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Abstract

Let A∗ denote the free monoid generated by a finite nonempty set A. In this paper we introduce a
new measure of complexity of languages L ⊆ A∗ defined in terms of the semigroup structure on
A∗. For each L ⊆ A∗, we define its cost c(L) as the infimum of all real numbers α for which there
exist a language S ⊆ A∗ with pS(n) = O(nα) and a positive integer k with L ⊆ Sk.We also define
the cost dimension dc(L) as the infimum of the set of all positive integers k such that L ⊆ Sk for
some language S with pS(n) = O(nc(L)). We are primarily interested in languages L given by the
set of factors of an infinite word x = x0x1x2 · · · ∈ AN of zero topological entropy, in which case
c(L) < +∞. We establish the following characterisation of words of linear factor complexity: Let
x ∈ AN and L = Fac(x) be the set of factors of x. Then px(n) = Θ(n) if and only c(L) = 0 and
dc(L) = 2. In other words, px(n) = O(n) if and only if Fac(x) ⊆ S2 for some language S ⊆ A+

of bounded complexity (meaning lim sup pS(n) < +∞). In general the cost of a language L
reflects deeply the underlying combinatorial structure induced by the semigroup structure on A∗.
For example, in contrast to the above characterisation of languages generated by words of sub-
linear complexity, there exist non factorial languages L of complexity pL(n) = O(log n) (and
hence of cost equal to 0) and of cost dimension +∞. In this paper we investigate the cost and
cost dimension of languages defined by infinite words of zero topological entropy. We establish
the existence of words of cost zero and finite cost dimension having arbitrarily high polynomial
complexity. In contrast we also show that for each α > 2 there exist infinite words x of positive
cost and of complexity px(n) = O(nα).
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1. Introduction

Let A be a finite non-empty set. For each infinite word x = x0x1x2 · · · ∈ AN, the complexity
or factor complexity px(n) counts the number of distinct blocks xixi+1 · · · xi+n−1 ∈ An of length
n occurring in x. In other words, the complexity of x is taken to be the complexity of the language
of its factors Fac(x) = {xixi+1 · · ·xj | 0 ≤ i ≤ j}. First introduced by Hedlund and Morse in
their seminal 1938 paper [13] under the name of block growth,2 the factor complexity provides
a useful measure of the extent of randomness of x and more generally of the subshift it gener-
ates. Periodic words have bounded factor complexity while digit expansions of normal numbers
have maximal complexity. A celebrated theorem of Morse and Hedlund in [13] states that every
aperiodic (meaning non-ultimately periodic) word contains at least n + 1 distinct factors of each
length n. Results on the complexity of words are generally one of two kinds: Either they provide
conditions or formulae for the complexity of a given family of words, for instance Pansiot’s work
in [14] on the classification of the factor complexities of morphic words. Or they give conditions
on words, or rules for generating them, subject to specified constraints on their complexity. An
example of a deep and difficult problem of this kind is the so-called S-adic conjecture on words of
linear complexity (see for instance [9] and the references therein).

The set A∗ consisting of all finite words over the alphabet A is naturally a free monoid under
the operation of concatenation, with the empty word ε playing the role of the identity. Thus given a
language L ⊆ A∗ (for instance consisting of all factors of some infinite word x ∈ AN) one may ask
whether L is contained in a finite product of the form Sk where S is a language of strictly lower
complexity. Consider for example the Thue-Morse infinite word

x = 011010011001011010010 · · ·

where for each n ≥ 0, the n′th term xn is defined as the sum modulo 2 of the digits in the binary
expansion of n. The origins of this word date back to the beginning of the last century with the
works of A. Thue [15, 16] in which he proves amongst other things that x is overlap-free i.e.,
contains no word of the form uuu′ where u′ is a non-empty prefix of u. It is well known that x is
also a fixed point of the substitution ϕ : 0→ 01, 1→ 10. The factor complexity of the Thue-Morse
word, first computed by Brlek [3] and independently by de Luca and Varricchio [7], is given by
px(1) = 2, px(2) = 4 and for n ≥ 3

px(n) =

{
6 · 2r−1 + 4q 0 < q ≤ 2r−1

2r+2 + 2q 2r−1 < q ≤ 2r

where r and q are uniquely determined by the equation n = 2r + q + 1, r ≥ 0 and 0 < q ≤ 2r.

For each n ≥ 0, let tn = ϕn(0) and tn = ϕn(1). Then both tn and tn are factors of x of length

2In [8], Ehrenfeucht, Lee, and Rozenberg adopted the term subword complexity.
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2n. Let S ⊆ {0, 1}∗ be the set consisting of all prefixes and suffixes (including ε) of tn and tn
for each n ≥ 0. Since tn+1 = ϕn+1(0) = ϕn(01) = tntn and similarly tn+1 = tntn, it follows
that S contains at most 4 words of each length n. We claim that Fac(x) ⊆ S2. To see this, let
u ∈ Fac(x). Since S contains ε, 0 and 1, we may suppose |u| ≥ 2. Consider the least n ≥ 0 such
that u is a factor of tn+1 or a factor of tn+1. If u is a factor of tn+1, by minimality of n we can write
u = vw where v is a non empty suffix of tn and w a non empty prefix of tn. Whence u ∈ S2. A
similar argument applies in case u is a factor of tn+1. Thus while Fac(x) is of linear complexity, it
is contained in a product S2 where S is a language of bounded complexity. With some care, this
construction may be generalized to fixed points of arbitrary (primitive) substitutions τ : A → A+

by letting S be the collection of all prefixes and suffixes of all τn(u) (n ≥ 0) where u ranges over
all factors of τ(a) for each a ∈ A.

As another example, let L = Fac(x) denote the set of factors of a Sturmian word x ∈ {0, 1}N
(for instance we may take x = 0100101001001010010 · · · the Fibonacci word defined as the
fixed point of the substitution 0 7→ 01, 1 7→ 0). We recall that Sturmian words are infinite words
having exactly n + 1 distinct factors of each length n ≥ 1. In view of the Morse-Hendlund
theorem, Sturmian words are those aperiodic words of minimal factor complexity. They arise
naturally in various branches of mathematics including combinatorics, algebra, number theory,
ergodic theory, dynamical systems and differential equations. In theoretical physics, Sturmian
words constitute 1-dimensional models for quasi-crystals, and in theoretical computer science
they are used in computer graphics as digital approximation of straight lines. The condition
px(n) = n + 1 implies that x admits a unique left (right, respectively) special factor of each
length n denoted lx(n) (rx(n), respectively). In other words, lx(n) (rx(n), respectively) occurs
in x preceded (followed, respectively) by both 0 and 1. See for instance Chapter 2 of [11]. Set
S = {ε} ∪ {rx(n)0 |n ≥ 0} ∪ {1lx(n) |n ≥ 0}. Then S consists of precisely 2 words of each
given length n ≥ 1. One can prove that Fac(x) ⊆ S2 (see Example 3.4). It turns out that this
is optimal in the sense that if x is an infinite word and Fac(x) ⊆ S2 for some language S with
lim sup pS(n) ≤ 1, then x is ultimately periodic (see [17]).

The above examples are only special cases of the following more general result proved herein:

Theorem 1. An infinite word x ∈ AN is of sub-linear complexity (i.e., px(n) = O(n)) if and only
if Fac(x) ⊆ S2 for some language S ⊆ A∗ of bounded complexity (i.e., lim sup pS(n) < +∞).

It turns out that Theorem 1 is very specific to languages defined by infinite words. In fact, there
exist non-factorial languages L of complexity pL(n) = O(log n) which are not contained in any
finite product of the form Sk where S is a language of bounded complexity and k a positive integer.

Our aim here is to express and study these ideas in greater generality. Given a language L
of low complexity, meaning lim supn→∞

log pL(n)
n

= 0, we define the cost of L, denoted c(L), as
the infimum of all real numbers α for which there exist a language S with pS(n) = O(nα) and a
positive integer k such that L ⊆ Sk. More precisely, for each real number α ∈ [0,+∞), we define
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the α-dimension dα(L) by

dα(L) = inf{k ≥ 1 |L ⊆ Sk for some language S ∈ L(α)},

where L(α) denotes the collection of all languages L ⊆ A∗ (over some finite non empty alphabet
A) whose complexity pL(n) = O(nα). If x is an infinite word and L = Fac(x), then, by the
Morse-Hedlund theorem, L belongs to L(0) if and only if x is ultimately periodic. While if x is
a Sturmian word or if x is generated by a primitive substitution, then L belongs to L(1). Then the
cost c(L) is given by

c(L) = inf{α ∈ [0,+∞) | dα(L) < +∞}.

In each case above we take the convention that inf ∅ = +∞. If c = c(L) < +∞, then we call
dc(L) ∈ {1, 2, 3, . . .} ∪ {∞} the cost dimension of L. In case L = Fac(x) for some infinite
word x, then we write c(x) (dc(x), respectively) in lieu of c(L) (dc(L), respectively). Thus, the
Morse-Hedlund theorem states that an infinite word x ∈ AN is ultimately periodic if and only if
c(x) = 0 and d0(x) = 1, i.e., x is of cost equal to 0 and cost dimension equal to 1. Similarly,
Theorem 1 asserts that x is of linear complexity (i.e., px(n) = Θ(n)) if and only if x is of cost
equal to 0 and cost dimension equal to 2. The above definitions may be adapted to other measures
of complexity as we do herein for the so-called accumulative complexity p∗L(n) which counts the
number of words in L of length less than or equal to n.

A fundamental question, to which a substantial portion of the paper is devoted, is to what extent
does the complexity of a language determine its cost and cost dimension and vice versa. A first
basic observation is that languages L of positive entropy have cost equal to +∞. For this reason
we restrict our attention to languages and words of zero topological entropy. Via a straightforward
counting argument, it is shown that for each α ≥ 0, if dα(L) = k for some 1 ≤ k < +∞, then
L ∈ L(k(α + 1) − 1). It follows from this that c(L) is finite if and only if the complexity of L
is bounded above by a polynomial. We further show by direct construction that for each positive
integer k ≥ 1 there exists an infinite word x of complexity px(n) ∈ Ω(nk−1) with d0(x) = k. In
other words, we establish the existence of words of cost zero and of arbitrarily high polynomial
complexity.

