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Repeated photoporation with graphene
quantum dots enables homogeneous
labeling of live cells with extrinsic markers
for fluorescence microscopy
Jing Liu1,2, Ranhua Xiong1,2, Toon Brans1,2, Saskia Lippens3,4,5, Eef Parthoens3,4,5, Francesca Cella Zanacchi6,
Raffaella Magrassi6,7, Santosh K. Singh8,9, Sreekumar Kurungot8,9, Sabine Szunerits10, Hannelore Bove ́ 11,12,
Marcel Ameloot11, Juan C. Fraire1,2, Eline Teirlinck1,2, Sangram Keshari Samal1,2, Riet De Rycke13,14,15,16,
Gaëlle Houthaeve1,2,17, Stefaan C. De Smedt18, Rabah Boukherroub10 and Kevin Braeckmans 1,2,19,20

Abstract
In the replacement of genetic probes, there is increasing interest in labeling living cells with high-quality extrinsic
labels, which avoid over-expression artifacts and are available in a wide spectral range. This calls for a broadly
applicable technology that can deliver such labels unambiguously to the cytosol of living cells. Here, we demonstrate
that nanoparticle-sensitized photoporation can be used to this end as an emerging intracellular delivery technique.
We replace the traditionally used gold nanoparticles with graphene nanoparticles as photothermal sensitizers to
permeabilize the cell membrane upon laser irradiation. We demonstrate that the enhanced thermal stability of
graphene quantum dots allows the formation of multiple vapor nanobubbles upon irradiation with short laser pulses,
allowing the delivery of a variety of extrinsic cell labels efficiently and homogeneously into live cells. We demonstrate
high-quality time-lapse imaging with confocal, total internal reflection fluorescence (TIRF), and Airyscan super-
resolution microscopy. As the entire procedure is readily compatible with fluorescence (super resolution) microscopy,
photoporation with graphene quantum dots has the potential to become the long-awaited generic platform for
controlled intracellular delivery of fluorescent labels for live-cell imaging.

Introduction
It is imperative to observe subcellular structures as well

as intracellular processes to gain insight into the role of
biomolecules and biological pathways1. While high-
quality organic and particulate labels are available for
fluorescence (super resolution) microscopy, their use is
mainly limited to fixed and permeabilized cells, as they
cannot readily permeate through the cell membrane of

living cells2. This is why genetic engineering with fluor-
escent proteins has become the predominant labeling
method for live cells in the last 15 years. However, apart
from the risk of inducing over-expression artifacts,
fluorescent proteins come in a limited spectral range and
are generally not as bright or photostable as traditional
extrinsic fluorophores3,4.
In recent years, several intracellular delivery methods

have been evaluated for delivering extrinsic labels into live
cells for microscopy. Carrier-mediated methods have been
proposed in which labels are combined with lipid or
polymeric carriers that enter the cells through endocy-
tosis5,6. Unfortunately, due to inefficient endosomal
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escape, the resulting labeling pattern is ambiguous at best,
with some of the labels reaching the cytoplasm but the
majority remaining trapped inside endosomes7,8. An
alternative approach is the use of physical or chemical
methods that permeabilize the cell membrane, thus
bypassing endocytic uptake. For instance, the pore-
forming bacterial toxin streptolysin O (SLO) was
recently used to deliver exogenous labels in cells9. It does,
however, require careful optimization of the treatment
procedure per cell type, while the pore size is inherently
limited to ~100 kDa. Electroporation has also been
investigated but is often associated with high cell death
and requires transfer of the cells in dedicated recipients for
transfection10,11. Cell squeezing is a more recent approach
based on flowing cells through a microfluidic channel that
contains carefully engineered constrictions or obstruc-
tions12. Shear forces induce pores in the cell membrane,
allowing labels to subsequently diffuse into the cells. While
this technique is reportedly fast and rather safe for cells, it
still requires the cells to be transferred to the microfluidic
device and reseeded afterwards for microscopy.
As the need in this area for a broadly applicable intra-

