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ON THE SYMMETRIC INTERSECTION OF RAUZY
FRACTALS ASSOCIATED WITH k-BONACCI

SUBSTITUTION

HAMDI AMMAR, JULIEN CASSAIGNE, AND TAREK SELLAMI

Abstract. In this article, we study the intersection of Rauzy fractals
associated with the k-bonacci substitution and its reversed substitution.
Applying balanced pair algorithm to these two substitutions, we char-
acterise all minimal balanced pairs, and we obtain a general formula
for the associated intersection substitution. This substitution is defined
over k(k+1)

2
letters.

1. Introduction

The symbolic dynamical system over three letters {1, 2, 3} called Tribonacci
substitution is defined as:

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1.

It was first studied by Gérard Rauzy in 1982 who associated to it a set known
as Rauzy fractal. Rauzy’s results have been generalized by Arnoux and Ito
[3] for any unimodular Pisot irreducible substitutions σ on d letters.

Rauzy fractal is an important object in the study of dynamical systems
associated to Pisot substitutions. In particular, it plays a fundamental role
in the Pisot conjecture. Geometrical and topological properties of Rauzy
fractals have been studied extensively; see, among other references, [3, 7, 10,
14, 16, 21, 25, 2].

Rauzy fractals appear naturally in connection with many topics such as
numeration systems, geometrical representation of symbolic dynamical sys-
tems, multidimensional continued fractions and simultaneous approxima-
tions, self-similar tilings, and Markov partitions for hyperbolic automor-
phisms of the torus.

The k-bonacci substitutions are the Pisot substitutions of the form:

σk : 1→ 12, 2→ 13, . . . , (k − 1)→ 1k, k → 1.

For k ≥ 2, the dynamical and geometrical properties of this family of sub-
stitutions have been studied in [2, 11, 26, 27].
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Our main focus in this paper is to study the intersection of Rauzy fractals
associated to

σk :



1 7→ 12
2 7→ 13
...
(k − 1) 7→ 1k
k 7→ 1

and σ∗k :



1 7→ 21
2 7→ 31
...
(k − 1) 7→ k1
k 7→ 1

over the alphabet A = {1, 2, . . . , k}, where k ≥ 2. The two substitutions σk
and σ∗k have the same incidence matrix.

The fixed point of the substitution σk is a generalization of the Fibonacci
word to the k-letter alphabet. It is the unique fixed point u = u0u1..., of
this Pisot substitution. For more details see [16].

The study of intersection of the Rauzy fractals was initiated by Sing and
Sirvent [22]. They studied the prefix-suffix automata associated with each
substitution and considered the product automaton to obtain common points
belonging to the intersection of the Rauzy fractals. They studied a sequence
of dynamical systems defined on sets Fk, included in the common dynamics
of irreducible Pisot substitutions with the same incidence matrix. These
subsets have zero Lebesgue measure. For more details see [22].

Sellami [17, 18], under the Pisot condition, characterized the intersection
of interiors of two Rauzy fractals associated with two unimodular irreducible
Pisot substitutions τ1 and τ2 with the same incidence matrix. He proved
that if the origin is an exclusive inner point of the Rauzy fractal associated
with the substitution τ1, then the intersection has nonempty interior and
has positive Lebesgue measure. He showed, under the Pisot conjecture,
that the closure of the intersection of the interior of two Rauzy fractals is
a substitutive set. This means that the intersection can be seen as a new
Rauzy fractal associated with a new substitution, obtained by the balanced
pair algorithm.

In this paper, we apply the balanced pairs algorithm to the substitutions
σk and σ∗k. We characterize explicitly the substitution for intersection, de-
fined on k(k+1)

2 letters for k ≥ 2.
This paper is organized as follows. In Section 2, we give some basic no-
tions and we explain the construction of Rauzy fractal associated with an
irreducible Pisot substitution. In Section 3, first, we recall the definition of
the balanced pair algorithm. Then, we recall the way to obtain the substi-
tution associated with the intersection of the Rauzy fractals by application
of the balanced pair algorithm. Section 4, will be about the application of
the balanced pair algorithm to the k-bonacci substitution and its reversed
substitution to obtain a general formula for the associated intersection sub-
stitution. Finally, in section 5, we present some examples.



3

2. Substitutions and Rauzy fractals

2.1. Substitutions. Let A be a finite set of letters, called alphabet. In
particular, let us denote A = {1, . . . , k} where k is a positive integer. We
denote by A∗ =

⋃
i≥0Ai the free monoid generated by A by concatenation,

that is, the set of finite words over the alphabet A with the operation of
concatenation. We denote by ε the empty word.

Definition 1. (Substitution) A substitution σ over the alphabet A is a map
σ : A → A∗, such that for any letter j, σ(j) is a non-empty word. The sub-
stitution σ over A is extended to an endomorphism of A∗ by concatenation,
i.e. σ(ε) = ε and σ(UV ) = σ(U)σ(V ), for all words U, V ∈ A∗.

For any word U ∈ A∗, let |U | be the length of the word U . For any letter
j ∈ A, |U |j denotes the number of occurrences of j in the word U . We
denote by [σ(i)]j the j-th symbol of the word σ(i), i.e.,

σ(i) = [σ(i)]1 . . . [σ(i)]|σ(i)|.

For a finite word u = u1u2 · · ·ur, the reversal of u is the word

u∗ = urur−1 · · ·u1.

