cases compared to controls (OR=1.40, p-adjusted=0.02; Tables S1 andS2). Although suggestive, these associations were not statistically significant at the single gene level after adjusting for multiple testing. Given the rarity of variants, larger sample sizes will be needed to test whether the burden of rare variants in specific genes or combinations of genes is greater than expected in severely obese cases versus controls.

Rare variants in SEMA3s affect their secretion and function in cells

We performed experiments in cells, to dissect the functional consequences of very rare human variants (Figures 1 andS1; Table S3). SEMA3A-G are secreted as disulphide bridgelinked dimers and processed by furin (Figure 1A). SEMA3s (except SEMA3E) bind to Neuropilin co-receptors (NRP1 and NRP2) in hetero-complexes with PlexinA1-4 (PLXNA1-4) receptors to activate plexin signal-transduction (SEMA3E can signal without NRPs through the class D plexin, PLXND1) [START_REF] Janssen | Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex[END_REF][START_REF] Tran | Semaphorin regulation of cellular morphology[END_REF]. The dimeric SEMA3s form the signalling complex with two PLXNAs and NRPs, the NRPs cross-bracing the interfacing SEMA3s and PLXNAs [START_REF] Janssen | Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex[END_REF].

We mapped the 19 variants in SEMA3s onto the crystal structure of SEMA3A and homology models of SEMA3B-3G to suggest structural explanations for our findings (Figure 1A). To assess whether SEMA3s mutants affect protein secretion, we quantified the amount of secreted SEMA3 detected in the medium of HEK293 cells transiently transfected with Flag-tagged WT or mutant SEMA3 by ELISA. Six mutants decreased protein secretion compared to WT SEMA3 (Figure 1B). Most led to increased intracellular retention of mutant SEMA3 suggesting that the defect was in secretion rather than synthesis (Figure S1A). In contrast, 6 mutants led to increased protein secretion (Figure 1B andS1B). The SEMA3G R728C variant may hinder SEMA3 dimerization by disrupting the formation of an inter-subunit disulfide bridge by the proximal, conserved cysteine residue C726 (Figures 1A andS1C).

To test whether SEMA3 mutants affect receptor-mediated signaling and thus disassembly of the actin cytoskeleton and cellular collapse, U97MG cells were treated with medium from cells transfected with WT or mutant SEMA3s, and the number of collapsed cells counted.

Compared to WT SEMA3s, 9 of the 19 SEMA3 mutants affected cell collapse (Figure 1C; Table S3). Five SEMA3D mutants induced less collapse than WT (Figure 1C).

Based on homology modeling, 12 out of 19 variants were predicted to affect secretion and/or cellular collapse due to destabilisation of the Sema domain important for SEMA3-PLXNA-NRP recognition (Figure 1D). Paradoxically, four mutants decreased collapse despite increased secretion. SEMA3C R739Q and SEMA3D R265H both locate close to the SEMA3-NRP interface and may thus weaken SEMA3C-NRP1/2 binding. SEMA3D R773G may destabilize the SEMA3-PLXNA-NRP complex by affecting the charge distribution on the basic tail. SEMA3E R167G, located at the SEMA3-PLXNA interface, may directly affect PLXN binding (Figure 1D). Two SEMA3B mutants showed decreased secretion, yet increased collapse even after adjustment for the amount of protein secreted (Figures 1B-C andS1D-E).

In summary 15 of the 19 variants have functional consequences on the protein by affecting secretion and/or collapse in these assays (Table S3).

Rare variants in NRP1-2 and PLXNA1-4 disrupt cell surface localization and function

We examined the molecular mechanisms by which the 21 variants in PLXNA1-4 and NRP1-2 might affect their function (Figures 2 andS2). HEK293 cells were transfected with Nterminally GLU-GLU-tagged WT and mutant constructs. Surface localization of NRPs and PLXNs on non-permeabilized cells was quantified by ELISA using an anti-GLU-GLU antibody.

One NRP2 mutant (A506V) and 17 of the 18 PLXNA mutants significantly decreased cell surface expression compared to WT receptors (Figures 2A andS2A). WT PLXNA1, A2 and A4 were predominantly localized on the plasma membrane whereas mutant PLXNs with reduced cell surface expression were predominantly found within the endoplasmic reticulum (ER) (Figure S2B). Interestingly, both WT and mutant PLXNA3 were localized in the ER (Figure S2B). Almost all mutants with decreased cell surface localization reduced cell collapse in cells transfected with NRP or PLXN (Figure 2B). In a ligand binding assay, none of the mutants affected the equilibrium dissociation constant of the interaction (Figure S2C); only NRP2 A506V decreased total binding (Figure 2C), in agreement with its modest decrease in cell surface expression. Co-expression of NRP mutants with each WT PLXN gave similar results as with expression of NRP alone (Figures 2C andS2C). 2D-F) suggested possible explanations for protein misfolding. Six of the 11 mutants lie in the Sema domain of the PlxnA ectodomains; however, they are not at the Sema3 and Nrp-binding surfaces, so are likely to affect structural stability rather than ligand or co-receptor interactions (Figure 2D). Mutants on the PSI and IPT domains may disrupt the stability of these domains (Figure 2D). PLXNA3 D127N is located on a surface that mediates PlxnA-PlxnA interactions important for receptor auto-inhibition pre-ligand binding [START_REF] Kong | Structural Basis for Plexin Activation and Regulation[END_REF]) (Figures S2D-E).

Structural modeling of the 21 mutants in PLXNAs and NRPs (Figures

Six mutants lie in the cytoplasmic Plxn domains and may additionally affect coupling to downstream signaling molecules; PLXNA1 L1278F on the juxta-membrane helices may affect pre-signaling inhibition, PLXNA3 D1710N on the Rap-GAP pocket helices may affect Rap binding, PLXNA1 G1650S and PLXNA4 T1642I on the Rho-GTPase binding domain (RBD) may affect interactions with the Rho-GTPases and PLXNA3 T1679I may disrupt the hydrophobic core of the PlxnA GAP domain (Figure 2E). Only 1 out of the 3 mutants found on NRP1 and NRP2 lead to decreased cell collapse and reduced cell surface expression likely by affecting molecular stability (Figure 2F).

A mutagenesis screen in zebrafish demonstrates that disruption of semaphorins, plexins and neuropilins alters somatic growth and adiposity

We used zebrafish to test whether altered Sema3 signaling can disturb energy homeostasis, as the hypothalamic neural circuits involved in energy homeostasis are highly conserved (Leibold and Hammerschmidt, 2015;Minchin and Rawls, 2017 ). Multiple CRISPR guide RNAs (gRNAs) targeting distinct regions of each zebrafish semaphorin 3, neuropilin and plexin a ortholog (Figures 3A andS3A) were injected into one-cell stage zebrafish embryos.