cellular delivery method that is compatible with cell
recipients traditionally used for live-cell microscopy
remains, we evaluated nanoparticle-assisted photopora-
tion as an emerging new approach for delivering com-
pounds into cells. Plasmonic nanoparticles, usually gold
nanoparticles (AuNPs), are incubated with cells so that
they make contact with the cell membrane. Laser irra-
diation is then applied to permeabilize the cell membrane
through photothermal effects13. One photothermal effect
has proven particularly effective for intracellular delivery,
which is the generation of vapor nanobubbles (VNBs).
Upon irradiation with short (<10 ns) intense laser pulses,
plasmonic NPs can become extremely hot such that the
surrounding water in the biological tissue evaporates,
leading to the formation of VNBs14,15. In this case, it is the
mechanical force of the expanding and imploding VNBs
around each plasmonic nanoparticle that locally punctu-
res the cell membrane, allowing external compounds to
diffuse into the cytoplasm. Importantly, being a laser-
based technology, it is naturally compatible with light
microscopy and can be readily applied to (adherent) cells
in culture dishes that are normally used for fluorescence
microscopy.
One limitation, however, is that cells incubated with

AuNPs can be photoporated only once since AuNPs tend
to fragment after applying one laser pulse16. Here, we
demonstrate for the first time that graphene-based
nanoparticles, such as graphene quantum dots (GQDs),
are more resistant to pulsed laser irradiation and can form
multiple VNBs, thus allowing repeated photoporation of
the cells and careful control of the amount of label
delivered into the cells. Using these GQDs, we show that

fluorescent compounds can be gradually delivered into
cells upon application of sequential laser pulses until the
desired contrast and label homogeneity are achieved. We
demonstrate successful delivery of several types of cell-
impermeable fluorescent labels into live HeLa cells,
including fluorescently tagged phalloidin, nanobodies, and
SNAP-tags. High-quality live-cell imaging is demon-
strated with confocal microscopy, TIRF microscopy, and
Airyscan super-resolution microscopy. Taken together,
these results demonstrate the potential of photoporation
sensitized by graphene-based NPs to become a generic
platform technology for the labeling of live cells for
microcopy.

Results
VNB formation threshold and multiple VNB formation with
graphene quantum dots
First, the laser fluence threshold to generate VNBs with

90% certainty was determined to be 0.23 J/cm2 for GQDs
(Figure S1a) and 0.47 J/cm2 for AuNPs (Figure S1b) using
7 ns laser pulses at a wavelength of 561 nm (for experi-
mental details, see the Supplementary Information). All
further experiments were performed at approximately
twice this threshold value to ensure that VNBs were
effectively formed. Repeated application of laser pulses to
the GQDs in dispersion confirmed our hypothesis that
multiple VNBs can be formed from the same particles, as
studied by dark-field microscopy (Suppl. Movie 1). Under
dark-field illumination, VNBs scatter light and become
visible as brief flashes of light14,17. This was not the case
for AuNPs (Suppl. Movie 2), which became fragmented
after the first laser pulse, as confirmed by transmission
electron microscopy images (TEM) (Figure S3) and the
UV-vis extinction spectrum (Figure S1c, d). It is indeed
known that laser-induced heating can cause AuNPs to
melt (1063℃ melting point) and/or fragment18,19. The
exact reason why this phenomenon does not occur for
GQDs is not known, but it may be linked to their much
higher melting temperature of ~4000–6000℃20. In
comparison, TEM images showed that the size of the
GQDs is more gradually reduced upon subsequent laser
pulses (Figure S4), most likely due to removal of CO2/
CO2H groups. High-resolution TEM (HRTEM) con-
firmed the lattice structure of GQDs (Figure S4f). To
quantify more precisely how many VNBs can be formed
per GQD, we repeated the experiment for nanoparticles
incubated with HeLa cells for 30 min, allowing them to
bind to the cell membrane. After washing them to remove
unbound nanoparticles, cells were irradiated with a series
of laser pulses, and the number of visible VNBs after each
pulse was quantified among 25 counted cells (Fig. 1a, b,
and Suppl. Movies 3 and 4). While AuNPs are able to
form VNBs only once or occasionally twice (Fig. 1d),
GQDs can do so up to four times (Fig. 1c).
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Photoporation efficiency and cell viability
After the VNB formation threshold was determined, we

