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Abstract

We investigate the asymptotic normality of the Nadaraya-Watson kernel regression es-
timator for irregularly spaced data collected on a �nite region of the lattice Zd where d is
a positive integer. The results are stated for strongly mixing random �elds in the sense of
Rosenblatt (1956) and for weakly dependent random �elds in the sense of Wu (2005). Only
minimal conditions on the bandwidth parameter and simple conditions on the dependence
structure of the data are assumed.
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1 Introduction
In many situations, practicians want to know the relationship between some predictors and a
response. If the form of the functional relation is unknown then a nonparametric approach is
necessary. This is a natural question and a very important task in statistics. A very popular
tool to handle this problem is the Nadaraya-Watson estimator (NWE) introduced by Nadaraya
[21] and Watson [29]. In this work, we investigate the asymptotic normality of the NWE in
the context of dependent irregularly spaced spatial data. Let d , n and N be positive integers.
Let also (Yi , Xi)i∈Zd be a strictly stationary R × RN -valued random �eld de�ned on a probability
space (Ω, ,P). We assume that the common law � of the random variables (Xi)i∈Zd is absolutely
continuous with respect to the Lebesgue measure onRN . We denote by f the unknown probability
density function of �. Let Λn be a �nite region of Zd and let (�i)i∈Zd be iid RN -valued random
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variables with zero mean and �nite variance and independent of (Xi)i∈Zd . The regression model is
characterized by the relation Yi = R(Xi , �i) for i in Λn where R is an unknown functional. In our
setting, it is important to note that no regularity condition is imposed on Λn which can be very
general (irregularly spaced data). The regression function r is de�ned for any x in RN by

r(x) =
{

E [R(x, �0)] if f (x) ≠ 0
E [Y0] else,

and the NWE rn of r is de�ned for any x in RN by

rn(x) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

∑i∈Λn YiK(
x−Xi
bn )

∑i∈Λn K(
x−Xi
bn )

if ∑i∈Λn K(
x−Xi
bn ) ≠ 0

1
|Λn|

∑
i∈Λn

Yi else,

where |Λn| is the number of elements in the region Λn, the function K ∶ RN → R is a probability
kernel (that is ∫RN K(t)dt = 1) and the bandwidth parameter bn is a positive constant going to
zero as n goes to in�nity. For time series (i.e. for d = 1), the problem which we are concerned
has been extensively studied. One can refer, e.g., to Lu and Cheng [18], Masry and Fan [19],
Robinson [24], Roussas [27] and many references therein. In the spatial case (i.e. for d > 2),
some contributions for strongly mixing random �elds were made by Biau and Cadre [1], Carbon
et al. [2], Dabo-Niang and Rachdi [3], Dabo-Niang and Yao [4], El Machkouri [7], El Machkouri
and Stoica [10], Hallin et al. [12] and Lu and Chen [16, 17]. The main motivation of this work is
to provide su�cient simple conditions for the NWE to be asymptotically normal in the context of
mixing but also non-mixing random �elds. More precisely, we consider strongly mixing random
�elds in the sense of Rosenblatt [25] and weakly dependent random �elds in the sense of Wu [30]
(see also [11]). To the best of our knowledge, our work provides the �rst central limit theorem
(Theorem 2) for the NWE under minimal conditions on the bandwidth parameter and irregularly
spaced dependent spatial data (i.e. bn → 0 and |Λn|bNn → ∞ as n → ∞). In particular, our
result improves in several directions a previous central limit theorem for the NWE for spatial
data established by [1] (see the comments after Corollary 1 below).
The paper is organized as follows. Our main results are stated and discussed in Section 2 whereas
proofs of the main results and its preliminary lemmas are deferred to Sections 4 and 5. Finally,
Section 3 is devoted to a numerical illustration of the central limit theorem obtained in Section 2.

2 Main results
Given two �-algebras  and  , the �-mixing coe�cient introduced by Rosenblatt [25] is

�( ,) = sup{|P(A ∩ B) − P(A)P(B)| , A ∈  , B ∈ }.
Let p be �xed in [1, +∞]. The strong mixing coe�cients (�1,p(n))n>0 associated to (Xi)i∈Zd are
de�ned by

�1,p(n) = sup {�(�(Xk),Γ), k ∈ Zd , Γ ⊂ Zd , |Γ| 6 p, �(Γ, {k}) > n},
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where Γ = �(Xi ; i ∈ Γ), |Γ| is the number of element in Γ and the distance � is de�ned for any
subsets Γ1 and Γ2 of Zd by �(Γ1, Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2} with |i − j| = max16s6d |is − js | for
any i = (i1, … , id ) and j = (j1, … , jd ) in Zd . We say that the random �eld (Xi)i∈Zd is strongly mixing
if limn→∞ �1,p(n) = 0. Let m be a positive integer. We are also going to establish our results for
Bernoulli �elds of the form

Xi = G ("i−s ; s ∈ Zd) , i ∈ Zd , (1)

where G ∶ (Rm)Zd → RN is some function and ("i)i∈Zd are iid Rm-valued random variables. Let
(" ′j )j∈Zd be an iid copy of ("j)j∈Zd and let X ∗

i be the coupled version of Xi de�ned by

X ∗
i = G ("∗i−s ; s ∈ Zd) ,

where "∗j = "j if j ≠ 0 and "∗0 = " ′0. Note that X ∗
i is obtained from Xi by replacing "0 by its copy

"′0. For any positive integer � and any R� -valued random variable Z ∈ Lp(Ω, ,P) with p > 0,
we denote ‖Z ‖p ∶= E [‖Z‖p]

1/p where ‖.‖ is the Euclidian norm of R� . Following Wu [30] and El
Machkouri et al. [11], we de�ne the physical dependence measure

�i,p ∶= ‖Xi − X ∗
i ‖p

as soon as Xi is p-integrable for p > 2. We say that X is p-stable if ∑i∈Zd �i,p < ∞. Physical
dependence measure should be seen as a measure of the dependence of the function G (de�ned
in (1)) in the coordinate zero. In some sense, it quanti�es the degree of dependence of outputs
on inputs in physical systems and provide a natural framework for a limit theory for stationary
random �elds (see [11]). In particular, it gives mild and easily veri�able conditions (see condition
(A3)(ii) below) because it is directly related to the data-generating mechanism. In mathematical
physics, various versions of similar ideas (local perturbation of a con�guration) appear. One can
refer for example to Liggett [14] or Stroock and Zegarlinski [28]. As an illustration, the reader
should keep in mind the following two examples:

• Linear random �elds: Let ("i)i∈Zd be i.i.d Rm-valued random variables such that "i belongs to
Lp(Ω, ,P), p ≥ 2. The linear random �eld X de�ned for all i in Zd by

Xi = ∑
s∈Zd

As"i−s

where As = (as,k1,k2)16k16N16k26m
is a N ×m matrix such that ∑s∈Zd ∑N

k1=1∑
m
k2=1 a2s,k1,k2 < ∞ is of the

form (1) with a linear functional G. For all i in Zd ,

�i,p 6 ‖"0 − "
′
0‖p ×

√
N
∑
k1=1

m
∑
k2=1

a2i,k1,k2 .

So, X is p-stable as soon as ∑i∈Zd
√
∑N

k1=1∑
m
k2=1 a2i,k1,k2 < ∞. Clearly, if H is a Lipschitz con-

tinuous function, under the above condition, the subordinated process Yi = H(Xi) is also
p-stable.
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• Volterra �eld : Another class of nonlinear random �eld is the Volterra process which plays
an important role in the nonlinear system theory. Let i ∈ Zd and

Xi = ∑
s1,s2∈Zd

as1,s2"i−s1"i−s2 ,

where as1,s2 are real coe�cients with as1,s2 = 0 if s1 = s2 and ("i)i∈Zd are i.i.d. real random
variables with "i in Lp(Ω, ,P), p ≥ 2. By the Burkholder inequality, there exists a constant
Cp > 0 such that

�i,p ≤ Cp‖"0 − "
′
0‖p‖"0‖p ×

√
∑
s∈Zd

(as,i + ai,s)2

So, X is p-stable as soon as ∑i∈Zd
√
∑s∈Zd (as,i + ai,s)2 < ∞.

Let (bn)n>1 be a sequence of positive real numbers going to zero as n goes to in�nity. Denote
Kn(x, v) = K ( x−vbn ) for any (x, v) ∈ RN × RN and any integer n > 1. If x ∈ RN and fn(x) ≠ 0 then
rn(x) = 'n(x)/fn(x), where

'n(x) =
∑i∈Λn YiKn(x, Xi)

|Λn|bNn
and fn(x) =

∑i∈Λn Kn(x, Xi)
|Λn|bNn

.

Recall that fn is the classical Parzen-Rosenblatt estimator of the marginal density f of X0 (see
[8, 9, 22, 26]). Similarly, if ' is the function de�ned for any x ∈ RN by '(x) = r(x)f (x) then 'n is
an estimator of '. In the sequel, we consider the following assumptions:
(A1) Assume bn → 0 such that |Λn|bNn → ∞ and that K is symmetric, Lipschitz and satis�es

|K|∞ ∶= supt∈RN |K(t)| < ∞, lim‖t‖→∞ ‖t‖ |K(t)| = 0, ∫RN |K(t)|dt < ∞ and ∫RN ‖t‖2 |K(t)|dt < ∞
where ‖ . ‖ is the Euclidian norm on RN .

(A2) There exists � > 0 such that |f0,i(x, y) − f (x)f (y)| ≤ � for any (x, y) in RN × RN and any i in
Zd∖{0}, where f0,i is the joint density of (X0, Xi).

(A3) There exists � > 0 such that E [|Y0|2+�] < ∞ and one of the following condition holds:

(i) (Xi)i∈Zd is strongly mixing and
∞
∑
n=1

n (2d−1)�+6d−2
2+� �

�
2+�
1,∞ (n) < ∞;

(ii) (Xi)i∈Zd is of the form (1) and ∑
i∈Zd

|i| d((3N+2)�
2+(10N+8)�+8N )
2�(�+2)N �

�
2+�
i,2 < ∞.

(A4) There exists � > 0 such that E [|Y0|2+�] < ∞ and the function x ↦ E [Ψp (|Y0|) |X0 = x] is
continuous for p ∈ {1, 2, 2 + �} where Ψp(t) = tp for any real t . Moreover, the functions f
and ' are twice di�erentiable with bounded second partial derivatives.