Definition 2. A finite word u is said to be a Palindrome if

u∗ = u.

The Abelianization map is the map f : A∗ → Nk defined by f(w) =
(|w|1, |w|2, ...., |w|k).

Definition 3. (Incidence matrix) Let σ be a substitution over A = {1, . . . , k}.
Its incidence matrix Mσ = (mi,j)1≤i,j≤k is defined as the square matrix with
entries mi,j = |σ(j)|i, for all i, j.

Note that f(σ(w)) = Mσf(w) for all w ∈ A∗.

Definition 4. A substitution is said to be unimodular if det(Mσ) ∈ {−1,+1}.

Definition 5. (Primitive substitution) A substitution is said to be primitive
if its incidence matrix is primitive, i.e., there exists a power of its incidence
matrix whose entries are all positive.

In other words, definition 5 is equivalent to having a positive naturel
number t such that for all i, j ∈ A the letter j appears in the word σt(i).

Remark 2.1. If σ is primitive, the Perron-Frobenius Theorem asserts that
Mσ has a simple positive eigenvalue λ, that is larger than the absolute value
of all other eigenvalues.

Let AN (respectively AZ) denote the set of one-sided (respectively two-
sided) infinite sequences on AZ. The map σ is extended in a natural way to
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AN and AZ. Let u = ...u−1.u0u1... be an element of AZ, where the dot is
used to denote the zeroth position. So, σ(u) is of the form:

. . . [σ(u−1)]1 . . . [σ(u−1)]|σ(u−1)|.[σ(u0)]1 . . . [σ(u0)]|σ(u0)|[σ(u1)]1 . . . .

A fixed point of σ is an infinite word u inAN (or inAZ) such that σ(u) = u.
A periodic point of σ is an infinite word u in AN (or in AZ) such that
σs(u) = u for some s > 0. It can be proved that every substitution admits
a periodic point [15]. If σ has no fixed point, we consider a power of σ, that
have a fixed point.

Remark 2.2. When σ is primitive, then exists a finite number of periodic
points (see [9]).

Definition 6. Let σ∗ : A → A∗ be the reverse substitution of σ, defined as
follows:

[σ∗(i)]j = [σ(i)]|σ(i)|−j+1 and |σ∗(i)| = |σ(i)|.

Let σ be a substitution such that it has a fixed point u = . . . u−1.u0u1 . . . .
Let σ∗ be the reverse substitution of σ. Then, σ∗ has a fixed point u∗ =
. . . u∗−1.u

∗
0u
∗
1 . . . , with the property u∗ := u−i−1, for i ∈ Z (see for more de-

tails [20]).
Let u be a fixed point of σ, we associate to u the dynamical system (Ωu, S),
where S is the shift map on AN given by S(w0w1w2 . . .) = w1w2 . . . (respec-
tively S(w) = v, where vi = wi+1) and Ωu is the closure of {Sm(u) : m ≥ 0}
in AN equipped with the product topology.

Let us recall that an algebraic integer β > 1 is a Pisot number if all its
algebraic conjugates β(j) other than β itself satisfy |β(j)| < 1.

Definition 7. (irreducible Pisot substitution) A substitution is Pisot irre-
ducible if the dominant eigenvalue of its incidence matrix is a Pisot number,
and if the characteristic polynomial of the incidence matrix is irreducible.
Any irreducible Pisot substitution is primitive [7].

There is a long-standing conjecture stating that the dynamical system
associated to an unimodular irreducible Pisot substitution is measurably
conjugate to a translation on a (k − 1)-dimensional torus (cf [16, 30]). This
conjecture is known in the literature as the Pisot conjecture. Rauzy ap-
proached it via geometrical realization of the symbolic system. He proved
it in the case of the Tribonacci substitution, σ(1) = 12, σ(2) = 13 and
σ(3) = 1 (cf. [16]). In his proof, the construction of a planar set in R3, and
of a k − 1-dimensional set in Rk (for irreducible substitutions). This set is
known as the Rauzy fractal associated with the substitution. For references
on conditions under which the Pisot conjecture is true, we refer to, among
other references [1, 3, 4, 5, 6, 7, 12, 13, 14, 16, 29, 2, 30].
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2.2. Rauzy fractals. In order to define Rauzy fractals, we present the fol-
lowing constructions and notations.

Let σ be an unimodular Pisot substitution and λ the Perron-Fobenius
eigenvalue of the incidence matrix Mσ : λ is a Pisot number. The charac-
teristic polynomial of Mσ might be reducible, so the algebraic degree of λ is
smaller than or equal to k, the cardinality of the alphabet A. We decompose
Rk into a direct sum of subspaces, determined by the eigenvalues of Mσ. In
particular, we consider: Hu the λ−expanding space of Mσ, the eigenspace
associated with the eigenvalue λ, Hs as the λ−contracting space of Mσ, the
sum of the eigenspaces associated with the Galois conjugates of λ and He as
the complementary space, i.e., the direct sum of the eigenspaces associated
with the remaining eigenvalues of Mσ.

Hence, by the definition of the subspaces, we have Rk = Hu ⊕Hs ⊕He.
The space He is trivial if and only if the substitution is irreducible.
Let Πs : Rk → Hs be the linear projection into Hs along Hu ⊕He.

