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A CHARACTERIZATION OF WORDS OF LINEAR

COMPLEXITY

JULIEN CASSAIGNE, ANNA E. FRID, SVETLANA PUZYNINA, AND LUCA Q. ZAMBONI

Abstract. Given an infinite word x = x0x1x2 · · · ∈ AN over some finite alpha-

bet A, the factor complexity px(n) counts the number of distinct factors of x of
each given length n, i.e., the number of distinct blocks xixi+1 · · ·xi+n−1 ∈ An

occurring in x. The factor complexity provides a useful measure of the extent

of randomness of x : Periodic words have bounded factor complexity while
digit expansions of normal numbers have maximal complexity. In this paper

we obtain a new characterization of infinite words x of sub-linear complexity,
namely we show that px(n) = O(n) if and only if there exists a set S ⊆ A∗ of

bounded complexity (meaning lim sup pS(n) < +∞) such that each factor w

of x is a concatenation of two elements of S, i.e., w = uv with u, v ∈ S. In the
process we introduce the notions of marker words and marker sets which are

both new and may be of independent interest. Marker sets defined by right

special factors constitute the key tool needed to split each factor of an infinite
word of linear complexity into two pieces.

1. Introduction

Let A be a finite non-empty set. For each infinite word x = x0x1x2 · · · ∈ AN,
the complexity or factor complexity px(n) counts the number of distinct blocks
xixi+1 · · ·xi+n−1 ∈ An of length n occurring in x. In other words, the complex-
ity of x is taken to be the complexity of the language of its factors Fac(x) =
{xixi+1 · · ·xj | 0 ≤ i ≤ j} ∪ {ε}. First introduced by Hedlund and Morse in their
seminal 1938 paper [15] under the name of block growth,1 the factor complexity pro-
vides a useful measure of the extent of randomness of x and more generally of the
subshift it generates. Periodic words have bounded factor complexity while digit
expansions of normal numbers have maximal complexity. A celebrated theorem
of Morse and Hedlund in [15] states that every aperiodic (meaning not ultimately
periodic) word contains at least n + 1 distinct factors of each length n. Sturmian
words are those aperiodic words of minimal factor complexity: px(n) = n + 1 for
each n ≥ 1. In [16] Hedlund and Morse showed that each Sturmian word may be
realized geometrically by an irrational rotation on the circle. More precisely, every
Sturmian word is obtained by coding the symbolic orbit of a point x on the circle
(of circumference one) under a rotation by an irrational angle α where the circle
is partitioned into two complementary intervals, one of length α and the other
of length 1 − α. And conversely each such coding gives rise to a Sturmian word.
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1In [9], Ehrenfeucht, Lee, and Rozenberg adopted the term subword complexity.
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2 JULIEN CASSAIGNE, ANNA E. FRID, SVETLANA PUZYNINA, AND LUCA Q. ZAMBONI

Sturmian words admit various other types of characterizations of geometric and
combinatorial nature (see for instance [13]) and constitute one important class of
infinite words of linear complexity. In addition to Sturmian words, there are many
other examples of families of infinite words of linear complexity including codings of
rotations [19], interval exchange transformations [2], Arnoux-Rauzy sequences [3],
episturmian sequences [10], primitive substitution sequences [18] and automatic se-
quences [1]. Results on the complexity of words are generally one of two kinds:
Either they provide conditions or formulae for the complexity of a given family of
words, for instance Pansiot’s work in [17] on the classification of the factor com-
plexities of purely morphic words. Or they give conditions on words, or rules for
generating them, subject to specified constraints on their complexity. An example
of a deep and difficult problem of this kind is the so-called S-adic conjecture on
words of linear complexity (see for instance [11] and the references therein).

The set A∗ consisting of all finite words over the alphabet A is naturally a free
monoid under the operation of concatenation, with the empty word ε playing the
role of the identity. Given an infinite word x ∈ AN one may ask whether the set of
factors Fac(x) is contained in a finite product of the form Sk where S is a subset
of A∗ of strictly lower complexity.

Example 1.1. Consider the Thue-Morse infinite word

x = 011010011001011010010 · · ·

where for each n ≥ 0, the nth term xn is defined as the sum modulo 2 of the digits
in the binary expansion of n. The origins of this word date back to the beginning
of the last century with the works of A. Thue [20, 21] in which he proves amongst
other things that x is overlap-free, i.e., contains no word of the form uuu′ where
u′ is a non-empty prefix of u. It is well known that x is also a fixed point of the
substitution ϕ : 0 → 01, 1 → 10. The factor complexity of the Thue-Morse word,
first precisely computed by Brlek [4] and independently by de Luca and Varricchio
[8], oscillates between two linear functions: 3(n−1) ≤ px(n) ≤ 10

3 (n−1), with each
bound attained an infinite number of times.