Assumptions (A1), (A2) and (A4) are classical conditions in nonparametric statistics (see [2], [16]).
Moreover, one can notice that if � = ∞ then (A3)(i) and (A3)(ii) reduce to the conditions obtained
in [8] and [9] respectively where the asymptotic normality of the Parzen-Rosenblatt estimator is
established.

First, we show that 'n and fn are asymptotically unbiaised estimators of ' and f respectively.

4



Theorem 1 Assume that f and ' are twice di�erentiable with bounded second partial derivatives
and ∫RN ‖t‖2 |K(t)|dt < ∞. Then

sup
x∈RN

|E [fn(x)] − f (x)| = O (b2n) and sup
x∈RN

|E ['n(x)] − '(x)| = O (b2n) .

Consequently, if |Λn|bN+4n → 0 as n → ∞, then

lim
n→∞

√
|Λn|bNn sup

x∈RN
|E [fn(x)] − f (x)| = lim

n→∞

√
|Λn|bNn sup

x∈RN
|E ['n(x)] − '(x)| = 0.

Our main result is the following central limit theorem for the NWE.

Theorem 2 If (A1), (A2), (A3) and (A4) hold, then for any x ∈ RN such that f (x) > 0,
√
|Λn|bNn (rn(x) −

E ['n(x)]
E [fn(x)] )

Law−−−−−−−−−→
n→∞

 (0, � 2(x)) ,

where � 2(x) = V (x)
f (x) ∫RN K2(t)dt and V (x) = E [Y 2

0 |X0 = x] − r2(x).

Using Theorem 1, the condition |Λn|bN+4n → 0 can be imposed for the control of the bias of the
estimator and leads immediately to the following corollary (its proof is left to the reader).

Corollary 1 If (A1), (A2), (A3) and (A4) hold and |Λn|bN+4n → 0, then for any x ∈ RN such that
f (x) > 0, √

|Λn|bNn (rn(x) − r(x))
Law−−−−−−−−−→
n→∞

 (0, � 2(x)) ,

where � 2(x) is de�ned in Theorem 2.

The asymptotic normality of rn given by Theorem 2 holds under mild conditions on the re-
gions Λn and the bandwidth bn, that is bn → 0 and |Λn|bNn → ∞. These conditions on the
bandwidth parameter are sometimes called minimal conditions since these are required for the
asymptotic normality of the Parzen-Rosenblatt estimator fn when the observations are assumed
to be independent (see [22]). To the best of our knowledge, Theorem 2 is the �rst central limit
theorem for the NWE under minimal conditions on the bandwidth and irregularly spaced de-
pendent spatial data. In particular, we improve in several directions Theorem 2.2 in [1] for
strongly mixing random �elds where the authors considered a set of conditions on the band-
width parameter and the mixing coe�cients interlaced in a complicated way. More precisely,
using ours notations, Theorem 2.2 in [1] gives the asymptotic normality of the NWE as soon
as E [exp (|Y0|� )] < ∞ for some positive real � , the regions Λn are rectangular subsets of Zd

such that |Λn|bN+2n → 0 and |Λn|bN(1+2�d)n log(|Λn|)−8d/� → ∞ for some 0 < � < 1/2, there ex-
ists qn → ∞ such that q2dn = o (bN(1+2�d)n log(|Λn|)−8d/�) and |Λn| ∑n>1 nd−1�1,∞(nqn) → 0 and
b−N�n (log(|Λn|))2/� ∑n>qn nd−1��1,∞(n) → 0. In particular, it is assumed that ∑∞

n=1 nd−1��1,∞(n) < ∞. In
order to compare with our results, one can notice that if � = �/(2+�) ∈]0, 1/2[ and E [|Y0|2+�] with
0 < � < 2 then (A3)(i) reduces to ∑n>1 nd(3−�)−1��1,∞(n) < ∞. However, our main result holds even if
Y0 does not have �nite exponential moments and also for general regions Λn (irregularly spaced
spatial data) and under only minimal conditions on the bandwidth (bn → 0 and |Λn|bNn →∞).
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3 Numerical illustration
In order to illustrate the asymptotic normality of the NWE provided by Theorem (1), we are going
to consider two regression models where the predictors are given by an autoregressive random
�eld (X (AR)

i,j )(i,j)∈Z2 and a Volterra random �eld (X (Vol)
i,j )(i,j)∈Z2 respectively (see Model 1 and Model

2 below). In Model 1, the autoregressive random �eld (X (AR)
i,j )(i,j)∈Z2 is de�ned by

X (AR)
i,j = 0.7X (AR)

i−1,j + 0.15X (AR)
i,j−1 + "i,j , (2)

where ("i,j)(i,j)∈Z2 are iid real random variables (N = 1) with standard normal law. From [13], we
know that the stationary solution of (2) is the linear random �eld given by

X (AR)
i,j = ∑

s1>0
∑
s2>0(

s1 + s2
s1 )(0.7)

s1(0.15)s2"i−s1,j−s2 . (3)

So, we �x a positive integer n1 and we simulate the "i,j ’s over the grid [0, 2n1]2 ∩Z2 in order to get
the data X (AR)

i,j for (i, j) in [n1 + 1, 2n1]2 ∩ Z2 following (2) and (3). In Model 2, in order to consider
nonlinearity, we de�ne

X (Vol)
i,j = ∑

s1>0
∑
s2>0

∑
t1>s1

∑
t2>s2 (

s1 + s2
s1 )(

t1 − s1 + t2 − s2
t1 − s1 )(0.7)

s1+t1(0.15)s2+t2"i−s1,j−s2"i−t1,j−t2 .

Since
X (Vol)
i,j = ∑

s1>0
∑
s2>0(

s1 + s2
s1 )(0.7)

2s1(0.15)2s2"i−s1,j−s2�i−s1,j−s2 (4)

where
�i,j = ∑

t1>0
∑
t2>0(

t1 + t2
t1 )(0.7)

t1(0.15)t2"i−t1,j−t2 , (5)

we �x a positive integer n2 and we simulate the "i,j ’s over the grid [0, 4n2]2 ∩ Z2 and we get the
data �i,j for (i, j) in [2n2 + 1, 4n2]2 ∩ Z2 using (5) and following the previous implementation of
(X (AR)

i,j )(i,j)∈Z2 . Starting from the data "i,j�i,j for (i, j) in [2n2 + 1, 4n2]2, we simulate in the same way
the data X (Vol)

i,j for (i, j) in [3n2 + 1, 4n2]2 using (4). From the two data sets

Y (AR)
i,j = sin (X (AR)

i,j ) + "i,j , (i, j) ∈ [n1 + 1, 2n1]2 (Model 1)

and
Y (Vol)
i,j = sin (X (Vol)

i,j ) + "i,j , (i, j) ∈ [3n2 + 1, 4n2]2 (Model 2),

we consider 500 replications of
√
2√�f̂ (AR)

n1 (0)n21bn1r (AR)
n1 (0) and

√
2√�f̂ (Vol)

n2 (0)n22bn2r (Vol)
n2 (0) where

f̂ (AR)
n1 (0) = 1

n21bn1
∑

(i,j)∈[n1+1,2n1]2
K(

X (AR)
i,j
bn1 ) , f̂ (Vol)

n2 (0) = 1
n22bn2

∑
(i,j)∈[n2+1,2n2]2

K(
X (Vol)
i,j
bn2 ) ,
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r (AR)
n1 (0) =

∑(i,j)∈[n1+1,2n1]2 Y
(AR)
i,j K(

X (AR)
i,j
bn1 )

n21bn1 f̂ (AR)
n1 (0)

, r (Vol)
n2 (0) =

∑(i,j)∈[3n2+1,4n2]2 Y
(Vol)
i,j K(

X (Vol)
i,j
bn2 )

n22bn2 f̂ (Vol)
n2 (0)

,

the kernel K is Gaussian and the bandwidth parameters bn1 and bn2 are selected by cross validation.
So, in Figure 1 below, we obtain the histograms for

√
2√�f̂ (AR)

n1 (0)n21bn1r (AR)
n1 (0) and

√
2√�f̂ (Vol)

n2 (0)n22bn2r (Vol)
n2 (0)

with n1, n2 ∈ {10, 30} along with the standard normal law.

Figure 1: Histograms for
√
2√�f̂ (AR)

n1 (0)n21bn1r (AR)
n1 (0) (Model 1) and

√
2√�f̂ (Vol)

n2 (0)n22bn2r (Vol)
n2 (0)

(Model 2) along with the standard normal density.
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4 Preliminary lemmas
In the sequel, for any sequences (an)n>1 and (bn)n>1 of real positive numbers, we denote an ⊴ bn
if and only if there exists � > 0 (not depending on n) such that an 6 �bn. For any real x , we
de�ne also ⌈x⌉ = ⌊x⌋ + 1, where ⌊x⌋ is the largest integer less than x . We shall need the following
technical lemmas.

Lemma 1 Assume (A1), (A2) and (A4) and let x ∈ RN . If Φ1 ∶ R → R and Φ2 ∶ R → R are two
functions such that x ↦ E [Φ1(Y0)|X0 = x] is continuous and the conditions supt∈RN |Φ2(K(t))| < ∞,
lim‖t‖→∞ ‖t‖ |Φ2(K(t))| = 0 and ∫RN |Φ2 (K(t))| dt < ∞ are satis�ed then

lim
n→∞

E [Φ1(Y0)Φ2 (Kn(x, X0))]
bNn

= E [Φ1(Y0)|X0 = x] f (x) ∫
RN
Φ2 (K(v)) dv.

Moreover, we have also supj∈Zd
j≠0

E [||Kn(x, X0)Kn(x, Xj)||] ⊴ b2Nn .

Proof. Let x ∈ RN and let n be a positive integer. It is obvious that

E [Φ1(Y0)Φ2 (Kn(x, X0))] = bNn ∫
RN

E [Φ1 (Y0) | X0 = x − vbn] Φ2 (K(v)) f (x − vbn)dv.

By Theorem 1A in [22], we have

lim
n→∞ ∫

RN
E [Φ1 (Y0) | X0 = x − vbn] Φ2 (K(v)) f (x − vbn)dv

= E [Φ1 (Y0) | X0 = x] f (x) ∫
RN
Φ2 (K(v)) dv.