Definition 8. A stepped line L = (xn)n≥0 in Rk is a sequence (finite or
infinite) of points such that the steps xn+1 − xn belong to a finite set.
A canonical stepped line is a stepped line such that x0 = 0 and for all n ≥ 0,
xn+1 − xn belongs to the canonical basis of Rk.

Using the Abelianization map to any finite or infinite word U, we can
associate a canonical stepped line in Rk as the sequence (f(Pi)), where Pi is
the prefix of length i of U.

2.3. Definition of Rauzy fractal. The canonical stepped line associated
with a periodic point of an irreducible Pisot substitution is that it remains
within bounded distance from the expanding direction given by the Perron-
Frobenius eigenvector of the incidence matrix Mσ (see [3]). In the reducible
case, the discrete line may have other expanding directions. However, the
projection of the discrete line by Πs still provides a bounded set. For more
details, we refer to [8].

Definition 9. Let σ be a primitive unimodular Pisot substitution with dom-
inant eigenvalue λ. The Rauzy fractal (or central tile) associated with σ is
the closure of the projection of the vertices of the canonical stepped line as-
sociated with any periodic point u = (ud)d∈N of σ on the λ-contracting space
Hs.We will denote it by Rσ, such that

Rσ = {Πs(f(u0...ud−1)), d ∈ N}.

Subtiles of the central tile Rσ are naturally defined, depending on the
letter associated with the vertex of the stepped line that is projected. One
thus gets for any i ∈ A,

Rσ(i) = {Πs(f(u0...ud−1)), d ∈ N, ud = i}.
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Figure 1. The projection method to get the Rauzy fractal.

Remark 1. It follows from the primitivity of the substitution σ that the
definition of Rσ and Rσ(i) (i ∈ A) does not depend on the choice of the
periodic point u ∈ AN ([3]).

By definition, the central tile Rσ consists of the union of its subtiles, i.e.,

Rσ =
⋃
i∈A
Rσ(i).

3. Balanced pair algorithm and intersection of Rauzy
fractals

The description of the common dynamics for two substitutions τ1 and τ2

that have the same incidence matrix is a significant issue. It was previously
tackled in [18, 22, 24]. The technique, which is based on the balanced pair
algorithm for two substitutions having the same incidence matrix, is used by
Sellami in [17, 18]. This algorithm is a variation of the classical balanced pair
algorithm introduced by Livshits [13] in the context of the Pisot conjecture,
fore more details see for instance [28]. The version of the balanced pair
algorithm introduced by Sellami will be used in this article and described in
the following section.
3.1. Balanced pair algorithm. We explain the balanced pair algorithm
for two substitutions τ1 and τ2 having the same incidence matrix. We shall
assume that the substitutions are primitive. This algorithm was introduced
in [17] and [18] in the context of the study of common dynamics associated
with τ1 and τ2.

Definition 10. Let (U, V ) ∈ A∗ × A∗ a pair of finite words. We say that(
U
V

)
is a balanced pair, if f(U) = f(V ).
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Definition 11. Let U ∈ A∗ and 〈U〉m be the prefix of U of length m. A

minimal balanced pair is a balanced pair
(
U
V

)
if f(〈U〉m) 6= f(〈V 〉m), for

all 1 ≤ m < |U |.

Definition 12. The concatenation of two balanced pairs
(
X
Y

)
and

(
U
V

)
is the balanced pair defined by:

(
X
Y

)(
U
V

)
=

(
XU
Y V

)
.

Let τ1 and τ2 be two irreducible Pisot substitutions with the same inci-
dence matrix. Let u and v be elements of AN that are periodic points of τ1

and τ2 respectively. The balanced pair algorithm gives a decomposition of

the double periodic points
(
u
v

)
into minimal balanced pairs.

What we are looking for is when we have the number of minimal balanced
pairs is bounded.

The balanced pair algorithm for
(
u
v

)
is defined as follows:

At first, let
(
u0

v0

)
be the first minimal balanced pair, where u0, v0 are

prefixes of u, v respectively. We apply the substitutions τ1 and τ2 to this
balanced pair in the following way(
u0

v0

)
→
(
τ1(u0)
τ2(v0)

)
. Since the substitutions τ1 and τ2 have the same

incidence matrix, the pair
(
τ1(u0)
τ2(v0)

)
is balanced. Then, we decompose this

new balanced pair into minimal balanced pairs. We repeat this procedure
for each of these new minimal balanced pairs.

With this decomposition, we obtain all the common points of the two
stepped lines associated with the two periodic points u and v. This means
that we obtain common points from the interior of the two Rauzy fractals of
τ1 and τ2. If the substitutions τ1 and τ2 verify the Pisot conjecture and 0 is
an exclusive inner point of their Rauzy fractal, the set of minimal balanced
pairs is finite and the algorithm terminates (cf.[18]). In this case, we set
up E as the set of minimal balanced pairs obtained in the algorithm. We
define a new substitution Σ over the alphabet of minimal balanced pairs,

Σ : E∗ → E∗ such that, for all
(
U
V

)
∈ E,

Σ(

(
U
V

)
) =

(
U1

V1

)
. . .

(
Um
Vm

)
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where all
(
Ui
Vi

)
are minimal balanced pair and

(
σ1(U)
σ2(V )

)
=

(
U1 . . . Um
V1 . . . Vm

)
.

For more details, see [17] [18] [20].

3.2. Intersection of Rauzy fractals.

Definition 13. We say that a set is substitutive if it is the closure of the
projection of the vertices of a stepped line associated with a substitution Σ
on a contracting space of the incidence matrix of Σ.