Disruption of the melanocortin system can influence both somatic growth and adiposity in zebrafish [START_REF] Sebag | Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish[END_REF][START_REF] Zhang | AgRP and POMC neurons are hypophysiotropic and coordinately regulate multiple endocrine axes in a larval teleost[END_REF]. Deletions in 7 genes significantly increased somatic growth, body weight and/or % body fat (Figures 3B andS3B). Deletion of a duplicate gene for NRP2 (nrp2b) increased adiposity and somatic growth (Figure 3C). In contrast, deletions of 2 genes decreased % body fat. Cumulatively, these data demonstrate that Semaphorin 3 signaling can affect energy homeostasis, potentially through several different mechanisms.

SEMA3s and their receptors are expressed in the hypothalamus during early development

Using RT-qPCR we found that Nrp1-2 and PlxnA1-4 mRNAs were detected in the mouse hypothalamus as early as E10 and were highly expressed postnatally, particularly in the ARH (Figures 4A andS4A). NRP1-2 and PLXNA1-4 mRNAs were also expressed in the human fetal hypothalamus and the hypothalamus of human young adults (Figure 4A). Sema3a, Sema3c, Sema3e and Sema3f were expressed in the mouse PVH at P10 (Figure 4A); SEMA3C was the most abundant in the mouse PVH, DMH, ARH, and preoptic area (Figure S4A) and in the human fetal and young adult hypothalamus (Figure 4A). This temporal pattern of gene expression overlaps with a critical time window for the development of the melanocortin circuits that regulate energy homeostasis. Pomc neurons in the ARH are generated on embryonic day (E)11-12, acquire their terminal peptidergic phenotype during mid-late gestation [START_REF] Padilla | Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits[END_REF] and send axonal projections to their target sites during the first few weeks of postnatal life [START_REF] Bouret | Trophic action of leptin on hypothalamic neurons that regulate feeding[END_REF].

Sema3s drive the growth of Pomc projections in vitro

To test whether Sema3s are involved in the development of arcuate Pomc projections, we performed co-cultures between ARH explants derived from Pomc-Cre; TdTomato mice (to genetically label Pomc axons) and HEK293 cell aggregates transfected with human SEMA3encoding vectors (Figure 4B). We quantified the density of axons extending toward (proximal) or away (distal) from cell aggregates (Figure 4B). Compared with the radial growth seen with HEK293 cells transfected with an empty vector, growth of arcuate Pomc axons was enhanced by HEK293 cell aggregates overexpressing SEMA3A, SEMA3B, SEMA3C, SEMA3D and SEMA3G (Figure 4C). Notably, only SEMA3C and SEMA3D affected the growth of arcuate NPY axons (Figure S4B). To validate the specificity of our in vitro assay, we cocultured an explant derived from the dorsal root ganglion (DRG) with HEK293 cells overexpressing SEMA3A and confirmed, as previously described [START_REF] Taniguchi | Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection[END_REF] that SEMA3A inhibited the growth of DRG axons (Figure S4C). Together, these observations demonstrate that SEMA3s can signal to ARH axons, including to Pomc axons, and display enhanced growth.

We repeated co-cultures between mouse ARH explants and HEK293 cell aggregates transfected with a subset of human SEMA3 variants and evaluated axon growth. Three out of 5 variants tested negatively impacted on the overall growth of arcuate axons; one increased the density of POMC projections (Figure 4D). Interestingly, SEMA3G E478D and SEMA3B P296L mutants specifically reduced POMC axon growth.

Neuropilin receptors mediate growth of arcuate Pomc projections towards the PVH and away from the VMH

We reconstructed arcuate connections in vitro by co-culturing 2 explants derived from different hypothalamic nuclei. When an ARH explant derived from Pomc-Cre; TdTomato mice was co-cultured with a PVH explant, the density of fibers directed toward the PVH was substantially greater than that from the opposite side of the ARH, suggesting that the PVH releases diffusible chemotropic factors that promote growth of arcuate Pomc axons (Figure 4E). Substitution of the PVH explants with control HEK293 cells or an explant derived from the cortical cortex (normally not innervated by ARH axons) did not result in any detectable effect on neural projections (Figures 4E andS4D), demonstrating a high degree of specificity. Nrp1 or Nrp2 neutralizing antibodies blocked the induction of growth exerted by the PVH on arcuate Pomc axons (Figure 4E). The DMH promoted growth of arcuate Pomc axons, but this effect was not blocked with Nrp1 or Nrp2 neutralizing antibodies (Figure 4E).

In contrast, the VMH inhibited growth of arcuate Pomc axons and this effect was blocked by the addition of Nrp1, but not Nrp2, antibodies (Figure 4E andS4E). Thus, Nrp-mediated signaling plays a specific role in establishing Pomc axonal projections to the PVH.

Genetic deletion of Neuropilin 2 reduces the density of Pomc projections to the PVH and causes weight gain in mice

In the ARH, Nrp2 mRNA expression was two times higher than that of Nrp1 (Figure 4A). To investigate the role of Nrp2 in Pomc neurons in vivo, we crossed mice carrying a Nrp2 loxP allele [START_REF] Walz | Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice[END_REF] with mice expressing Cre recombinase in a Pomc-specific manner (Pomc-Cre) [START_REF] Balthasar | Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis[END_REF] to generate mice that lack Nrp2 in Pomc-derived neurons. We repeated the in vitro co-culture assay with an ARH explant derived from Nrp2 loxP/loxP mice that received intra-ARH injections of an AAV-Cre vector and a PVH explant derived from WT mice. Genetic loss of Nrp2 in ARH neurons also blocked growth of axons towards the PVH (Figure 4F). As expected, the levels of Nrp2 mRNA were decreased in the arcuate nucleus of Pomc-Cre; Nrp2 loxP/loxP mice whereas the levels of Nrp1 were comparable between control and mutant mice (Figure S5A); there was a 3-fold reduction in Nrp2 mRNA in sorted POMC neurons derived from mutant mice (Figure 5A). In contrast, there was no significant change in the levels of Nrp1 and Nrp2 mRNAs in the pituitary of mutant mice (Figure S5B-C), or in other hypothalamic nuclei and extra-hypothalamic brain regions (Figure S5D). Pomc-Cre; Nrp2 loxP/loxP mice were born normally and had body weights indistinguishable from control littermates until 11 weeks of age (Figure 5B) when mutant mice displayed significantly higher body weights (Figure 5B). Oxygen consumption (VO 2 ), locomotor activity and energy expenditure were reduced in mutant mice compared with control Nrp2 loxP/loxP mice (Figure 5C-E). Although there was no change in body composition (Figure 5F), there was an increase in adipocyte size in mutant mice (Figure 5G). Food intake and respiratory exchange ratio were not significantly different compared to controls (Figures 5H andI).

Pomc-Cre; Nrp2 loxP/loxP mice displayed elevated levels of glucose 15 minutes after a glucose challenge, compared to control mice (Figure 5J). Leptin levels, but not insulin, T3, T4 and corticosterone levels, were significantly elevated in mutant mice (Figures S5E-I).

