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1 Generalities

1.1 What is nanofluidics?

Nanofluidics is the study of fluids confined in struc-
tures of nanometric dimensions (typically 1−100 nm)
[1, 2]. Fluids confined in these structures exhibit be-
haviours that are not observed in larger structures,
due to a high surface to bulk ratio. Strictly speak-
ing, nanofluidics is not a new research field and has
been implicit in many disciplines [3, 4, 5, 6, 7], but
has received a name of its own only recently. This
evolution results from recent technological progress
which made it possible to control what occurs at
these scales. Moreover, advances have been made
in observation/measurement techniques, allowing for
measurement of the small physical quantities inher-
ent to nano-sized systems.

Even though nanofluidics is born in the footstep of
microfluidics, it would be incorrect to consider it an
extension of microfluidics. Indeed, while in microflu-
idics the only scale which matters is the size of the
system, nanofluidics has to deal with a large spec-
trum of characteristic lengths which induce coupled
phenomena and give rise to complex fluid behaviours
[8]. Moreover, since nanofluidics is at the intersection
between physics, chemistry and biology, it concerns
a wide range of domains such as physiology, mem-
brane science, thermodynamics or colloidal science.
Consequently, a multidisciplinary approach is often
needed for nanofluidics’ research.

Some striking phenomena taking place at the
nanoscale have been highlighted during the past few
years. For example, super-fast flow in carbon nan-
otubes [9, 10, 11], nonlinear eletrokinetic transport
[12, 13] or slippage over smooth surfaces [14] have
been measured. Those effects are indicators of the
richness of nanofluidics. Accordingly, this field cre-
ates great hopes, and the discovery of a large variety
of new interesting effects in the next decades is a

reasonable expectation. Moreover, one can notice
that most of the biological processes involving fluids
operate at the nano-scale, which is certainly not by
chance [8]. For example, the protein that regulates
water flow in human body, called aquaporin, has got
sub-nanometric dimensions [15, 16]. Aquaporins are
known to combine high water permeability and good
salt rejection, participating for example to the high
efficiency of human kidney. Biological processes in-
volving fluid and taking place at the nanoscale attest
of the potential applications of nanofluidics, and con-
stitute a source of inspiration for future technological
developments.

Hereafter, an overview of the current state of
nanofluidics is presented. First, a brief state-of-the-
art, mainly focused on nano-fabrication and mea-
surement techniques is given. Then some current
applications linked to nanofluidics are described.

1.2 State-of-the-art

Nanofluidics has emerged from the recent progresses
of nanoscience and nanotechnology, such as pro-
gresses made in developing nano-fabrication tech-
nologies. Fabricating well-controlled channels is a
major challenge for nanofluidics, and is a necessary
condition for a systematic exploration of nanofluidic
phenomena. This requires a good control of device
dimensions and surface properties (charge, roughness,
etc). For example, the improvement of lithography
techniques (electron, x-beam, ion-beam, soft...) al-
lows the fabrication of slit nanochannels [17]. Focus
Ion Beam (FIB) allows to drill nanopores in solid
membranes [18, 19]. There are also coatings and de-
position/etching techniques that can be used to tune
the surface properties [20, 21]. Siria et al. were able
to manipulate a single boron nitride (BN) nanotube
in order to insert it in a membrane separating elec-
trolyte reservoirs and perform electric measurements
[22]. Great developments of Scanning Tunneling Mi-
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croscope (STM) or Atomic Force Microscopy (AFM)
allow to characterize the fabricated devices.

In parallel, the efforts invested in nanofabrication
have been combined to an improvement of measure-
ment techniques. Most of them are based on the
measurement of electric currents, and have been de-
veloped since the early days of physiology. But for
a full understanding of nanofluidic properties, other
quantities have to be made accessible. For exam-
ple, local values of a velocity field can be obtained
using nano-Particle Image Velocimetry (nano-PIV).
Surface Force Apparatus (SFA) have been used to
explore the hydrodynamic boundary condition and
measure forces that play an important role in nanoflu-
idics, such as van der Waals or electric forces.