Consequently,

lim
n→∞

E [Φ1 (Y0) Φ2 (Kn(x, X0))]
bNn

= E [Φ1 (Y0) | X0 = x] f (x) ∫
RN
Φ2 (K(v)) dv. (6)

In the other part, keeping in mind assumptions (A1) and (A2) and using (6), we derive

sup
j∈Zd
j≠0

E [||Kn(x, X0)Kn(x, Xj)||] 6 � (∫
RN

|Kn(x, u)| du)
2
+ (E [|Kn(x, X0)|])2 ⊴ b2Nn .

The proof of Lemma 1 is complete. □

Lemma 2 If (A3) holds, then there exists a sequence (mn)n>1 of positive integers satisfying

lim
n→∞

mn = +∞, lim
n→∞

md
nb

�N
4+�n = 0 and

⎧⎪⎪
⎨⎪⎪⎩

limn→∞ b−
�N
2+�n ∑|i|>mn �

�
2+�
1,∞ (|i|) = 0 if (A3)(i) holds

limn→∞ b
− �(N+2)+2N2(2+�)
n ∑|i|>mn |i|d�

�
2+�
i,2 = 0 if (A3)(ii) holds.

Notice that when |Λn|bNn →∞, we have md
n = o (|Λn|).
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Proof. First, we assume (A3)(i). So, we have E [|Y0|2+�] < ∞ and ∑i∈Zd |i|
d(4+�)
2+� �

�
2+�
1,∞ (|i|) < ∞ for some

� > 0. Let 
 > (4 + �)/(2 + �) be �xed and let (mn)n≥1 be de�ned by

mn = max
⎧⎪⎪
⎨⎪⎪⎩
vn,

⎡
⎢
⎢
⎢
b

−�N
d(4+�)
n ( ∑

|i|>vn
|i| d(4+�)2+� �

�
2+�
1,∞ (|i|))

1
d
 ⎤
⎥
⎥
⎥

⎫⎪⎪
⎬⎪⎪⎭

and vn = ⌊b
−�N

2d(4+�)
n ⌋.

Since vn →∞, we have mn →∞ as n goes to in�nity. Moreover,

md
nb

�N
4+�n ⊴ max

{
b

�N
2(4+�)
n , ( ∑

|i|>vn
|i| d(4+�)2+� �

�
2+�
1,∞ (|i|))

1



+ b
�N
4+�n

}
−−−−−−−−−→

n→∞
0.

Since vn 6 mn, we have

md
nb

�N
4+�n > ( ∑

|i|>mn
|i| d(4+�)2+� �

�
2+�
1,∞ (|i|))

1



.

Consequently,

b−
�N
2+�n ∑

|i|>mn
�

�
2+�
1,∞ (|i|) 6 (m

d
nb

�N
4+�n )

− 4+�2+� ∑
|i|>mn

|i| d(4+�)2+� �
�
2+�
1,∞ (|i|) 6 ( ∑

|i|>mn
|i| d(4+�)2+� �

�
2+�
1,∞ (|i|))


(2+�)−4−�

(2+�)

.

Since 
 > (4 + �)/(2 + �), we derive limn→∞ b−
�N
2+�n ∑|i|>mn �

�
2+�
1,∞ (|i|) = 0.

Similarly, assume (A3)(ii) holds and de�ne

m̃n = max
⎧⎪⎪
⎨⎪⎪⎩
vn,

⎡
⎢
⎢
⎢
b

−�N
d(4+�)
n ( ∑

|i|>vn
|i| d((3N+2)�

2+(10N+8)�+8N )
2�(2+�)N �

�
2+�
i,2 )

1
d
 ⎤
⎥
⎥
⎥

⎫⎪⎪
⎬⎪⎪⎭

with 
 > ((N + 2)� + 2N )(� + 4)
2�(� + 2)N .

Then, arguing as before, we derive

lim
n→∞

m̃d
nb

�N
4+�n = 0 and lim

n→∞
b−

�(N+2)+2N
2(2+�)

n ∑
|i|>m̃n

|i|d�
�
2+�
i,2 = 0.

The details of the proof are left to the reader. The proof of Lemma 2 is complete. □

For any i in Zd , any positive integer n and any x ∈ RN , we denote

Δi =
Kn(x, Xi) − E [Kn(x, X0)]√

bNn
and Θi =

YiKn(x, Xi) − E [Y0Kn(x, X0)]√
bNn

. (7)

Lemma 3 Assume (A1), (A2) and (A4). If there exists � > 0 such that E [|Y0|2+�] < ∞, then

max{‖Δ0‖22+� , ‖Θ0‖22+�} ⊴ b
− �N
2+�n .

9



Proof. Let � > 0 such that E [|Y0|2+�] < ∞, we have

‖Δ0‖22+� 6
2 ‖Kn(x, X0)‖22+�

bNn
+ 2 (E [Kn(x, X0)])2

bNn
and

‖Θ0‖22+� 6
2 ‖Y0Kn(x, X0)‖22+�

bNn
+ 2 (E [Y0Kn(x, X0)])2

bNn
.

Keeping in mind that |K|∞ ∶= supt∈RN |K(t)| < ∞ and using Lemma 1, we derive

E [|Kn(x, X0)|2+�] ⊴ bNn , |||E [Kn(x, X0)] ||| ⊴ b
N
n ,

E [|Y0Kn(x, X0)|2+�] ⊴ bNn and |||E [Y0Kn(x, X0)] ||| ⊴ b
N
n .

Consequently, we obtain max{‖Δ0‖22+� , ‖Θ0‖22+�} ⊴ b
− �N
2+�n . The proof of Lemma 3 is complete. □

Lemma 4 Assume (A1), (A2) and (A4). Then, supj∈Zd
j≠0

E [|Δ0Δj |] ⊴ bNn . Moreover, if E [|Y0|2+�] < ∞
for some � > 0 then

sup
j∈Zd
j≠0

E [|Θ0Θj |] ⊴ b
�N
4+�n and sup

j∈Zd
j≠0

E [|Θ0Δj |] ⊴ b
�N
2+�n .

Proof. Let j ≠ 0 in Zd , then

E [|Δ0Δj |] 6
E [|Kn(x, X0)Kn(x, Xj)|] + 3 (E [|Kn(x, X0)|])2

bNn
.

Applying Lemma 1, we get
sup
j∈Zd
j≠0

E [||Δ0Δj ||] ⊴ bNn .

Let L > 1. We have

E [|Θ0Θj |] 6
E [|Y0YjKn(x, X0)Kn(x, Xj)|] + 3 (E [|Y0Kn(x, X0)|])2

bNn
(8)

and

E [|Y0YjKn(x, X0)Kn(x, Xj)|] =E [|Y0Yj 11|Y0 |6L 11|Yj |6LKn(x, X0)Kn(x, Xj)|]
+ E [|Y0Yj 11|Y0 |6L 11|Yj |>LKn(x, X0)Kn(x, Xj)|]
+ E [|Y0Yj 11|Y0 |>L 11|Yj |6LKn(x, X0)Kn(x, Xj)|]
+ E [|Y0Yj 11|Y0 |>L 11|Yj |>LKn(x, X0)Kn(x, Xj)|] .

10



By Cauchy-Schwarz’s inequality, we derive

E [||Y0YjKn(x, X0)Kn(x, Xj)||] 6L2E [||Kn(x, X0)Kn(x, Xj)||]
+
√
E [Y 2

0 K2
n(x, X0)]

√
E [Y 2

0 11|Y0 |>LK2
n(x, X0)]

+
√
E [Y 2

0 11|Y0 |>LK2
n(x, X0)]

√
E [Y 2

0 K2
n(x, X0)]

+ E [Y 2
0 11|Y0 |>LK2

n(x, X0)] .

Let � > 0 such that E [|Y0|2+�] < ∞. Applying Lemma 1, we get

E [||Y0YjKn(x, X0)Kn(x, Xj)||]
bNn

⊴ L2bNn + L−�/2 + L−� ⊴ L2bNn + L−�/2. (9)

Making the choice L = b−
2N
4+�n and combining (8), (9) and Lemma 1, we obtain

sup
j∈Zd
j≠0

E [||Θ0Θj ||] ⊴ b
�N
4+�n .

Now,

E [|Θ0Δj |] 6
E [|Y0Kn(x, X0)Kn(x, Xj)|] + 3E [|Y0Kn(x, X0)|]E [|Kn(x, X0)|]

bNn
.

So, if L′ > 1 is �xed then

E [||Θ0Δj ||] 6
L′E [|Kn(x, X0)Kn(x, Xj)|]

bNn
+ E [|Y0| 11|Y0 |>L′ |Kn(x, X0)Kn(x, Xj)|]

bNn
+ 3E [|Y0Kn(x, X0)|]E [|Kn(x, X0)|]

bNn
.

By Cauchy-Schwarz’s inequality, we get

E [|Y0| 11|Y0 |>L′ |Kn(x, X0)Kn(x, Xj)|] 6 L′−�/2
√
E [|Y0|2+�K2

n(x, X0)]
√
E [K2

n(x, X0)].

Appplying Lemma 1 and making the choice L′ = b−
2N
2+�n , we obtain

sup
j∈Zd
j≠0

E [||Θ0Δj ||] ⊴ L′bNn + L
′−�/2 + bNn ⊴ b

�N
2+�n .

The proof of Lemma 4 is complete. □

The following proposition is a crucial tool in the proof of the asymptotic normality for the NWE
(Theorem 2) when the random �eld (Xi)i∈Zd is of the form (1).
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Proposition 1 Let n and M be two positive integers and let x ∈ RN . If Λ is a �nite subset of Zd

and Φ ∶ R → R is a measurable function such that ‖Φ(Y0)‖2+� < ∞ for some � ∈]0, +∞] then for any
family (ci)i∈Λ of real numbers and any (p, q) ∈ [2, +∞[×]0, +∞] such that p + q 6 2 + � , we have

‖‖‖‖
∑
i∈Λ
ciWi,n

‖‖‖‖p
6 8pMd |K|

p
p+q
∞ C(p, q)

√
∑
i∈Λ
c2i b

−q
p+q
n ∑

|i|>M
�

q
p+q
i,p ,

where
Wi,n ∶= Φ(Yi)Kn(x, Xi) − E [Φ(Yi)Kn(x, Xi)|i,M ] , (10)

C(p, q) = 2
2p+q
p+q ‖Φ(Y0)‖p+q ‖K‖

q
p+q
Lip + |K|

q
p+q
∞

‖‖‖‖‖‖‖
sup

(x,y)∈RN ×RN
x≠y

|Φ(R(x, �0)) − Φ(R(y, �0))|
‖x − y‖

‖‖‖‖‖‖‖p
.

and
i,M = � (�i , "i−s ; |s| 6 M) and ‖K‖Lip = sup

(x,y)∈RN ×RN
x≠y

|K(x) − K(y)|
‖x − y‖ .