Although the overall distribution of αMSH-IR fibers was similar between mutant and control mice, the density of αMSH-IR fibers innervating the neuroendocrine and pre-autonomic parts of the PVH of Pomc-Cre; Nrp2 loxP/loxP mice was 2-3 fold lower than that observed in the Nrp2 loxP/loxP mice (Figure 5K). The density of αMSH projections to the DMH (Figure 5K) as well as to other major terminal fields (Figure S5J) was comparable between mutant and control mice. Corticotrophin-releasing hormone (Crh) and thyrotrophin-releasing hormone (Trh) expression in the PVH was increased, but oxytocin mRNA levels were unchanged (Figure 5L). The number of Pomc mRNA-expressing cells in the ARH of Pomc-Cre; Nrp2 loxP/loxP mice was comparable to that of control mice (Figure 5Mand S5K-M). Together, these data indicate that Nrp2 signaling directs the formation of Pomc projections to the PVH with marked target specificity.

DISCUSSION

In this study, we identified rare heterozygous variants in SEMA3s, their receptors and coreceptors in individuals with severe early-onset obesity. In zebrafish, we showed that deletion of several genes in this pathway increased weight-related phenotypes establishing a role for these molecules in energy homeostasis. There are several potential mechanisms by which these genes might modulate body weight and/or fat mass. In mice, we showed that Sema3s acting via Nrp2 direct the development of Pomc projections from the arcuate to the paraventricular nucleus of the hypothalamus. A role for Nrp1 mediated signaling in pre-adipocyte differentiation has been demonstrated [START_REF] Ceccarelli | Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis[END_REF]. In zebrafish, plxnd1 has been shown to regulate adipose tissue growth by affecting the formation of the extracellular matrix (Minchin et al., 2015) indicating that Semaphorin 3 signaling may affect non-neural mechanisms that contribute to adiposity.

Rare variants in the SEMA3s, their receptors and co-receptors

We found multiple rare variants in the genes encoding ligands, receptors and co-receptors involved in Sema3 signaling by studying severely obese individuals. Variants were not fully penetrant and did not segregate with severe obesity in families demonstrating non-Mendelian inheritance. There are parallels with hypogonadotropic hypogonadism, where incomplete penetrance and variable expressivity within and across families has been observed [START_REF] Cassatella | Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures[END_REF]. As the number of genes implicated in hypogonadotropic hypogonadism has increased, it has become clear that oligogenic inheritance (i.e. more than one gene mutated in the same individual) can in part explain these observations. Indeed, heterozygous variants in SEMA3A, SEMA3E and PLXNA1 can contribute to hypogonadotropic hypogonadism in an oligogenic manner with variable penetrance [START_REF] Cariboni | Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome[END_REF][START_REF] Hanchate | SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome[END_REF]. In this study, whilst variant carriers did not carry additional variants in known obesity genes, it is plausible that other, as yet unidentified, genes may contribute to expression of the obesity phenotype in the individuals studied here.

There are many challenges when studying rare variants that might contribute to complex traits that do not follow Mendelian patterns of inheritance [START_REF] Agarwala | Evaluating empirical bounds on complex disease genetic architecture[END_REF][START_REF] Zuk | Searching for missing heritability: designing rare variant association studies[END_REF]. Statistical burden association tests are used to test whether there is a difference in the load of rare variants predicted to have a functional impact in cases versus controls.

Using this approach, we found nominal enrichment for very rare variants in the cluster of genes encoding SEMA3 ligands, receptors and co-receptors when severely obese cases were compared to healthy controls indicating that rare variants within this gene-set may be associated with obesity. However, given the number of rare variants, their presence in cases and in controls, and the complexity of Sema3 signaling, larger genetic studies are needed to more fully test whether the burden of functionally significant variants (as tested in cells) is increased in severely obese individuals compared to controls and whether this association is driven by specific genes/combinations of genes. Some of the neurodevelopmental phenotypes observed in variant carriers overlap with those seen in animals (Table 1). One male carrying PLXNA3 D1710N had hypogonadotrophic hypogonadism. As PLXNA3 lies on the X chromosome, this individual would have minimal residual signaling through PLXNA3. The true prevalence of hypogonadotrophic hypogonadism amongst variant carriers may be underestimated here as several probands were pre-pubertal children.

SEMA3 signaling is known to regulate the development of the enteric nervous system in rodents and rare heterozygous loss of function variants in SEMA3C and SEMA3D have been associated with Hirschsprung's disease in humans [START_REF] Jiang | Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability[END_REF], a disorder characterised by failure of development of parasympathetic ganglion cells in the large intestine. Five people had severe medication-resistant constipation in childhood with multiple hospital admissions; two individuals had been investigated for Hirschsprung's disease and one required a colostomy for severe dysmotility (SEMA3D D640Y). Additional studies in neuronal cells, experimental animal models of human variants and in variant carriers will be needed to directly test the functional impact of these variants on the development of the enteric nervous system.

Insights into the molecular mechanisms disrupted by rare human variants

Many of the SEMA3 variants reduced secretion and/or receptor-mediated signaling. In blinded studies, four mutants that had functional consequences on secretion and/or signaling in cells affected the density of neuronal projections, while the one WT-like variant (SEMA3D D640Y) studied, did not affect neuronal projections (Table S3). Paradoxically, some mutants exhibited increased secretion in cells. Experiments in chick DRGs have shown that the concentration of SEMA3s can determine which signaling pathway is activated and thereby influence the extent of growth cone collapse within a <100 ng/ml to >625 ng/ml range (Manns et al., 2012). As such, mutants that both increase and decrease secretion might disrupt axon guidance in vivo. Understanding how ligand concentration (as altered by human variants) impacts on axon growth may provide insights into the development of hypothalamic and extra-hypothalamic circuits in the human brain.

Mutant PLXN receptors were predominantly found within the endoplasmic reticulum rather and Sema3F [START_REF] Cheng | Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections[END_REF]. However, neurons from PlxnA3 null mice only partially lose responses to Sema3A implying a degree of compensation through other receptor complexes, whereas hippocampal neurons from these mice lose essentially all responsiveness to Sema3F implying there is no redundant receptor for this specific response.

In preliminary studies, we modelled the effects of two NRP1 and -2 variants on melanocortin neural circuits in zebrafish. Compared to WT NRP2, A506V NRP2 resulted in a significant further reduction in the density of α-MSH labeled fibers in the preoptic area (teleost homolog of the PVH) (Figure S3C). Compared to WT NRP1, the R237Q NRP1 mutant resulted in a further reduction in the density of AgRP immunoreactive fibres innnervating the anterior tuberal nucleus (teleost homolog of the VMH) (Figure S3C). Given the challenges associated with dissecting the impact of these molecules on neuronal circuits and weight related phenotypes, deletion/reactivation studies of components of the signaling pathway in specific neuronal populations will be needed to determine the extent to which other components of the signaling complex can compensate for the partial lack of expression of mutant receptors in vivo.