Proposition 1. [17] Let τ1 and τ2 be two unimodular Pisot irreducible sub-
stitutions with the same incidence matrix. We consider Rτ1 and Rτ2 their
associated Rauzy fractals. We suppose that 0 is an exclusive inner point to
Rτ1 . Then the set E has a nonempty interior and strictly positive Lebesgue
measure.

If the substitutions τ1 and τ2 satisfy the Pisot conjecture, then the set E
is also a Rauzy fractal associated to the substitution defined by the balanced
pair algorithm. Sellami characterized the closure of the intersection of the
interiors of two Rauzy fractals associated with two substitutions unimodular
Pisot substitutions with the same incidence matrix, and more precisely as
shown in the following Theorem:

Theorem 3.1. [18] Let τ1 and τ2 be two unimodular Pisot irreducible sub-
stitutions with the same incidence matrix. We consider Rτ1 and Rτ2 be their
two associated Rauzy fractals. Suppose that 0 is an exclusive inner point
of Rτ1 and that one substitution of them satisfies the Pisot conjecture. We
denote by E the closure of the intersection of the interiors of Rτ1 and Rτ2 .
Then E has a nonempty interior and is a substitutive set associated with the
Pisot substitution Σ obtained by the balanced pair algorithm, defined on the
alphabet of minimal balanced pairs.

In next section, we study the symmetric intersection of Rauzy fractals
associated with k-bonacci substitution.

4. k-bonacci intersection

In this section we consider the substitution

σk :



1 7→ 12
2 7→ 13
...
(k − 1) 7→ 1k
k 7→ 1

This substitution is irreducible of Pisot type [16]. We are interested in the
study of the intersection of Rauzy fractals associated with σk and σ∗k, its
reverse substitution.
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The two substitutions σk and σ∗k have the same incidence matrix defined
by

Mσk =



1 1 1 · · · 1 1 1 1
1 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0

. . .
0 0 0 · · · 0 1 0 0
0 0 0 · · · 0 0 1 0


for k ≥ 2.

The characteristic polynomial of the incidence matrix Mσk is

Pk(x) = xk − xk−1 − · · · − x− 1,

for every k ≥ 2 (see [23]).

In this paper we are interested in the intersection of Rauzy fractals asso-
ciated with σk and σ∗k. We give a general formula for substitution associated
with this intersection. Applying the balanced pair algorithm to these two
substitutions, we characterize all minimal balanced pairs; we give exactly
the cardinal of the set formed by all minimal balanced pairs; and we prove
that the substitution describing the intersection has a regular form and that

this substitution is over
k(k + 1)

2
letters.

First, we prove the following relation: for k ≥ 2, we have

(σk)
k(1) = (σ∗k)

k(1).

In order to show this relation, we give the following Definition and Lemma:

Definition 14. We define a sequence of words zk on the infinite alphabet N,
for k ≥ 1, with the following relation{

z1 = 1
zk = zk−1 k zk−1, for any k ≥ 2

Remark 4.1. It is clear to see that the words zk are palindromes (z∗k = zk).

Lemma 1. For any integer k ≥ 2, we have:

zk = σk(zk−1)1.

Proof. By reasoning by induction on k, we have for k = 2, z2 = σ2(z1)1,
since z2 = 121 and σ2(z1) = σ2(1) = 12. Assuming that the equality holds
up to the order k. Now, we show this property for the order (k + 1).
We have

zk+1 = zk(k + 1)zk

= σk(zk−1)1(k + 1)σk(zk−1)1.
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Since zk−1 ∈ {1, 2, ..., k − 1}∗, we have σk+1(zk−1) = σk(zk−1), because,
by Definition of σk,

∀ i ∈ {1, 2, ..., k − 1}∗, we have σk+1(i) = σk(i) = 1(i+ 1).

Thus, we obtain

zk+1 = σk+1(zk−1)σk+1(k)σk+1(zk−1)1

= σk+1(zk−1 k zk−1)1

= σk+1(zk)1.

�

Lemma 2. Let k ≥ 2 be a fixed integer.
Then, for any j ∈ {1, . . . , k}, we have:

Pj :

{
σjk(k + 1− j) = zj
σjk(i− j) = zji, for j + 1 ≤ i ≤ k

Proof. Reasoning by induction on j.
For j = 1, we have

P1 :

{
σk(k) = 1 = z1

σk(i− 1) = 1i = z1i, for 2 ≤ i ≤ k
It is assumed that Pj holds. For all j ∈ {1, ...k − 1} show Pj+1 holds.

σj+1
k (k + 1− (j + 1)) = σj+1

k (k − j)
= σjk [σk(k − j)]
= σjk (1(k − j + 1))

= σjk(1)σjk(k − j + 1)

= σjk ((j + 1)− j)σjk(k − j + 1)

= zj(j + 1)zj ,

which follows from σjk(1) = σjk ((j + 1)− j) = zj(j+1) and σjk(k− j+1) =
zj by Pj .
Thus, we get

σj+1
k (k + 1− (j + 1)) = zj+1.

For j + 2 ≤ i ≤ k, we get

σj+1
k (i− (j + 1)) = σjk [σk(i− j − 1)]

= σjk (1(i− j))
= σjk(1)σjk(i− j)
= σjk ((j + 1)− j)σjk(i− j)
= zj(j + 1)zji

= zj+1i,
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which follows from σjk(1) = σjk ((j + 1)− j) = zj(j + 1) and σjk(i − j) =
zji by Pj .