For each m ≥ 0, let tm = ϕm(0) and tm = ϕm(1). Then both tm and tm are
factors of x of length 2m. Let S ⊆ {0, 1}∗ be the set consisting of all prefixes and
suffixes (including ε) of tm and tm for each m ≥ 0. Since tm+1 = ϕm+1(0) =
ϕm(01) = tmtm and similarly tm+1 = tmtm, it follows that S contains at most 4
words of each length n. We claim that Fac(x) ⊆ S2. To see this, let u ∈ Fac(x).
Since S contains ε, 0 and 1, we may suppose |u| ≥ 2. Consider the least m ≥ 0
such that u is a factor of tm+1 or a factor of tm+1. If u is a factor of tm+1, by
minimality of m we can write u = vw where v is a non-empty suffix of tm and w
a non-empty prefix of tm. Whence u ∈ S2. A similar argument applies in case u
is a factor of tm+1. Thus while Fac(x) is of linear complexity, it is contained in a
product S2 where S is of complexity bounded by 4.

The above example is an illustration of the following more general result proved
herein:

Theorem 1.2. An infinite word x ∈ AN is of sub-linear complexity (i.e., px(n) =
O(n)) if and only if Fac(x) ⊆ S2 for some S ⊆ A∗ of bounded complexity (i.e.,
lim sup pS(n) < +∞).
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A CHARACTERIZATION OF WORDS OF LINEAR COMPLEXITY 3

Theorem 1.2 is actually a consequence of a somewhat more general result (see
Theorem 3.4) combined with an earlier result of the first author which gives a
uniform bound on the number of right special factors of each length n of an infinite
word word of linear complexity. In order to construct a set S of bounded complexity
satisfying the condition in Theorem 1.2, we introduce the notions of marker words
and marker sets which are both new and may be of independent interest. Marker
sets defined by right special factors constitute the key tool needed to split each
factor of an infinite word of linear complexity into two pieces.

Theorem 1.2 does not extend to arbitrary languages of sub-linear complexity.
We give an example of a (non-factorial) language L of complexity pL(n) = O(log n)
which is not contained in any finite product of the form Sk where S ⊆ A∗ is of
bounded complexity.

2. Preliminaries

In this section we recall some basic definitions and notations concerning finite and
infinite words which are relevant to the subsequent sections. For more details the
reader is referred to one of the standard texts in combinatorics on words such as the
Lothaire books [12, 13, 14]. For the sake of clarity and self-containment, we develop
in detail some notions which are less mainstream in the area of combinatorics on
words but which will be relevant in the proofs of the main results. They include the
notions of internal and extremal occurrences of factors in both finite and infinite
words which are defined in terms of virtual occurrences.

Let A be a finite non-empty set (the alphabet). Let A∗ denote the set of all finite
words u = u0u1 · · ·un−1 with ui ∈ A. We call n the length of u and denote it |u|.
The empty word is denoted ε, and by convention |ε| = 0. We put A+ = A∗ \ {ε}.
A subset L ⊆ A∗ is called a language.

Let AN denote the set of all right infinite words x = x0x1x2 · · · with xi ∈ A.
Given x = x0x1x2 · · · ∈ A∗ ∪ AN let Fac(x) = {xi · · ·xi+n | i, n ≥ 0} ∪ {ε} denote
the set of factors of x. We will frequently use the notation x[i, j] for xi · · ·xj .

A language L is said to be factorial if Fac(u) ⊆ L for each u ∈ L.
Given a language L ⊆ A∗, we define its complexity pL : N→ N by

pL(n) = Card(L ∩ An).

The complexity of the set of factors of a word x is its factor complexity

px(n) = Card(Fac(x) ∩ An).

We say that x ∈ AN (resp., L ⊆ A∗) is of bounded complexity if there exists a
positive integer C such that px(n) ≤ C (resp., pL(n) ≤ C) for all n ∈ N. An infinite
word x is called ultimately periodic, or ultimately |v|-periodic, if x = uvvv · · · = uvω

for some words u ∈ A∗ and v ∈ A+. An infinite word is said to be aperiodic if
it is not ultimately periodic. A factor u of x is called right (resp., left) special if
ua, ub ∈ Fac(x) (resp., au, bu ∈ Fac(x)) for distinct letters a, b ∈ A. Every aperiodic
word contains a right and a left special factor of each length. An infinite word x is
said to be recurrent if each prefix of x occurs infinitely often in x.