evaluated how efficient GQDs are in permeabilizing the
cell membrane without causing substantial cytotoxicity.
After being incubated with different concentrations of
GQDs (from 2.5 μg/mL to 20 μg/mL), HeLa cells were
photoporated with FITC-dextran 10 kDa (FD10), which
was used as a model fluorescent compound to quantify
uptake14. Flow cytometry analysis showed that the deliv-
ery efficiency increases with increasing GQD concentra-
tion, both in terms of the positive cell percentage (PCP)
and the relative mean fluorescence intensity (rMFI) per
cell (Fig. 1e). The same results were also demonstrated by
confocal microscopy (Figure S5). A control experiment
showed that FD10 delivery does not occur spontaneously
in the cells, nor by mere incubation with GQDs (Fig-
ure S6). Cell viability was >80% after photoporation for a
concentration of GQDs up to 10 μg/mL. Based on these

results, it was decided to continue with a GQD con-
centration of 10 µg/mL for all further experiments. This
corresponds to an average of 13 GQDs per cell (Fig-
ure S7), as determined from 60 cells using a recently
reported microscopy method to visualize carbonaceous
nanomaterials by femtosecond (fs) laser irradiation21.
These images revealed a rather broad size distribution of
GQDs on the cells, likely due to aggregation that occurs to
some extent after dispersion in the cell medium. This
means that VNBs are likely formed not only from indi-
vidual GQDs but also from agglomerates. To estimate the
pore sizes that are formed by GQD photoporation, we
next delivered FITC-dextrans of increasing molecular
weight into the cells. As shown in Figure S8a and b, 51.2%
of cells were labeled with FD10 (hydrodynamic size
~4 nm), while 26.8% of cells were labeled with FITC-
dextran of 70 kDa (FD70; hydrodynamic size ~17 nm) and
18.4% of positive cells were labeled with FITC-dextran of
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Fig. 1 Repeated VNB formation and photoporation of cells with GQDs. HeLa cells were incubated with (a) GQDs and b AuNPs and irradiated
with 4 discrete 7 ns laser pulses at twice the VNB generation threshold. Dark-field images show repeated formation of VNBs (yellow arrows) with each
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bars) photoporation with GQDs (2.5 to 20 μg/mL) under the condition of a single-laser pulse. Cells were photoporated with FD10 to quantify the PCP
(orange) and the amount of label delivered (green, rMFI relative mean fluorescence intensity). f HeLa cells were incubated with 10 µg/mL GQDs and
photoporated four times with FD10. The concentration of FD10 was doubled at each step from 0.2 to 1.6 mg/mL to more clearly demonstrate
successful subsequent intracellular delivery of FD10. **P < 0.01, ***P < 0.001, ****P < 0.0001. g Cell viability was measured after each laser treatment
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500 kDa (FD500; hydrodynamic size ~31 nm)22,23. This
shows that pores are created with various sizes up to
30 nm, which is in line with what was previously reported
for VNB photoporation with AuNPs14,24.
To put photoporation with GQDs into perspective, we

performed a comparative experiment in which FD10 was
delivered into HeLa cells using traditional photoporation
(with AuNPs as sensitizing nanoparticles) and electro-
poration as a standard transfection method. The results in
Figure S9 show that while electroporation yielded >90%
positive cells, the rMFI was lower compared to both GQD
and AuNP photoporation. The cell viability according to
the MTT assay was ~70% after electroporation, which is
slightly lower than that for photoporation with GQDs and
AuNPs (>80%). Even though electroporation works fairly
well, it is important to note that commercial instruments
are not compatible with adherent cells grown in recipients
for live-cell microscopy. This is the key advantage of
photoporation for the application at hand, which is
naturally compatible with optical microscopy. Photo-
poration with AuNPs was more efficient than that with
GQDs but lacks the capability of repeated photoporation,
as stated before.
The next step was to test if cells could be repeatedly

photoporated with FD10 upon repeated pulsed laser
irradiation when using GQDs as sensitizing NPs. After
each photoporation step, the concentration of FD10 was
doubled to establish a stronger concentration gradient
and show more clearly successful subsequent intracellular
delivery of FD10. As shown in Fig. 1f, the MFI increased
significantly with each laser pulse, with only a mild drop
in cell viability as measured by the MTT assay (Fig. 1g).
Linked to this observation, one can wonder to what extent
cytoplasmic content can leak out of the cells following