The role of SEMA3 signaling in the development of hypothalamic neural circuits

Our data suggest that Sema3 signaling in developing Pomc neurons contributes to the regulation of energy homeostasis and glucose homeostasis. The relatively modest effect of Nrp2 deletion in Pomc neurons on body weight is not surprising, as only Pomc axonal projections to the PVH were disrupted in this mouse model. Our findings align with experiments specifically disrupting leptin signalling in ARH Pomc neurons [START_REF] Berglund | Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice[END_REF]. Further in depth exploration of the degree of compensation/plasticity associated with targeted experimental manipulations will be needed. Further characterisation of the impact of human variants in mature neurons where they can affect the maturation and density of dendritic spines, synaptogenesis and synaptic plasticity (Orr et al., 2017) may inform understanding of the mechanisms that underlie human disorders characterised by hypothalamic dysfunction.
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MAIN TABLE TITLE AND LEGEND TABLE 1: Phenotypes of SEMA3A-G, PLXNA1-4 and NRP1-2 variant carriers

All variants were in found in heterozygous form unless indicated (*denotes homozygous); gastrointestinal motility disorders presented as severe therapy-resistant constipation.

Abbreviations: yrs (years); BMI (body mass index); BMI SDS (BMI standard deviation score for children. **Two participants harboured two variants. See also Table S1 andS2. 

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sadaf Farooqi (isf20@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Studies in humans

The Genetics of Obesity Study (GOOS) is a cohort of 7,000 individuals with severe earlyonset obesity; age of obesity onset is less than 10 years [START_REF] Farooqi | Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene[END_REF][START_REF] Wheeler | Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity[END_REF]. Severe obesity is defined as a body mass index (weight in kilograms divided by the square of the height in meters) standard deviation score greater than 3 (standard deviation scores calculated according to the United Kingdom reference population). The mean age of the subjects with variants was 13.0 ± 1.6 years. 28 were female and 11 were male, mean BMI or BMI SDS did not differ between males and females (35.3 ± 3.4 kg/m 2 vs 34.9 ± 1.8 kg/m 2 ; 3.8 ± 0.2 SDS vs 3.8 ± 0.2 SDS). All studies were approved by the Cambridge Local

Research Ethics Committee and each subject (or their parent for those under 16 years) provided written informed consent; minors provided oral consent. Healthy blood donors from the INTERVAL project were used as controls (Moore et al., 2014). All participants gave informed written consent.

Studies in cellular models

HEK293 (XX female) and COS7 (XY male) cells were cultured in high glucose Dulbecco's modified eagle medium (DMEM, Gibco, 41965) supplemented with 10% fetal bovine serum (FBS, Gibco, 10270, South America origin), 1% GlutaMAX TM (100X) (Gibco, 35050), and 100 units/mL penicillin and 100 μg/mL streptomycin (Sigma-Aldrich, P0781). U87MG (XY male) cells were cultured in MEM with non-essential amino acids (Sigma) supplemented with 10% FBS (Gibco), 1mM Sodium pyruvate, 1% GlutaMAX TM (100X) (Gibco, 35050), and 100 units/mL penicillin and 100 μg/mL streptomycin (Sigma-Aldrich, P0781). HUVECs (XX, female) cells were cultured in M199 (with Glutamine) (Sigma-Aldrich, M4530), supplemented with 20% FBS (Gibco), 1% GlutaMAX TM (100X) (Gibco, 35050), 100 units/mL penicillin and 100 μg/mL streptomycin (Sigma-Aldrich, P0781), 1% Vitamins-MEM-EAGLE Vitamin Solution (Gibco, 11120052). HUVEC cells were grown in flasks coated with gelatin (Sigma-Aldrich, G1890). U87MG and HUVEC cells were a kind gift from Gera Neufeld (the Rappaport Institute). Cells were incubated at 37⁰C in humidified air containing 5% CO 2 and transfections were performed using Lipofectamine 2000™ (Gibco, 11668) in serum-free Opti-MEM I medium (Gibco, 31985) according to the manufacturer's protocols.

Studies in zebrafish

All zebrafish experiments were conducted in accordance with the Animals (Scientific Procedures) Act 1986, and following UK Home Office approval (License #: P0662C816). Using CRISPR/Cas9, deletion mutants of zebrafish homologs of Semaphorin3s, PlexinA1-4 and Nrp1-2 were generated and characterised by their length and weight. Zebrafish were reared at equivalent densities and the analyses were conducted prior to any overt sexual differentiation.

Studies in mice

All animal procedures were conducted in compliance with and approved by the IACUC of the Saban Research Institute of the Children's Hospital of Los Angeles. Animals were housed under specific pathogen-free conditions, maintained in a temperature-controlled room with a 12 h light/dark cycle, and provided ad libitum access to water and standard laboratory chow (Special Diet Services). To genetically label Pomc fibers for in vitro studies, Pomc-Cre mice [START_REF] Balthasar | Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis[END_REF] were crossed with a ROSA-TdTomato reporter line (Madisen et al., 2010). To generate Pomc-specific Nrp2 knockout (Pomc-Cre; Nrp2 loxP/loxP ) mice, Pomc-Cre mice were mated to mice carrying a loxP-flanked Nrp2 allele (Nrp2 loxP/loxP ) [START_REF] Walz | Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice[END_REF]. Breeding colonies were maintained by mating Pomc-Cre; Nrp2 loxP/+ mice to Nrp2 loxP/loxP mice. Cre-negative Nrp2 loxP/loxP were used as controls. All mice were generated in a C57BL/6 background and only male mice were studied.

METHOD DETAILS

STUDIES IN HUMANS

Sequencing, variant calling, and quality control

Details about sequencing and variant calling for the SCOOP (severely obese) cases [START_REF] Hendricks | Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity[END_REF], as part of the UK10K exomes, and the INTERVAL controls have been reported previously [START_REF] Singh | Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders[END_REF]. Briefly, single-sample variant calling using GATK Haplotype Caller (v3.2) was performed on the union of Agilent v3 and v5 targets plus a 100 base pair flanking region on 9795 UK10K and INTERVAL samples, including SCOOP cases (N=982) and INTERVAL controls (N=4499). The called variants were then merged into 200 sample batches and were joint-called using Genotype VCFs and default settings [START_REF] Depristo | A framework for variation discovery and genotyping using next-generation DNA sequencing data[END_REF][START_REF] Van Der Auwera | From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline[END_REF]. To ensure high-quality variant calls across all datasets and sequencing batches, only variants with at least 7x coverage in at least 80% of samples were called. We applied further variants QC keeping only variants with a calibrated VQSR tranche above 99.75% sensitivity, missingness < 20%, Hardy-Weinberg equilibrium χ2 p-value > 10E-8, mean genotype quality ≥ 30, and variants in low-complexity regions as described previously (Li, 2014). Further, individual genotypes were set to missing if any of the following was true: GQ<30, alternate allele read depth (DP1)<2, allelic balance (AB) <0.2, or AB>0.8.We used VerifyBamID (v1.0) [START_REF] Jun | Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data[END_REF] and a threshold of ≥3% to identify contaminated samples, principal components calculated from the 1000Genomes Phase I integrated call set [START_REF] Abecasis | A map of human genome variation from population-scale sequencing[END_REF] using EIGENSTRAT v4.2 [START_REF] Price | Principal components analysis corrects for stratification in genome-wide association studies[END_REF] to identify non-Europeans, and pairwise identity by descent estimates from PLINK v1.07 [START_REF] Purcell | PLINK: a tool set for whole-genome association and population-based linkage analyses[END_REF] with a threshold of ≥0.125 to identify related individuals. Contaminated, non-European, and related samples were removed resulting in 927 SCOOP cases and 4,057 INTERVAL controls for analysis.