Analogously we can consider bi-infinite words indexed by Z. The definitions
above extend in the obvious ways. In particular, a bi-infinite word x is said to be
eventually right (left) periodic if x admits a a suffix of the form vvv · · · (respectively,
a prefix of the form · · · vvv) for some v ∈ A+. Otherwise x is said to be right (or
left) aperiodic.

3 Sep 2018 17:31:40 EDT
Version 2 - Submitted to Proc. Amer. Math. Soc.

DiffEq+DynSystemsThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



4 JULIEN CASSAIGNE, ANNA E. FRID, SVETLANA PUZYNINA, AND LUCA Q. ZAMBONI

Definition 2.1. Let u = u0u1 · · ·un−1 and v belong to A+. Fix an integer i,
0 ≤ i ≤ n. We say that there is a virtual occurrence of v in u beginning (ending, re-
spectively) at position i if the shorter of v and ui · · ·un−1 (u0 · · ·ui−1, respectively)
is a prefix (suffix) of the other. That is, vA∗∩u[i, n−1]A∗ 6= ∅ (A∗v∩A∗u[0, i−1] 6= ∅,
respectively).

Definition 2.2. For u = u0u1 · · ·un−1 and 0 ≤ i ≤ n, we say that u has a virtual
square centered at position i if there exists a word v ∈ A+ (the witness) and a
virtual occurrence of v in u both beginning and ending at position i.

For example, the word u = 00101101 has a virtual square of length 2 centered at
position i = 3 (witnessed by v = 01) as well as a virtual square of length 3 centered
at position i = 7 (witnessed by v = 110.)

The above definitions extend in the obvious way to define a virtual occurrence
of a word v ∈ A+ beginning or ending at a position i ≥ 0 in an infinite word
x = x0x1 · · · . In this way we can talk about virtual squares occurring in an infinite
word. For instance, the word x = 0100101001001010010 · · · has virtual squares of
length 2 and 3 centered at position 1, and of lengths 3 and 5 at position 2.

Definition 2.3. Let v = v0v1 · · · vn−1 ∈ A+. Define the (least) period of v, denoted
π(v), to be the least positive integer m such that vi = vi+m for all 0 ≤ i ≤ n−1−m.

For instance, for v = 00110 we have π(v) = 4 while for v = 00101101 we have
π(v) = 8 = |v|. Clearly in general π(v) ≤ |v|.

Let x ∈ A+ ∪AN be a finite or infinite word, and let v ∈ A+ be a word of length
n occurring in x at a position i ≥ 0, meaning v = x[i, i + n − 1]. We say that
the occurrence of v at position i is internal if x has virtual squares of length π(v)
centered at positions i and i + n. An occurrence of v in x which is not internal is
called extremal. More precisely, an extremal occurrence is called initial if x does
not have a virtual square of length π(v) centered at position i, and final if x does
not have a virtual square of length π(v) centered at position i+ n. For instance, if
x = 01001010100 · · · , then the occurrence of v = 010 at position 0 is not initial: in
fact, despite the name, the prefix occurrence of a factor is never initial since there
is always a virtual square centered at position 0. Instead the prefix occurrence of v
is final (even if it is immediately followed by another occurrence of v) since x does
not have a virtual square of length 2 centered at position 3. On the other hand,
the occurrence of v at position 3 is initial since x does not have a virtual square of
length 2 = π(v) centered at position 3. In contrast, the occurrence of v in position
5 is internal. Note that an occurrence of a word v in x can be both initial and final.
We also note that if x is an aperiodic infinite word, then each factor v of x admits
a final occurrence in x.

3. Marker sets and words of sub-linear complexity

In this section, we prove the main result of this paper. For x ∈ AN ∪ AZ,
and n ≥ 0, let Rx(n) denote the set of right special factors of x of length n and
Rx =

⋃
n≥0Rx(n).

Definition 3.1. Let D be a positive integer. A subset M ⊆ A∗ is called a D-
marker set for x if for each n ≥ 1 and each factor u of x of length |u| ≥ Dn we
have Fac(u) ∩M ∩ An 6= ∅. The elements of M are called D-markers.
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A CHARACTERIZATION OF WORDS OF LINEAR COMPLEXITY 5

Lemma 3.2. Let C be a positive integer. Then for each aperiodic word x ∈ AN or
right aperiodic x ∈ AZ with px(n) ≤ Cn for each n ≥ 1, the set Rx is a (C + 1)-
marker set for x.