photoporation. To test this, we performed a reverse
photoporation experiment. Live cells were first labeled
with calcein AM (staining the cytoplasm) followed by
treatment with multiple rounds of GQD photoporation
(in the absence of any external marker). If leaking occurs,
then the calcein AM signal will decrease. Flow cytometry
showed a slight fluorescence intensity decrease after each
laser treatment (Figure S10), although the decrease after 1
or 2 rounds of photoporation was not statistically sig-
nificant. Nevertheless, this result shows that a small
fraction of the cytoplasm can leak out upon treating cells
with photoporation (~25% after 3 × photoporation). We
additionally checked to what extent apoptosis is induced
by photoporation. Propidium iodide (PI) was used to stain
dead cells and DilC1(5) to stain live cells. Cells negative
for both markers were defined as apoptotic cells25. Flow
cytometry showed that there was only a small fraction of
apoptotic cells, which was not significantly different from
the untreated control cells (Figure S11). Together, these
results show that GQDs are suitable sensitizing particles
for repeated VNB-mediated photoporation of cells.

Live-cell labeling with extrinsic markers by GQD-mediated
photoporation
Encouraged by the proof-of-concept results, we eval-

uated if laser-induced photoporation with GQDs is sui-
table for delivering cell-impermeable exogenous
fluorescent labels into live cells. As a first example, we
used the phalloidin Alexa Fluor® 488 (PL-488), which can
normally stain F-actin in fixed and permeabilized cells
only. Figure 2a shows confocal images of live HeLa cells
whose actin networks were labeled with different con-
centration of PL-488 after treating the cells with one laser
pulse. Suppl. Movie 5 is a 1 h time-lapse record showing
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Fig. 2 Live HeLa cells were labeled with PL-488 and nanobody by photoporation. a Different concentrations (15, 6, and 3 U/mL) of PL-488 were
delivered into living HeLa cells by a single photoporation step. Zoomed in images of selected cells are shown in the lower row. b Different
concentrations (80, 40, and 20 µg/mL) of vimentin-label nanobodies were delivered by photoporation into living HeLa cells. Zoomed in images of
selected area are shown in the lower row. Scale bars are 20 µm
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that the cells are alive and that cell activity proceeds. As a
novel microscopy fluorescent cell marker, a nanobody was
used as the second class of fluorescent labels in this work.
We demonstrated successful delivery of a fluorescent
vimentin-label nanobody (VL nanobody) targeted to
vimentin, an intermediate filament of the cytoskeleton
(Fig. 2b). Three different concentrations of VL nanobodies
were applied, illustrating that the cells were specifically
labeled. A 1 h time-lapse record can be seen in Suppl.
Movie 7. To verify the specificity of these stainings, the
cells were chemically fixed and permeabilized, followed by
co-staining with Alexa Fluor® 647-phalloidin (PL-647) or
a primary/secondary anti-vimentin antibody. While the
merged images in Figure S12 demonstrate good coloca-
lization, it can be noted that the live-cell staining was not
perfectly uniform, an issue that will be resolved in the
next section by repeated photoporation.
A third class of labels that are increasingly being used,

especially for super-resolution microscopy26–28, are organic
fluorophores linked to a chemical tag that can specifically
bind to receptor molecules linked to the protein of interest,
such as the SNAP-tag29. To test the successful delivery of
such ligands, HeLa cells were transfected with DNA
encoding for a LaminA or Barttin SNAP-tag fusion protein.
LaminA is the inside fibrillar network of the nucleus, while
Barttin is a Ka/Kb chloride channel subunit expressed at the
cytoplasmic side of the plasma membrane30,31. To confirm
successful transfection of the fusion proteins, chemically
fixed and permeabilized cells were incubated with 1 µM