�

Corollary 1. For k ≥ 2, we have σkk(1) = zk.

The proof is easily obtained by applying Lemma(2) with j = k.

Lemma 3. For k ≥ 2, we have

(σk)
k(1) = (σ∗k)

k(1).

Proof. Since zk is a palindrome, then we have

(σ∗k)
k(1) = ((σk)

k(1))∗ = z∗k = zk = (σk)
k(1).

�

Definition 15. A minimal balanced pair
(
U
V

)
is called a minimal balanced

pair of type j if the length of U equals j(i.e., |U | = j = |V |).

Then, we obtain the following Lemma:

Lemma 4. (1) Let
(
U
V

)
be a minimal balanced pair obtained by ap-

plying the balanced pair algorithm to (σk, σ
∗
k). Then

(
U
V

)
is of type

2j, with 0 ≤ j ≤ k − 1.
(2) The set Ej of minimal balanced pairs of type 2j obtained by applying

the balanced pair algorithm to (σk, σ
∗
k) contain exactly k−j elements.

Proof. (1) We apply the balanced pair algorithm with σk and σ∗k. The
first minimal balanced pair that we can consider is the beginning of

the two fixed points associated with σk and (σ∗k)
k that will be

(
1
1

)
of type 20.

• For i = 1 and 1 + j ≤ k, we apply the balanced pair algorithm
with σk and σ∗k to the first minimal balanced pair. We represent
the image of the first element of this pair by σk and the second
one by σ∗k.
We obtain(

1
1

)
σk, σ

∗
k−−−→

(
σk(1)
σ∗k(1)

)
=

(
12
21

)
=

(
z12
2z1

)
by Definition(14).

We obtain a new balanced pair of type 21. This new balanced

pair
(

12
21

)
is minimal because 2 appears only once.

The second step is to consider the same process with the new
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balanced pair
(

12
21

)
.

We consider the image of this balanced pair with the two sub-
stitutions σk and σ∗k and we obtain(

12
21

)
σk, σ

∗
k−−−→

(
σk(12)
σ∗k(21)

)
=

(
σ2
k(1)

(σ∗k)
2(1)

)
=

(
1213
3121

)
=

(
z23
3z2

)
by Definition(14).

We get a new different balanced pair of type 22.

This new balanced pair
(

1213
3121

)
is minimal because 3 appears

only once.
We continue with the balanced pair algorithm up to the order j

with σk and σ∗k with minimal balanced pair
(

1
1

)
.(

1
1

)
σjk, (σ

∗
k)
j

−−−−−→

(
σjk(1)

(σ∗k)
j(1)

)
=

(
zj(1 + j)
(1 + j)zj

)
by Lemma(2).

We get new balanced pairs of type 2j .We notice that
(
zj(1 + j)
(1 + j)zj

)
is a minimal balanced pair because (1 + j) appears only once at
the beginning and the end of the pair. We cannot decompose(
zj(1 + j)
(1 + j)zj

)
into minimal balanced pairs.

• For 1 + j = k, by applying the balanced pair algorithm to the
order j + 1, with σk and σ∗k to the last minimal balanced pair(
zjk
kzj

)
, we obtain a new different balanced pair(

zjk
kzj

)
σk, σ

∗
k−−−→

(
σk(zjk)
σ∗k(kzj)

)
=

(
σj+1
k (1)

(σ∗k)
j+1(1)

)
=

(
σkk(1)

(σ∗k)
k(1)

)
=(

zk
zk

)
=

(
zk−1kzk−1

zk−1kzk−1

)
by Corollary(1).

This last balanced pair can be decomposed with minimal bal-

anced pairs
(
i
i

)
of type 20 because we obtain the same word.

We repeat this procedure for each of these new minimal balanced

pairs
(
i
i

)
of type 20.

• For 1 ≤ i ≤ k and i + j ≤ k, we apply the balanced pair

algorithm with σk and σ∗k to the minimal balanced pair
(
i
i

)
,

of type 20. We obtain(
i
i

)
σk, σ

∗
k−−−→

(
σk(i)
σ∗k(i)

)
=

(
1(i+ 1)
(i+ 1)1

)
=

(
z1(i+ 1)
(i+ 1)z1

)
by Definition(14).
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We get a new minimal balanced pair of type 21. This new bal-

anced pair
(

1(i+ 1)
(i+ 1)1

)
is minimal because (i+1) appears only

once.
The second step is to consider the same process with the new

balanced pair
(

1(i+ 1)
(i+ 1)1

)
.We take the image of this balanced

pair with the two substitutions σk and σ∗k and we obtain(
1(i+ 1)
(i+ 1)1

)
σk, σ

∗
k−−−→

(
σk(1(i+ 1))
σ∗k((i+ 1)1)

)
=

(
σ2
k(i)

(σ∗k)
2(i)

)
=

(
121(i+ 2)
(i+ 2)121

)
=(

z2(i+ 2)
(i+ 2)z2

)
by Definition(14).

We get a new different balanced pair of type 22.

This new balanced pair
(

121(i+ 2)
(i+ 2)121

)
is minimal because (i+

2) appears only once.
We continue with the balanced pair algorithm up to the order j

with σk and σ∗k to the minimal balanced pair
(
i
i

)
.