Proof. Fix a positive integer n, and let u be any factor of x of length (C + 1)n.
We show that u contains some element of Rx(n). Since px(n) ≤ Cn, and there
are Cn+ 1 positions for factors of length n in u, by the pigeon-hole principle there
exists a factor v of x of length n which occurs in u at least twice. Thus u contains as
a factor a word w of length |w| > n which begins and ends in v. Hence there exists
a prefix w′ of w of length |w′| ≥ n which is a right special factor of x. Otherwise,
every occurrence of v in x is an occurrence of w, whence x is ultimately (right)
periodic, a contradiction. It follows that the suffix w′′ of w′ of length n belongs to
Rx(n). �

What is important to know about right special words is that in an infinite word
of linear complexity, their number of each length is bounded ([5], see also [7]).

The proof of the following proposition describes a more general method for con-
structing marker sets whose complexity is related to the complexity of the under-
lying word:

Proposition 3.3. For each aperiodic word x ∈ AN or right aperiodic x ∈ AZ there
exists a 3-marker set M for x with

pM (n) ≤ px(4n)

n

for each n ≥ 1.

Proof. For each n ≥ 1, we build recursively (relative to the index i) sets Mn(i)
consisting of factors of x of length n, and Wn(i) consisting factors of x of length
3n. In each case Card(Mn(i)) = Card(Wn(i)) ≤ i. The process terminates when
each factor of x of length 3n contains a factor from Mn(i). Starting with Mn(0)
and Wn(0) both empty, let w1 be the factor of x of length 3n beginning in position
n, and let m1 be the middle block of w1 of length n, i.e., w1 = x[n, 4n − 1] and
m1 = w1[n, 2n− 1] = x[2n, 3n− 1]. Then set Wn(1) = {w1} and Mn(1) = {m1}.

For the inductive step, fix i ≥ 1 and suppose we have constructed sets Mn(i) and
Wn(i) as required. Consider the factors of x of length 3n. If each of them contains
a factor from Mn(i), then we are done and we set Mn = Mn(i), Wn = Wn(i).
Otherwise, pick a factor wi+1 of x of length 3n not containing any element of
Mn(i) and set Wn(i+ 1) = Wn(i)∪{wi+1} and Mn(i+ 1) = Mn(i)∪{mi+1} where
mi+1 is the middle block of wi+1 of length n. Note that if x is a one-sided infinite
word, then wi+1 = x[m,m + 3n − 1] where m ≥ n. Since all wi are distinct and
there are a finite number of factors of x of length 3n, this process terminates at
some point i ≥ 1. Finally, we set M = ∪n≥1Mn. By construction, M is a 3-marker
set. It remains to prove the upper bound on the complexity of M .

For each element wi of Wn, we consider a final occurrence wi = x[ki, ki + 3n− 1]
of wi in x. Since x is aperiodic (or bi-infinite and right aperiodic), each factor of
x admits at least one final occurrence in x. Now for each j = 0, . . . , n− 1 consider
its covering factor c(i, j) = x[ki + j − n, ki + 3n+ j − 1]. Then the length of c(i, j)
is 4n and wi = c(i, j)[n − j, 4n − j − 1]. Note that even if x is one-sided infinite,
each c(i, j) is well defined since each wi occurs in x at a position n or greater.
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Now let us prove that if c(i, j) = c(i′, j′), then i = i′ and j = j′. Indeed, suppose
that c(i, j) = c(i′, j′) but i′ < i. Then wi = c(i, j)[n− j, 4n− j − 1]. Analogously,
wi′ = c(i, j)[n− j′, 4n− j′− 1] and thus mi′ = c(i, j)[2n− j′, 3n− j′− 1]. But since
j, j′ ∈ {0, . . . , n − 1}, we have 2n − j′ ≥ n − j and 3n − j′ ≤ 4n − j. So, mi′ is a
factor of wi, a contradiction to our definition of wi. We have proved that i = i′.

