ViCrypt: Real-time, Fine-grained Prediction of Video Quality from Encrypted Streaming Traffic
Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li

To cite this version:
Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li. ViCrypt: Real-time, Fine-grained Prediction of Video Quality from Encrypted Streaming Traffic. ACM Internet Measurement Conference (IMC) 2019, Oct 2019, Amsterdam, Netherlands. hal-02375301

HAL Id: hal-02375301
https://hal.science/hal-02375301
Submitted on 21 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
VICRYPT: Real-time, Fine-grained Prediction of Video Quality from Encrypted Streaming Traffic

S. Wassermann (1), M. Seufert (2), P. Casas (1), L. Gang (3), K. Li (3)
(1) AIT Austrian Institute of Technology, Vienna, Austria
(2) University of Würzburg, Würzburg, Germany
(3) Huawei Technologies, Shenzhen, China

QoE-BASED NETMON (QoE-MON)

- **Video stream-based analysis**, using multiple sliding windows, capturing different temporal phenomena (current time, short-term trend, session-aggregated).
- **Analysis is done in real-time** for every video session and for every new time slot of 1 second, we consider the following set of 207 features:
 - Features extracted from current time slot (C) – 69 features
 - Short-memory (trend) based features, extracted from last T (3) slots (CT) – 69 features
 - Cumulative based features, extracted from all past traffic for this video session (CS) – 69 features
- **Feature computation** is done continually, in constant-memory boundaries, using sketches.

ONLINE PREDICTION OF VIDEO BITRATE

- Training multiple ML models over more than 4.6M individual, 1 sec. slots (5-fold cross validation) – here using all 207 inputs
- **Classification task**: per second video resolution, 6-classes: 144p, 240p, 360p, 480p, 720p, 1080p
- **Regression task**: estimation of per second average video bitrate

STABLE-CONDITIONS

- **Video stream-based analysis**, using multiple sliding windows, capturing different temporal phenomena (current time, short-term trend, session-aggregated).
- **Analysis is done in real-time** for every video session and for every new time slot of 1 second, we consider the following set of 207 features:
 - Features extracted from current time slot (C) – 69 features
 - Short-memory (trend) based features, extracted from last T (3) slots (CT) – 69 features
 - Cumulative based features, extracted from all past traffic for this video session (CS) – 69 features
- **Feature computation** is done continually, in constant-memory boundaries, using sketches.