Gene-set enrichment

We performed gene-set enrichment similar to previous analyses described in [START_REF] Purcell | A polygenic burden of rare disruptive mutations in schizophrenia[END_REF][START_REF] Singh | Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders[END_REF]. Briefly, using PLINK/SEQ [START_REF] Purcell | PLINK: a tool set for whole-genome association and population-based linkage analyses[END_REF] we calculated individual gene region burden test-statistics for an enrichment in cases compared to controls of very rare (MAF<0.025%) variants meeting one of two predicted functional requirements: functional or loss of function, or only loss of function. We then used the SMP utility to calculate the gene set enrichment while controlling for exome-wide differences between cases and controls. Twenty thousand case control permutations were used to estimate the empirical gene set enrichment p-value on which a Bonferroni adjustment for two tests (i.e. functional and LoF, and LoF only) was applied to arrive at the adjusted pvalue.

FUNCTIONAL CHARACTERIZATION OF RARE HUMAN VARIANTS

Cloning and site-directed mutagenesis

The cDNA constructs used throughout the study were made by site-directed mutagenesis using QuikChange II XL kit (Agilent Technologies, 200516) immunodetected with an anti-Flag antibody. Cell surface antigen was quantified on transfected non-permeabilised live HEK293 cells in 96 well plates using an anti-Glu-Glu antibody. Total cell antigen was detected in transfected HEK293 cells in 96-well plates after fixation and permeabilisation using an anti-Flag antibody.

cellular antigens were detected in fixed (3.7% formaldehyde in PBS) and permeabilised (0.1% triton in PBS for 5 mins) cells after blocking for 1hr and incubation with anti-flag antibody (Sigma) for 2 hr in blocking buffer. Cells were washed thrice for 10 min with PBS, incubated with anti-mouse HRP antibody (BioRad) (1.5% dry milk, 50mM Tris, pH 7.4 in PBS)

for 1 hr, washed thrice more for 10 min with PBS before incubation with HRP substrate (TMB, BioRad) and measurement of absorbance at 450nM.

Cell collapse assays

SEMA3-induced cell collapse was tested in U87MG cells grown on a gelatin coated surface.

Cells were exposed to SEMA3-conditioned cell medium and collapsed cells micrographed after 30 min and counted manually. Receptor mutants were tested by transfecting COS7 cells with PLXNA, NRP, and GFP, followed by exposure to purified SEMA3C at 2 μg /ml for 30 minutes. Collapsed cells were micrographed under blue laser and collapse quantified using Image J.

Semaphorin expression vectors were transfected into HEK293 cells at 60-90% confluency in 10cm dishes. Growth medium was replaced with serum-free medium after 12 hours. After 48 hours the medium, containing secreted semaphorin, was harvested, aliquoted, and snap frozen in liquid nitrogen followed by storage at -80 o C. The cell contraction assay with mutant ligands was carried out as reported previously [START_REF] Sabag | The role of the plexin-A2 receptor in Sema3A and Sema3B signal transduction[END_REF]. U87MG cells were used for SEMA3A, SEMA3B, SEMA3D, SEMA3F, and SEMA3G induced collapse. HUVEC cells were used with SEMA3C and SEMA3E. The morning of the assay 10 5 cells/well were seeded into a 12-well plate coated with gelatin (Sigma, UK). Cells were allowed to attach to the plate surface for 5 hours. Semaphorin-containing medium was then added to the wells for 30 min at room temperature (1% BSA in 50 mM Tris-Phosphate buffer pH 7.4). For binding detection, a biotinylated goat-anti-human IgG (Fc specific) (Sigma-Aldrich, SAB3701279) diluted 1:10000 in blocking buffer was incubated for 1 hour at RT.

Subsequently, the wells were washed three times with PBS and a peroxidase-conjugated Streptavidin (Thermo) (dilution 1:12000) was added to the wells and incubated for 30 minutes at RT. After three washes, bound SEMA3C was quantified by the addition of 90 μl of TMB (Biorad) per well, and stopped by 60 μl of 0.2M H 2 SO 4 . Absorbance at 450 nm was measured using an Infinite M1000 PRO microplate reader (Tecan). Specific binding was determined by subtracting non-specific binding (cells transfected with empty vector

[pCMV6]) from total binding. Specific binding was plotted and k d and B max determined using Prism 6.07 (GraphPad) software.

Reducing and non-reducing Immunoblotting

HEK293 cells were seeded in 10 cm dishes and transfected the following day once the cells had reached 90% confluency. Six hours after transfection the cell medium was replaced with serum-free medium containing 1:400 dilution of protease inhibitors. 48 hr after transfection the cell medium was supplemented with additional protease inhibitors. 72 hr after transfection the cell medium was harvested from the dishes, centrifuged at 1500 rpm for 5 min and the sample was prepared for electrophoresis (resuspended in 1x BOLT LDS sample buffer (Thermo) and 1x Bolt reducing agent (Thermo) and heated for 10mins at 70 ο C). Cells were washed once with PBS and lysed in triton lysis buffer (50 mM Tris pH7.5, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 10 mM sodium pyrophosphate, 10 mM sodium glycerophosphate, 1% (v/v) triton X-100 and protease inhibitors (Roche). Lysates were centrifuged at 14,000 rpm for 20 min and the

Structural analysis

To study how the human SEMA3-PLXNA-NRP variants affect signaling, we mapped the mutated residues onto structural models and assessed their potential effects on stability and protein-protein interactions. For SEMA3s, all human SEMA3 sequences (SEMA3A-3G)

were first aligned to the sequence of mouse SEMA3A. A homology model encompassing the first three Sema3 domains, the sema, PSI and Ig domains, was made by combining the sema-PSI segments of the mouse Sema3A crystal structure at 3.3 Å resolution (PDB 4GZ8)

together with a homology model of the Sema3 Ig domain generated using the 3.0 Å crystal structure of human Sema4D which includes a more complete Sema-PSI-Ig segment (PDB 1OL2). The human SEMA3 variants were then mapped onto the equivalent residues in the mouse Sema3A model. To locate the variants potentially affecting the Sema3-Plxn-Nrp interfaces, the crystal structure of mouse Sema3A-PlxnA2-Nrp1 (PDB 4GZA) was used as a reference. Similarly, human PlxnA1-A4 sequences were aligned with mouse PlxnA1 and the mouse residues corresponding to the human variants were identified. The human PLXN variants on the extracellular segments (domains sema to IPT6) were mapped onto the 4 Å crystal structure of the mouse PlxnA1 ectodomain (PDB 5L56). Variants in the PlxnA cytoplasmic domain were mapped onto a homology model of PlxnA1 generated using the 3.3 Å crystal structure of the zebra fish PlxnC1 active dimer (PDB 4M8M). Human NRP1 and NRP2 variants were mapped onto the equivalent positions in the 2.7 Å crystal structure of mouse Nrp1 (PDB 4GZ9). The MAM domain of the Nrps was not modelled. All protein sequences were obtained from the UniProt database (http://www.uniprot.org/). Protein sequence alignment was performed using the ClustalW Omega server (http://www.ebi.ac.uk/Tools/msa/clustalo/). Homology models were generated and analysed using Modeller. Structural visualization and image production was performed using Pymol (https://pymol.org/2/).