In addition, a current challenge concerns water
flow measurements. The main difficulty is due to
the magnitude of typical flows through nanochannels:
∼ 10−18 m3/s (it would take several years to grow
a drop of 1 nl with such a flow). In order to detect
a water flow through a nanochannel, some poten-
tial candidates have emerged during the last decade.
One can cite, for example, Fluorescence Recovery Af-
ter Photobleaching (FRAP), confocal measurements
or coulter counting measurements that have been
reported to detect respectively 7 · 10−18 m3/s [23],
10−18 m3/s [24] and 10−18 m3/s [25]. However, the
inconvenient of most of the existing measurement
techniques is that they are indirect and require the
use of dyes or probes.

Meanwhile, numerical progresses combined with
calculation capacity improvement allow for the theo-
retical exploration of a large variety of nanofluidic
properties. For example, the friction of water on solid
surfaces can be investigated using ab initio methods
[26], while molecular dynamics simulations are good
candidates for fluid transport investigations [27, 28].

1.3 Applications

Some important applications of nanofluidics are listed
hereafter.
Biology – First of all, most of the biological pro-
cesses that involve fluids take place at the nanoscale
[15, 29, 30, 31]. For example, the transport of water
through biological membranes in cells is ensured by
aquaporins, a protein with subnanometric dimen-
sions. Aquaporins appear to have an extremely high
water permeability, while ensuring an excellent salt
rejection 1. Another example of proteins with nano-
metric dimensions are ion pumps and ion channels,

1Note that the shape of aquaporins is discussed in reference
[32].

that ensure the flow of ions across cell membranes
[33, 34]. Combined, those proteins allow the (human)
kidney, which is an example of natural desalination
and separation tool, to purify water with an energy
cost far below current artificial desalination plants
[8].

Desalination – At the same time, some of the most
used (man-made) desalination techniques, consisting
in the separation of salt and water in order to produce
fresh water, are using nanofluidic properties [35, 36].
This is the case of membrane-based techniques, such
as Reverse Osmosis (RO) [37], Forward Osmosis (FO)
[38] or ElectroDialysis (ED) [39]. The improvement
of the membrane technology has made it possible to
desalinate with an energy consumption close to the
minimum energy set by thermodynamics.

Extraction of mixing energy – Another inter-
esting application of nanofluidics concerns the ex-
traction of the energy of mixing from natural wa-
ter resources. This so-called blue energy is the en-
ergy available from the difference in salt concentra-
tion between, for example, seawater and river water.
Pressure-Retarded Osmosis (PRO) converts the huge
pressure difference originating in the difference in salt
concentration (∼ bars) between reservoirs separated
by a semipermeable membrane into a mechanical
force by the use of a semipermeable membrane with
nanosized pores [40]. Siria et al. proposed another
way to convert blue energy based on the generation of
an osmotic electric current using a membrane pierced
with charged nanotubes [22].

Nanofluidic circuitry – The recent emergence of
nanofluidic components benefiting of the surface ef-
fects of nanofluidics leads naturally to an analogy
with micro-electronics. Indeed, some nanofluidic com-
ponents imitate the behaviour of over-used micro-
electronic components such as the diode or the tran-
sistor [12] 2. Even if a complete analogy between both
fields fails due to the physical differences between
ions and electrons, controlling/manipulating nano-
flows the same way we control electric currents would
allow for regulating, sensing, concentrating and sep-
arating ions and molecules in electrolyte solutions
[42] with many potential applications in medicine,
such as drug delivery or lab-on-a-chip analyses.