SNAP-surface ligand solution (SNAP-Surface® Alexa
Fluor®647). Confocal microscopy imaging of these cells
showed a labeled nucleus envelope in the case of LaminA
and membrane staining in the case of Barttin, confirming
successful transfection (Figure S13). Photoporation was used
to deliver the SNAP-tag ligands into the live cells. Confocal
images showed the expected staining pattern (Fig. 3a, b),
confirming successful live-cell labeling with the SNAP-tag.
Additionally, Airyscan microscopy32, as an example of
super-resolution imaging, was successfully performed,
showing the nuclear envelope and Barttin protein (Fig. 3c, d,
and Suppl. Movie 8). TIRF images were also recorded of
SNAPBarttin live cells, showing vesicle-mediated transport to
the inner leaflet of the cell membrane of newly expressed
Barttin proteins (Suppl. Movie 9 and Fig. 3e arrowheads).

Improved cell labeling by repeated photoporation
As noted above for live cells labeled with phalloidin and

nanobodies, the intracellular staining was not as uniform
compared to fixed cells (see Figure S14). Likely, the
probes bind primarily close to the region where the
membrane is permeabilized (pores reseal in ~1min24,33),
so the more distant areas in the cell receive less label,
causing inhomogeneous intracellular labeling. Additional
examples are shown in Figure S12 for PL-488 and VL
nanobody-labeled live cells after photoporation. We
hypothesized that repeated photoporation with GQDs
could further enhance the cell labeling homogeneity in
live cells. When a second or third VNB is generated, the
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cell membrane will open again, and more extrinsic mar-
kers can enter the cells. Since the first binding places are
already occupied, newly entering probes can diffuse fur-
ther into the cell and label these regions. Consequently,
the cells become more uniformly labeled upon repeated
photoporation. We demonstrated this principle with the
VL nanobody, which caused the most heterogeneous cell
labeling. Cells were photoporated once with 40 µg/mL VL
nanobodies, fixed, permeabilized, and co-stained with
traditional primary/secondary antibody staining against
vimentin. A representative confocal image in Fig. 4a–c
shows noticeable labeling heterogeneity. The green
fluorescence originates from the photoporated VL nano-
body, while the magenta fluorescence comes from the
labeled secondary antibody that is added after fixation. To
further improve the labeling uniformity, we tested two
(Fig. 4d–f) and three (Fig. 4g–i) sequential rounds of
photoporation. Clearly, the intracellular staining with the
VL nanobody (green) became gradually more uniform
upon repeated photoporation. In contrast, after fixation of
these cells, the labeling with the secondary antibody
(magenta) became less uniform as the VL nanobodies
already occupied most binding places. We quantified this
by measuring the relative green and magenta fluorescence
areas in a large number of cells, showing that the green

area increases while the magenta area decreases with
repeated photoporation (Fig. 4k). After three photopora-
tion steps, the labeling is nearly perfect, with almost all
available places in the cell exhibiting green fluorescence.

Discussion
Here, we have proposed VNB photoporation as a gen-

eric technology to enable live-cell labeling with exogenous
labels for fluorescence microscopy. Instead of the tradi-
tionally used AuNPs, we have shown that repeated VNB
photoporation is possible with GQDs as sensitizing par-
ticles. The formation of multiple VNBs from the same set
of GQD particles was shown directly with dark-field
imaging, as well as by flow cytometry showing increasing
uptake of FITC-dextran upon repeated photoporation.
TEM images also demonstrate that GQDs are more
resistant to the pulsed laser irradiation than AuNPs,
which fragment after the first pulse. To demonstrate the
broad applicability of GQD-sensitized VNB photopora-
tion, we successfully delivered three different classes of
cell-impermeable exogenous labels into live cells. Phal-
loidin is an example of a small organic molecule that can
be used to label specific subcellular structures, the actin
skeleton in this case. Nanobodies are biomolecules
that have received increasing attention as a smaller
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replacement for antibodies for immunostaining cells9,34.
The SNAP-tag was finally included as an example of an
affinity tag that is widely used for high-resolution
microscopy imaging. Together, the results show that
VNB photoporation is suited to delivering virtually any
exogenous label, and in future research, it may be of
interest to attempt to utilize even nanoparticle-type labels,
such as quantum dots35 and upconversion nano-
particles36. After successful labeling, heterogeneity was
noted within cells, as labels enter through a number of
discrete pores in the cell membrane. However, by pho-
toporating the cells multiple times, we could show that
the labeling homogeneity was markedly improved. Being
compatible with light microscopy and normally used cell
recipients, this technique should find rapid acceptance in
the field and offers a solution to the long-standing pro-
blem of using high-quality extrinsic labels for live-cell
microscopy.
Laser-induced photoporation provides a physical and