STUDIES IN ZEBRAFISH

Zebrafish homologs of class 3 Semaphorins, class A Plexins and Nrps were identified using Ensembl GeneTree (ENSGT00760000119048). Phylogenetic trees were constructed from the zebrafish, human and mouse orthologs using Clustal Omega [START_REF] Sievers | Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega[END_REF].

Phylogenetic trees were visualized using the Unrooted software (http://pbil.univ-lyon1.fr/software/unrooted.html). Two-five non-overlapping short guide RNAs (gRNA)

targeting each zebrafish gene were identified using the Zebrafish Genomics track data hub (GA targets) in DanRer 10; gRNA templates were assembled and mRNA produced as described [START_REF] Varshney | High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9[END_REF] with the exception that the T7 promoter was substituted with an SP6 promoter. sgRNAs (200 ng each) were incubated with 600 ng Cas9 protein (New England Biolabs, #M0646T) for 5 min at 37°C prior to 2 nl being injected into 1-cell stage zebrafish WIK embryos. For each gRNA, mutagenesis was confirmed using T7 Endonuclease I (T7E1, New England Biolabs, #M0302), and quantified using TIDE [START_REF] Brinkman | Easy quantitative assessment of genome editing by sequence trace decomposition[END_REF].

gRNA and primer sequences for T7 assays are available from JENM on request. Zebrafish were reared at equivalent densities. Zebrafish injected with Cas9 protein only were used as the control group. However, gRNA-only injected zebrafish were also measured and no difference in somatic growth was observed between Cas9-only fish. Length and weight were measured as previously described [START_REF] Parichy | Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish[END_REF]. Nile Red staining on postembryonic larvae was conducted as described (Minchin et al., 2015). Percent body fat was calculated as previously described (Minchin and Rawls, 2017), in stage matched larvae. For the initial CRISPR screen, analyses were conducted at 5, 14 and 35 days post fertilisation in three independent experiments. Between 6 and 25 animals were used for each group within an experiment. Analyses were conducted prior to any overt sexual differentiation. Standard length, weight and % body fat were analysed in three additional nrp2 experiments and used between 40 and 83 animals in total.

Immunohistochemical analysis of αMSH and AgRP projections

Human wild-type NRP1 and NRP2 along with the NRP1 R237Q and NRP2 A506V variants were cloned into the pCMV6-Entry vector (Origene), which was then linearized using the AgeI-HF restriction enzyme (New England Biolabs, #R3552), column cleaned (Zymo Research

Clean & Concentrator, #D4013) and RNA transcribed using the mMessage mMachine T7

Transcription Kit as according to the manufacturers protocol (Thermo Fisher, #AM1344).

Capped RNA was then cleaned using Zymo RNA Clean & Concentrator columns (Zymo Research Clean & Concentrator, #R1013) and 100 pg injected into one-cell stage wild-type (WIK) zebrafish embryos. Injected fish were raised at 20 fish/3L until 35 dpf. Thirty-five day old fish (n=8-9/group) were fixed overnight with 4% paraformaldehyde/borate buffer. The fish brains were then frozen, sectioned at 20-um thick, and processed for immunofluorescence using standard procedures [START_REF] Bouret | Trophic action of leptin on hypothalamic neurons that regulate feeding[END_REF]. Briefly, sections were incubated with a sheep anti-αMSH antibody (1:40,000, Millipore) and a rabbit anti-AgRP

(1:1,000, Phoenix Pharmaceuticals). The primary antibodies were visualized with Alexa Fluor 568 donkey anti-sheep IgG and Alexa Fluor 488 donkey anti-rabbit IgG (1:200, Millipore).

Sections were counterstained using bis-benzamide (1:10,000, Invitrogen) to visualize cell nuclei. Two sections through the preoptic area (POA), anterior tuberal nucleus of hypothalamus (ATN), and lateral hypothalamic nucleus (LH) were acquired using a Zeiss LSM 710 confocal system equipped with a 20X objective. To quantify fibers density, each image plane was binarized to isolate labeled fibers from the background and to compensate for differences in fluorescence intensity. The integrated intensity, which reflects the total number of pixels in the binarized image, was then calculated for each image as previously described [START_REF] Bouret | Trophic action of leptin on hypothalamic neurons that regulate feeding[END_REF]. This procedure was conducted for each image stack.

STUDIES IN MICE

Analysis of gene expression

The hypothalamus of E10, E12, and E14 mouse embryos (n= 3-4/group) as well as the ARH, DMH, LHA, POA, PVH, SCN, and VMH of P10 male mouse pups and the ARH and PVH of 8weeks-old mice (n=5/group) were dissected under a stereomicroscope. In addition, the hypothalamus of a human fetus at 14 weeks of gestational age and hypothalamic of human young adults (19.0 years ± 1.5 year; n = 2/group; generously provided by Dr Prevot, Inserm U1172, Lille France) was collected. Total RNA was isolated using the Arcturus PicoPure RNA isolation kit (for mouse tissues) (Life Technologies) or the RNeasy Lipid tissue kit (for human tissues) (Qiagen). cDNA was generated with the high-capacity cDNA Reverse Transcription kit (Life Technologies). Quantitative real-time PCR was performed using TaqMan Fast

Universal PCR Mastermix and the commercially available Taqman gene expression primers.

mRNA expression was calculated using the 2 -ΔΔCt method after normalization to the expression of Gapdh housekeeping gene. All assays were performed using an Applied Biosystems 7900 HT real-time PCR system. mM glucose, and supplemented with 10% fetal bovine serum (Invitrogen), 100 µg/ml streptomycin and 100 U/ml penicillin. A cDNA containing the entire coding region of the human SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G was inserted into a pRK5 plasmid expression vector. Recombinant plasmids containing SEMA3 cDNAs harboring the variants identified in obese individuals were then engineered using the QuickChange mutagenesis protocol (Stratagene). HEK293 cells were transiently transfected using a fast-forward protocol (Lipofectamine 2000, Invitrogen). Conditioned medium was collected 48 h after transfection, tested for the presence of Flag by western blot analysis using an anti-Flag antibody (Sigma-Aldrich).