An overview of the full complexity of nanofluidics
is highlighted in the following by the description of
some theoretical bases. The first part provides the
definitions of the characteristic lengths that separate
the different transport regimes and lead to a large
variety of behaviours. The second part describes

2Note that nanofluidic diodes are discussed in reference [41].
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the numerous forces that play a role in nanofluidics
and that are at the origin of the various phenomena.
Finally, the third part focuses on transport response
of a membrane pierced with a slit nanochannel and
submitted to external forcing.

2 Definitions

2.1 Characteristic lengths

The richness of nanofluidics comes from the existence
of a large number of characteristic lengths related to
the finite size of the fluid’s molecules, to electrostatics
or to the fluid dynamics. Indeed, when one or more
dimensions of a nanofluidic system compares with
those characteristic lengths, new phenomena may
appear. An overview of length scales at play in
nanofluidics can be seen in figure 1. In what follows,
a description of each length is given.

0.1 nm 1 nm 10 nm 100 nm 1000 nm

Molecular 
scale

Debye length

Duhkin length

Slip length 
(simple surface)

Slip length (micro-nano- 
structured surfaces)

Continuum description

Figure 1: Overview of length scales at play in
nanofluidics, freely inspired from refer-
ence [1].

The molecular length scale is associated with the
finite size of the fluid’s molecules and its components
(molecules, ions...). More precisely, it is linked to
their diameter σ, typically in the angstroms scale
(1 Å = 1 ·10−10 m). For example, σ ∼ 3 Å for the wa-
ter molecule, σ ∼ 4− 5 Å for common ionic species
(Na, K, Cl) [43]. This length defines a priori the ul-
timate limit of the study of nanofluidic transport [1].
In the vicinity of a confining wall, fluids can experi-
ence some structuring and ordering at the molecular
length scale. An example of water molecules near
a solid surface is shown in figure 2. This effect is
exacerbated in confining pores, when there is only
room for a limited number of molecules. In that case,
strong deviations from continuum predictions can be
expected. Another important effect related to the
size of molecules, and thus to the molecular length is
osmosis; which is the phenomenon by which a solvent
moves across a semipermeable membrane (permeable
to the solvent, but not to the solute) separating two

solutions of different concentrations. Note that the
question of the robustness of hydrodynamics for con-
finement below one nanometer and the phenomenon
of osmosis are both discussed in my thesis [44].

Figure 2: Water molecules (oxygen in red, hydrogen
in white), next to a graphene sheet (in
gray).

The Bjerrum length is defined considering two
charged species in a solution. It corresponds to the
distance at which the thermal energy kBT , with kB
the Boltzmann constant and T the absolute tempera-
ture, is equal to the energy of electrostatic interaction.
The Bjerrum length `B can be written as

`B =
Z2e2

4πεkBT
, (1)

with e the elementary charge, Z the valency, ε the
dielectric permittivity of the medium. For two mono-
valent species in water at ambient temperature, `B
is approximately equal to 0.7 nm. Depending on
the considered solution (monovalent ionic species,
organic solvent with low dielectric constant, etc.), `B
can be either large enough to be clearly dissociated
from the molecular length, or be of the same order
as the molecular length. The physics has to be dif-
ferentiated in each case. There are physical effects
with important implications on nanofluidic transport
that are linked to the Bjerrum length. For exam-
ple, for confinements below `B, one expects a large
free-energy cost to undress an ion from its hydration
layer and make it enter the pore, with consequences
on filtering processes of charged species.
The Gouy-Chapman length is constructed in the
spirit of the Bjerrum length. It is defined as the
distance from a charged wall where the electrostatic
interaction of a single ion with the wall becomes of
the order of the thermal energy. For a surface charge
Σ, it can be written as

`GC =
e

2πΣ`B
. (2)

For monovalent species in water and a typical surface
charge Σ ∼ 50 mC/m2, `GC is approximately equal
to 0.7 nm .
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The Debye length is the characteristic length of
the layer that builds up near a charged surface in
an ionic solution. This layer counter balances the
influence of the electric charge, and is of main im-
portance in the study of transport at the nanoscale,
as will be discussed later. The Debye length can be
written as