Next suppose that j′ < j. Then wi = c(i, j)[n − j, 4n − j − 1] = c(i, j)[n −
j′, 4n − j′ − 1]. Consider the word s = c(i, j)[n − j, 4n − j′ − 1]. It is (j − j′)-
periodic, and in particular, its prefix wi is (j− j′)-periodic. So, π(wi) ≤ j− j′ ≤ n.
The prefix occurrence of wi to s overlaps with the suffix occurrence of wi to s by
3n−(j−j′) ≥ 2n > π(wi) symbols, and thus s is also π(wi)-periodic. In particular,
s has a virtual square of length π(wi) at the end of the prefix occurrence of wi, that
is, at the position 3n. But s is a factor of c(i, j) = x[ki + j − n, ki + 3n + j − 1],
namely, s = c(i, j)[n − j, 4n − j′ − 1] = x[ki, ki + 3n + j − j′ − 1]. So, x has an
occurrence of wi (of length 3n) at position ki, followed by a virtual square of length
π(wi) at position ki + 3n. It means exactly that this occurrence of wi is not final,
a contradiction.

So, c(i, j) 6= c(i′, j′) for i 6= i′ or j 6= j′. Thus, the total number of covering
factors c(i, j) is given by

Card ({c(i, j) | 1 ≤ i ≤ Card(Wn), 0 ≤ j < n}) = nCard(Wn) = nCard(Mn).

On the other hand, each covering factor c(i, j) is a factor of x of length 4n whence
their number is bounded above by px(4n). Thus

pM (n) = Card(Mn) ≤ px(4n)

n

as required. �

Theorem 3.4. Assume either y ∈ AN and y is recurrent, or y ∈ AZ. Let D be
a positive integer and assume that M is a D-marker set for y. Then there exist
S, T ⊆ A∗ such that Fac(y) ⊆ ST and for each n ≥ 2D we have

(3.1) pS(n), pT (n) ≤
∑

k∈In∩N
pM (2k)

(
1 +

4py(3n)

2k

)
where In = (log2

(
n

2D

)
, log2(2n)].

Proof. Let us fix a D-marker set M for y. For each k ≥ 1, let Mk = {m ∈M | |m| =
2k}. The elements of Mk are called markers of order k.

Consider a factor v of y with |v| ≥ 2D. We shall define a rule for decomposing v
as a product v = s(v)t(v). The sets S and T will then be defined as the collection
of all s(v) and all t(v) corresponding to all factors v of y of length |v| ≥ 2D.
Let k ≥ 1 be the largest positive integer such that Fac(v) ∩ Mk 6= ∅, and fix
m ∈ Fac(v)∩Mk. Thus m is a marker word contained in v of length |m| = 2k. First
suppose some occurrence of m in v is extremal. In this case, we arbitrarily pick one
such occurrence, say at position j, and cut v precisely in the middle of this extremal
occurrence of m so that s(v) = v[0, j+2k−1−1] and t(v) = v[j+2k−1, |v|−1]. In case
all occurrences of m in v are internal, then again arbitrarily pick one such internal
occurrence, say at position j, and cut v precisely in the middle of this internal
occurrence of m so that s(v) = v[0, j + 2k−1 − 1] and t(v) = v[j + 2k−1, |v| − 1] (see
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A CHARACTERIZATION OF WORDS OF LINEAR COMPLEXITY 7

m

v

s(v) t(v)

Figure 1. Building elements of S and T from a word v and an
occurrence of a marker.

Fig. 1). Note that our cutting rule gives preference to extremal occurrences of the
marker word.

Now set

S = (Fac(y) ∩ A<2D) ∪ {s(v) | v ∈ Fac(y) ∩ A≥2D},
T = {ε} ∪ {t(v) | v ∈ Fac(y) ∩ A≥2D},

where A<n =
⋃n−1

k=0 Ak and A≥n = A∗ \ A<n.
It follows immediately from the definitions that Fac(y) ⊆ ST . It remains to

show that complexities of S and T satisfy (3.1). We prove this only for T as the
proof for S works in very much the same way.

Fix n ≥ 2D, and let us estimate pT (n). Recall that each u ∈ T ∩An is obtained
by cutting some factor v of y in the middle of an occurrence of some marker m of
maximal order k occurring in v and u = t(v) is the resulting suffix of v. Then since
t(v) begins with the suffix of m of length |m|/2, we have n ≥ 2k−1. On the other
hand, since k was chosen to be maximal, we have n < D2k+1 for otherwise v, which
is of length at least n, would contain a marker of order k + 1. These inequalities
combined give

(3.2)
n

2D
< 2k ≤ 2n,

which implies that k lies in the interval In = (log2

(
n

2D

)
, log2(2n)]. For each such

integer k ∈ In, the number of marker words of length 2k is equal to pM (2k).
We next prove that each marker word m of length 2k with k, n satisfying (3.2)

contributes at most 1 +
4py(3n)