Explant co-culture assays

Brains were collected from P4 Pomc-Cre; TdTomato male mice (for ARH explants) and P8-P12 wild-type male mice (for PVH, DMH, and VMH explants) and sectioned at a 200-um thickness with a vibroslicer as previously described In addition, Nrp2 For the heterochronic cultures, beginning on the first day in vitro, each explant were transferred to fresh modified Basal Medium Eagle (Invitrogen) containing either Nrp1 or Nrp2 neutralizing antibodies (1.5 ug/ml, R&D Systems) or control goat IgGs. After 48 h, the explants were fixed in paraformaldehyde and stained with betaIII tubulin (TUJ1 monoclonal antibody, 1:5,000, Covance) or NPY (1:3,000, Chemicon). Pomc-TdTomato + , TUJ1 + and NPY + neurites extending from the ARH explants were analyzed as followed. Confocal image stacks of the co-cultures, that included the proximal and distal edges of the ARH explant, were acquired using a Zeiss LSM 710 confocal system equipped with a 10X objective. Slides were numerically coded to obscure the treatment group. Image analysis was performed using ImageJ analysis software (NIH). For the in vitro experiments, each image plane was binarized, and the total density of Pomc+, TUJ1+ and Npy+ neurites were measured in the proximal (P) and distal (D) parts of the explant. The P/D ratio is a measure of growth towards or away from the explant, with a ratio >1 indicating net increase in projections and <1 indicating decreased axon growth.

Immunohistochemical analysis of αMSH projections

15-17-weeks old male mice (n = 4/group) were perfused transcardially with 4%

paraformaldehyde. The brains were then frozen, sectioned at 30-um thick, and processed for immunofluorescence using standard procedures [START_REF] Bouret | Trophic action of leptin on hypothalamic neurons that regulate feeding[END_REF]. Briefly, sections were incubated with a sheep anti-αMSH antibody (1:40,000, Millipore). The primary antibody was visualized with Alexa Fluor 488 donkey anti-sheep IgG (1:200, Millipore).

Sections were counterstained using bis-benzamide (1:10,000, Invitrogen) to visualize cell nuclei. Two sections through various anatomical compartments of the PVH (PVHmpd and PVHpml, neuroendocrine; and postPVH, autonomic) were acquired using a Zeiss LSM 710

confocal system equipped with a 20X objective. For the quantitative analysis of fibers density, each image plane was binarized to isolate labeled fibers from the background and to compensate for differences in fluorescence intensity. The integrated intensity, which reflects the total number of pixels in the binarized image, was then calculated for each image. This procedure was conducted for each image stack.

Analysis of Pomc cell numbers

15-17-weeks old male mice (n = 4/group) were perfused transcardially with 4% paraformaldehyde. The brains were then frozen, sectioned at 30-um thick, and processed for fluorescent in situ hybridization using standard procedures. Two sections through the ARH were acquired using a Zeiss LSM 710 confocal system equipped with a 20X objective.

For the quantitative analysis of cell number, the number of Pomc+ cell bodies in the ARH were manually counted using Image J analysis software (NIH). The average number of cells counted in two ARH hemi-sections from each mouse was used for statistical comparisons.

Physiological measurements in mice

Male mice (n ≥ 9/group) were weighed every 2 days from P4 to P22 (weaning) and weekly from 4 to 14 weeks using an analytical balance. Body composition analysis (fat/lean mass) was performed in 16-week-old mice (n = 7-8/group) using NMR (Echo MRI). Food intake, energy expenditure, and locomotor activity were monitored at 17-19 weeks of age using a combined indirect calorimetry system (TSE Systems) (n =7-8/group). Mice were acclimated in the monitoring chambers for 2 days then data were collected for 3 days. These physiological measures were performed at the Rodent Metabolic Core of Children's Hospital of Los Angeles. Glucose tolerance tests (GTTs) were conducted in 10-to 11-week-old mice (n= 9-11/group) through i.p. injection of glucose (1.5 mg/g body weight) after overnight fasting. Blood glucose levels were measured at 0, 15,30,45,60,90,120, and 150 min postinjection. Serum leptin, insulin, T3, T4 levels were assayed in 18-21-week-old fed mice and corticosterone levels were assayed in 18-21-week-old fed mice (n = 8-11/group) using ELISA kits (Millipore, Calbiotech and Enzo Life Sciences, respectively).

Fluorescent in situ hybridization

Antisense digoxigenin-labeled riboprobes were generated from plasmids containing PCR fragments of Pomc. Briefly, sections were postfixed for 10 minutes in 4% paraformaldehyde.

Then, sections were incubated with 1ug/ml Proteinase K (Promega) for 5 min at 37°C and 15 min at RT, respectively. They were then incubated for 10 min in 0.1 M triethanolamine (TEA), pH 8.0, and then for 5 min at room temperature in 100 mL 0.1 M triethanolamine (TEA) with 500 uL glacial acid acetic. Tissue was pre-hybridized for two hours at 62⁰C in hybridization buffer (66% (v/v) deionized formamide, 13% (w/v) dextran sulfate, 260 mM NaCl, 1.3 X Denhardt's Solution, 13 mM Tris pH 8.0, 1.3 mM EDTA pH 8.0). Probes were denatured at 80⁰C for 5 minutes before being added to the hybridization buffer, along with tRNA and DTT for a final concentration of 0.5mg/ml tRNA and 10mM DTT. Tissue was hybridized overnight at 62°C. After washes in stringency solutions, sections were blocked in TNB solution (0,5% blocking reagent, Roche). Tissue sections were then incubated for 1 hr at RT in a horseradish peroxidase-conjugated sheep anti-DIG antibody (1:400, Roche Applied Sciences). DIG was visualized using a TSA PLUS Biotin Kit (Perkin Elmer). After washes, sections were incubated for 30 minutes in a 1:50 dilution of the Biotin Amplification Reagent working solution (prepared following manufacturer's instructions), before incubating for 1 hr in 1:200 streptavidin conjugated to cyanin 2 (Jackson Immunoresearch). Sections were counterstained using bisbenzamide (1:10,000, Invitrogen), to visualize cell nuclei, and coverslipped with buffered glycerol (pH 8.5).

Histomorphological assessment of white adipose tissue

Male mice were anesthetized at 16-17 weeks of age (n = 5/group). Epididymal adipose tissue was collected, fixed in a 4% paraformaldehyde solution, sectioned at 5 um, and then stained with a Perilipin A antibody (1:1,000, Sigma) using standard procedures. Images were taken with a Zeiss LSM 710 confocal microscope with a 20X objective. Determination of mean size (µm 2 ) was measured using Image J software (NIH, Image J 1.39 T). The average adipocyte size measured from three sections in each mouse was used for statistical comparisons.

QUANTIFICATION AND STATISTICAL ANALYSIS

All values were represented as the mean ± SEM. Studies in cellular models are from at least 3 independent experiments. Numbers for every experiment are found in the relevant part of the Methods. Explant co-culture assays are derived from 4-28 explants in 3-6 independent experiments. Mice studies are from 3-11 animals per group. Statistical analyses were conducted using GraphPad Prism (version 6.07). Data sets with only two independent groups were analyzed for statistical significance using unpaired two-tailed Student's t test.