Proof. Let M and n be two positive integers and let x in RN and i in Zd be �xed. Recall that Yi =
R(Xi , �i). We follow the same lines as in the proof of Proposition 1 in [11]. Let 2 6 p < 2 + � and
denote by Hn the measurable function such that Wi,n = Hn(i,∞) with i,∞ = � (�i , "i−s ; s ∈ Zd).
Then, we de�ne the physical dependence measure coe�cient � (n)i,p associated to Wi,n by � (n)i,p =
‖Wi,n −W ∗

i,n‖p , where W ∗
i,n = Hn(∗

i,∞) and ∗
i,∞ = � (�i , "∗i−s ; s ∈ Zd) keeping in mind that "∗j = "j if

j ≠ 0 and "∗0 = "
′
0. In other words, we obtain W ∗

i,n from Wi,n by just replacing "0 by its copy " ′0 (see
[30]). Let � be a bijection fromZ toZd and � inZ be �xed. We de�ne the projection operateur P� by
P� f = E [f |� ]−E [f |�−1] for any integrable function f , where � = � ("�(s); s ≤ �). Consequently,
by stationarity, we have

‖‖P�Wi,n‖‖p =
‖‖‖E [W0,n|T i�] − E [W0,n|T i�−1]‖‖‖p ,

where T i� = � ("�(s)−i; s ≤ �). Keeping in mind that W0,n = Hn (0,∞), we derive

‖‖P�Wi,n‖‖p =
‖‖‖E [Hn (0,∞) | T i�] − E [Hn ((i,� )

0,∞ ) | T i�]‖‖‖p 6
‖‖‖Hn (0,∞) − Hn ((i,� )

0,∞ )‖‖‖p ,

where (i,� )
0,∞ = � (�, "

′
� (� )−i , "−s ; s ∈ Zd∖{i − �(� )}). It means that (i,� )

0,∞ is obtained from 0,∞ by
replacing "�(� )−i by its copy " ′�(� )−i . Consequently, using again the stationarity of the random �eld
and noting that

T �(� )−i0,∞ = � (�i−�(� ), "i−�(� )−s ; s ∈ Zd) = i−�(� ),∞,
T � (� )−i(i,� )

0,∞ = � (�i−�(� ), "
′
0, "i−�(� )−s ; s ∈ Zd∖{i − �(� )}) = ∗

i−�(� ),∞,

we obtain

‖‖P�Wi,n‖‖p 6
‖‖‖Hn (T �(� )−i0,∞) − Hn (T �(� )−i(i,� )

0,∞ )‖‖‖p =
‖‖‖Wi−�(� ),n − W ∗

i−�(� ),n
‖‖‖p = �

(n)
i−�(� ),p . (11)
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Moreover, since Wi,n = ∑�∈Z P�Wi,n, we have

‖‖‖‖‖
∑
j∈Λ
cjWj,n

‖‖‖‖‖p
=
‖‖‖‖‖
∑
�∈Z

∑
j∈Λ
cjP�Wj,n

‖‖‖‖‖p
.

Since (∑j∈Λ cjP�Wj,n)�∈Z is a martingale di�erence sequence with respect to the �ltration (� )�∈Z,
the Burkholder inequality (see [6], remark 6, page 85) implies

‖‖‖‖‖
∑
j∈Λ
cjWj,n

‖‖‖‖‖p
≤ (2p ∑

�∈Z

‖‖‖‖‖
∑
j∈Λ
cjP�Wj,n

‖‖‖‖‖

2

p)

1
2

≤ (2p ∑
�∈Z(

∑
j∈Λ

|cj | ‖‖P�Wj,n‖‖p)
2

)

1
2

. (12)

Moreover, by the Cauchy-Schwarz inequality, we have

(∑
j∈Λ

|cj | ‖‖P�Wj,n‖‖p)
2
≤ ∑

i∈Λ
c2i ‖‖P�Wi,n‖‖p × ∑

j∈Λ
‖P�Wj,n‖p . (13)

Using (11), we have sup�∈Z ∑j∈Zd ‖P�Wj,n‖p ≤ ∑j∈Zd � (n)j,p . So, combining (12) and (13), we obtain

‖‖‖‖‖
∑
j∈Λ
cjWj,n

‖‖‖‖‖p
≤ (2p ∑

j∈Zd
� (n)j,p ∑

i∈Λ
c2i ∑

�∈Z
‖‖P�Wi,n‖‖p)

1
2

.

Using (11) and keeping in mind that � is a bijection, we have supi∈Zd ∑�∈Z ‖P�Wi,n‖p ≤ ∑j∈Zd � (n)j,p .
Hence, we derive

‖‖‖‖‖
∑
j∈Λ
cjWj,n

‖‖‖‖‖p
≤ (2p ∑

j∈Λ
c2j )

1
2

∑
j∈Zd

� (n)j,p . (14)

Now, since
E [Φ(Yi)Kn(x, Xi)|i,M ]∗ = E [Φ(R(X ∗

i , �i))Kn(x, X ∗
i )|∗

i,M] ,
where ∗

i,M = � (�i , "∗i−s ; |s| ≤ M), we have

W ∗
i,n = Φ(R(X ∗

i , �i))Kn(x, X ∗
i ) − E [Φ(R(X ∗

i , �i))Kn(x, X ∗
i )|∗

i,M] .

Moreover,
E [Φ(Yi)Kn(x, Xi)|i,M ] = E [Φ(Yi)Kn(x, Xi)|i,M ∨∗

i,M]
and

E [Φ(R(X ∗
i , �i))Kn(x, X ∗

i )|∗
i,M] = E [Φ(R(X ∗

i , �i))Kn(x, X ∗
i )|∗

i,M ∨i,M] .
Consequently,

� (n)i,p = ‖‖Wi,n − W ∗
i,n‖‖p 6 2 ‖‖Φ(R(Xi , �i))Kn(x, Xi) − Φ(R(X ∗

i , �i))Kn(x, X ∗
i )‖‖p . (15)
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Let L > 0 be �xed. From (15), we derive

� (n)i,p 6 2 ‖‖Φ(R(Xi , �i)) (Kn(x, Xi) − Kn(x, X ∗
i )) − (Φ(R(X ∗

i , �i)) − Φ(R(Xi , �i)))Kn(x, X ∗
i )‖‖p

6 2L ‖K‖Lip
�i,p
bn

+ 4|K|∞L−q/p ‖Φ(Y0)‖
p+q
p
p+q + 2|K|∞

‖‖‖‖‖‖‖
sup

(x,y)∈RN ×RN
x≠y

|Φ(R(x, �0)) − Φ(R(y, �0))|
‖x − y‖

‖‖‖‖‖‖‖p
�i,p .

Optimizing this last inequality in L, we get

� (n)i,p 6 2|K|
p
p+q
∞ C(p, q)b

−q
p+q
n �

q
p+q
i,p , (16)

where

C(p, q) = 2
2p+q
p+q ‖Φ(Y0)‖p+q ‖K‖

q
p+q
Lip + |K|

q
p+q
∞

‖‖‖‖‖‖‖
sup

(x,y)∈RN ×RN
x≠y

|Φ(R(x, �0)) − Φ(R(y, �0))|
‖x − y‖

‖‖‖‖‖‖‖p
.

Now, by stationarity, we have � (n)i,p = ‖‖Wi,n − W ∗
i,n‖‖p 6 2 ‖‖W0,n‖‖p . Let � > 0 be a �xed integer. We

denote by Γ� the set of all j in Zd such that |j| = � and we de�ne

a� ∶=
�
∑
j=0

|Γj | = 1 + 2d
�
∑
j=1
(2j + 1)d−1.

If u = (u1, … , ud ) and v = (v1, … , vd ) are distinct elements of Zd , the notation u <lex v means that
either u1 < v1 or for some k in {2, … , d}, uk < vk and us = vs for 1 6 s < k (lexicographic order).
Let �0 ∶]0, +∞[∩Z → Zd be the bijection de�ned by

• �0(1) = 0,

• �0(s) ∈ Γ� if a�−1 < s 6 a� and � > 0,

• �0(s) <lex �0(t) if a�−1 < s < t 6 a� and � > 0.
Let M = � (�0, "�0(s) ; 1 6 s 6 M) and recall that 0,M = � (�0, "−s ; |s| 6 M). Since 1 ≤ s ≤ aM if
and only if |�0(s)| ≤ M , we have aM = 0,M . Consequently,

W0,n = ∑
�>aM

D� where D� = E [Φ(R(X0, �0))Kn(x, X0)|� ] − E [Φ(R(X0, �0))Kn(x, X0)|�−1] .

Since (D� )�>1 is a martingale di�erence sequence with respect to the �ltration (� )�>1, we apply
Burkholder’s inequality ([6], remark 6, page 85) and we obtain

‖‖W0,n‖‖p 6 (2p ∑
�>aM

‖D� ‖2p)
1/2
. (17)

Let L > 0 be �xed. Denoting X ′
0,� = G (�0, "

′
�0(� ), "−s ; s ∈ Zd∖{−�0(� )}), we have

E [Φ(R(X0, �0))Kn(x, X0)|�−1] = E [Φ(R(X
′
0,� , �0))Kn(x, X

′
0,� )|�] .
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Then

‖D� ‖p 6 ‖‖‖Φ(R(X0, �0))Kn(x, X0) − Φ(R(X
′
0,� , �0))Kn(x, X

′
0,� )‖‖‖p

= ‖‖‖Φ(R(X0, �0)) (Kn(x, X0) − Kn(x, X
′
0,� )) − (Φ(R(X

′
0,� , �0)) − Φ(R(X0, �0)))Kn(x, X

′
0,� )‖‖‖p

6
L ‖K‖Lip

bn
‖‖‖X0 − X

′
0,�
‖‖‖p + 2|K|∞L−q/p ‖Φ(Y0)‖

p+q
p
p+q + |K|∞

‖‖‖‖‖‖‖
sup

(x,y)∈RN ×RN
x≠y

|Φ(R(x, �0)) − Φ(R(y, �0))|
‖x − y‖

‖‖‖‖‖‖‖p

‖‖‖X0 − X
′
0,�
‖‖‖p .

Optimizing in L, we obtain

‖D� ‖p 6 |K|
p
p+q
∞ C(p, q)b

−q
p+q
n

‖‖‖X0 − X
′
0,�
‖‖‖

q
p+q

p
.