(
i
i

)
σjk, (σ

∗
k)
j

−−−−−→

(
σjk(i)

(σ∗k)
j(i)

)
=

(
zj(i+ j)
(i+ j)zj

)
by Lemma(2).

We get a new balanced pairs of type 2j .We notice that
(
zj(i+ j)
(i+ j)zj

)
is a minimal balanced pair because (i+ j) appears only once at
the beginning and the end of the pair.We cannot decompose(
zj(i+ j)
(i+ j)zj

)
into minimal balanced pair.

• For i+j = k, by applying the balanced pair algorithm to the or-

der j+ 1, with σk and σ∗k with minimal balanced pair
(
zjk
kzj

)
,

we obtain a new different balanced pair(
zjk
kzj

)
σk, σ

∗
k−−−→

(
σk(zjk)
σ∗k(kzj)

)
=

(
σj+1
k (i)

(σ∗k)
j+1(i)

)
=

(
σk−i+1
k (i)

(σ∗k)
k−i+1(i)

)
=(

zk−i+1

zk−i+1

)
=

(
zk−i (k − i+ 1) zk−i
zk−i (k − i+ 1) zk−i

)
by Lemma(2).

This last balanced pair can be decomposed with minimal bal-
anced pairs of type 20 because we obtain the same word.
Finally, the balanced pair algorithm terminates. We obtain all
the minimal balanced pairs.

These pairs are:
(
zj(i+ j)
(i+ j)zj

)
of type 2j .

(2) For 1 ≤ i+ j ≤ k, 0 ≤ j ≤ k − 1 and 1 ≤ i ≤ k − j and for a given
j, i takes k − j values. Therefore, there are (k − j) pairs of type 2j ,
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i.e.,
]Ej = k − j.

�

This Lemma will permit us to obtain the cardinal exactly of the set formed
by all minimal balanced pairs and to obtain a general formula for the inter-
section substitution associated with σk and σ∗k.

Using Theorem 3.1 in the case of the substitutions σk and σ∗k, we obtain
the following main result:

Theorem 4.1. Let σk and σ∗k be two substitutions defined as follows:

σk :



1 7→ 12
2 7→ 13
...
(k − 1) 7→ 1k
k 7→ 1

and σ∗k :



1 7→ 21
2 7→ 31
...
(k − 1) 7→ k1
k 7→ 1

Let Rσk and Rσ∗
k
be the respective Rauzy fractals. Then, the closure of the

intersection of the interior of Rσk and Rσ∗
k
has a nonempty interior.

Furthermore, it is a substitutive set associated to the substitution Σk obtained
by the balanced pair algorithm. The substitution Σk is defined over the al-

phabet E = {Aij : 1 ≤ i, 0 ≤ j, i + j ≤ k} of cardinal
k(k + 1)

2
. The

substitution Σk is defined by:

Σk(Aij) = Ai(j+1) if i+ j < k

Σk(Aij) = Zj+1 if i+ j = k,where Z1 = A10 and Zj+1 = ZjA(j+1)0Zj .

Proof. We describe the balanced pair algorithm and we obtain explicitly the

substitution Σk defined on
k(k + 1)

2
letters for k ≥ 2.

We define Aij =

(
zj(i+ j)
(i+ j)zj

)
the minimal balanced pair of type 2j , ob-

tained by Lemma 4 for i ∈ {1, · · · , k} and j ∈ {0, · · · , k − 1}.
We apply the balanced pair algorithm with σk and σ∗k. The first minimal
balanced pair that we can consider is the beginning of the two fixed points

associated with σk and (σ∗k)
k that will be

(
1
1

)
.

• For i = 1 and 1 + j ≤ k, we apply the balanced pair algorithm with
σk and σ∗k to the first minimal balanced pair. We represent the image
of the first element of this pair by σk and the second one by σ∗k.
We obtain:(
1
1

)
σk, σ

∗
k−−−→

(
σk(1)
σ∗k(1)

)
=

(
12
21

)
=

(
z12
2z1

)
by Definition(14).
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We denote by A10 the minimal balanced pair
(

1
1

)
. A10 is a bal-

anced pair of type 20. Then, by A11 the minimal balanced pair(
12
21

)
, A11 is only a balanced pair of type 21.

This new balanced pair A11 is minimal because 2 appears only once.
We deduce the relation A10 7→ A11.
The second step is to consider the same process with the new bal-

anced pair A11 =

(
12
21

)
.

We consider the image of this balanced pair with the two substitu-
tions σk and σ∗k and we obtain(

12
21

)
σk, σ

∗
k−−−→

(
σk(12)
σ∗k(21)

)
=

(
σ2
k(1)

(σ∗k)
2(1)

)
=

(
1213
3121

)
=

(
z23
3z2

)
by Definition(14).

We obtain a new different balanced pair of type 22 denoted A12.
This new balanced pair A12 is minimal because 3 appears only once.
Hence we obtain A11 7→ A12.
We continue with the balanced pair algorithm up to the order j, we
take the image of A1(j−1) of type 2j−1.(

1
1

)
σjk, (σ

∗
k)
j

−−−−−→

(
σjk(1)

(σ∗k)
j(1)

)
=

(
zj(1 + j)
(1 + j)zj

)
= A1j by Lemma(2).

We get a new different balanced pair of type 2j denoted A1j . We no-
tice that A1j is a minimal balanced pair because (1+j) appears only
once at the beginning and the end of the pair. We cannot decompose
A1j into minimal balanced pair.
We deduce the relation A1(j−1) 7→ A1j .