λD =
1√

8πlBc0
, (3)

with c0 the concentration in ionic species. Indeed,
when a solid surface is immersed in an aqueous so-
lution, it usually acquires a surface charge Σ due
to chemical reactions (dissociation of surface groups
and specific adsorption of ions in solution to the
surface [45, 46]). In response to this surface charge,
the ionic species in the liquid rearrange themselves
and form a layer that screens the influence of the
surface charge. This layer of ionic species is called
the Electrical Double Layer (EDL). Note that the
Debye length is independent of the surface charge
Σ, and inversely proportional to the square root of
the salt concentration c0. Typically λD is equal to
30 nm for c0 = 10−4 M, 3 nm for c0 = 10−2 M and
0.3 nm for c0 = 1 M.
The Dukhin length is based on the comparison
between the bulk to the surface electric conductance,
which links the electric current to an applied electric
field. It characterizes the channel scale below which
surface conductance dominates over bulk conduc-
tance [1]. In a channel of width h and surface charge
density Σ, the excess in counterion concentration is
ce = 2Σ/he with e the elementary charge and where
the factor 2 accounts for the two surfaces. One may
define a Dukhin number Du = |Σ| /hc0e. A Dukhin
length `Du can then be defined as

`Du =
|Σ|
c0e

. (4)

For a surface with a surface charge density Σ =
50 mC/m2, `Du is typically 0.5 nm for c0 = 1 M, while
`Du = 5 µm for c0 = 10−4 M.
The slip length is defined as the depth inside the
solid where the linear extrapolation of the velocity
profile vanishes. Unlike previous lengths, that are
all related to electrostatics, the slip length comes
from the dynamic of the fluid near a solid surface. It
characterizes the hydrodynamic boundary condition
of fluids at interfaces. Its expression can be derived
as follows: first, assume that the tangential force per
unit area exerted by the liquid on the solid surface
is proportional to the fluid velocity at the wall vw:
σxz = λvw, with λ the friction coefficient, z the
normal to the surface, x the direction of the flow.

Then, combining this equation with the constitutive
equation for a bulk Newtonian fluid, σxz = η∂zvx,
one obtains the Navier boundary condition [14]:

vw =
η

λ
∂zvx

∣∣∣
w

= b∂zvx

∣∣∣
w
, (5)

where the slip length b = η/λ is defined as the ratio
between the bulk liquid viscosity and the interfacial
friction coefficient. Accordingly, several kinds of
hydrodynamic boundary conditions can apply:

• the no-slip boundary condition supposes that
the fluid has zero velocity relative to the bound-
ary, vw = 0 at the wall, and corresponds to a
vanishing slip length b = 0;

• the perfect-slip boundary condition corresponds
to the limit of an infinite slip length (b → ∞),
or equivalently a vanishing friction coefficient
(λ→ 0). It corresponds to a shear free boundary
condition. Traditionally, the perfect-slip bound-
ary condition is used when the slip length b is
much larger than the characteristic length(s) of
the system;

• the partial-slip boundary condition concerns in-
termediate slip length.

For simple liquids on smooth surfaces, slip lengths up
to a few tens of nanometers have been experimentally
measured [14].

2.2 Mathematical description of the EDL

The Electrical Double Layer (EDL) plays a funda-
mental role in nanofluidics due to a large surface
area to volume ratio. It corresponds to the layer of
ionic species that counter-balances the influence of a
surface charge. Numerous phenomena, that will be
discussed later, take their origin within the EDL, so
a mathematical description of this layer is of main
importance here. The conventional description is
given hereafter.

The Gouy-Chapman theory is at the basis of
EDL’s description. It is based on the following hy-
pothesis [47]:

• ions are considered as (punctual) spots,

• the dielectric permittivity of the medium is sup-
posed constant in the medium,

• the charge density and the electrical potential
are seen as continuum variables,
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• the correlations between ions as well as the ion-
solvent interactions are not taken into account
(mean field theory),

• only electrostatic interactions are considered.