Moreover, by stationarity, we have
‖‖‖X0 − X

′
0,�
‖‖‖p =

‖‖‖G ("−s ; s ∈ Zd) − G ("
′
�0(� ), "−s ; s ∈ Zd∖{−�0(� )})‖‖‖p

= ‖‖‖G ("−�0(� )−s ; s ∈ Zd) − G ("
′
0, "−�0(� )−s ; s ∈ Zd∖{−�0(� )})‖‖‖p

= ‖‖‖X−�0(� ) − X
∗
−�0(� )

‖‖‖p
= �−�0(� ),p .

So, we derive
‖D� ‖p 6 |K|

p
p+q
∞ C(p, q)b

−q
p+q
n �

q
p+q
−�0(� ),p . (18)

Combining (17) and (18), we obtain

‖‖W0,n‖‖p 6 |K|
p
p+q
∞

√
2pC(p, q)b

−q
p+q
n ∑

�>aM
�

q
p+q
−�0(� ),p 6 |K|

p
p+q
∞

√
2pC(p, q)b

−q
p+q
n ∑

|j|>M
�

q
p+q
j,p (19)

and
sup
i∈Zd

� (n)i,p 6 2 ‖‖W0,n‖‖p 6 2
√
2p|K|

p
p+q
∞ C(p, q)b

−q
p+q
n ∑

|j|>M
�

q
p+q
j,p . (20)

So, from (16) and (20), we get

∑
i∈Zd

� (n)i,p 6 2
√
2p|K|

p
p+q
∞ C(p, q)b

−q
p+q
n (Md + 1) ∑

|j|>M
�

q
p+q
j,p . (21)

Finally, combining (14) and (21), we derive

‖‖‖‖
∑
i∈Λ
ciWi,n

‖‖‖‖p
≤ 8pMd |K|

p
p+q
∞ C(p, q)(∑

i∈Λ
c2i )

1
2

b
−q
p+q
n ∑

|j|>M
�

q
p+q
j,p .

The proof of Proposition 1 is complete. □

Now, we denote by V(Z ) the variance of any square-integrable R-valued random variable Z .
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Lemma 5 Assume (A1) − (A4). For any x ∈ RN such that f (x) > 0, we have

lim
n→∞

|Λn|bNn V [fn(x)] = f (x) ∫
RN

K2(t)dt,

lim
n→∞

|Λn|bNn V ['n(x)] = E [Y 2
0 |X0 = x] f (x) ∫

RN
K2(t)dt,

lim
n→∞

|Λn|bNn Cov ['n(x), fn(x)] = r(x)f (x) ∫
RN

K2(t)dt.

Proof. Let n > 1 and x ∈ RN such that f (x) > 0 be �xed. Then,

|Λn|bNn V [fn(x)] = E [(
∑i∈Λn Δi√

|Λn| )

2

] = E [Δ20] +
1

|Λn|
∑
j∈Zd
j≠0

|Λn ∩ (Λn − j)|E [Δ0Δj] .

Consequently,
||||Λn|bNn V [fn(x)] − E [Δ20] ||| 6 ∑

j∈Zd
j≠0

|||E [Δ0Δj]||| , (22)

where

E [Δ20] =
E [K2

n(x, X0)] − (E [Kn(x, X0)])2
bNn

.

Applying Lemmas 1 and 4, we get

lim
n→∞

E [Δ20] = f (x) ∫
RN

K2(v)dv (23)

and
sup
j∈Zd
j≠0

|||E [Δ0Δj]||| ⊴ b
N
n 6 b

�N
4+�n , (24)

where � > 0 is given by (A3). Similarly, we have

|Λn|bNn V ['n(x)] = E [(
∑i∈Λn Θi√

|Λn| )

2

] = E [Θ2
0] +

1
|Λn|

∑
j∈Zd
j≠0

|Λn ∩ (Λn − j)|E [Θ0Θj] .

So, we derive ||||Λn|bNn V ['n(x)] − E [Θ2
0] ||| 6 ∑

j∈Zd
j≠0

|||E [Θ0Θj]||| , (25)

where

E [Θ2
0] =

E [Y 2
0 K2

n(x, X0)] − (E [Y0Kn(x, X0)])2
bNn

.

Applying again Lemma 1, we obtain

lim
n→∞

E [Θ2
0] = E [Y 2

0 | X0 = x] f (x) ∫
RN

K2(v)dv. (26)

16



By Lemma 4, we have also
sup
j∈Zd
j≠0

|||E [Θ0Θj]||| ⊴ b
�N
4+�n . (27)

Arguing as before, we write

|Λn|bNn Cov ('n(x), fn(x)) = E [Θ0Δ0] +
1

|Λn|
∑
j∈Zd
j≠0

|Λn ∩ (Λn − j)|E [Θ0Δj] .

Consequently,
||||Λn|bNn Cov ('n(x), fn(x)) − E [Θ0Δ0] ||| 6 ∑

j∈Zd
j≠0

|||E [Θ0Δj] |||, (28)

where, using Lemma 1, we have

E [Θ0Δ0] =
E [Y0K2

n(x, X0)] − E [Y0Kn(x, X0)]E [Kn(x, X0)]
bNn

−−−−−−−−−→
n→∞

r(x)f (x) ∫
RN

K2(v)dv. (29)

By Lemma 4, we have also
sup
j∈Zd
j≠0

|||E [Θ0Δj]||| ⊴ b
�N
2+�n 6 b

�N
4+�n . (30)

Now, we assume that (A3)(i) holds and we introduce the letter Ξ which can be replaced in the
sequel by either Δ or Θ. By Rio’s inequality (see [23]), for j ≠ 0, we have

|||E [Ξ0Ξj]||| 6 2 ∫
2�1,∞(|j|)

0
Q2
Ξ0(u)du where QΞ0(u) = inf

{
t > 0 |||P (|Ξ0| > t) 6 u

}
.

Using Lemma 3 and noting that QΞ0(u) 6 u− 1
2+� ‖Ξ0‖2+� , we derive

|||E [Ξ0Ξj]||| ⊴ �
�
2+�
1,∞ (|j|) ‖Ξ0‖22+� ⊴ b

− �N
2+�n �

�
2+�
1,∞ (|j|). (31)

Combining (24), (27) and (31) and using Lemma 2, we obtain

∑
j∈Zd
j≠0

|||E [Ξ0Ξj]||| ⊴ m
d
nb

�N
4+�n + b−

�N
2+�n ∑

|j|>mn
�

�
2+�
1,∞ (|j|) −−−−−−−−−→n→∞

0, (32)

where mn is given by Lemma 2. Combining (22), (23), (25), (26) and (32), we get

lim
n→∞

|Λn|bNn V [fn(x)] = f (x) ∫
RN

K2(t)dt and lim
n→∞

|Λn|bNn V ['n(x)] = E [Y 2
0 | X0 = x] f (x) ∫

RN
K2(t)dt.

Applying again Rio’s inequality, we have

|||E [Θ0Δj]||| 6 2 ∫
2�1,∞(|j|)

0
QΘ0(u)QΔj (u)du

17



and by Lemma 3, we derive

QΘ0(u) 6 u− 1
2+� ‖Θ0‖2+� 6 u− 1

2+� b−
�N

2(2+�)
n and QΔj (u) 6 u− 1

2+� ‖Δ0‖2+� 6 u− 1
2+� b−

�N
2(2+�)

n

for any u ∈]0, 1[. Consequently, we obtain

|||E [Θ0Δj]||| ⊴ b
− �N
2+�n �

�
2+�
1,∞ (|j|) . (33)

Combining (30) and (33), we derive

∑
j∈Zd
j≠0

|||E [Θ0Δj]||| ⊴ m
d
nb

�N
4+�n + b−

�N
2+�n ∑

|j|>mn
�

�
2+�
1,∞ (|j|) −−−−−−−−−→n→∞

0, (34)

where mn is given by Lemma 2. Finally, combining (28), (29) and (34), we obtain

lim
n→∞

|Λn|bNn Cov ['n(x), fn(x)] = r(x)f (x) ∫
RN

K2(t)dt.

From now on, we assume (A3)(ii) holds. Keeping in mind that Ξ stands for either Δ or Θ, we
de�ne Ξi = E [Ξi |i,mn] for any i in Zd . Note that (Ξi)i∈Zd is a 2mn-dependent random �eld (it
means that if |i − j| > 2mn then Ξi and Ξj are independent) and

||||||
E [( ∑

i∈Λn
Ξi)

2

] − E [( ∑
i∈Λn

Ξi)
2

]

||||||
6

‖‖‖‖‖
∑
i∈Λn

(Ξi − Ξi)
‖‖‖‖‖

2

2
+ 2

‖‖‖‖‖
∑
i∈Λn

Ξi
‖‖‖‖‖2

‖‖‖‖‖
∑
i∈Λn

(Ξi − Ξi)
‖‖‖‖‖2
. (35)

Using Proposition 1 and Lemma 2, we obtain

|Λn|−1/2
‖‖‖‖‖
∑
i∈Λn

(Ξi − Ξi)
‖‖‖‖‖2
⊴ b−

�(N+2)+2N
2(2+�)

n ∑
|j|>mn

|j|d�
�
2+�
j,2 −−−−−−−−−→

n→∞
0. (36)

In the other part, since (Ξi)i∈Zd is 2mn-dependent, we have

1
|Λn|

E [( ∑
i∈Λn

Ξi)
2

] = E [Ξ
2
0] +

1
|Λn|

∑
j∈Zd∖{0}
|j|62mn

|Λn ∩ (Λn − j) |E [Ξ0Ξj]

and consequently

||||||

1
|Λn|

E [( ∑
i∈Λn

Ξi)
2

] − E [Ξ
2
0]
||||||
6 (2mn + 1)d sup

j∈Zd
j≠0

|||E [Ξ0Ξj]||| . (37)

Moreover, using (19) and Lemma 2 and noting that ‖Ξ0‖2 ⊴ 1, we have also

||||
E [Ξ

2
0] − E [Ξ20]

||||
6 2 ‖Ξ0‖2 ‖‖Ξ0 − Ξ0‖‖2 ⊴ b

− �(N+2)+2N2(2+�)
n ∑

|j|>mn
�

�
2+�
j,2 −−−−−−−−−→

n→∞
0.