2k elements to T ∩ An. Let T (m, n) be the set of all
u ∈ T ∩An with u = t(v) for some factor v of y cut at an occurrence of the marker m
in v. We consider separately the three possible types of occurrences of m: internal,
initial and final. Thus let Tint(m, n) (resp., Tini(m, n) and Tfin(m, n)) be the subset
of T (m, n) arising from internal (resp., initial and final) occurrences of m. Recall
that if t ∈ Tint(m, n), then t = t(v) for some factor v of y such that every occurrence
of m in v is internal. This implies that v is π(m)-periodic and hence t is uniquely
determined by m and |t| = n. More precisely, t is the word of length n occurring
at position 2k−1 of the periodic word pω, where p is the prefix of m of length π(m)
(see Fig. 2). Thus Card(Tint(m, n)) = 1.

Next we estimate Card(Tini(m, n)).

Lemma 3.5. For each n ≥ 2D we have

Card(Tini(m, n)) ≤ 2py(3n)

2k

Proof. For t ∈ Tini(m, n), and each 0 ≤ i < 2k−1, let Eini(m, n, t, i) be the collection
of all factors w of y of length n+ 2k such that w has an occurrence of m at position
i and an occurrence of t in position i+ 2k−1; if i ≥ π(m), we require the occurrence
of m to v to be initial (see Fig. 3).
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m

m

prefix of

suffix of

...

m

m

m

p p p psuf
p ... ...

v

t=t(v)

Figure 2. The case of an internal occurrence: the unique t is
determined by m and the length.

k−1

ini
E   (  ,n,t,2     −1)

m

t

...

ini
mE   (  ,n,t,0)

E   (  ,n,t,1)m
ini

m

element of

element of

element of

Figure 3. The sets Eini(m, n, t, i). The parts between dashed lines
are common for all elements.

m

m

i’

i

w

Figure 4. Proof of Claim 3.6. The lower occurrence of m is not initial

Let v be a factor of y giving rise to t in Tini(m, n), that is, v contains an initial
occurrence of m, and the suffix of v starting in the middle of that occurrence of m
is t. Since y is assumed either recurrent or bi-infinite, there exists an occurrence of
v at the distance more than i from the beginning of the word y. So, Eini(m, n, t, i)
is non-empty. Then:

Claim 3.6. For each t, t′ ∈ Tini(m, n) and 0 ≤ i, i′ < 2k−1, where t 6= t′ or i 6= i′,
we have

Eini(m, n, t, i) ∩ Eini(m, n, t
′, i′) = ∅.

Proof of Claim 3.6. Suppose w ∈ Eini(m, n, t, i) ∩ Eini(m, n, t
′, i′). First consider

the case of 0 ≤ i < i′ < 2k−1. Then m occurs in w in position i and i′, and since
i′ − i < 2k−1 < |m|, it follows that the two occurrences of m in w overlap. So, m
is (i′ − i)-periodic, and thus π(m) ≤ i′ − i < 2k−1 < |m|/2. So, w[i, i′ + 2k − 1]
is π(m)-periodic contradicting that the occurrence of m at position i′ > π(m) of w
was initial (see Fig. 4). So, i = i′. But then both t and t′ are words of length n
occurring in w at position i+ 2k−1, so, t = t′. �

So, each t ∈ Tini(m, n) and each i ∈ {0, . . . , 2k−1 − 1} correspond to at least one
factor of y of length n+ 2k: the set Eini(m, n, t, i) of all such factors is non-empty,
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and for different words t or indices i, these sets do not intersect. So,

2k−1Card(Tini(m, n)) ≤
2k−1−1∑

i=0

∑
t∈Tini(m,n)

Card(Eini(m, n, t, i)) ≤ py(n+ 2k),

and since n+ 2k ≤ 3n and thus py(n+ 2k) ≤ py(3n),

Card(Tini(m, n)) ≤ 2py(3n)

2k

as required. �

A similar argument applies to Tfin(m, n) and gives the same bound. Thus in

total each m gives rise to at most 1 +
4py(3n)

2k elements in T ∩ An as required.
The arguments for the complexity of S are analogous, completing the proof of

Theorem 3.4. �

We now state and prove the main result of this paper:

Theorem 3.7. An infinite word x ∈ AN is of sub-linear complexity if and only if
Fac(x) ⊆ S2 for some S ⊆ A∗ of bounded complexity.