• For 1 + j = k, by applying the balanced pair algorithm to the order

j+1, with σk and σ∗k to the minimal balanced pair Ak−jj =

(
zjk
kzj

)
,

we obtain a new different balanced pair(
zjk
kzj

)
σk, σ

∗
k−−−→

(
σk(zjk)
σ∗k(kzj)

)
=

(
σj+1
k (1)

(σ∗k)
j+1(1)

)
=

(
σkk(1)

(σ∗k)
k(1)

)
=(

zk
zk

)
=

(
zk−1kzk−1

zk−1kzk−1

)
by Corollary(1).

This last balanced pair can be decomposed with minimal balanced
pairs of type 20 because we obtain the same word.
We deduce the relation

A1j 7→ Zj+1, where Z1 = A10 and Zj+1 = ZjA(j+1)0Zj .

We repeat this procedure for each of these new minimal balanced pairs
(
i
i

)
of type 20.
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• For 1 ≤ i ≤ k and i + j ≤ k, we apply the balanced pair algorithm

with σk and σ∗k to the minimal balanced pair of type 20, Ai0 =

(
i
i

)
.

We obtain:(
i
i

)
σk, σ

∗
k−−−→

(
σk(i)
σ∗k(i)

)
=

(
1(i+ 1)
(i+ 1)1

)
=

(
z1(i+ 1)
(i+ 1)z1

)
by Definition(14).

We get a new minimal balanced pair of type 21. We denote it by

Ai1 =

(
1(i+ 1)
(i+ 1)1

)
.

This new balanced pair Ai1 is minimal because (i+ 1) appears only
once.
We deduce the relation Ai0 7→ Ai1.
The second step is to consider the same process with the new
balanced pair Ai1.
We consider the image of this balanced pair with the two substitu-
tions σk and σ∗k and we obtain(

1(i+ 1)
(i+ 1)1

)
σk, σ

∗
k−−−→

(
σk(1(i+ 1))
σ∗k((i+ 1)1)

)
=

(
σ2
k(i)

(σ∗k)
2(i)

)
=

(
121(i+ 2)
(i+ 2)121

)
=(

z2(i+ 2)
(i+ 2)z2

)
by Definition(14).

We get a new different balanced pair of type 22 denoted Ai2.
This new balanced pair Ai2 is minimal because (i+ 2) appears only
once.
Hence we obtain Ai1 7→ Ai2.
We continue with the balanced pair algorithm up to the order j, we
take the image of Ai(j−1) of type 2j−1(
i
i

)
σjk, (σ

∗
k)
j

−−−−−→

(
σjk(i)

(σ∗k)
j(i)

)
=

(
zj(i+ j)
(i+ j)zj

)
= Aij by Lemma(2).

We obtain a new different balanced pair Aij of type 2j .
We notice that Aij is a minimal balanced pair because (i + j) ap-
pears only once at the beginning and the end of the pair.We cannot
decompose Aij into minimal balanced pair.
We deduce the relation Ai(j−1) 7→ Aij .

• For i+ j = k, by applying the balanced pair algorithm to the order

j+1, with σk and σ∗k to the minimal balanced pair Ak−jj =

(
zjk
kzj

)
,

we obtain a new different balanced pair(
zjk
kzj

)
σk, σ

∗
k−−−→

(
σk(zjk)
σ∗k(kzj)

)
=

(
σj+1
k (i)

(σ∗k)
j+1(i)

)
=

(
σk−i+1
k (i)

(σ∗k)
k−i+1(i)

)
=(

zk−i+1

zk−i+1

)
=

(
zk−i (k − i+ 1) zk−i
zk−i (k − i+ 1) zk−i

)
by Lemma(2).

This last balanced pair can be decomposed with minimal balanced
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pairs of type 20 because we obtain the same word.
We deduce the relation

Aij 7→ Zj+1, where Z1 = A10 and Zj+1 = ZjA(j+1)0Zj .

Finally, the balanced pair algorithm terminates. We obtain all the
minimal balanced pairs.
We define the set of all minimal balanced pairs as follows:

E = {Aij : 1 ≤ i, 0 ≤ j, i+ j ≤ k}.

From Lemma 4, we have ]Ej = k − j which permits us to calculate
the cardinal of the set E formed by all minimal balanced pairs. This
cardinal will be shown as follows:

]E =
k−1∑
j=0

]Ej =
k−1∑
j=0

k − j =
k(k + 1)

2
.

Thus, we obtain the substitution Σk defined over the set formed
by all minimal balanced pairs E by a general formula as follows:

Σk =

{
Aij = Ai(j+1) if i+ j < k,
Aij = Zj+1 if i+ j = k,where Z1 = A10 and Zj+1 = ZjA(j+1)0Zj .

�

5. Examples

In this section, we compute Σk explicitly for small values of k.

Example 1
For k = 2, we consider two substitutions σ2 and σ∗2 defined as follows:

σ2 :

{
1 7→ 12
2 7→ 1

and σ∗2 :

{
1 7→ 21
2 7→ 1

σ2 is the Fibonacci substitution and σ∗2 its reversed substitution.
The two substitutions σ2 and σ∗2 have the same incidence matrix defined by

Mσ2 =

(
1 1
1 0

)
.