Data sets with more than two groups were analyzed using one-way analysis of variance (ANOVA) followed by the Bonferroni posthoc test. For statistical analyses of body weight and GTT (mice), we performed two-way ANOVAs followed by Bonferroni's posthoc test. The SEMA3A-PLXNA2-NRP1 signalling complex 

  than at the cell surface; structural modelling of the 21 mutants in PLXNAs and NRPs suggested several explanations for the misfolding of mutant receptors. The downstream consequences of aberrant receptor expression and signaling are challenging to predict as different NRP-PLXN complexes mediate signaling by different combinations of Semaphorins in different brain regions. For example, experiments in neurons suggest that Sema3A signals via Nrp1-PlxnA4 complexes, whereas Nrp2-PlxnA3 complexes mediate responses to Sema3F. Studies in PlxnA3 null mice show that PlxnA3 can mediate the effects of Sema3A
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  according to the manufacturer's protocols. SEMA3s cDNA constructs contained a C-terminal Myc/DDK tag; NRP1-2 and PLXNA1-4 cDNA constructs contained a N-terminal Glu-Glu tag and C-terminal Myc/DDK tag; all constructs were ligated into pCMV6-Entry vector (Origene) using Sgf I/Mlu I site. All constructs were verified by Sanger sequencing. SEMA3s secretion, cell surface and total cell ELISA Secreted SEMA3s were detected in the medium of transfected HEK293 cells grown in 96 well plates. Medium from these cells was transferred to MaxiSorp plates and bound SEMA3
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Real-time PCR primers

Real-time PCR was performed on Applied Biosystems 7900HT Fast Real-Time PCR System using TaqMan® Gene Expression Assays (Applied Biosystems): Pomc (Mm00435874_m1),

Signaling activity of wild-type and mutant SEMA3s in HEK293 cells

HEK293 cells were grown in monolayers in 5% CO2 at 37°C, in Dulbecco's modified Eagle's medium (Life Technologies, Inc.) containing 1 mM sodium pyruvate, 2 mM glutamine, 50
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Secreted Semaphorin ELISA 50,000 HEK293 cells were seeded into each well of a poly-D-lysine coated 96-well plate.

After 24hr the cell medium was exchanged for Opti-MEM (Gibco) and cells transfected. Cell medium was exchanged once more with 50 μl of Opti-MEM containing a 1:400 dilution of Protease inhibitors (Sigma). Forty-eight hours after transfection, cell medium from two identically transfected 96-well plates was pooled together (100 µl total volume) with the addition of 25mM HEPES pH7.5 and centrifuged at 1500rpm for 5 min. The top 80 μl of medium was transferred to black MaxiSorp plates (NUNC), the plates were sealed and incubated overnight at 4 ο C with gentle agitation. Cell medium was removed and plates were washed thrice for 10 min with gentle agitation before blocking and immunodetection as described in the ELISA procedure below using the anti-Flag antibody and QuantaBlu Fluorogenic Peroxidase Substrate Kit (Thermo).

Cell surface and total protein ELISA 40,000 HEK293 cells were seeded into each well of a poly-D-lysine coated 96-well plate and transfected the following day. Forty-eight hours after transfection cells were washed once with PBS and processed for the detection of either cell surface or total cellular antigens. Cell surface protein was detected by blocking live cells on ice (3% dry milk, 50mM Tris, pH 7.4 in PBS) for 30 mins and then incubation with anti-Glu-Glu antibody (Covance) in blocking buffer on ice for 2 hr. Cells were washed thrice for 10 min on ice with PBS and then fixed (3.7% formaldehyde in PBS) for 10 min on ice and then 10 min at room temperature. Cells were washed thrice for 10 min with PBS, blocked again for 30 min and incubated with secondary antibody as described for the total cellular antigen detection procedure. Total at a 1:2 dilution and cells kept at 37 o C for 30 min. Following collapse cells the plates were photographed under the microscope and collapsed cells counted individually (at least 100 cells per well). To test cell collapse mediated by mutant receptors, COS7 cells were seeded at 2x10 5 cells/well in a gelatin coated 6-well plate, and the following day co-transfected with PlxnA1-4, Nrp1-2, and GFP. After 24 hours purified, recombinant, human SEMA3C (R&D Systems, UK) was added at a concentration of 2 μg/ml and incubated at 37 o C for 30 min.

Following collapse, cells were photographed under the microscope and collapsed cells were counted using image recognition software on ImageJ (NIH, Bethesda). Collapse efficiency was assessed by counting the proportion of collapsed cells 30 minutes following addition of the WT semaphorin to the culture medium.

Ligand binding assay

Cells expressing NRP1-2 or co-expressing NRP1-2 and PLXNA1-4 were incubated with recombinant human SEMA3C-Fc chimera and binding was quantified using an anti-human IgG (Fc specific) antibody. HEK293 cells (40,000 cells/well) were seeded in a poly-D-lysine coated 96-well plate. After 24 hours, 70-80% confluent cells were transiently transfected with WT or mutant NRP1/2 alone or co-transfected with NRP1/2 (WT and mutant) and WT PLXNA1-4. For NRP and PLXNA constructs, the amount of DNA used was 30 and 60 ng, respectively. Twenty four hours after transfection, cells were blocked with 1% BSA in serum-free media (SFM) for 30 min at 37°C then incubated with recombinant human SEMA3C Fc chimera (0.2 -10 nM) (rhSEMA3c-Fc, R&D System, catalogue number 5570-S3-050) in SFM supplemented with 1% BSA for 30 min at 37°C. Following 5 washes with Dulbecco's Phosphate Buffered Saline (DPBS), cells were fixed with 3.7% formaldehyde at room temperature (RT) for 15 min, washed three times with PBS and subsequently blocked protein concentration determined using a Bradford assay (BioRad). Equal amounts of protein were prepared for electrophoresis, as described above. For non-reducing Immunoblotting, samples were prepared in 1x BOLT LDS sample buffer (without reducing agent) and heated at 60 ο C for 5 min. Protein electrophoresis was performed using BOLT gels (Thermo) and transfer onto nitrocellulose using an iBLOT (Thermo). Membranes were probed overnight at 4 ο C using an anti-Flag primary (Sigma) and anti-mouse HRP (DAKO) secondary antibody or an anti-actin (NEB) primary and anti-rabbit secondary antibody (DAKO).

Immunofluorescence and Confocal Microscopy

80,000 COS7 cells were seeded onto glass coverslips in 12-well plates and transfected. 48 h after transfection cells were fixed with 4% formaldehyde in PBS for 10 min and washed three times for 5 min with PBS before membrane staining with 10 μg/ml Alexa Fluor 647 conjugated wheat germ agglutinin for 10 min. Cells were washed three more times, permeabilised with 0.1% Triton X-100 in PBS for 5 min before being washing again. Cells were incubated in blocking buffer (3% BSA in PBS) for 1h, then primary antibody (mouse anti-Flag and Rabbit anti-Calnexin (Cell signaling) diluted in blocking buffer followed by washing and incubation with secondary antibody (anti-mouse Alexa Fluor 488 and anti-Rabbit Alexa Fluor 568 (ThermoFisher). Cells were washed and incubated with DAPI (1 μg/ml) for 5 min before being washed again and mounting onto coverslips using mounting medium (VECTASHIELD with DAPI). Slides were imaged using a Leica SP8 confocal microscope with a 63x objective (NA 1.4) and images processed using FIJI.