Proof. Let x ∈ AN. First let us suppose that Fac(x) ⊆ S2 for some S ⊆ A∗ of
bounded complexity. The following lemma is stated for general languages L and
arbitrary positive integers k, but applied to L = Fac(x) and k = 2 implies that
px(n) = O(n) as required.

Lemma 3.8. Let L ⊆ A∗. Suppose L ⊆ Sk for some S ⊆ A∗ of bounded complexity.
Then pL(n) = O(nk−1).

Proof. The result is clear in case k = 1. So let us fix k ≥ 2, and suppose L ⊆ Sk for
some S ⊆ A∗ of bounded complexity. Pick a positive integer C such that pS(n) ≤ C
for each n ≥ 0. Let u ∈ L and put n = |u|. Then u is a concatenation of k elements

of S. We claim there are
(
n+k−1
k−1

)
ways of factoring u = v1v2 · · · vk with |vi| ≥ 0. In

fact, each such factorization of u corresponds to a vector (n1, n2, . . . , nk) with ni ≥ 0
and n1+n2+· · ·nk = n. The mapping (n1, n2, . . . , nk) 7→ (n1+1, n2+1, . . . , nk+1)
defines a bijection between the sets A = {(n1, n2, . . . , nk) |ni ≥ 0, n1+n2+· · ·nk =
n} and B = {(m1,m2, . . . ,mk) |mi ≥ 1, m1 + m2 + · · ·mk = n + k}. Since each
element of B corresponds to a partition of n + k consecutive points into k non-
empty parts, and since each such partition is given by choosing k − 1 separation
points amongst the n+k−1 possible separation points, we deduce that Card(A) =

Card(B) =
(
n+k−1
k−1

)
. Having established that there are

(
n+k−1
k−1

)
= O(nk−1) ways of

factoring u = v1v2 · · · vk with |vi| ≥ 0, as each vi ∈ S, there are at most C choices

for each vi. Thus pL(n) ≤ Ck
(
n+k−1
k−1

)
and thus pL(n) = O(nk−1) as required. �

For the converse, suppose x ∈ AN and px(n) = O(n). It suffices to consider the
case in which x is aperiodic for otherwise px(n) = O(1) and hence we may take
S = Fac(x) ⊆ S2. It follows from the Morse-Hedlund theorem that px(n) = Θ(n).
Since we are not assuming that x is recurrent, in order to apply Theorem 3.4 we will
need to replace x with a bi-infinite word. Thus, let a be a symbol not belonging to
A and define the bi-infinite word y = · · · y−2y−1y0y1y2 · · · ∈ (A∪ {a})Z by yn = xn
for n ≥ 0 and yn = a for each n ≤ −1. Note that since py(n) = px(n) + n and
px(n) = Θ(n), it follows that py(n) = Θ(n). Also, since x is aperiodic, the word y
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is right aperiodic. We now apply Theorem 3.4 to show that there exist subsets S
and T of A∗ of bounded complexity such that Fac(y) ⊆ ST .

Fix a positive integer C such that py(n) ≤ Cn for each n ≥ 1. Let M = Ry. By
Lemma 3.2, M is a D-marker set for y where D = C + 1. By Theorem 3.4 there
exist subsets S and T of A∗ such that Fac(y) ⊆ ST with pS , pT satisfying (3.1)
where M = Ry and D = C + 1. Since Fac(x) ⊆ Fac(y) we have Fac(x) ⊆ ST.

It remains to show that S and T are of bounded complexity. Since Ry(n) =
Rx(n) ∪ {an} for each n ≥ 0, by the main result of [5] (see also [7]), there exists a
positive integer R such that pM (n) ≤ R for each n ≥ 0. Moreover |In| = 2 + log2D
and thus k takes on at most 3 + log2D possible values. Furthermore for each such
k, we have 1

2k <
2D
n . Thus, starting with (3.1), we have

pS(n), pT (n) ≤
∑

k∈In∩N
pM (2k)

(
1 +

4py(3n)

2k

)
≤ R(3 + log2D)

(
1 +

8Dpy(3n)

n

)
≤ R(3 + log2D)

(
1 +

24DCn

n

)
= R(3 + log2D)(1 + 24DC)

for each n ≥ 2D, and hence each of S and T is of bounded complexity as required.
�

4. Concluding remarks

Theorem 3.4 may be extended to non-recurrent one-sided infinite words by the
same extension argument as in the proof of Theorem 3.7. This is not done in the
paper only for the sake of readability.