Conversely, given the complexity of a language, what can be said of its cost and cost dimen-
sion. We already mentioned two results in this direction: first the obvious fact that for languages
L of bounded complexity we have d0(L) = 1. Second, that if L is the set of factors of an aperiodic
infinite word, then L is of linear complexity if and only if its cost c(L) = 0 and its cost dimension
d0(L) = 2. However in general, the cost and cost dimension of a given language depend only in
part on its complexity. In fact, both reflect deeply the underlying combinatorial structure of the
language. For instance, we already mentioned that non-factorial languages are in general very far
from satisfying any result along the lines of Theorem 1. But even in the case of languages defined

4



by infinite words, the characterisation of Theorem 1 does not seem to extend nicely to higher com-
plexities. For instance, we prove that the word x =

∏∞
i=1 ab

i = ababbabbb · · · generated by the
(non-primitive) substitution a 7→ ab, b 7→ b, c 7→ ca, considered by Pansiot in [14] and of com-
plexity px(n) = Θ(n2), verifies d0(u) > 3. On the other hand we also show that d0(x) ≤ 6 which
in particular implies is of cost zero. We do not know whether there exist words of sub-quadratic
complexity and positive cost. However, we prove that for every real number α ∈ (0, 1) there exists
an infinite word xwith complexity px(n) ∈ O(n2+α) and cost c(x) ≥ α. In other words, there exist
words of positive cost having relatively low (sub-cubic) complexity. This should be contrasted with
the result mentioned earlier on the existence of words of arbitrarily high polynomial complexity
having cost equal to zero. These results suggest that the cost of a word measures something beyond
its factor complexity which makes it of independent interest.

The paper is structured as follows: In §2 we briefly recall some of the basic terminology and
notions arising in the study of infinite words. For a more detailed exposition, the reader is referred
to one of the standard texts in combinatorics on words such as the Lothaire books [10, 11, 12]. Also
in §2, for the sake of clarity and self-containment, we develop in detail some notions which are less
mainstream in the area of combinatorics on words and yet relevant in what follows, in particular
used in the proofs of the main results. They include the notions of internal and extremal occur-
rences of factors in both finite and infinite words which are defined in terms of virtual occurrences
and local periods. In §3 we define the key notions of cost and cost dimension of a language in the
context of the factor complexity as well as the accumulative complexity. Also in this section we
establish various fundamental results linking the cost of a language to its complexity and relations
between the cost c(L) defined in terms of the factor complexity and the cost c∗(L) defined in terms
of the accumulative complexity. In §4 we study the cost and cost dimension of words of sub-linear
complexity. We begin §4 by introducing the notions of marker words and marker sets which are
both new and may be of independent interest. Marker sets defined by right special factors con-
stitute the key tool needed to split each factor of an infinite word of linear complexity into two
pieces. This decomposition enables us to obtain what we regard to be the main result of the paper
(see Theorem 4.7), and which gives a complete characterisation of words of linear complexity in
terms of cost and cost dimension: An infinite word x is of linear complexity, i.e., px(n) = Θ(n)

if and only if the cost c(x) = 0 and the cost dimension d0(x) = 2. Theorem 4.7 is actually a
consequence of a more general result given by Theorem 4.4 combined with an earlier result of the
first author which gives a uniform bound on the number of right special factors of each length n of
an infinite word word of linear complexity. In §5 we study the cost and cost dimension of words of
sub-quadratic complexity. We begin the section with another consequence of Theorem 4.4 which
yields a non-trivial bound on the cost of words x of complexity px(n) = O(nα) for α ∈ (1, 2). We
estimate the cost complexity of the fixed point x of the substitution a 7→ ab, b 7→ b, c 7→ ca which
is known to have quadratic complexity and prove that 4 ≤ d0(x) ≤ 6. In particular this shows
that the result of Theorem 4.7 already breaks down for words of quadratic complexity. In §6 we
investigate the cost and cost dimension of words of greater than quadratic complexity and prove
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that every real number α ∈ (0, 1) there exists an infinite word x with complexity px(n) ∈ O(n2+α)

and cost c(x) ≥ α (see Corollary 6.3). Finally in §7 we exhibit an example of a non-factorial lan-
guage L of complexity pL(n) = O(log n) (and hence of cost zero) having infinite cost dimension
i.e., d0(L) = +∞. This is yet another illustration of how the main result of Theorem 4.7 depends
strongly on the assumption that the language L be defined by an infinite word.

2. Preliminaries

In this section we briefly recall some basic definitions and notations concerning finite and
infinite words which are relevant to the subsequent sections. For more details we refer the reader
to [11]. We also introduce the new notions of internal and extremal occurrences of factors in finite
and infinite words which are defined by their virtual occurrences and local periods.

Let A be a finite non-empty set (the alphabet). Let A∗ denote the set of all finite words u =

u0u1 · · ·un−1 with ui ∈ A. We call n the length of u and denote it |u|. The empty word is denoted
ε and by convention |ε| = 0. We put A+ = A∗ \ {ε}. For each u ∈ A∗ and a ∈ A, we let |u|a
denote the number of occurrences of a in u. For u = u0u1 · · ·un−1 ∈ A+ we define

Fac(u) = {ui · · ·uj : 0 ≤ i ≤ j ≤ n− 1} ∪ {ε}.

A subset L ⊆ A∗ is called a language. A language L is said to be factorial if Fac(u) ⊆ L for each
u ∈ L. Given a language L ⊆ A∗, we define its complexity pL : N→ N by

pL(n) = Card(L ∩ An)

and its accumulative complexity p∗L : N→ N by

p∗L(n) =
n∑
i=0

pL(i).

Let AN denote the set of all right infinite words x = x0x1x2 · · · with xi ∈ A. Given x =

x0x1x2 · · · ∈ A∗ ∪ AN let Fac(x) = {xi · · ·xi+n : i, n ≥ 0} ∪ {ε} denote the set of factors if x.
We will frequently use the notation x[i, j] for xi · · ·xj . A factor u of x is called right (resp., left)
special if ua, ub ∈ Fac(x) (resp., au, bu ∈ Fac(x)) for distinct letters a, b ∈ A. Let px : N → N
(resp., p∗x : N → N) denote the factor complexity (resp., accumulative factor complexity) of x
defined by:

px(n) = Card(Fac(x) ∩ An)

and

p∗x(n) =
n∑
i=0

px(i).

We say x ∈ AN (resp., L ⊆ A∗) is of bounded complexity if there exists a positive integer C such
that px(n) ≤ C (resp., pL(n) ≤ C) for all n ∈ N. An infinite word x is called ultimately periodic,
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or ultimately |v|-periodic, if x = uvvv · · · = uvω for some non-empty words u, v ∈ A∗. An infinite
word is said to be aperiodic if it is not ultimately periodic. It follows that every aperiodic word
contains a right and a left special factor of each length. An infinite word x is said to be recurrent if
each prefix of x occurs infinitely often in x.

Analogously we can consider bi-infinite words indexed by Z. The definitions above extend
in the obvious ways. In particular, a bi-infinite word x is said to be eventually periodic if it is
eventually periodic to both the left and the right, i.e., if x admits a prefix of the form · · ·uuu and a
suffix of the form vvv · · · for some u, v ∈ A+. Otherwise x is said to be aperiodic.

Definition 2.1. Let u = u1u2 · · ·un and v belong to A+ and fix 1 ≤ i ≤ n. We say there there
is a virtual occurrence of v in u beginning (ending, respectively) at position i if the shorter of
v and ui · · ·un (u1 · · ·ui−1, respectively) is a prefix (suffix, respectively) of the other. That is
vA∗ ∩ u[i, n]A∗ 6= ∅ (A∗v ∩ A∗u[1, i− 1] 6= ∅, respectively).

Definition 2.2. For u = u1u2 · · ·un and 1 ≤ i ≤ n, we say that u has a virtual square centered
at position i if there exists a word v ∈ A+ (the witness) and a virtual occurrence of v in u both
beginning and ending at position i.

For example, the word u = 00101101 has a virtual square of length 2 at position i = 3

(witnessed by v = 01) as well as a virtual square of length 3 at position i = 7 (witnessed by
v = 110.)

The above definitions extend in the obvious way to define a virtual occurrence of a word
v ∈ A+ beginning or ending at a position i ≥ 0 in an infinite word x = x0x1 · · · . In this
way we can talk about virtual squares occurring in an infinite word. For instance, the word
x = 0100101001001010010 · · · has virtual squares of length 2 and 3 at position 1, and of lengths
3 and 5 at position 2.

Definition 2.3. For v = v1v2 · · · vn ∈ A+. Define the (least) period of v, denoted π(v), to be the
least positive integer m such that vi = ui+m for all 1 ≤ i ≤ n−m.

For instance, for v = 00110 we have π(v) = 4 while for v = 00101101 we have π(v) = 8 =

|v|. Clearly in general π(v) ≤ |v|.
Let x ∈ A+ ∪ AN be a finite or infinite word, and let v ∈ A+ be a word occurring in x at

a position i ≥ 0, meaning v = x[i, i + n − 1]. We say that the occurrence of v at position i is
internal if x has a virtual square of length π(v) centered at positions i and i + n. An occurrence
of v in x which is not internal is called extremal. More precisely, an extremal occurrence is called
initial if x does not have a virtual square of length π(v) centered at position i, and final if x does
not have virtual square of length π(v) at position i + n. For instance, if x = 01001010100 · · · ,
then the occurrence of v = 010 at position 0 is not initial since x has a virtual square of length
2 = π(v) centered at position 0. Instead this occurrence is final (even if it is immediately followed
by another occurrence of v) since x does not a virtual square of length 2 centered at position 3. On

7



the other hand, the occurrence of v at position 3 is initial since x does not have a virtual square of
length 2 = π(v) centered at position 3. In contrast, the occurrence of v in position 5 is internal.
Note that an occurrence of a word v in x can be both initial and final. We also note that if x is
aperiodic, then each factor v of x admits a final occurrence in x.

Throughout the paper we make use of the usual Landau notations O,Ω,Θ, and o. We adopt
the following definition of Ω which is more commonly used in computer science: Given functions
f, g : N→ R+, we write

f(n) = Ω(g(n)) if ∃K > 0, ∃N, ∀n ≥ N : f(n) ≥ Kg(n).

3. Dimension and cost: definitions, examples and general properties

For each real number α ∈ [0,+∞), we denote by L(α) (resp., L∗(α)) the collection of lan-
guages L ⊆ A∗ (over some finite non empty alphabet A) with pL(n) = O(nα) (resp., p∗L(n) =

O(nα)). Analogously, we denote byW(α) (resp.,W∗(α)) the collection of infinite words x ∈ AN

(over some finite non empty alphabet A) such that Fac(x) ∈ L(α) (resp., Fac(x) ∈ L∗(α)). The
set A∗ is considered as a free monoid, and thus for each S ⊆ A∗ the set Sk is just the set of all
concatenations of k elements of S.