18



So, using (23) and (26), we derive

lim
n→∞

E [Ξ
2
0] = � (x)f (x) ∫

RN
K2(t)dt, (38)

where � (x) = 1 if Ξ = Δ and � (x) = E [Y 2
0 |X0 = x] if Ξ = Θ. Similarly, using (19), we obtain

md
n sup
j∈Zd
j≠0

||||E [Ξ0Ξj] | − |E [Ξ0Ξj] |||| 6 2md
n ‖Ξ0‖2 ‖‖Ξ0 − Ξ0‖‖2 ⊴ b

− �(N+2)+2N2(2+�)
n ∑

|j|>mn
|j|d�

�
2+�
j,2 −−−−−−−−−→

n→∞
0.

Using Lemma 4, we have supj∈Zd
j≠0

|E [Ξ0Ξj] | ⊴ b
�N
4+�n and consequently, by Lemma 2, we get

md
n sup

j∈Zd
j≠0

|||E [Ξ0Ξj]||| ⊴ m
d
nb

�N
4+�n + b−

�(N+2)+2N
2(2+�)

n ∑
|j|>mn

|j|d�
�
2+�
j,2 −−−−−−−−−→

n→∞
0. (39)

Combining (37), (38) and (39), we obtain

lim
n→∞

1
|Λn|

E [( ∑
i∈Λn

Ξi)
2

] = � (x)f (x) ∫RN
K2(t)dt. (40)

Combining (35), (36) and (40), we get

lim
n→∞

1
|Λn|

E [( ∑
i∈Λn

Ξi)
2

] = � (x)f (x) ∫RN
K2(t)dt.

So, we have shown

lim
n→∞

|Λn|bNn V [fn(x)] = f (x) ∫
RN

K2(t)dt and lim
n→∞

|Λn|bNn V ['n(x)] = E [Y 2
0 |X0 = x] f (x) ∫

RN
K2(t)dt.

Now, it su�cies to prove

lim
n→∞

|Λn|bNn Cov ['n(x), fn(x)] = r(x)f (x) ∫
RN

K2(t)dt

when (A3)(ii) holds. If we de�ne

f n(x) =
1

|Λn|bNn
∑
i∈Λn

E [Kn(x, Xi)|i,mn] and 'n(x) =
1

|Λn|bNn
∑
i∈Λn

E [YiKn(x, Xi)|i,mn]

then
|Λn|bNn Cov ['n(x), fn(x)] = C1 + C2 + C3 + C4,

19



where

C1 = |Λn|bNn E [('n(x) − 'n(x)) (fn(x) − f n(x))]
C2 = |Λn|bNn E [('n(x) − 'n(x)) (f n(x) − E [f n(x)])]
C3 = |Λn|bNn E [('n(x) − E ['n(x)]) (fn(x) − f n(x))]
C4 = |Λn|bNn E [('n(x) − E ['n(x)]) (f n(x) − E [f n(x)])] .

Using Proposition 1, we have

|C1| 6
1√
|Λn|

|||||

|||||
∑
i∈Λn

(Θi − Θi)
|||||

|||||2
× 1√

|Λn|
|||||

|||||
∑
i∈Λn

(Δi − Δi)
|||||

|||||2
⊴ (b

− �(N+2)+2N2(2+�)
n ∑

|i|>mn
|i|d�

�
2+�
i,2 )

2
= o(1).

From (40), we have |Λn|−1/2 |||
|||∑j∈Λn Δj

|||
|||2 ⊴ 1 and |Λn|−1/2 |||

|||∑j∈Λn Θj
|||
|||2 ⊴ 1. So,

|C2| 6
1√
|Λn|

|||||

|||||
∑
i∈Λn

(Θi − Θi)
|||||

|||||2
× 1√

|Λn|
|||||

|||||
∑
j∈Λn

Δj
|||||

|||||2
⊴ b−

�(N+2)+2N
2(2+�)

n ∑
|i|>mn

|i|d�
�
2+�
i,2 = o(1)

and
|C3| 6

1√
|Λn|

|||||

|||||
∑
i∈Λn

(Δi − Δi)
|||||

|||||2
× 1√

|Λn|
|||||

|||||
∑
j∈Λn

Θj
|||||

|||||2
⊴ b−

�(N+2)+2N
2(2+�)

n ∑
|i|>mn

|i|d�
�
2+�
i,2 = o(1).

Finally, since
C4 = E [Θ0Δ0] +

1
|Λn|

∑
j∈Zd⧵{0}
|j|62mn

|Λn ∩ (Λn − j)|E [Θ0Δj],

we obtain |||C4 − E [Θ0Δ0]||| 6 (2mn + 1)d sup
j∈Zd
j≠0

|||E [Θ0Δj]||| . (41)

Using (19) and keeping in mind that ‖Δ0‖2 ⊴ 1 and ‖Θ0‖2 ⊴ 1, we have also

|||E [Θ0Δ0] − E [Θ0Δ0]||| 6 ‖Θ0‖2 ‖‖Δ0 − Δ0‖‖2 + ‖Δ0‖2 ‖‖Θ0 − Θ0‖‖2 ⊴ b
− �(N+2)+2N2(2+�)
n ∑

|i|>mn
�

�
2+�
i,2 = o(1).

Moreover, using Lemma 1, we have

E [Θ0Δ0] =
1
bNn (E [Y0K2

n(x, X0)] − E [Kn(x, X0)]E [Y0Kn(x, X0)]) −−−−−−−−−→n→∞
r(x)f (x) ∫

RN
K2(t)dt

and consequently, we obtain

lim
n→∞

E [Θ0Δ0] = r(x)f (x) ∫
RN

K2(t)dt. (42)

Now, using (19) and Lemma 2, we have

md
n sup
j∈Zd
j≠0

||||E [Θ0Δj] | − |E [Θ0Δj] |||| 6 md
n (‖Θ0‖2 ‖‖Δ0 − Δ0‖‖2 + ‖Δ0‖2 ‖‖Θ0 − Θ0‖‖2) ⊴ b

− �(N+2)+2N2(2+�)
n ∑

|j|>mn
|j|d�

�
2+�
j,2 = o(1).
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Using Lemma 4, we have supj∈Zd
j≠0

|||E [Θ0Δj]||| ⊴ b
�N
2+�n 6 b

�N
4+�n and consequently, by Lemma 2, we get

md
n sup

j∈Zd
j≠0

|||E [Θ0Δj]||| ⊴ m
d
nb

�N
4+�n + b−

�(N+2)+2N
2(2+�)

n ∑
|j|>mn

|j|d�
�
2+�
j,2 −−−−−−−−−→

n→∞
0. (43)

Combining (41), (42) and (43), we obtain

C4 −−−−−−−−−→n→∞
r(x)f (x) ∫

RN
K2(t)dt.

The proof of Lemma 5 is complete. □

5 Proofs of Theorems
In this section, we present the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let n > 1 be �xed. Since K is symmetric such that ∫RN ‖v‖2 |K(v)|dv < ∞
and f and ' are twice di�erentiable with bounded second partial derivatives, by Taylor’s for-
mula, we get

sup
x∈RN

|||E [fn(x)] − f (x)
||| = supx∈RN

||| ∫RN
(f (x − vbn) − f (x))K(v)dv||| ⊴ b

2
n ∫

RN
‖v‖2 |K(v)|dv

and

sup
x∈RN

|||E ['n(x)] − '(x)
||| = supx∈RN

||| ∫RN
('(x − vbn) − '(x))K(v)dv||| ⊴ b

2
n ∫

RN
‖v‖2 |K(v)|dv.

The proof of Theorem 1 is complete. □

Proof of Theorem 2. Let n > 1 and x ∈ RN such that f (x) > 0 be �xed. Then

rn(x) −
E ['n(x)]
E [fn(x)]

= ('n(x) − E ['n(x)])E [fn(x)] − (fn(x) − E [fn(x)])E ['n(x)]fn(x)E [fn(x)]
.

Combining Lemma 5 and Theorem 1, we obtain that fn(x) converges in probability to f (x) as n →
∞. Moreover, we have also limn→∞

E['n(x)]
E[fn(x)] = r(x). So, using Slutsky’s lemma and assumptions

(A1) − (A4), it is su�cient to prove that

�1
√
|Λn|bNn ('n(x) − E ['n(x)]) + �2

√
|Λn|bNn (fn(x) − E [fn(x)])

Law−−−−−−−−−→
n→∞

 (0, �2(x)) ,

where �2(x) = (�21E [Y 2
0 |X0 = x] + 2�1�2r(x) + �22) × f (x) ∫RN K2(t)dt for any (�1, �2) ∈ R2.

Let (�1, �2) ∈ R2 be �xed. Then

�1
√
|Λn|bNn ('n(x) − E ['n(x)]) + �2

√
|Λn|bNn (fn(x) − E [fn(x)]) = |Λn|−1/2 ∑

i∈Λn
Ui ,
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where
Ui = �1Θi + �2Δi =

(�1Yi + �2)Kn(x, Xi) − E [(�1Y0 + �2)Kn(x, X0)]√
bNn

with Θi and Δi de�ned by (7). For the asymptotic normality of rn when (Xi)i∈Zd is of the form (1),
we are going to use an approximation by 2mn-dependent random �elds. So, recall that i,mn =
� (�i , "i−s ; |s| 6 mn) and de�ne

Δi = E [Δi |i,mn] , Θi = E [Θi |i,mn] and U i = �1Θi + �2Δi = E [Ui |i,mn] .

By construction, (U i)i∈Zd is 2mn-dependent (it means that if |i − j| > 2mn then U i and U j are
independent). So, if (A3)(ii) holds, applying Proposition 1 with Φ(t) = �1t + �2 for any t ∈ R, then

|Λn|−1/2
‖‖‖‖‖
∑
i∈Λn

(Ui − U i)
‖‖‖‖‖2
⊴ b−

�(N+2)+2N
2(2+�)

n ∑
|i|>mn

|i|d�
�
2+�
i,2 −−−−−−−−−→

n→∞
0 (by Lemma 2).

Consequently, when (Xi)i∈Zd is of the form (1) it su�cies to establish the asymptotic normality of
|Λn|−1/2∑i∈Λn U i . From now on, we denote

Zi =
{
Ui if (Xi)i∈Zd is strongly mixing
U i if (Xi)i∈Zd is of the form (1)

and
Mn =

{
mn if (Xi)i∈Zd is strongly mixing
2mn if (Xi)i∈Zd is of the form (1).

Lemma 6 limn→∞ E [Z 2
0 ] = �2(x).