The upper bound on the complexity of the sets S and T in the proof of Theorem
3.7 is generally far from optimal. In the construction for the Thue-Morse word
considered in Example 1.1, we have pS(n), pT (n) = 2. As another example where
the complexity of S and T can be very low, consider Sturmian words.

Example 4.1. For a Sturmian word x, there exist sets S and T of complexity
pS(n), pT (n) = 1 for all n such that Fac(x) ⊆ ST . Indeed, the condition px(n) =
n + 1 implies that x admits a unique left (right, respectively) special factor of
each length n denoted lx(n) (rx(n), respectively). Moreover, as is well known,
lx(n) and rx(n) are reversals of one another. Set S = {ε} ∪ {rx(n)0 |n ≥ 0} and
T = {ε} ∪ {1lx(n) |n ≥ 0}. Then clearly, pS(n), pT (n) = 1 for each n. To see that
Fac(x) ⊆ ST, recall that for each n ≥ 1, the word w(n) = rx(n− 1)01lx(n− 1) is a
factor of x of length 2n (see for instance Exercise 6.1.24 in [3]). It is easily checked
that for each n ≥ 1, w(n) contains n+ 1 distinct factors of length n. Whence each
factor of x of length n is a factor of w(n) and hence Fac(x) ⊆ ST as required.

In the proof of Theorem 3.7, instead of Lemma 3.2, we could use the set of mark-
ers from Proposition 3.3. It would give a different upper bound for the complexity
of S and T .

Theorem 3.7 does not extend to arbitrary languages L with pL(n) = O(n). Here
is a counter-example showing it.
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Proposition 4.2. There exists a non-factorial language L of complexity pL(n) =
O(log n) which is not contained in any finite product of the form Sk where S is a
language of bounded complexity.

Proof. For each positive integer n, define xn ∈ {0, 1, 2}∗ by xn = [n]22, where [n]2
is the binary representation of n. For example, x2 = 102 and x65 = 10000012.
Clearly, |xn| = blog2 nc + 2. Next define yn as the longest prefix of xωn satisfying
|yn| log2 |yn| ≤ n. Thus for example y2 = 10 since 2 log2 2 ≤ 2 < 3 log2 3 and
y65 = 1000001210000012 since 16 log2 16 ≤ 65 < 17 log2 17. Finally, define L =
{yn|n ≥ 1}.

We first claim that |yn| = Θ( n
log n ). Indeed, for n ≥ 2, |yn| ≥ 2 so that log2 |yn| ≥

1 and

|yn| ≤
n

log2 |yn|
≤ n.

Since the length |yn| was chosen to be maximal,

|yn|+ 1 >
n

log2(|yn|+ 1)
≥ n

log2(n+ 1)
,

so |yn| = Ω(n/ log n). Combining the two previous equations yields

|yn| ≤
n

log2( n
log2(n+1) − 1)

.

Since n
log2(n+1) − 1 is asymptotically equivalent to n

log2 n we deduce |yn| = O( n
log n ).

Together with the lower bound above, this gives |yn| = Θ( n
log n ) as required.

Next we claim that pL(n) = Θ(log n). Indeed,

pL(n) = Card{m | |ym| = n}.

In other words,

pL(n) = Card{m |n log2 n ≤ m < (n+ 1) log2(n+ 1)}.

Whence,

pL(n) = d(n+ 1) log2(n+ 1)e − dn log2 ne = Θ(log n).

Finally we claim L is not contained in any finite product of the form Sk where
S is of bounded complexity. Indeed, suppose to the contrary that L ⊆ Sk for some
k ∈ N and some set S of bounded complexity. Since

|yn|
|xn|

= Θ

(
n

(log2 n)2

)
,

there exists an integer n0 > 0 such that for all n > n0, we have |yn| ≥ (k + 1)|xn|.
This means that for all n > n0, the word yn contains at least k + 1 occurrences of
2, and, by the pigeon hole principle, at least two of them are located in the same
word from S, denote it by sn. Since between two occurrences of 2 in sn, there is
exactly the binary representation of n, all sn for n > n0 are pairwise distinct.

Now for each n > n0 consider the set S(n) = {sm|n0 < m ≤ n} ⊆ S. It
contains n − n0 distinct words, and the length of each of them is o(n): indeed,
|sm| ≤ |ym| = Θ(n/ log n). So the total number of factors of length at most n of S
grows faster than linearly, which is impossible if its complexity is bounded. �
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18. M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math.

1284, Springer, 1987.

19. G. Rote, Sequences with subword complexity 2n, J. Number Theory 46 (1994), pp. 196–213.
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