Definition 3.1. Let L ⊆ A∗. For each real number α ∈ [0,+∞), we define the α-dimension dα(L)

by
dα(L) = inf{k ≥ 1 |L ⊆ Sk for some language S ∈ L(α)},

and the cost c(L) by
c(L) = inf{α ∈ [0,+∞) | dα(L) < +∞}.

If c = c(L) < +∞, we call dc(L) ∈ [1,+∞] the cost dimension of L.

By convention inf ∅ = +∞. Definition 3.1 extends naturally to infinite words x ∈ AN by replac-
ing L by Fac(x) so we define accordingly dα(x) and c(x). Replacing L(α) by L∗(α) we define
analogously the α-accumulative dimension d∗α(L) and the accumulative cost c∗(L).

We observe that in our definition of dα(L), we may replace Sk by S1 · · ·Sk for some languages
S1, . . . , Sk ∈ L(α). The following lemma is an immediate consequence of the definition:

Lemma 3.2. Suppose L ∈ L(α0) (resp., L ∈ L∗(α0)) for some α0 ≥ 0. Then dα(L) = 1 (resp.,
d∗α(L) = 1) for each α ≥ α0 and hence c(L) ≤ α0 (resp., c∗(L) ≤ α0).

Lemma 3.3. For each language L ⊆ A∗, we have d0(L) = 1 if and only if L is of bounded
complexity. For each infinite word x ∈ AN, we have d0(x) = 1 if and only if x is ultimately
periodic.
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Proof. The first statement is clear from Definition 3.1. As for the second, if x is ultimately periodic,
then its complexity is bounded, whence d0(x) = 1. Conversely if d0(x) = 1, then the complexity
of x is bounded, and hence by the Morse-Hedlund theorem x is ultimately periodic.

Example 3.4 (Sturmian words). Here we prove that for every Sturmian word x we have d0(x) =

2. To see this, we show that for each Sturmian word x ∈ {0, 1}N, there exist sets S, T with
pS(n), pT (n) ≡ 1 (for each n ≥ 0) such that Fac(x) ⊆ ST. Combined with Lemma 3.3, this
implies that d0(x) = 2. The condition px(n) = n + 1 implies that x admits a unique left (right,
respectively) special factor of each length n denoted lx(n) (rx(n), respectively). Moreover, as is
well known, lx(n) and rx(n) are reversals of one another. Set S = {ε} ∪ {rx(n)0 |n ≥ 0} and
T = {ε}∪{1lx(n) |n ≥ 0}. Then clearly, pS(n), pT (n) ≡ 1. It remains to show that Fac(x) ⊆ ST.

To this end we recall that for each n ≥ 1, the word w(n) = rx(n − 1)01lx(n − 1) is a factor of x
of length 2n (see for instance Exercise 6.1.24 in [2]). We claim that for each n ≥ 1, w(n) contains
n + 1 distinct factors of length n. Assuming for a moment this claim, it follows that each factor
of x of length n is a factor of w(n) and hence Fac(x) ⊆ ST as required. To prove the claim, we
proceed by induction on n. For n = 1, we have w(1) = 01 which contains 2 factors of length 1.
For the inductive step, let n ≥ 1, and assume w(n) contains n+ 1 distinct factors of length n. We
wish to show that w(n+ 1) contains n+ 2 distinct factors of length n+ 1. Suppose to the contrary
that some word u of length n + 1 occurs twice in w(n + 1). We claim u = rx(n)0, for otherwise
the word u′ obtained by deleting the last letter of u would occur twice in w(n), a contradiction.
Similarly, if u 6= 1lx(n), then the word u′′ obtained by deleting the first letter of u would occur
twice in w(n), a contradiction. Thus u = rx(n)1 = 0lx(n), which is impossible since, as rx(n) and
lx(n) are reversals of one another, we have that rx(n)1 and 0lx(n) do not contain the same number
of 0′s and 1′s.

The next proposition illustrates the basic relations between the dimension dα and the accumu-
lative dimension d∗α. It is stated in terms of languages L ⊆ A∗ but the same inequalities hold for
infinite words x ∈ AN.

Proposition 3.5. For each α ≥ 0 and language L ⊆ A∗ we have

1. dα(L) ≤ d∗α(L),
2. d∗α+1(L) ≤ dα(L) ≤ 2d∗α+1(L).

Proof. We begin by showing that dα(L) ≤ d∗α(L). The result is clear if d∗α(L) = +∞. Thus
assume d∗α(L) = k for some positive integer k. Then L ⊆ Sk for some language S ∈ L∗(α).
Hence S ∈ L(α) whence dα(L) ≤ k = d∗α(L) as required. Next we show that d∗α+1(L) ≤ dα(L).
Again the result is clear if dα(L) = +∞, thus we may suppose dα(L) = k for some positive
integer k. Then L ⊆ Sk for some language S ∈ L(α). In other words, pS(n) = O(nα). Thus
p∗S(n) = O(nα+1), i.e., S ∈ L∗(α + 1), and hence d∗α+1(L) ≤ k = dα(L). In order to prove the
remaining inequality, we will need the following lemma:
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Lemma 3.6. Let T ⊆ A∗. If T ∈ L∗(α + 1), then T ⊆ S2 for some S ∈ L(α).

Proof. Since T ∈ L∗(α + 1), there exists a constant K > 0 such that p∗T (n) ≤ Knα+1 for each
n ≥ 1. We order T = {v1, v2, v3, . . .} so that |vm| ≤ |vm+1| for each m ≥ 1. Thus for each m ≥ 2

we have
m ≤ p∗T (|vm|) ≤ K|vm|α+1. (1)

(For m = 1, we may have v1 = ε, and thus the latter inequality will not hold.)
Pick M such that

M > max{K(α + 1)2α+2; 2}.

We now show that there exists a language S ⊂ A∗ with pS(n) ≤ dMnαe for each n ≥ 1, and
T ⊆ S2. To prove this we define inductively a nested sequence of sets S1 ⊆ S2 ⊆ S3 ⊆ · · · with
Sm ⊆ A∗ such that for each m ≥ 1 the following three conditions are satisfied:

i) Card(Sm) ≤ 2m,
ii) pSm(n) ≤ dMnαe for each n ≥ 1,
iii) {v1, v2, . . . , vm} ⊆ S2

m.
For m = 1, we consider the factorization v1 = ε · v1 and put S1 = {ε, v1}. Then clearly S1

satisfies each of the conditions i), ii) and iii) above. For the inductive step, suppose for m ≥ 1 we
have constructed sets S1 ⊆ S2 ⊆ · · · ⊆ Sm with the required properties. We say that n ≥ 1 is
a forbidden length if pSm(n) = dMnαe, i.e., in constructing Sm+1 from Sm we cannot add to Sm
any word of forbidden length without violating condition ii) at level m + 1. Note that 0 is never a
forbidden length since there exists only one word of length 0, ε, and nothing else can be added to
the set of words of length 0.

Let F denote the set of all forbidden lengths. For each 0 ≤ i ≤ |vm+1| we can factor vm+1 as
vm+1 = xiyi, with |xi| = i. We claim that there exists 0 ≤ j ≤

⌈
|vm+1|

2

⌉
− 1 such that neither |xj|

nor |yj| belongs to F .So, we can take Sm+1 = Sm ∪ {xj, yj}. To prove the claim, suppose to the

contrary that for each 0 ≤ i ≤
⌈
|vm+1|

2

⌉
− 1 there exists ni ∈ {i, |vm+1| − i} ∩ F . Then summing

up the number of elements in Sm of forbidden lengths we obtain:

Card(Sm) ≥
∑
n∈F

dMnαe ≥

⌈ |vm+1|
2

⌉
−1∑

i=0

dMnαi e ≥

⌈ |vm+1|
2

⌉
−1∑

i=0

Mnαi ≥

⌈ |vm+1|
2

⌉
−1∑

i=1

Miα +M |vm+1|α.

The latter inequality holds since 0 is never a forbidden length, and thus n0 = |vm+1|. Continuing
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the chain of inequalities, we see that

Card(Sm) ≥

⌈ |vm+1|
2

⌉
−1∑

i=1

Miα +M |vm+1|α >

⌈ |vm+1|
2

⌉∑
i=1

Miα ≥
∫ |vm+1|

2

0

Mxα dx

≥ M

(α + 1)

(
|vm+1|

2

)α+1

>
K(α + 1)2α+2

(α + 1)

(
|vm+1|

2

)α+1

≥ 2K|vm+1|α+1 ≥ 2K|vm|α+1 ≥ 2m,

where the last inequality follows from (1)), contradicting i). This completes the inductive step.
Having defined the nested sequence (Sm)m≥1, we set S =

⋃
m≥1 Sm. Then pS(n) = O(nα) and

T ⊆ S2.

We now return to the proof of Proposition 3.5 and establish the remaining inequality dα(L) ≤
2d∗α+1(L). Let us assume d∗α+1(L) = k for some positive integer k. Then L ⊆ T k for some
T ∈ L∗(α + 1). By Lemma 3.6 there exists S ∈ L(α) such that T ⊆ S2. Thus L ⊆ S2k whence
dα(L) ≤ 2k = 2d∗α+1(L) as required.

The next statement follows immediately from the second double inequality of Proposition 3.5.

Corollary 3.7. For any language L ⊆ A∗,

1. if c(L) > 0, then c∗(L) = c(L) + 1;
2. if c(L) = 0, then 0 ≤ c∗(L) ≤ 1.

The next proposition establishes a first relationship between dα and complexity:

Proposition 3.8. Let α ≥ 0 and L ⊆ A∗. If dα(L) = k for some positive integer k, then L ∈
L(k(α + 1) − 1). In particular, if x ∈ AN and L = Fac(x), then by taking α = 0 we have that if
d0(x) = k, then x ∈ W(k − 1).

Proof. It suffices to prove the proposition for languages L. The result is clear in case k = 1. So
let us fix k ≥ 2, and let L ⊆ Sk for some S ∈ L(α). Then there exists a positive integer C such
that pS(n) ≤ Cnα for each n ≥ 0. Let u ∈ L and put n = |u|. Then u is a concatenation of
k elements of S. We claim there are

(
n+k−1
k−1

)
ways of factoring u = v1v2 · · · vk with |vi| ≥ 0.