therefore universal approach to overcome the cell mem-
brane barrier for delivering exogenous cell labels directly
into cytoplasm. Contrary to microinjection37 and the
related “nanoblade” technique38, nanoparticle-sensitized
photoporation can treat cells under high throughput.
Even though we used a laser with a rather low pulse
repetition rate (20 Hz), treating a well of a 96-well plate
containing ~30,000 cells did not take more than 3–4min.
Importantly, the photoporation protocol is completely
compatible with optical microscopy and the types of cell
substrates typically used for it. This is a marked advantage
over other recently proposed technologies for cell label-
ing, such as cell squeezing12, which only works for cells in
suspension, or the biophotonic laser-assisted surgery tool
(BLAST)39 that requires cells to be seeded on a special
micro-machined substrate. While the latter does allow
large cargo, such as entire chromosomes, to more easily
enter cells, this is not really needed for the relatively small
probes for microscopy. The present study was demon-
strated on HeLa cells as a proof-of-concept. Although
HeLa cells are rather robust cells, this live-cell delivery
technique can be readily applied to a broad variety of cell
types, including more sensitive ones. For instance, in a
previous work of ours, we already demonstrated the
application of photoporation (with AuNPs) on primary
hard-to-transfect T cells40 and densely cultured hippo-
campal neuron cells isolated from mice41.
GQDs were used for photoporation in this work, which

are a graphene-based nanomaterial that has attracted
considerable interest for a wide variety of bio-applications,
such as biosensing, drug delivery, and bioimaging42,43.
The usage of GQDs as sensitizing nanoparticles, allowing
repeated VNB photoporation, turned out to be crucial to
achieving uniform labeling of live cells. Here, we report
for the first time that these graphene-based nanomaterials

can form multiple VNBs upon repeated pulsed laser
irradiation, which is a distinct advantage over the tradi-
tionally used AuNPs for photoporation. While still only
3–4 VNBs can be formed per particle, this proved to be
sufficient for the application. It is to be noted that, in one
report, it was found that the fragmentation of AuNPs
could be avoided by irradiation with fs laser pulses at off-
resonant wavelengths16. While an interesting observation,
such fs lasers are much more expensive than ns pulsed
lasers, which are available at a fraction of the cost and,
therefore, much more likely to be of practical relevance.
The GQDs used here are just one example of the many
types of graphene-based nanomaterials currently avail-
able. Indeed, we have also been able to generate multiple
VNBs with reduced graphene oxide nanosheets (data not
shown). This shows that graphene-type materials offer
generic value for photoporation and live-cell labeling in
particular. Future research should focus on exploring the
pros and cons of the various types available. For the
GQDs used here, it will be of interest to provide further
modifications, such as functionalization with polyethylene
glycol in order to enhance the colloidal stability and
prevent them from forming aggregates in cell medium,
which can cause substantial toxicity44. It may be worth-
while to try to stabilize GQDs in future work to further
improve their performance and safety.

Materials and methods
Cell culture and transfection
HeLa cells (ATCC® CCL-2™) were cultured in DMEM/

F-12 (Gibco-Invitrogen) supplemented with 10% heat-
inactivated fetal bovine serum (FBS, Biowest), 2 mM
glutamine (Gibco-Invitrogen), and 100 U/mL penicillin/
streptomycin (Gibco-Invitrogen). Cells were passaged
using DPBS (Gibco-Invitrogen) and trypsin-EDTA
(0.25%, Gibco-Invitrogen). HeLa cells were cultivated in
a humidified tissue culture incubator at 37 °C and 5%
CO2. All cell culture products were purchased from Life
Technology unless specifically stated otherwise. Transient
transfection was performed with Lipofectamine 2000 (Life
Technologies), following the manufacturer’s instructions.
After one day of incubation, the cells were washed three
times with PBS and were ready for photoporation.