Poisson-Boltzmann equation – Under the previ-
ous hypotheses, let us write the equation that un-
derlies the distribution of ions near a flat surface.
Consider monovalent ions near a flat surface S, lo-
cated at z = 0, with homogeneous surface charge
density Σ and surface potential Vs, as shown in fig-
ure 3. The link between the electrical potential V (z)
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Figure 3: Left: scheme of the studied configura-
tion. Right: Debye-Hckel solution (11)
for the electrical potential V in blue and
linearized Boltzmann equation (12) for
the concentration profile c± in red.

and the charge density ρe(z) at a z distance of the
surface inside the ionic solution is given by a Poisson
equation:

∆V =
d2V

dz2
= −ρe

ε
, (6)

where ε = ε0εr is the solvent permittivity (for water
at ambient temperature, εr ≈ 80). The idea is to
ignore the thermal fluctuations of V and ρe and to
consider their respective averaged values only. At
the thermal equilibrium, the densities of positive
c+(z) and negative c−(z) ions are governed by the
Boltzmann equation:

c±(z) = c0e
∓βeV (z), (7)

with β = 1/kBT and c0 the concentration in ion of
charge ± e far from the wall. The charge density
reads ρe = e(c+ − c−) = −2ec0 sinh(βeV ). Coupling
this equation with (6), we get the Poisson-Boltzmann
equation for the electrical potential V (z):

d2V

dz2
=

2ec0

ε
sinh(βeV ). (8)

Introducing the previously described Bjerrum length
`B, defined as the length at which the thermal energy

balances the electrostatic one, we can rewrite the
equation 8:

βe
d2V

dz2
= 8π`Bc0 sinh(βeV ) = κ2 sinh(βeV ), (9)

where κ = (8π`Bc0)1/2 corresponds to the inverse
of the previously described Debye length λD. This
equation describes the evolution of the electrical
potential next to a charged surface.
Linearized Poisson-Boltzmann equation – In
the general case, the Poisson-Boltzmann equation
can not be solved analytically. For small potentials
(eV � kBT ), an approximate form of the Poisson-
Boltzmann, the Debye-Hckel equation, can be written
as

d2V

dz2
= κ2V. (10)

Assuming that the electrical potential vanishes far
from the surface, the solution of the Debye-Hckel
equation reads

V (z) = Vse
−κz, (11)

where Vs is the surface electrical potential. Equation
(11) is plotted in figure 3. The electrical potential
is screened over a distance κ−1 = λD, the Debye
length, which then gives the width of the EDL. The
linearization of the equation (7) gives

c± = ρs exp(∓βeV (z)) ≈ c0(1∓ βeV (z))

= c0(1∓ βeVs exp(−κz)). (12)

Equation (12) is plotted in figure 3 for both ± species.
Non-linear Poisson-Boltzmann equation – In
some situations, a solution for the non-linear Poisson-
Boltzmann equation exists. Let us consider here the
case of a single flat wall, the electrolyte is located in
z > 0 and the solid wall in z < 0. A surface charge
density Σ < 0 is located at z = 0. The electric field
is taken to be equal to 0 inside the wall as well as far
from the wall inside the electrolyte. At the wall, the
electrostatic boundary condition links the electric
field and the surface charge:

∂V

∂z

∣∣∣∣
z=0

= −4π

ε
Σ. (13)

Solving the PB equation (8) with this boundary
condition (13) leads to [48]

V (z) = − 2

eβ
ln

(
1 + γe−z/λD

1− γe−z/λD

)
, (14)

where γ is the positive root γ0 of the equation:

γ2 +
2`GC
λD

γ − 1 = 0. (15)
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For a positive surface charge Σ, the solution for
V is identical, though with γ = −γ0(< 0). The
surface potential Vs can be written as Vs =
4 arctan(−z/λD)/βe.