In fact, each such factorization of u corresponds to a vector (n1, n2, . . . , nk) with ni ≥ 0 and
n1 + n2 + · · ·nk = n. The mapping (n1, n2, . . . , nk) 7→ (n1 + 1, n2 + 1, . . . , nk + 1) defines
a bijection between the sets A = {(n1, n2, . . . , nk) |ni ≥ 0, n1 + n2 + · · ·nk = n} and B =

{(m1,m2, . . . ,mk) |mi ≥ 1, m1 +m2 + · · ·mk = n+k}. Since each element ofB corresponds to
a partition of n+k consecutive points into k non-empty parts, and since each such partition is given
by choosing k − 1 separation points amongst the n+ k − 1 possible separation points, we deduce
that Card(A) = Card(B) =

(
n+k−1
k−1

)
. Having established that there are

(
n+k−1
k−1

)
= O(nk−1) ways

of factoring u = v1v2 · · · vk with |vi| ≥ 0, as each vi ∈ S, there are C|vi|α choices for each vi.
Thus pL(n) = O(nk(α+1)−1) as required.
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As an immediate consequence we get:

Corollary 3.9. For each language L ⊆ A∗ (resp., infinite word x ∈ AN) we have c(L) < +∞ if
and only if L ∈ L(α) (resp., x ∈ W(α)) for some α ≥ 0.

Proof. If c(L) < +∞, then dα(L) < +∞ for each α > c(L). Fix α > c(L) and a positive integer
k such that dα(L) = k. Then by Proposition 3.8 L ∈ L(k(α+ 1)− 1). The converse follows from
Lemma 3.2.

In view of the next corollary, we restrict ourselves henceforth to languages and words of entropy
zero.

Corollary 3.10. Languages of positive entropy have cost equal to +∞.

Proposition 3.8 suggests that a priori there is no polynomial bound on the complexity of infinite
words of cost equal to 0. The following proposition shows that for each k ≥ 1 there exists a word
x of complexity Ω(nk−1) with d0(x) = k and hence in particular c(x) = 0.

Proposition 3.11. For each k ≥ 1 there exists a word x of complexity Ω(nk−1) of cost 0 and cost
dimension k.

Proof. For k = 1 we may simply take the constant word x = aω, and for k = 2 it suffices to take
x to be any Sturmian word (see Example 3.4). Thus we may assume that k ≥ 3. We construct a
word x on the alphabet {0, 1, . . . , k − 2} as follows: We enumerate

{1, . . . , k − 2}+ = {t1, t2, t3, . . .}

where the ti are listed in increasing order, where {1, . . . , k − 2}+ is ordered by ti < tj if and only
if either |ti| < |tj| or in case |ti| = |tj| then ti is less than tj relative to the lexicographic order. So
the sequence t1, t2, . . . looks like 1, 2, . . . , k− 2, 11, 12, . . . Then x ∈ {0, 1, . . . , k− 2}N is defined
by

x = t0t1t0t2t0t1t0t3...,

where t0 = 0. In other words x is obtained as the limit of a sequence (wn) defined by w0 = t0,
wn+1 = wntn+1wn for all n ≥ 0. We claim that the complexity of x is Ω(nk−1). Indeed, let us
restrict ourselves to factors of x of length n which contain a complete factor 0tp0, where the length
of tp is at least n/2. Such a factor of x exists for each tp = 1j12j2 ...(k − 2)jk−2 (that is, for each
j1, ..., jk−2 under the condition j1 + · · · + jk−2 = |tp| ≥ n/2), and for each starting point of that
occurrence of tp, which is any number between 1 and n − |tp| − 1. So, we have k − 1 degrees
of freedom, and thus the complexity of x is at least O(nk−1). On the other hand, take a factor w
of x and find in it a word tp, where p is maximal possible. Here incomplete intersections count:
we just fix an occurrence of w to x, see what words tp it intersects and choose the greatest p. If
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tp is completely in w, it is followed in it by a prefix of x. Denote the set of prefixes of x by Sk−1.
Symmetrically, just before tp in w, if it is taken from the beginning, there is a suffix of some word
wm (and wm are suffixes one of another). We denote the set of these suffixes by S0. As for tp itself,
it belongs to the concatenation of 1∗ = S1, 2∗ = S2, etc.; so,

w ∈ S0S1 . . . Sk−2Sk−1, (2)

where the complexity of each Si is 1.
If tp is not completely contained in w, three situations are possible. Either w = t′s, where t′

is a suffix of tp; then t′ ∈ i∗(i + 1)∗ · · · (k − 2)∗ for some i ∈ {1, . . . , k − 2}, s is a prefix of x,
and thus w ∈ Si · · ·Sk−2Sk−1 ⊂ S0S1 . . . Sk−2Sk−1. Or, symmetrically, w = pt′′, where t′′ is a
prefix of tp; then t′′ ∈ 1∗2∗ · · · i∗ for some i ∈ {1, . . . , k − 2}, p is a suffix of some wm, and thus
w ∈ S0S1 · · ·Si ⊂ S0S1 . . . Sk−2Sk−1. Or, at last, w is a factor of tp, and then w ∈ i∗(i+ 1)∗ · · · j∗
for some i, j ∈ {1, . . . , k − 2}, i ≤ j, and thus w ∈ SiSi+1 · · ·Sj ⊂ S0S1 . . . Sk−2Sk−1. In all the
cases, (2) holds.

While the definition of x in the previous proposition is on a alphabet size which varies with k,
by applying to x the morphism f : i → 1i0k−i we obtain an infinite binary word satisfying the
same required properties.

We end this section by noting that the set S in Definition 3.1 is not assumed to be factorial. In
fact, as the following proposition shows, this is too strong of a condition:

Proposition 3.12. Let x ∈ AN. Suppose Fac(x) ⊆ Sk for some factorial language S and positive
integer k. Then there exists a suffix y of x such that Fac(y) ⊆ S. In particular, for each positive
integer α ≥ 0, if S ∈ L(α) then x ∈ W(α).

Proof. We remark that if S is factorial, then so is Sk for each k ≥ 1. Let k ≥ 1 be the least positive
integer such that Fac(x) ⊆ Sk. The result is clear in case k = 1, so we may suppose k > 1. By
minimality of k, there exists a factor u of x not belonging to Sk−1. Pick y ∈ AN such that uy is
a suffix of x. We claim Fac(y) ⊆ S. Since S is factorial, it suffices to show that every prefix of y
belongs to S. So let z ∈ A∗ be a prefix of y. Then we can write uz = v1v2 · · · vk for some vi ∈ S.
Since Sk−1 is factorial and u /∈ Sk−1, it follows that v1v2 · · · vk−1 is a proper prefix of u and hence
z is a proper suffix of vk. Thus z ∈ S as required.

4. A characterisation of words of linear complexity in terms of cost dimension

In this section we characterize words of linear complexity in terms of the cost dimension. Let
x ∈ AN ∪ AZ. For each n ≥ 0, let Rx(n) denote the set of right special factors of x of length n
andRx =

⋃
n≥0Rx(n).

Definition 4.1. Let D be a positive integer. A subset M ⊆ A∗ is called a D-marker set for x if
for each n ≥ 1 and each factor u of x of length |u| ≥ Dn we have Fac(u) ∩M ∩ An 6= ∅. The
elements of M are called D-markers.
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Lemma 4.2. Let C be a positive integer. Then for each aperiodic word x ∈ AN∪AZ with px(n) ≤
Cn for each n ≥ 1, the setRx is a (C + 1)-marker set for x.

Proof. Fix a positive integer n, and let u be any factor of x of length (C + 1)n. We show that u
contains some element of Rx(n). Since px(n) ≤ Cn, and there are Cn + 1 positions for factors
of length n in u, by the pigeon-hole principle there exists a factor v of x of length n which occurs
in u at least twice. Thus u contains as a factor a word w of length |w| > n which begins and ends
in v. Hence there exists a prefix w′ of w of length |w′| ≥ n which is a right special factor of x.
Otherwise, every occurrence of v in x is an occurrence of w, whence x is ultimately periodic, a
contradiction. It follows that the suffix w′′ of w′ of length n belongs toRx(n).

The following proposition gives an alternative and more general method for constructing marker
sets whose complexity is related to the complexity of the underlying word:

Proposition 4.3. For each aperiodic word x ∈ AN ∪ AZ there exists a 3-marker set M for x with

pM(n) ≤ px(4n)

n

for each n ≥ 1.

Proof. For each n ≥ 1,we build recursively (relative to the index i) setsMn(i) consisting of factors
of x of length n, and Wn(i) consisting factors of x of length 3n. In each case Card(Mn(i)) =

Card(Wn(i)) ≤ i. The process terminates when each factor of x of length 3n contains a factor
from Mn(i). Starting with Mn(0) and Wn(0) both empty, let w1 be the factor of x of length 3n

beginning in position n, and let m1 be the middle block of w1 of length n, i.e., w1 = x[n, 4n− 1]

and m1 = w1[n, 2n− 1] = x[2n, 3n− 1]. Then set Wn(1) = {w1} and Mn(1) = {m1}.
For the inductive step, fix i ≥ 1 and suppose we have constructed sets Mn(i) and Wn(i) as

required. Consider the factors of x of length 3n. If each of them contains a factor from Mn(i),
then we are done and we set Mn = Mn(i), Wn = Wn(i). Otherwise, pick a factor wi+1 of x
of length 3n not containing any element of Mn(i) and set Wn(i + 1) = Wn(i) ∪ {wi+1} and
Mn(i + 1) = Mn(i) ∪ {mi+1} where mi+1 is the middle block of wi+1 of length n. Note that if x
is a one-sided infinite word, then wi+1 = x[m,m+ 3n− 1] where m ≥ n. Since all wi are distinct
and there are a finite number of factors of x of length 3n, this process terminates at some point
i ≥ 1. Finally, we set M = ∪n≥1Mn. It remains to prove the upper bound on the complexity of
M .

For each element wi of Wn, we consider a final occurrence wi = x[ki, ki + 3n − 1] of wi in
x. Since x is aperiodic, each factor of x admits at least one final occurrence in x. Now for each
j = 0, . . . , n − 1 consider its covering factor c(i, j) = x[ki + j − n, ki + 3n + j − 1]. Then the
length of c(i, j) is 4n and wi = c(i, j)[n− j, 4n− j − 1]. Note that even if x is one-sided infinite,
each c(i, j) is well defined since each wi occurs in x at a position n or greater.
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Now let us prove that if c(i, j) = c(i′, j′), then i = i′ and j = j′. Indeed, suppose that
c(i, j) = c(i′, j′) but i′ < i. Then wi = c(i, j)[n− j, 4n− j − 1]. Analogously, wi′ = c(i, j)[n−
j′, 4n − j′ − 1] and thus mi′ = c(i, j)[2n − j′, 3n − j′ − 1]. But since j, j′ ∈ {0, . . . , n − 1}, we
have 2n − j′ + 1 ≥ n − j + 1 and 3n − j′ ≤ 4n − j. So, mi′ is a factor of wi, a contradiction to
our definition of wi. We have proved that i = i′.