VNB generation and detection
A homemade setup including an optical and electronic

timing system was used to generate and detect the VNBs,
as reported previously14. In brief, a 7-ns pulsed laser tuned
to a wavelength of 561 nm (Opolette HE 355 LD, OPO-
TEK Inc.) was applied to excite the AuNPs and GQDs in
order to generate VNBs. This wavelength was chosen as it
is compatible with the fluorescence filters that are in place
in our setup for fluorescence microscopy and because it
allows for a direct comparison with photoporation using
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70 nm AuNPs as sensitizing particles, which have a plas-
mon peak at ~560 nm. The VNBs can be visualized using
dark-field microscopy. An electronic pulse generator
(BNC575, Berkeley Nucleonics Corporation) was used to
generate single-laser pulses and trigger the camera
(EMCCD camera, Cascade II: 512, Photometrics) to
record images before and during VNB generation. The
laser pulse energy was measured by an energy meter (J-
25MB-HE&LE, Energy Max-USB/RS sensors, Coherent).
The laser fluence was calculated as the pulse energy of a
single-laser pulse divided by the laser beam area (150 µm
diameter). Suspensions of 5 µg/mL GQDs and 0.2 µg/mL
AuNPs in serum reduced Opti-MEM were prepared to
detect VNBs in solution. To detect VNBs on cells, 60,000
HeLa cells were seeded in a 50mm glass-bottom dish
(MatTek Corporation) one day in advance. The cells were
incubated for 30min with 10 µg/mL GQDs or 0.4 µg/mL
AuNPs dispersed in Opti-MEM. Unbound particles were
washed with DPBS, after which fresh cell culture medium
was added. After the experiment, the VNBs were counted
in each image and the results reported in a graph that
expresses the number of VNBs as a function of the laser
fluence.

Intracellular delivery of FD10 by photoporation
To prove the successful intracellular delivery and

determine the appropriate GQD concentration, FD10 was
used as a model fluorescent label for photoporation. A 96-
well plate was seeded with 15,000 HeLa cells per well one
day in advance. Before laser treatment, cells were incu-
bated with a GQD suspended in Opti-MEM solution for
30min. FD10 was dispersed in cell culture medium
(CCM) at 1 mg/mL as a working solution. The CCM was
discarded, and 100 µL of FD10 working solution was
added into the wells before laser treatment. As the pho-
toporation laser beam has a diameter of 150 µm, a scan-
ning procedure was used to treat all cells within each well.
The sample was scanned through the photoporation laser
beam (20 Hz pulse frequency) using an electronic
microscope stage (HLD117, Prior Scientific, USA). The
scanning speed was 2.1 mm/s, and the distance between
subsequent lines was 0.1 mm to ensure that each cell
received a single-laser pulse. The photoporation of one
well took ~4min. Afterwards, the fluorophore solution
was removed, and the cells were washed gently by DPBS
and supplemented with fresh cell medium. The amount of
intracellular FD alongside the cytotoxicity was measured
as explained below. For multiple photoporation rounds,
the fluorophore solution was renewed, and the procedure
was repeated as described above.

Confocal microscopy imaging
Microscopy imaging was performed on a laser scanning

confocal microscope (C1 si, Nikon) using a ×10 objective

(CFI Plan Apochromat, Nikon) and a ×60 oil immersion
objective (CFI Plan Apo VC, Nikon). The following lasers
were used for excitation: a 405 nm continuous wave laser
(Melles Griot 56ICS/S2695) for DAPI and Hoechst; a
488 nm continuous wave laser (Coherent Sapphire) for
FD10, ATTO 488 and Alexa Fluor® 488; a 561 nm con-
tinuous wave laser (Melles Griot 85-YCA-010) for Alexa
Fluor® 568 and a 640 nm continuous wave laser (Melles
Griot 56ICS/S2695) for Alexa Fluor® 647. After photo-
poration, cells were incubated with 1 µg/mL Hoechst (Life
Technology, Belgium) in CCM for 15min at 37 °C. After
the cells were washed twice with DPBS, time-lapse
recordings were performed on a spinning disk confocal
microscope (Nikon eclipse Ti-e inverted microscope,
Nikon) equipped with an MLC 400 B laser box (Agilent
technologies), a Yokogawa CSU-22 Spinning Disk scanner
(Andor) and an iXon ultra EMCCD camera (Andor
Technology, Belfast, UK). HeLa cells were imaged in a
stage-top cell incubator (37°C with 5% CO2 supplied,
Tokai Hit) for 1 h with a time interval of 3 min using a
×60 oil immersion objective lens (CFI Plan Apo VC 60 ×
oil, Nikon, Japan).