Proof. We have

E [U 2
0 ] =

E [(�1Y0 + �2)2 K2
n (x, X0)] − (E [(�1Y0 + �2)Kn(x, X0)])2

bNn
.

Applying Lemma 1, we get

lim
n→∞

E [U 2
0 ] = E [(�1Y0 + �2)2 | X0 = x] f (x) ∫

RN
K2(t)dt = �2(x).

Moreover, by Proposition 1 and Lemma 2 and using ‖U0‖2 ⊴ 1, we derive

||||
E [U

2
0] − E [U 2

0 ]
||||
6 2 ‖U0‖2 ‖‖U0 − U 0‖‖2 ⊴ b

− �(N+2)+2N2(2+�)
n ∑

|i|>Mn
|i|d�

�
2+�
i,2 −−−−−−−−−→

n→∞
0.

So, limn→∞ E [U
2
0] = �2(x). The proof of Lemma 6 is complete. □
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Let (�i)i∈Zd be i.i.d. normal random variables independent of (Xi)i∈Zd and (�i)i∈Zd . Assume that
E [�0] = 0 and E [� 20 ] = E [Z 2

0 ]. For any i ∈ Zd , we de�ne

Ti =
Zi√
|Λn|

and 
i =
�i√
|Λn|

.

Let g be the unique function from [1, |Λn|] ∩ Z to Λn such that g(k) <lex g(� ) for 1 6 k < � 6 |Λn|,
where <lex is the lexicographic order on Zd . For all integer 1 6 k 6 |Λn|, we put

Sg(k)(T ) =
k
∑
s=1
Tg(s) and Scg(k)(
 ) =

|Λn |
∑
s=k


g(s)

with the convention Sg(0)(T ) = Scg(|Λn |+1)(
 ) = 0. Let  be any measurable function from R to R. For
any 1 6 k 6 � 6 |Λn|, we introduce the notation  k,� =  (Sg(k)(T ) + Scg(� )(
 )). Let ℎ ∶ R → R
be a four times continuously di�erentiable function such that max06i64 ‖ℎ(i)‖∞ 6 1. It su�ces to
prove limn→∞ |Ln| = 0, where

Ln ∶= E [ℎ( ∑
i∈Λn

Zi√
|Λn|)] − E [ℎ( ∑

i∈Λn

�i√
|Λn|)] .

Using Lindeberg’s idea [15] (see also [5]), we have

Ln = E [ℎ|Λn |,|Λn |+1 − ℎ0,1] =
|Λn |
∑
k=1

E [ℎk,k+1 − ℎk−1,k]

=
|Λn |
∑
k=1(

E [ℎk,k+1 − ℎk−1,k+1] − E [ℎk−1,k − ℎk−1,k+1] ).

Applying Taylor’s formula, we get

Ln =
|Λn |
∑
k=1(

E [Tg(k)ℎ
′
k−1,k+1 +

1
2T

2
g(k)ℎ′′k−1,k+1 + vk] − E [
g(k)ℎ

′
k−1,k+1 +

1
2


2
g(k)ℎ′′k−1,k+1 + wk]),

where |vk | 6 T 2
g(k) (1 ∧ |Tg(k)|) and |wk | 6 
 2g(k) (1 ∧ |
g(k)|). Since 
 2g(k) and ℎ′′k−1,k+1 are independent,

E [
g(k)ℎ′k−1,k+1] = 0 and E [
 2g(k)] =
E[Z 20 ]
|Λn | , we obtain

Ln =
|Λn |
∑
k=1(

E [Tg(k)ℎ′k−1,k+1] +
1
2E [(T

2
g(k) −

E [Z 2
0 ]

|Λn| ) ℎ′′k−1,k+1] + E [vk − wk] ).

Since �0 is a gaussian random variable with zero mean and variance E [Z 2
0 ] and E [Z 2

0 ] 6 E [U 2
0 ],

we have
|Λn |
∑
k=1

E [|wk |] 6
E [|�0|3]√

|Λn|
⊴ (E [U 2

0 ])
3/2

√
|Λn|

.
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By Lemma 1, we have E [U 2
0 ] ⊴ 1 and consequently, we obtain limn→∞∑|Λn |

k=1 E [|wk |] = 0. Let
dn ∶= (|Λn|bNn )

−�
2(�+1) . Then,

|Λn |
∑
k=1

E [|vk |] 6 dnE [Z 2
0 ] + E [Z

2
0 11|Z0 |>dn√|Λn |] 6 dnE [U 2

0 ] +
E [|U0|2+�]
d�n |Λn|�/2

.

Using Lemma 3, we get
|Λn |
∑
k=1

E [|vk |] ⊴ dn +
1

d�n (|Λn|bNn )�/2
= 2dn −−−−−−−−−→n→∞

0.

Now, we have to prove that

lim
n→∞

|Λn |
∑
k=1(

E [Tg(k)ℎ′k−1,k+1] + E [(
Z 2
g(k) − E [Z 2

0 ]
2|Λn| ) ℎ′′k−1,k+1]) = 0. (44)

For any integers n > 1 and 1 6 k 6 |Λn|, we de�ne

E(n)k =
{
j ∈ Λn

||| j <lex g(k) and |j − g(k)| > Mn

}
and S(Mn)

g(k) (T ) = ∑
i∈E(n)k

Ti .

For any 1 6 k < � 6 |Λn| and any function fromR toR, we de�ne also (Mn)
k−1,� =  (S(Mn)

g(k) (T ) + Scg(� )(
 )).
Using Taylor’s formula, we have

Tg(k)ℎ′k−1,k+1 = Tg(k)ℎ
′(Mn)
k−1,k+1 + Tg(k) (Sg(k−1)(T ) − S(Mn)

g(k) (T )) ℎ
′′(Mn)
k−1,k+1 + v′k

with
|v′k | 6 2 |||Tg(k) (Sg(k−1)(T ) − S

(Mn)
g(k) (T )) (1 ∧ |Sg(k−1)(T ) − S(Mn)

g(k) (T )|)
||| .

In order to obtain (44), we have to prove

lim
n→∞

|Λn |
∑
k=1

E [Tg(k)ℎ
′(Mn)
k−1,k+1] = 0, (45)

lim
n→∞

|Λn |
∑
k=1

E [Tg(k) (Sg(k−1)(T ) − S(Mn)
g(k) (T )) ℎ

′′(Mn)
k−1,k+1] = 0 (46)

lim
n→∞

|Λn |
∑
k=1

E [|v′k |] = 0, (47)

and
lim
n→∞

1
|Λn|

|Λn |
∑
k=1

E [(Z 2
g(k) − E [Z 2

0 ]) ℎ′′k−1,k+1] = 0. (48)

First, we are going to prove (45). Since 
 is independent of T , then E [Tg(k)ℎ
′
(Scg(k+1)(
 ))] = 0.

Consequently, if � is a one to one map from [1, |E(n)k |]∩Z to E(n)k such that |�(i)−g(k)| ≤ |�(i−1)−g(k)|
then

E [Tg(k)ℎ
′(Mn)
k−1,k+1] = E [Tg(k) (ℎ

′(Mn)
k−1,k+1 − ℎ′ (Scg(k+1)(
 )))] =

|E(n)k |
∑
i=1

Cov (Tg(k), �i − �i−1) ,
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where �i = ℎ′
(S�(i)(T ) + Scg(k+1)(
 )) and S�(0)(T ) = 0. If (Xi)i∈Zd is strongly mixing then, using Rio’s

inequality ([23], Theorem 1.1) and keeping in mind that |�(i) − g(k)| ≤ |�(i − 1) − g(k)|, we get

|||E [Tg(k)ℎ
′(Mn)
k−1,k+1]

||| 6 2
|E(n)k |
∑
i=1 ∫

2�1,∞(|�(i)−g(k)|)

0
QTg(k)(u)Q�i−�i−1(u)du.

For any u ∈]0, 1[, noting that ℎ′ is Lipschitz, we have

QTg(k)(u) 6
u− 1

2+� ‖Z0‖2+�√
|Λn|

and Q�i−�i−1(u) 6
u− 1

2+� ‖Z0‖2+�√
|Λn|

.

Moreover, by Lemma 3, we have ‖Z0‖22+� 6 ‖U0‖22+� ⊴ b
− �N
2+�n and consequently, we obtain

|Λn |
∑
k=1

|||E [Tg(k)ℎ
′(Mn)
k−1,k+1]

||| ⊴
b−

�N
2+�n

|Λn|
|Λn |
∑
k=1

|E(n)k |
∑
i=1

�
�
2+�
1,∞ (|�(i) − g(k)|) 6 b−

�N
2+�n ∑

|i|>Mn
�

�
2+�
1,∞ (|i|) .

Using Lemma 2, we get (45).

The following lemma is a simple consequence of Lemma 4 (its proof is left to the reader).

Lemma 7 supj∈Zd
j≠0

E [|U0Uj |] ⊴ b
�N
4+�n .

Since (Xi)i∈Zd is assumed to be strongly mixing, we have Zi = Ui for any i ∈ Zd . Using Lemma 2
and Lemma 4, we have

|Λn |
∑
k=1

E [|v′k |] 6 2E
⎡
⎢
⎢
⎣
|Z0|

⎛
⎜
⎜
⎝
∑

|i|6Mni≠0

|Zi |
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝
1 ∧ ∑

|i|6Mni≠0

|Zi |√
|Λn|

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
6 2 ∑

|i|6Mni≠0

E [|U0Ui |] ⊴ Md
n b

�N
4+�n −−−−−−−−−→

n→∞
0

and
|Λn |
∑
k=1

|||E [Tg(k) (Sg(k−1)(T ) − S(Mn)
g(k) (T )) ℎ

′′(Mn)
k−1,k+1]

||| 6 ∑
|i|6Mni≠0

E [|U0Ui |] ⊴ Md
n b

�N
4+�n −−−−−−−−−→

n→∞
0.

So, we obtain (46) and (47).

Now, it su�ces to prove (48). Let � > 1 be a positive integer. In the sequel, for any j ∈ Zd ,
the notation E�[Zj] stands for the conditional expectation of Zj with respect to the �-algebra
� (Zi ; i <lex j and |i − j| > �). Then,

1
|Λn|

|Λn |
∑
k=1

|||E [(Z 2
g(k) − E [Z 2

0 ]) ℎ′′k−1,k+1]||| 6 I1 + I2,

where

I1 =
1

|Λn|
|Λn |
∑
k=1

|||E [(Z 2
g(k) − E�[Z 2

g(k)]) ℎ′′k−1,k+1]||| and I2 =
1

|Λn|
|Λn |
∑
k=1

|||E [(E�[Z 2
g(k)] − E [Z 2

0 ]) ℎ′′k−1,k+1]||| .