Next suppose that j′ < j. Then wi = c(i, j)[n− j, 4n− j − 1] = c(i, j)[n− j′, 4n− j′ − 1].
Consider the word s = c(i, j)[n− j, 4n− j′− 1]. It is (j− j′)-periodic, and in particular, its prefix
wi is (j − j′)-periodic. So, π(wi) ≤ j − j′ ≤ n. The prefix occurrence of wi to s overlaps with
the suffix occurrence of wi to s by 3n− (j − j′) ≥ 2n > π(wi) symbols, and thus s is also π(wi)-
periodic. In particular, s has a virtual square of length π(wi) at the end of the prefix occurrence of
wi, that is, at the position 3n. But s is a factor of c(i, j) = x[ki + j − n, ki + 3n+ j − 1], namely,
s = c(i, j)[n − j, 4n − j′ − 1] = x[ki, ki + 3n + j − j′ − 1]. So, x has an occurrence of wi (of
length 3n) at position ki, followed by a virtual square of length π(wi) at position ki + 3n. It means
exactly that this occurrence of wi is not final, a contradiction.

So, c(i, j) 6= c(i′, j′) for i 6= i′ or j 6= j′. Thus, the total number of covering factors c(i, j) is
given by

Card ({c(i, j) | 1 ≤ i ≤ Card(Wn), j = 0, . . . , n− 1}) = nCard(Wn) = nCard(Mn).

On the other hand, each covering factor c(i, j) is a factor of x of length 4n whence their number is
bounded above by px(4n). Thus

pM(n) = Card(Mn) ≤ px(4n)

n

as required.

We now state and prove the most general result of this section.

Theorem 4.4. Assume either y ∈ AZ, or y ∈ AN and is recurrent. Let D be a positive integer
and assume that M is a D-marker set for y. Then there exist languages S, T ⊆ A∗ such that
Fac(y) ⊆ ST and for each n ≥ 2D we have

pS(n), pT (n) ≤
∑

k∈In∩N

pM(2k)

(
1 +

4py(3n)

2k

)
(3)

where In = (log2

(
n

2D

)
, log2(2n)].

Proof. Let us fix a D-marker set M for y. For each k ≥ 1, let Mk = {m ∈ M | |m| = 2k}. The
elements of Mk are called markers of order k.

Consider a factor v of y with |v| ≥ 2D. We shall define a rule for decomposing v as a product
v = s(v)t(v). The sets S and T will then be defined as the collection of all s(v) and all t(v)

corresponding to all factors v of y of length |v| ≥ 2D. Let k ≥ 1 be the largest positive integer such
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m

v

s(v) t(v)

Figure 1: Building elements of S and T from a word v and an occurrence of a marker to it

that Fac(v)∩Mk 6= ∅, and fix m ∈ Fac(v)∩Mk. Thus m is a marker word contained in v of length
|m| = 2k. First suppose some occurrence of m in v is extremal. In this case, we arbitrarily pick one
such occurrence, say at position j, and cut v precisely in the middle of this extremal occurrence
of m so that s(v) = v[0, j + 2k−1 − 1] and t(v) = v[j + 2k−1, |v| − 1]. In case all occurrences of
m in v are internal, then again arbitrarily pick one such internal occurrence, say at position j, and
cut v precisely in the middle of this internal occurrence of m so that s(v) = v[0, j + 2k−1 − 1] and
t(v) = v[j + 2k−1, |v| − 1] (see Fig. 1). Note that our cutting rule gives preference to extremal
occurrences of the marker word. Now set

S = (Fac(y) ∩ A<2D) ∪ {s(v) | v ∈ Fac(y) ∩ A≥2D},
T = {ε} ∪ {t(v) | v ∈ Fac(y) ∩ A≥2D},

where A<n =
⋃n−1
k=0 Ak and A≥n = A∗\A<n.

It follows immediately from the definitions that Fac(y) ⊆ ST . It remains to show that com-
plexities of S and T satisfy (3). We prove this only for T as the proof for S works in very much
the same way.

Fix n ≥ 2D, and let us estimate pT (n). Recall that each u ∈ T ∩ An is obtained by cutting
some factor v of y in the middle of an occurrence of some marker m of maximal order k occurring
in v and u = t(v) is the resulting suffix of v. Then since t(v) begins with the suffix of m of
length |m|/2, we have n ≥ 2k−1. On the other hand, since k was chosen to be maximal, we have
n < D2k+1 for otherwise v, which is of length at least n, would contain a marker of order k + 1.
These inequalities combined give

n

2D
< 2k ≤ 2n, (4)

which implies that k lies in the interval In = (log2

(
n

2D

)
, log2(2n)]. For each such integer k ∈ In,

the number of marker words of length 2k is equal to pM(2k).
We next prove that each marker word m of length 2k with k, n satisfying (4) contributes at most

1 + 4py(3n)

2k
elements to T ∩ An. Let T (m, n) be the set of all u ∈ T ∩ An with u = t(v) for some

factor v of y cut at an occurrence of the marker m in v. We consider separately the three possible
types of occurrences of m : internal, initial and final. Thus let Tint(m, n) (resp., Tini(m, n) and
Tfin(m, n)) be the subset of T (m, n) arising from internal (resp., initial and final) occurrences of
m. Recall that if t ∈ Tint(m, n), then t = t(v) for some factor v of y in which every occurrence
of m in v is internal. This implies that v is π(m)-periodic and hence t is uniquely determined by
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Figure 2: The case of an internal occurrence, the unique t is determined by m and the length

k−1

ini
E   (  ,n,t,2     −1)

m

t

...

ini
mE   (  ,n,t,0)

E   (  ,n,t,1)m
ini

m

element of

element of

element of

Figure 3: The sets Eini(m, n, t, i). The parts between dashed lines are common for all elements

m and |t| = n. More precisely, t is the word of length n occurring at position 2k−1 of the periodic
word pω, where p is the prefix of m of length π(m) (see Fig.2). Thus Card(Tint(m, n)) = 1.

Next we estimate Card(Tini(m, n)).

Lemma 4.5. For each n ≥ 2D we have

Card(Tini(m, n)) ≤ 2py(3n)

2k

Proof. For t ∈ Tini(m, n), and each 0 ≤ i < 2k−1, let Eini(m, n, t, i) be the collection of all factors
w of y of length n + 2k such that w has an initial occurrence of m at position i and an occurrence
of t in position i+ 2k−1 (see Fig. 3).

Let v be a factor of y giving rise to t in Tini(m, n), that is, v contains an initial occurrence of m, and
the suffix of v starting in the middle of that occurrence of m is t. Since y is assumed either recurrent
or bi-infinite, there exists an occurrence of v at the distance more than i from the beginning of the
word y. So, Eini(m, n, t, i) is non-empty. Then:
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Figure 4: Proof of Claim 4.5.1. The lower occurrence of m is not initial

Claim 4.5.1. For each t, t′ ∈ Tini(m, n) and 0 ≤ i, i′ < 2k−1, where t 6= t′ or i < i′, we have

Eini(m, n, t, i) ∩ Eini(m, n, t
′, i′) = ∅.

Proof of Claim 4.5.1. Suppose w ∈ Eini(m, n, t, i) ∩ Eini(m, n, t
′, i′). First consider the case of

0 ≤ i < i′ < 2k−1. Then m occurs in w in position i and i′, and since i′ − i < 2k−1 < |m|, it
follows that the two occurrences of m in w overlap. Since m is (i′ − i)-periodic, it follows that
π(m) ≤ i′ − i < 2k−1 < |m|/2 and hence w[i, i′ + 2k − 1] is π(m)-periodic contradicting that the
occurrence of m at position i′ of w was initial (see Fig. 4). So, i = i′. But then both t and t′ are
words of length n occurring in w at position i+ 2k−1, so, t = t′.

So, each t ∈ Tini(m, n) and each i ∈ {0, . . . , 2k−1 − 1} correspond to at least one factor of y of
length n + 2k: the set Eini(m, n, t, i) of all such factors is non-empty, and for different words t or
indices i, these sets do not intersect. So,

2k−1Card(Tini(m, n)) ≤
2k−1−1∑
i=0

∑
t∈Tini(m,n)

Card(Eini(m, n, t, i)) ≤ py(n+ 2k),

and since n+ 2k ≤ 3n and thus py(n+ 2k) ≤ py(3n),

Card(Tini(m, n)) ≤ 2py(3n)

2k

as required.

A similar argument applies to Tfin(m, n)) and gives the same bound. Thus in total each m gives
rise to at most 1 + 4py(3n)

2k
elements in T ∩ An as required.

The arguments for the complexity of S are analogous, completing the proof of Theorem 4.4.

We recall the following result due to the first author from [4] (see also [6]):

Theorem 4.6. Let C be a positive integer. Then for each aperiodic word x ∈ AN with px(n) ≤ Cn

for n ≥ 1, there exists a constantK (which is a polynomial function inC) such that Card(Rx(n)) ≤
K for each n ≥ 0.
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We next establish the following classification of words of linear complexity:

Theorem 4.7. Let x ∈ AN. Then d0(x) = 2 if and only if px(n) = Θ(n). In particular, each
x ∈ W(1) has cost equal to 0.

Proof. One direction follows immediately from Proposition 3.8. In fact, if d0(x) = 2, then ap-
plying Proposition 3.8 with α = 0 and k = 2 we deduce that x ∈ W(1), i.e., px(n) = O(n).
On the other hand, by Lemma 3.3 we also have that x is aperiodic, and thus by Morse-Hedlund,
px(n) ≥ n+ 1 for each n. Hence, px(n) = Θ(n) as required.

For the converse, suppose x ∈ AN and px(n) = Θ(n). Then x is aperiodic for otherwise
px(n) = O(1). Since there x is not assumed to be recurrent, to apply Theorem 4.4 we will need to
replace x by a bi-infinite word. Thus, let a be a symbol not belonging to A and define the bi-infinite
word y = · · · y−2y−1y0y1y2 · · · ∈ (A ∪ {a})Z by yn = xn for n ≥ 0 and yn = a for each n ≤ −1.
Note that since py(n) = px(n) + n and px(n) = Θ(n), it follows that py(n) = Θ(n). Also, since x
is aperiodic, then so is y. We now apply Theorem 4.4 to show that there exist languages S and T
of bounded complexity such that Fac(y) ⊆ ST .