The fixed points of σ2 and (σ∗2)2 beginning with u = 1211212112112... and
v = 1212112121121...
We describe the balanced pair algorithm with σ2 and σ∗2 to the first minimal

balanced pair
(

1
1

)
.We represent the image of the first element of this pair

by σ2 and the second one by σ∗2. Then, we obtain
(

1
1

)
σ2, σ

∗
2−−−→

(
12
21

)
and
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we denote by A10 the minimal balanced pair
(

1
1

)
and by A11 the minimal

balanced pair
(

12
21

)
. Hence, it follows that

A10 7→ A11.

The second step is to apply the two substitutions σ2 and σ∗2 to A11 =(
12
21

)
.

We obtain
(

12
21

)
σ2, σ

∗
2−−−→

(
121
121

)
.

The obtained balanced pair can be decomposed with minimal balanced pairs
as: (

1
1

)(
2
2

)(
1
1

)
.

Then, the new minimal balanced pair
(

2
2

)
appears and we denote it by

A20 =

(
2
2

)
.

Therefore, the image of the letter A11 is A10A20A10.
We continue with this algorithm where we apply the two substitutions σ2

and σ∗2 to A20 =

(
2
2

)
and we obtain

(
1
1

)
, which has already been

considered.
Hence, we obtain A20 7→ A10.
Now, in total, we obtain an alphabet E on three symbols:

E =

{
A10 =

(
1
1

)
, A11 =

(
12
21

)
, A20 =

(
2
2

)}
.

For fixed j, we define the set Ej of minimal balanced pair of the type 2j as
follows:
For k = 2, we have j ∈ {0, 1} and i ∈ {1, 2}.
For j = 0, we have

E0 =

{
A10 =

(
1
1

)
, A20 =

(
2
2

)}
.

And for j = 1, we have

E1 =

{
A11 =

(
12
21

)}
.

So, for a given j, i takes (2− j) values. Therefore, there are (2− j) pairs of
type 2j , i.e.,

]Ej = 2− j.
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Thus,

]E =

1∑
j=0

]Ej =

1∑
j=0

2− j =
2(2 + 1)

2
= 3.

We can define the substitution Σ2 as:

Σ2 =

 A10 7→ A11

A11 7→ A10A20A10

A20 7→ A10

The substitution Σ2 generates all the common points of the two stepped
lines associated with σ2 and σ∗2.

Figure 2. Rauzy fractals associated with σ2, σ∗2 and Σ2.

The incidence matrix of Σ2 is MΣ2 =

 0 2 1
1 0 0
0 1 0

 .

The determinant of MΣ2 is 1. So the substitution Σ2 is unimodular.
The characteristic polynomial of σ2 is x2− x− 1. The characteristic polyno-
mial is associated with the substitution Σ2 is (x+ 1)(x2 − x− 1).
This substitution is a primitive reducible Pisot .

Example 2
For k = 3, we consider the Tribonacci substitution σ3 and its reversed

substitution σ∗3 defined as:

σ3 :

 1 7→ 12
2 7→ 13
3 7→ 1

and σ∗3 :

 1 7→ 21
2 7→ 31
3 7→ 1

The two substitutions σ3 and σ∗3 have the same incidence matrix defined

by Mσ3 =

 1 1 1
1 0 0
0 1 0

 .

The fixed points of σ3 and (σ∗3)3 beginning with u = 1213121121312 · · ·
and v = 1213121213121 · · · .
When we apply the balanced pair algorithm to the two substitutions σ3 and
σ∗3, we get the following balanced pairs E :
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A10 =

(
1
1

)
, A11 =

(
12
21

)
, A12 =

(
1213
3121

)
, A20 =

(
2
2

)
, A30 =(

3
3

)
, A21 =

(
13
31

)
.

For fixed j, we define the set Ej of minimal balanced pair of the type 2j as
follows:
For k = 3, we have j ∈ {0, 1, 2} and i ∈ {1, 2, 3}.
For j = 0, we have

E0 =

{
A10 =

(
1
1

)
, A20 =

(
2
2

)
, A30 =

(
3
3

)}
.

For j = 1, we have

E1 =

{
A11 =

(
12
21

)
, A21 =

(
13
31

)}
.

And for j = 2, we have

E2 =

{
A12 =

(
1213
3121

)}
.

So for a given j, i takes (3− j) values. Therefore, there are (3− j) pairs
of type 2j , i.e.,

]Ej = 3− j.
Thus,

]E =

2∑
j=0

]Ej =

2∑
j=0

3− j =
3(3 + 1)

2
= 6.

Thus, we obtain the substitution Σ3 for intersection on 6 symbols defined
as:

Σ3 :



A10 7→ A11

A11 7→ A12

A12 7→ A10A20A10A30A10A20A10

A20 7→ A21

A21 7→ A10A20A10

A30 7→ A10

The substitution Σ3 generates all the common points of the two stepped
lines associated with σ3 and σ∗3.

The incidence matrix of Σ3 is MΣ3 =


0 0 4 0 2 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 .

The determinant of MΣ3 is 1. So the substitution Σ3 is unimodular.
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Figure 3. Rauzy fractals associated with σ3, σ∗3 and Σ3.

The characteristic polynomial of σ3 is x3−x2−x−1. The characteristic poly-
nomial is associated with the substitution Σ3 is (x3−x2−x−1)(x3+x2+x−1).
This substitution is a primitive reducible Pisot .
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