The next result can be found in [20].
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Lemma 8 Let  and  be two � -algebras and let X be a random variable which is measurable
with respect to  . If 1 6 p 6 r 6 ∞, then

‖E [X |] − E [X ] ‖p 6 2(21/p + 1) (�( ,)) 1p − 1r ‖X ‖r .
Assume that (Xi)i∈Zd is strongly mixing. Using Lemma 8 with p = 1 and r = (2 + �)/2 and keeping
in mind that ‖Z0‖22+� = ‖U0‖22+� ⊴ b

− �N
2+�n , we have

I2 6 ‖‖‖E�[Z 2
0 ] − E [Z 2

0 ]‖‖‖1 6 6�
�
2+�
1,∞ (�) ‖Z0‖22+� ⊴ 6b

− �N
2+�n �

�
2+�
1,∞ (�).

Now, we make the choice
� = ⌈b

− �N
(2d−1)�+6d−2

n ⌉ . (49)

Consequently, using (A3)(i), we obtain

I2 ⊴ �
(2d−1)�+6d−2

2+� �
�
2+�
1,∞ (�) −−−−−−−−−→n→∞

0.

In the other part, noting that E [(Z 2
g(k) − E�[Z 2

g(k)]) ℎ
′′(�)
k−1,k+1] = 0, we have

E [(Z 2
g(k) − E�[Z 2

g(k)]) ℎ′′k−1,k+1] = E [(Z
2
g(k) − E�[Z 2

g(k)]) (ℎ
′′
k−1,k+1 − ℎ

′′(�)
k−1,k+1)] .

So, we obtain

I1 6 E
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝
2 ∧

|||||||
∑
|i|6�
i<lex0

Zi√
|Λn|

|||||||

⎞
⎟
⎟
⎠
(Z 2

0 + E�[Z 2
0 ])

⎤
⎥
⎥
⎦
.

If L > 0, then

I1 6
L√
|Λn|

∑
|i|6�
i≠0

E [|Z0Zi |] + 2E [Z 2
0 11|Z0 |>L] + 2

‖‖‖E� [Z 2
0 ] − E [Z 2

0 ]‖‖‖1 +
‖‖‖‖‖‖‖
∑
|i|6�
i<lex0

Zi√
|Λn|

‖‖‖‖‖‖‖2
E [Z 2

0 ] .

Recall that Zi = Ui for any i in Zd . Since E [U 2
0 ] ⊴ 1 and ‖U0‖22+� ⊴ b

− �N
2+�n , we derive from Lemma 7

that

I1 ⊴
�dLb

�N
4+�n√

|Λn|
+ L−�b−

�N
2n + � (2d−1)�+6d−2

2+� �
�
2+�
1,∞ (�) +

‖‖‖‖‖‖‖
∑
|i|6�
i<lex0

Zi√
|Λn|

‖‖‖‖‖‖‖2
.

Now, we make the choice

L = |Λn|
1

2(1+�)

� d
1+� b

�(�+6)N
2(1+�)(4+�)
n

(50)

and we obtain

I1 ⊴ (|Λn|bNn )
−�

2(1+�) × b
�2(2+�)(d−1)N

(1+�)(4+�)((2d−1)�+6d−2)
n + � (2d−1)�+6d−2

2+� �
�
2+�
1,∞ (�) +

‖‖‖‖‖‖‖
∑
|i|6�
i<lex0

Ui√
|Λn|

‖‖‖‖‖‖‖2
.
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Moreover,

‖‖‖‖‖‖‖
∑
|i|6�
i<lex0

Ui√
|Λn|

‖‖‖‖‖‖‖

2

2

6
(2� + 1)d E [U 2

0 ]
|Λn|

+ 1
|Λn|

∑
j∈Zd
j≠0

|||[−�, �]
d ∩ ([−�, �]d − j)|||

|||E [U0Uj]|||

⊴ �d
|Λn|

⎛
⎜
⎜
⎝
E [U 2

0 ] + ∑
j∈Zd
j≠0

|||E [U0Uj]|||
⎞
⎟
⎟
⎠
.

Using (32) and (34), we have ∑j∈Zd
j≠0

|||E [U0Uj]||| = o(1). Consequently, we get

‖‖‖‖‖‖‖
∑
|i|6�
i<lex0

Ui√
|Λn|

‖‖‖‖‖‖‖

2

2

⊴ �d
|Λn|

⊴ 1
|Λn|b

d�N
(2d−1)�+6d−2
n

6
1

|Λn|bNn
.

So, we obtain

I1 ⊴ (|Λn|bNn )
−�

2(1+�) × b
�2(2+�)(d−1)N

(1+�)(4+�)((2d−1)�+6d−2)
n + � (2d−1)�+6d−2

2+� �
�
2+�
1,∞ (�) +

1√
|Λn|bNn

−−−−−−−−−→
n→∞

0.

Finally, if (Xi)i∈Zd is strongly mixing, then (48) holds. In order to complete the proof of Theorem
2, we only need to prove (45), (46), (47) and (48) when (Xi)i∈Zd is of the form (1). So, assume that
(Xi)i∈Zd is of the form (1) and (A3)(ii) holds. Then (Zi)i∈Zd = (U i)i∈Zd is Mn-dependent. Conse-
quently, E [Tg(k)ℎ

′(Mn)
k−1,k+1] = 0 and (45) follows.

Lemma 9 supj∈Zd
j≠0

E [|U 0U j |] = o (M−d
n ).

Proof. We have
sup
j∈Zd
j≠0

|||E [|U 0U j |] − E [|U0Uj |]||| 6 2 ‖U0‖2 ‖‖U0 − U 0‖‖2 .

Combining (19), Lemma 2 and Lemma 7 and keeping in mind ‖U0‖2 ⊴ 1, we obtain

Md
n sup

j∈Zd
j≠0

E [|U 0U j |] ⊴ Md
n b

�N
4+�n + b−

�(N+2)+2N
2(2+�)

n ∑
|j|>Mn

|j|d�
�
2+�
j,2 =−−−−−−−−−→

n→∞
0.

The proof of Lemma 9 is complete. □

Applying Lemma 9, we have

|Λn |
∑
k=1

E [|v′k |] 6 2E
⎡
⎢
⎢
⎣
|Z0|

⎛
⎜
⎜
⎝
∑

|i|6Mni≠0

|Zi |
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝
1 ∧ ∑

|i|6Mni≠0

|Zi |√
|Λn|

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
6 2 ∑

|i|6Mni≠0

E [|U 0U i |] −−−−−−−−−→n→∞
0
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and
|Λn |
∑
k=1

|||E [Tg(k) (Sg(k−1)(T ) − S(Mn)
g(k) (T )) ℎ

′′(Mn)
k−1,k+1]

||| 6 ∑
|i|6Mni≠0

E [|U 0U i |] −−−−−−−−−→n→∞
0.

So, we obtain (46) and (47). Moreover, we have

E [(Z 2
g(k) − E [Z 2

0 ]) ℎ
′′(Mn)
k−1,k+1] = E [(U

2
g(k) − E [U

2
0]) ℎ

′′(Mn)
k−1,k+1] = 0.

Consequently,

1
|Λn|

|Λn |
∑
k=1

|||E [(Z 2
g(k) − E[Z 2

0 ]) ℎ′′k−1,k+1]||| =
1

|Λn|
|Λn |
∑
k=1

||||
E [(U

2
g(k) − E [U

2
0]) (ℎ′′k−1,k+1 − ℎ

′′(Mn)
k−1,k+1)]

||||

6 E
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝
2 ∧

|||||||
∑

|i|6Mni<lex0

U i√
|Λn|

|||||||

⎞
⎟
⎟
⎠
(U

2
0 + E [U

2
0])

⎤
⎥
⎥
⎦
.

As before, if L′ > 0, then using ‖‖U 0‖‖
2
2+� 6 ‖U0‖22+� ⊴ b

− �N
2+�n , we get

1
|Λn|

|Λn |
∑
k=1

|||E [(Z 2
g(k) − E[Z 2

0 ]) ℎ′′k−1,k+1]||| ⊴
Md

n L′ supj∈Zd
j≠0

E [|U 0U j |]
√
|Λn|

+ L′−�b−
�N
2n + E [U 2

0 ]
‖‖‖‖‖‖‖
∑

|i|6Mni<lex0

U i√
|Λn|

‖‖‖‖‖‖‖2
.

Applying Lemma 9 and keeping in mind that E [U 2
0 ] ⊴ 1 then

‖‖‖‖‖‖‖
∑

|i|6Mni<lex0

U i√
|Λn|

‖‖‖‖‖‖‖

2

2

6
(2Mn + 1)d E [U

2
0]

|Λn|
+ 1
|Λn|

∑
|j|6Mnj≠0

|||[−Mn, Mn]d ∩ ([−Mn, Mn]d − j)|||
|||E [U 0U j]|||

⊴ Md
n

|Λn|

⎛
⎜
⎜
⎜
⎝

E [U 2
0 ] + Md

n sup
j∈Zd
j≠0

E [||U 0U j ||]
⎞
⎟
⎟
⎟
⎠

⊴ Md
n

|Λn|
.

Then,

1
|Λn|

|Λn |
∑
k=1

|||E [(Z 2
g(k) − E[Z 2

0 ]) ℎ′′k−1,k+1]||| ⊴
Md

n L′ supj∈Zd
j≠0

E [|U 0U j |]
√
|Λn|

+ L′−�b−
�N
2n + Md/2

n√
|Λn|

.

For

L′ = |Λn|
1

2(1+�)

(M
d
n supj∈Zd

j≠0
E [|U 0U j |])

1
1+�

b
�N

2(1+�)
n

,
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we get

1
|Λn|

|Λn |
∑
k=1

|||E [(Z 2
g(k) − E[Z 2

0 ]) ℎ′′k−1,k+1]||| ⊴
(M

d
n supj∈Zd

j≠0
E [|U 0U j |])

�
1+�

(|Λn|bNn )
�

2(1+�)
+ Md/2

n√
|Λn|

.

Finally, using again Lemma 9 and keeping in mind that Md
n = o (|Λn|) (see Lemma 2) we derive

(48). The proof of Theorem 2 is complete. □
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