Fix a positive integer C such that py(n) ≤ Cn for each n ≥ 1. Let M = Ry. By Lemma 4.2,
M is a D-marker set for y where D = C + 1. By Theorem 4.4 there exist languages S and T with
pS ,pT satisfying (3) where M = Ry and D = C + 1.

Since Ry(n) = Rx(n) ∪ {an} for each n ≥ 0, by Theorem 4.6 there exists a positive integer
R such that pM(n) ≤ R for each n ≥ 0. Moreover |In| = 2 + log2D and thus k takes on at most
3 + log2D possible values. Furthermore for each such k, we have 1

2k
< 2D

n
. Thus starting with (3)

we have

pS(n), pT (n) ≤
∑

k∈In∩N

pM(2k)

(
1 +

4py(3n)

2k

)
≤ R(3 + log2D)

(
1 +

8Dpy(3n)

n

)
≤ R(3 + log2D)

(
1 +

24DCn

n

)
= R(3 + log2D) (1 + 24DC)

for each n ≥ 2D, and hence each of S and T is of bounded complexity. Since Fac(x) ⊆ Fac(y) ⊆
ST , it follows that d0(x) ≤ 2. But since x is aperiodic, Lemma 3.3 implies d0(x) ≥ 2. Hence
d0(x) = 2 as required.

Remark 4.8. The general Theorem 4.4 can also be extended to non-recurrent one-sided infinite
words by the same extension argument as Theorem 4.7.

Remark 4.9. Since the complexity of a Sturmian word is linear, Theorem 4.7 applies. However,
the general result gives a poorer upper bound on the complexity of S than the one obtained in
Example 3.4.

19



5. Cost and dimension of words of sub-quadratic complexity

We begin this section with another corollary of Theorem 4.4 which yields a non-trivial bound
on the cost for words of complexity o(n2) (see Corollary 5.2).

Corollary 5.1. Assume either x ∈ AZ and is aperiodic, or x ∈ AN and is both recurrent and
aperiodic. Then there exist languages S, T ⊆ A∗ with Fac(x) ⊆ ST and

pS(n), pT (n) ≤ 12px(8n)

n
+

192px(8n)px(3n)

n2

for each n ≥ 6.

Proof. Fix x ∈ AN ∪ AZ. Since x is aperiodic, by Proposition 4.3, there exists a 3-marker set M
with pM(n) ≤ px(4n)

n
. By Theorem 4.4 there exist languages S, T ⊆ A∗ verifying (3) for n ≥ 6

where In = (log2

(
n
6

)
, log2(2n)]. Thus for each n, there are at most 4 possible values for k (say

k0 < k1 < k2 < k3) and each verifies 2ki > 2i n
6

or equivalently 1
2ki

< 2−i 6
n

. For each 0 ≤ i ≤ 3

we bound the term pM(2ki) by

pM(2ki) ≤ px(4 · 2ki)
2ki

≤ px(8n)

2ki
.

Thus from (3) we have

pS(n), pT (n) ≤
∑

k∈In∩N

pM(2k)

(
1 +

4px(3n)

2k

)
≤

3∑
i=0

pM(2ki)

(
1 +

4px(3n)

2ki

)

≤
3∑
i=0

px(8n)

2ki
+

3∑
i=0

4px(8n)px(3n)

22ki
≤ px(8n)

3∑
i=0

1

2ki
+ 4px(8n)px(3n)

3∑
i=0

1

22ki

≤ 6px(8n)

n

3∑
i=0

1

2i
+

144px(8n)px(3n)

n2

3∑
i=0

1

22i

=
15

8
· 6px(8n)

n
+

85

64
· 144px(8n)px(3n)

n2
≤ 12px(8n)

n
+

192px(8n)px(3n)

n2
.

As an immediate consequence we have:

Corollary 5.2. Let α ≥ 1. Then for each x ∈ W(α) we have c(x) ≤ min{α, 2α− 2}.

Proof. The result is clear in case x is ultimately periodic since c(x) = 0. Thus we may assume
x is aperiodic. Clearly since px(n) = O(nα), it follows that c(x) ≤ α. If x is recurrent, then
by Corollary 5.1 taking px(n) = O(nα), there exists languages S, T such that Fac(x) ⊆ ST and
pS(n), pT (n) = O(n2α−2). Thus c(x) ≤ 2α − 2. If x is not recurrent, then as in the proof of
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Theorem 4.7, we may replace x by an aperiodic bi-infinite word y with py(n) = px(n) + n. Since
α ≥ 1, it follows that py(n) = O(nα) and so we may apply Corollary 5.1 to y to deduce the
existence of languages S, T with Fac(x) ⊆ Fac(y) ⊆ ST and with pS(n), pT (n) = O(n2α−2).
Whence again c(x) ≤ 2α− 2.

As another consequence of Corollary 5.1 we have:

Corollary 5.3. Let x ∈ AN be a pure morphic word (see [1]). Then except if the complexity of x is
in Θ(n2), we have dα(x) ≤ 2 for each α > 0 and hence c(x) = 0.

Proof. By a celebrated result of Pansiot in [14], see also [6], if x is a pure morphic word, then
px(n) = Θ(cn) where cn ∈ {1, n, n log log n, n log n, n2}. Applying Corollary 5.1 to each choice
of cn except cn = n2, gives Fac(x) ⊆ ST where pS(n), pT (n) = O(nα) for each α > 0. Whence
dα(x) ≤ 2 for each α > 0 and hence c(x) = 0.

We suspect that c(x) = 0 even for fixed points of complexity O(n2) although we are unable to
prove it.

We saw that d0(x) = 1 if and only if a word x is ultimately periodic, while d0(x) = 2 if
and only if px(n) = Θ(n). We now show that Theorem 4.7 does not extend to infinite words of
quadratic complexity by exhibiting an infinite word u of complexity pu(n) = Θ(n2) for which
d0(u) > 3. But for this same word, we will show that d0(u) ≤ 6.

Theorem 5.4. Let u =
∏∞

i=1 ab
i = ababbabbb · · · . Then pu(n) = Θ(n2) and 4 ≤ d0(u) ≤ 6.

Proof. We begin by observing that the factor complexity of u is quadratic: u is the second shift of
the fixed point beginning in c of the (non-primitive) morphism a 7→ ab, b 7→ b, c 7→ ca, considered
by Pansiot in [14] (see Theorem 4.1 and Example 1 therein). To show that d0(u) > 3, we actually
prove something stronger:

Lemma 5.5. d∗1(u) > 3.

Proof. Suppose to the contrary that d∗1(u) ≤ 3. Then there exist languages X, Y, Z ⊆ {a, b}∗ with
p∗X(n), p∗Y (n), p∗Z(n) = O(n) and such that Fac(u) ⊆ XY Z. Thus each factor v of u admits a
factorization v = x(v)y(v)z(v) with x(v) ∈ X, y(v) ∈ Y and z(v) ∈ Z.

For each k, l ≥ 1 set wk,l = ablabl+1 · · · abl+k−1a. Then each wk,l is a factor of u of length

|wk,l| = k

(
l +

k + 1

2

)
+ 1. (5)

Claim 5.5.1. Let
E(n) = {(k, l) | |wk,l| ≤ n, k ≥ 3, l ≥

√
n}.

Then Card(E(n)) = Θ(n log n).
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Proof of Claim 5.5.1. Using (5), we see that the condition |wk,l| ≤ n is equivalent to

l ≤ n− 1

k
− k + 1

2
.

Thus,

Card(E(n)) =
∞∑
k=3

Card

({
l ∈ N :

√
n ≤ l ≤ n− 1

k
− k + 1

2

})
.

All but finite number of terms of this sum are null. In particular, they are null for k ≥
√
n: in that

case,
n− 1

k
− k + 1

2
≤ n√

n
−
√
n+ 1

2
<
√
n.

A term number k of the sum is bounded from above by n−1
k

and from below by n−1
k
− k+1

2
−
√
n−1

(this expression can be negative, so the kth term is not always equal to it). So,

Card(E(n)) ≤
b
√
nc∑

k=3

n− 1

k
= Θ (n log n) and

Card(E(n)) ≥
b
√
nc∑

k=3

(
n− 1

k
− k + 1

2
−
√
n− 1

)
= Θ (n log n) .

We say that a factor v of u is of type (k, l) if v = biwk,lb
j for some i, j ≥ 0. Clearly, each factor

v of u is either of type (k, l) or contains at most one occurrence of the symbol a.

Claim 5.5.2. Denote by F (n) the subset of E(n) of pairs (k, l) for which there exists a factor v
of u of type (k, l) with |v| ≤ n whose decomposition v = x(v)y(v)z(v) satisfies |x(v)|a ≤ 1 and
|z(v)|a ≤ 1. Set H(n) = E(n) \ F (n). Then Card(H(n)) = Θ(n log n).

Proof of Claim 5.5.2. Consider the mapping ϕn : F (n)→ Y defined as follows: For each (k, l) ∈
F (n), there exists a factor v of u of type (k, l) with |v| ≤ n, |x(v)|a ≤ 1 and |z(v)|a ≤ 1. Set
ϕn((k, l)) = y(v) ∈ Y . Since |v|a = |wk,l|a = k + 1 ≥ 4, we have that |y(v)|a ≥ k − 1 ≥ 2. It
follows therefore that y(v) is either of type (k, l), or of type (k − 1, l + 1), or of type (k − 1, l),
or of type (k − 2, l + 1). This implies that for each y ∈ Y in the image of ϕn, there are at most
four pairs (k, l) ∈ F (n) which map to y. But by assumption the total number of words in Y of
length at most n is p∗Y (n) = O(n). Thus Card(F (n)) ≤ 4p∗Y (n) = O(n). On the other hand by
Claim 5.5.1, we have Card(E(n)) = Θ(n log n). Thus Card(H(n)) = Θ(n log n).

The next claim gives the asymptotic growth of the number of such factors v of u of type
(k, l) ∈ H(n).
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Claim 5.5.3. Let s(n) denote the number of distinct factors v of u of length |v| ≤ n whose type
belongs to H(n). Then s(n) = Ω(n2 log n).