Live-cell labeling with phalloidin and vimentin-label
nanobody (VL nanobody)
HeLa cells were seeded in a glass-bottom 96-well plate

(Greiner Bio-One) at 15,000 per well one day in advance.
Cells were washed once with 200 µL of DPBS, and the
same volume of Opti-MEM GQD solution was added into
the wells. Cells were incubated with the GQDs for 30 min
in a 37 °C incubator. After incubation, cells were washed
again with DPBS and supplied with fresh CCM. The
working solutions as described in the results section were
made from the stock solution of 40 U/mL phalloidin (PL-
488, Invitrogen) and 0.4 mg/mL VL nanobody (Chromo-
Tek) in DPBS. Before laser treatment, the cell medium
was replaced by 50 µL of PL-488 or VL nanobody working
solution. After the photoporation procedure, three
washing steps were performed, and the cells were
replenished with fresh CCM for confocal imaging. For
multiple photoporation steps, the cells were again incu-
bated with the PL-488 or VL nanobody stock solution,
and the same process was repeated.

Live-cell labeling with the SNAP-tag
After transfection with SNAP-tag pDNA, the cell-

impermeable SNAP-tag ligand (SNAP-Surface® Alexa
Fluor® 647, NEW ENGLAND Biolabs) was delivered into
the cells by photoporation. The SNAP ligand was dis-
solved in CCM at 2 µM and added to the cells prior to
starting the photoporation procedure. After photopora-
tion, the nuclei were stained by incubating the cells with
1 µg/mL Hoechst (Life Technology) in CCM for 15min at
37 °C. After removing the Hoechst solution, cells were
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washed once, and the wells were refilled with CCM.
Airyscan super resolution and TIRF imaging were per-
formed as explained below.

Airyscan super-resolution imaging
Images were collected on an LSM880 Airyscan (Carl

Zeiss) system with a 63 × DIC M27 objective (PlanApo
NA: 1.4, oil immersion, Carl Zeiss) using the operating
software ZEN blue 2.3. DAPI and Alexa Fluor® 647 were
excited with a 405 nm diode laser and a HeNe 633 nm
laser, respectively. The filter sets BP 555-620+ LP645 for
Alexa Fluor® 647 and BP 420-480+ BP 495-550 for DAPI
were used in conjunction with the Airyscan detector in
the super-resolution mode. Thirty z-slices were taken
with a z-interval of 0.25 µm. A 3D deconvolution step
followed by a Wiener filter was carried out post-
acquisition. Orthogonal slices of the z-stack were made
in Volocity 6.3.0 (Perking Elmer). A time-lapse movie was
made on one focal plane with an imaging frequency of
1 min for a total duration of 30 minutes. In this case, a 2D
deconvolution step followed by a Wiener filter was carried
out post-acquisition.

TIRF microscopy imaging
A total of 150,000 HeLa cells were seeded in a high

glass-bottom 35-mm µ-Dish (Ibidi) 24 h before imaging.
Images were collected on a Zeiss Observer 1.1 microscope
(Carl Zeiss) with a ×100 TIRF oil immersion objective
(PlanApo, NA: 1.46, Carl Zeiss). Alexa Fluor® 647 was
visualized with a 639 nm diode laser at an incident angle
of −70°, which allows selective excitation of molecules
within ~95 nm of the cover glass. The filter set 77 HE
GFP/ mRFP/ Alexa 633 (Carl Zeiss) was used in con-
junction with an EMCCD Image MX2 camera (Hama-
matsu). Image acquisition was performed at an exposure
time of 1 s and an EM gain of 50. Time-lapse imaging was
carried out with a frequency of 1 s for a total time of 90 s.
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