Proof of Claim 5.5.3. In view of Claim 5.5.2, it suffices to show that for each type (k, l) ∈ H(n)

there are at least n factors v of u of length |v| ≤ n and of type (k, l). So fix a type (k, l) ∈ H(n).
Then v is of type (k, l) if and only if v = biwk,lb

j = biablabl+1 · · · abl+k−1abj where 0 ≤ i ≤ l− 1

and 0 ≤ j ≤ l+ k. Thus there are at least l choices for each of i and j. But since l ≥
√
n, we have

at least n choices for such v.

Let v be a factor of u of length |v| ≤ n whose type belongs to H(n). Then by definition of
H(n), writing v = x(v)y(v)z(v) we have either |x(v)|a ≥ 2 or |z(v)|a ≥ 2. In case |x(v)|a ≥ 2,
then v is uniquely determined by its length and x(v). Thus the number of such words is bounded
above by np∗X(n) = O(n2). Similarly, if |z(v)|a ≥ 2, then v is uniquely determined by its length
and z(v), and hence the number of such words is also bounded above by np∗Z(n) = O(n2). Thus
s(n) = O(n2) in contradiction with Claim 5.5.3. This completes our proof of Lemma 5.5.

Having established that d∗1(u) > 3 it follows from Proposition 3.5 that d0(u) > 3 as required.
We next show that d0(u) ≤ 6.

Proposition 5.6. Let u =
∏∞

i=1 ab
i. Then there exist languages S1, S2, S3 and S4 with S1, S4 ∈

L(0) and S2, S3 ∈ L∗(1) such that Fac(u) ⊆ S1S2S3S4.

Combined with Lemma 3.6 and Lemma 5.5, Proposition 5.6 yields:

Corollary 5.7. d∗1(u) = 4 and d0(u) ≤ 6.

Proof of Proposition 5.6. Given a positive integer n, let ν2(n) denote the 2-adic valuation of n
defined as the largest exponent r such that 2r divides n. Given positive integers k ≤ l, there exists
a unique k ≤ j ≤ l such that ν2(j) ≥ ν2(i) for each k ≤ i ≤ l.

Every factor v of u containing at least two occurrences of the letter a is necessarily of the form
biabkabk+1a · · · blabi′ = biwl−k+1,kb

i′ for some 1 ≤ k ≤ l, 0 ≤ i ≤ k − 1 and 0 ≤ i′ ≤ l + 1.
Given such a v we factor it as follows:

bi︸︷︷︸ abkabk+1a . . . abj−1a︸ ︷︷ ︸ bja . . . abla︸ ︷︷ ︸ bi
′︸︷︷︸ = bi︸︷︷︸wj−k,k︸ ︷︷ ︸ bjwl−j,j+1︸ ︷︷ ︸ bi

′︸︷︷︸
where j is the unique number between k and l of maximal 2-adic valuation. Here by convention
w0,k = a for all k. Writing j = 2r(2m + 1), where r = ν2(j) ≥ 0 and m ≥ 0, we have
k > j − 2r = 2r+1m and l < j + 2r = 2r+1(m+ 1). Thus

Fac(u) ⊆ S1S2S3S4,

where S1 = S4 = {bn |n ≥ 0}, and

S2 = {ε, a} ∪ {abka · · · ab2r(2m+1)−1a | r ≥ 0, m ≥ 0, 2r(2m+ 1)− 1 ≥ k > 2r+1m},
S3 = {ε} ∪ {b2r(2m+1)a · · · abla | r ≥ 0, m ≥ 0, 2r(2m+ 1) ≤ l < 2r+1(m+ 1)}.
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Note that by adding ε to both S2 and S3 allows us to also decompose factors of u containing fewer
than two occurrences of the letter a. So for instance, biabi′ factors as biabi′ = bi · a · ε · bi′ and bi as
bi = bi · ε · ε · ε. Also note that abka · · · abj−1a ∈ S2 if and only if ν2(j) = max{ν2(i) | k ≤ i ≤ j},
and similarly bja · · · abla ∈ S3 if and only if ν2(j) = max{ν2(i) | j ≤ i ≤ l}.

Clearly pS1(n) = pS4(n) = 1 for each n ≥ 0, whence S1, S4 ∈ L(0). Thus it remains to show
that S2 and S3 are each in L∗(1), i.e., each has linear accumulative complexity.

Claim 5.7.1. Let s be a positive integer. Then for each fixed r ≥ 0 and m ≥ 0,

Card({v = abka · · · ab2r(2m+1)−1a ∈ S2 | 2 ≤ |v| ≤ 2s + 1}) ≤ min

{
2r,

2s + 1

2r+1m+ 1

}
,

Card({v = b2r(2m+1)a · · · abla ∈ S3 | 2 ≤ |v| ≤ 2s + 1}) ≤ min

{
2r,

2s + 1

2r(2m+ 1) + 1

}
.

Proof of Claim 5.7.1. From the definition of S2, if v = abka · · · ab2r(2m+1)−1a ∈ S2\{ε, a}, then k
ranges between 2r+1m + 1 and 2r(2m + 1)− 1. Thus the number of such v is bounded above by
2r(2m+1)−1−(2r+1m+1)+1 = 2r−1 < 2r. Similarly, if v = b2r(2m+1)a · · · abla ∈ S3\{ε, a},
then l ranges between 2r(2m + 1) and 2r+1(m + 1) − 1, thus the number of such v is bounded
above by 2r+1(m+ 1)− 1− 2r(2m+ 1) + 1 = 2r+1 − 2r = 2r. The second estimate in each case
takes into account the restriction on |v| and is obtained by replacing the elements in each set by
their lengths. In the case of S2, we are estimating the cardinality of a set of natural numbers whose
biggest element is at most 2s + 1, smallest element is 2r(2m+ 1) + 1, and the smallest difference
between two elements is 2r+1m+ 2 (corresponding to the smallest allowable value of k). Thus the
cardinality of the set is bounded above by (2s+1)−(2r(2m+1)+1)

2r+1m+2
+ 1 < 2s+1

2r+1m+1
. A similar argument

yields the second estimate in the case of S3.

Claim 5.7.2. Let s be a positive integer. Then p∗S2
(2s + 1) ≤ 2 + 2s(3 +

√
2).

Proof of Claim 5.7.2. Let s be a positive integer. Let v ∈ S2 with |v| ≤ 2s + 1. Then either v = ε

or v = a, or v = abka · · · ab2r(2m+1)−1a in which case in particular 2r(2m + 1) + 1 ≤ 2s + 1.
This implies that 0 ≤ r ≤ s and m < 2s−r−1. Thus either 0 ≤ r < s and m < 2s−r−1, or s = r

and m = 0. In the latter case, v = ab2s−1a and hence this case contributes just one element to
p∗S2

(2s + 1). Thus, adding v = ε and v = a, we obtain the estimate

p∗S2
(2s+1) ≤ 3+Card({v = abka · · · ab2r(2m+1)−1a | |v| ≤ 2s+1, 0 ≤ r < s and m < 2s−r−1}).

Applying Claim 5.7.1 for the number of words v ∈ S2 of the form v = abka · · · ab2r(2m+1)−1a for
each parameter value (r,m) yields

p∗S2
(2s + 1) ≤ 3 +

s−1∑
r=0

2s−r−1∑
m=0

min

{
2r,

2s + 1

2r+1m+ 1

}
. (6)
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We extract for each value of r the term corresponding to m = 0. Since min{2r, 2s + 1} = 2r,
the contribution to p∗S2

(2s + 1) of all pairs (r, 0) is bounded by
∑s−1

r=0 2r = 2s − 1. Hence

p∗S2
(2s + 1) ≤ 2 + 2s +

s−1∑
r=0

2s−r−1∑
m=1

min

{
2r,

2s + 1

2r+1m+ 1

}
Since m < 2s−r−1, we have 2r+1m < 2s and hence 2s+1

2r+1m+1
< 2s

2r+1m
. Moreover since for all

positive x, y we have min(x, y) ≤ √xy, we obtain

p∗S2
(2s + 1) ≤ 2 + 2s +

s−1∑
r=0

2s−r−1∑
m=1

min

{
2r,

2s

2r+1m

}

≤ 2 + 2s +
s−1∑
r=0

2s−r−1∑
m=1

2
s−1
2

1√
m

= 2 + 2s + 2
s−1
2

s−1∑
r=0

2s−r−1∑
m=1

1√
m
.

Since
2s−r−1∑
m=1

1√
m
≤
∫ 2s−r−1

0

dx√
x

= 2
√

2s−r−1 = 2
s−r+1

2

we obtain

p∗S2
(2s + 1) ≤ 2 + 2s

(
1 +

s−1∑
r=0

2−r/2

)
≤ 2 + 2s

(
1 +

∞∑
r=0

(
1√
2

)r)
= 2 + 2s(3 +

√
2)

as required.

Claim 5.7.3. For each positive integer n we have p∗S2
(n) ≤ 2 + n(6 + 2

√
2).

Proof of Claim 5.7.3. For n < 1, the bound is obvious. Fix a positive integer n ≥ 2 and pick s ≥ 1

such that 2s−1 < n ≤ 2s, so that 2s < 2n. Using Claim 5.7.2 together with the fact that p∗S2
is a

non-decreasing function, we obtain

p∗S2
(n) ≤ p∗S2

(2s + 1) ≤ 2 + 2s(3 +
√

2) ≤ 2 + 2n(3 +
√

2) ≤ 2 + n(6 + 2
√

2)

as required.

It remains to find a linear bound for p∗S3
(n).

Claim 5.7.4. Let s be a positive integer. Then p∗S3
(2s + 1) ≤ 2 + 2s(3 +

√
2). And hence as in

Claim 5.7.3 we have p∗S3
(n) ≤ 2 + n(6 + 2

√
2).
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Proof of Claim 5.7.4. The proof for S3 is analogous to that of S2. Fix a positive integer s. Let
v ∈ S3 with |v| ≤ 2s + 1. Then either v = ε or v = b2r(2m+1)a · · · abla in which case 2r(2m +

1) + 1 ≤ 2s + 1. As before this implies either 0 ≤ r < s and m < 2s−r−1, or s = r and m = 0.
In the latter case, v = b2sa and hence this case contributes just one element to p∗S2

(2s + 1). Thus,
combined with v = ε, we obtain the estimate

p∗S3
(2s + 1) ≤ 2 + Card({v = b2r(2m+1)a · · · abla | |v| ≤ 2s + 1, 0 ≤ r < s and m < 2s−r−1}).

Applying Claim 5.7.1 for the number of words corresponding to each parameter value (r,m) gives

p∗S3
(2s + 1) ≤ 2 +

s−1∑
r=0

2s−r−1∑
m=0

min

{
2r,

2s + 1

2r(2m+ 1) + 1

}
. (7)

The claim now follows by observing that the righthand side of (7) is less than the righthand side of
(6).

Claim 5.7.4 completes the proof of Proposition 5.6.

This concludes our proof of Theorem 5.4.

6. Positive cost for greater than quadratic complexity

At the moment, we do not know if the cost of a word of quadratic complexity can be greater
than 0. However, the next theorem states that for any growth of complexity function which is faster
than Cn2, this is possible.

Theorem 6.1. Let f(n) be any non-decreasing integer function satisfying f(1) = 1, f(n) ≤ n

and limn→∞ f(n) = +∞. Then there exists an infinite word x ∈ {a, b}N of complexity O(n2f(n))

such that if Fac(x) ⊆ Sk for some S ⊆ {a, b}∗ and 1 ≤ k < +∞, then

p∗S(n) = Ω(

n−2
2(2k−1)∑
p=1

f(p)).

Proof. Fix a function g : N × N → N satisfying g(1, 1) ≥ 1, g(p, q) ≤ g(p, q + 1), g(p, f(p)) ≤
g(p+1, 1) for all p, q ∈ N and limp→∞ g(p, 1) = +∞. For instance, we can take g(p, q) = pf(p)+q.

Define x ∈ {a, b}N as follows:

x =
∞∏
p=1

f(p)∏
q=1

(apbq)g(p,q).

Fix k ≥ 1, and suppose Fac(x) ⊆ Sk for some language S ⊆ {a, b}∗.
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Claim 6.1.1. For every triple of positive integers n, p, q verifying (p+q)(2k−1) ≤ n−2, q ≤ f(p)

and g(p, q) ≥ 2k−1, the set S contains a factor sp,q of b(apbq)2k−1a of length |sp,q| ≤ n containing
bapbqa as a factor. Moreover, sp,q 6= sp′,q′ whenever (p, q) 6= (p′, q′).

Proof of Claim 6.1.1. Since g(p, q) ≥ 2k− 1 and q ≤ f(p), the word b(apbq)2k−1a is a factor of x.
Moreover since (p+ q)(2k−1) ≤ n−2, we have that |b(apbq)2k−1a| ≤ n. Given any factorization
b(apbq)2k−1a = u1u2 · · ·uk with ui ∈ {a, b}∗, we see that of 2k occurrences of ba, at most k − 1

lie accross boundaries of ui. It remains k+ 1 occurrences of ba, and so two of them lie in the same
uj . This means that uj contains bapbqa as a factor and we can take sp,q = uj .

Let
P (n) = {(p, q) | (p+ q)(2k − 1) ≤ n− 2, q ≤ f(p), g(p, q) ≥ 2k − 1}.

By Claim 6.1.1, there exists an injection

P (n) ↪→ {v ∈ S | |v| ≤ n}

given by (p, q) 7→ sp,q. We now estimate, for each n sufficiently large, the cardinality of the set
P (n). Since the function g(p, q) is non-decreasing on p and q, and g(p, 1) → +∞, there exists a
positive integer p0 such that g(p, q) ≥ 2k − 1 for all p ≥ p0 and all q. Since f(p) ≤ p for all p,
for any q ≤ f(p) we have p + q ≤ p + f(p) ≤ 2p. In other words, any p between p0 and n−2

2(2k−1)

satisfies the conditions (p+ q)(2k− 1) ≤ n− 2 and g(p, q) ≥ 2k− 1. Since for each such p there
are f(p) possible values for the second coordinate q, for all n sufficiently large we have

p∗S(n) ≥ Card(P (n)) ≥

n−2
2(2k−1)∑
p=p0

f(p).

Whence

p∗S(n) = Ω(

n−2
2(2k−1)∑
p=0

f(p)).

It remains to show that the factor complexity of x is O(n2f(n)). For this purpose we partition
the factors of x into four groups and estimate the number of factors of length n in each group. Each
factor v of x belongs to one or more of the following groups:

• group 1: factors of a block of the form (apbq)j for some p, q and j.

• group 2: factors of a block of the form (apbq)k1(apbq+1)k2 .

• group 3: factors of a block of the form (apbf(p))k1(ap+1b)k2 .

• group 4: factors containing some complete block (apbq)g(p,q) as a factor.
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We note that some of these groups overlap, which is not a problem since we seek only an upper
bound on the factor complexity. We estimate the number of words of length n in each group.

In group 1, we have O(n) words of the form aibn−i or bian−i, plus O(n2) words of the form
aibqan−q−i (uniquely determined by i ≥ 1, q < n) or biapbn−p−i (uniquely determined by i ≥
1, p < n), plus words containing factors of the form bapbqa or abqapb. These last set of words are
uniquely determined by p < n, q ≤ f(p) and the position of the first occurrence of ap, which takes
values between 0 and p+ q− 1 < n. Thus, the number of such words (and thus of all the words in
group 1) is O(n2f(n)).

Words in group 2 which do not belong to group 1 contain factors of the form abqapbq+1. Such
a word is uniquely determined by p < n, q ≤ f(p) − 1 and the position of the first occurrence of
bq+1, which takes values between 0 and n − q − 1 < n. Hence the number of such words is also
O(n2f(n)).

An analogous counting argument applies to group 3. Words in group 3 which have not yet
been accounted for are uniquely determined by p < n and the first position of ap+1, whence their
number is O(n2).

Finally, for each word v in group 4, we consider the first complete block u = (apbq)g(p,q)

contained in v. Then v is uniquely determined by p, q and the position of u in v, hence the number
of such words is again O(n2f(n)).

Thus, the complexity px(n) = O(n2f(n)) as required. This completes the proof of Theo-
rem 6.1.

Corollary 6.2. For each non-decreasing integer function f(n) verifying f(1) = 1, f(n) ≤ n and
limn→∞ f(n) = +∞, there exists an infinite word x ∈ {a, b}N of complexity O(n2f(n)) with
d0(x) = d∗1(x) = +∞.

Proof. Let x be as in Theorem 6.1. Due to result of the theorem, if Fac(x) ⊆ Sk for some language

S, then p∗S(n) = Ω(

n−2
2(2k−1)∑
p=1

f(p)). Given any positive M , we can find p0 such that f(p0) > M ; then,

since f(n) is non-decreasing,

n−2
2(2k−1)∑
p=1

f(p) >

n−2
2(2k−1)∑
p=p0

f(p) ≥M

(
n− 2

2(2k − 1)
− p0

)
>
M

4k
n+ d

for an appropriate constant d not depending on n. So, p∗S(n) grows faster than linearly. This means
exactly that d∗1(x) = +∞; and d0(x) = +∞ due to Proposition 3.5.

Corollary 6.3. For each 0 < α < 1, there exists an infinite word x ∈ {a, b}N of complexity
O(n2+α) such that c(x) ≥ α.
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Proof. Fix 0 < α < 1. Then applying Theorem 6.1 to f(n) = bnαc, we have that there exists
a word x ∈ {a, b}N of complexity O(n2+α) such that if Fac(x) ⊆ Sk for some S ⊆ {a, b}∗ and
1 ≤ k < +∞, then

p∗S(n) = Ω(nα+1).

Thus c∗(x) ≥ α + 1, and hence c(x) ≥ α.

7. Non-factorial languages

Positive results of previous sections concern mostly languages of factors of infinite words. In
this section, we show that for a general non-factorial language, low complexity does not imply
d0(L) < +∞.

Theorem 7.1. There exists a non-factorial language L of complexity pL(n) = O(log n) (and hence
of cost zero) such that d0(L) = +∞.

Proof. For each positive integer n, define xn ∈ {0, 1, 2}∗ by xn = [n]22, where [n]2 is the binary
representation of n. For example, x2 = 102 and x65 = 10000012. Clearly, |xn| = blog2 nc + 2.
Next define yn as the longest prefix of xωn satisfying |yn| log2 |yn| ≤ n. Thus for example y2 = 10

since 2 log2 2 ≤ 2 < 3 log2 3 and y65 = 1000001210000012 since 16 log2 16 ≤ 65 < 17 log2 17.
Finally, define L = {yn|n ≥ 1}.

We first claim that |yn| = Θ( n
logn

). Indeed, for n ≥ 2, |yn| ≥ 2 so that log2 |yn| ≥ 1 and

|yn| ≤
n

log2 |yn|
≤ n. (8)

Since the length |yn| was chosen to be maximal,

|yn|+ 1 >
n

log2(|yn|+ 1)
≥ n

log2(n+ 1)
, (9)

so |yn| = Ω(n/ log n). Combining the (8) and (9) yields

|yn| ≤
n

log2( n
log2(n+1)

− 1)
.

Since n
log2(n+1)

− 1 is asymptotically equivalent to n
log2 n

we deduce |yn| = O( n
logn

). Together with
the lower bound above, this gives |yn| = Θ( n

logn
) as required.

Next we show that d0(L) = +∞. Indeed, suppose by contrary that L ⊆ Sk for some k ∈ Z
and some set S of bounded complexity. Since

|yn|
|xn|

= Θ

(
n

(log2 n)2

)
,

there exists an integer n0 > 0 such that for all n > n0, we have |yn| ≥ (k + 1)|xn|. This means
that for all n > n0, the word yn contains at least k + 1 occurrences of 2, and at least two of them
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are located in the same word from S, denote it by sn. Since between two occurrences of 2 in sn,
there is exactly the binary representation of n, all sn for n ≥ n0 are pairwise distinct.

Now for each n ≥ n0 consider the set S(n) = {sm|n0 < m ≤ n} ⊆ S. It contains n − n0

distinct words, and the length of each of them is o(n): indeed, |sm| ≤ |ym| = Θ(n/ log n).
So the accumulative complexity of S grows faster than linearly, which is impossible if its usual
complexity is bounded.

It remains to prove that pL(n) = Θ(log n). Indeed,

pL(n) = #{m : |ym| = n}.

In other words,
pL(n) = #{m : n log2 n ≤ m < (n+ 1) log2(n+ 1)}.

Whence,

pL(n) = d(n+ 1) log2(n+ 1)e − dn log2 ne = Θ(log n).

This completes the proof of Theorem 7.1.

The languageL in Theorem 7.1 provides an example of a language of cost equal to 0 and having
infinite cost dimension. We do not know whether there exists an infinite word x with c(x) = 0 and
d0(x) = +∞.
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