2.3 Nanoscale forces

Now that the general ideas of the Gouy-Chapman de-
scription of the EDL have been given, let us describe
some of the most important forces that play a role
in nanofluidics. These forces are at the origin of the
large range of phenomena observed in nanofluidics,
and they give rise to both equilibrium or kinetic phe-
nomena [2]. Note that the distinction we will make
between forces is artificial since they all are electrical
in nature [49], but it still makes sense because of
the many different ways in which the electrical force
presents itself.

As a side note, each system depends fundamentally
on individual forces that are applied between indi-
vidual atoms. However, in practice, large systems
(∼ 10 nm) can usually be described with continuum
theory, which statistically averages the single inter-
actions. This is why we may speak of forces exerted
by walls on particles or molecules, or between walls,
or between particle or molecules.
Electrostatic forces are long range interactions
acting between charged atoms or ions [49]. Two par-
ticles of respective charges Q1 and Q2 at a distance
r act on each other as follows:

F (r) =
Q1Q2

4πε0εrr2
, (16)

where εr is the dielectric permittivity of the medium.
F (r) is directed along the axis defined by the position
of the two particles. Equation (16) is known as
the Coulomb law. Electrostatic forces can be either
attractive or repulsive, depending on the sign of the
product Q1Q2. They are, for example, at the origin
of the building of the Electrical Double Layer (EDL).
Van der Waals forces are residual forces of electro-
static origin which are always present, even between
neutral atoms. They are relatively weak in compari-
son to chemical bonding for example (see below), but
they nevertheless play a role in a large range of phe-
nomena such as adhesion, surface tension or wetting.
Van der Waals forces even manifest themselves at
macroscopic scales since they are at the origin of the
adhesion of gecko, a decimetric reptilia, on solid sur-
faces. Van der Waals forces include attractions and
repulsions between atoms, molecules and surfaces.
They have three possible origins such as:

• the force between two permanent dipoles,

• the force between a permanent dipole and an
induced dipole,

• the force between two induced dipoles (London
dispersion force).

Van der Waals forces are long-range, can bring
molecules together or mutually align/orient them,
and are not additive. They have to be described with
the quantum mechanical formalism, which is beyond
the scope of the present work.

The DLVO (Derjaguin, Verwey, Landau, Over-
beek) theory gives a large picture of nanoscale forces
which includes van der Waals forces and coulombic
forces. However, some effects that appear at very
short range can not be described in the framework
of the DLVO theory. Non-DLVO forces are discussed
in what follows.

Chemical or bonding forces link two or more
atoms together to form a molecule [49]. Bonds are
characterized by the redistribution of electrons be-
tween the two or more atoms. The number of cova-
lent bonds that an atom can form with other atoms
depends on its position in the periodic table. This
number is called the valency. For example, it is equal
to one for hydrogen and two for oxygen, which leads
to water molecule H2O (H-O-H). Notice that covalent
bonds are of short range (0.1− 0.2 nm) and directed
at well-defined angles relative to each other. For ex-
ample, they determine the way carbon atoms arrange
themselves to form diamond structure. Notice that
covalent bonding comes from complex quantum in-
teractions which are beyond the scope of the present
work.

Repulsive steric forces appear when atoms are
brought too close together. It is associated with the
cost in energy due to overlapping electron clouds
(Pauli/Born repulsion). A consequence is the size
exclusion, widely used in membranes from angstrm
to micrometer [2]. It plays a role for example in aqua-
porins (water channels), that offer a low resistance
for water molecules, but do not allow ions to pass
through. To pass through this channel, the ion needs
to lose its water shell, which is energetically unfavor-
able. Notice that, combining electrostatic forces and
steric forces, it is possible to develop K+ channels
with a high selectivity for K+ over Na+ while both
have water shells [50].

Solvation forces (or structural forces) are related
to the mutual force exerted by one plate on another
when they are separated by a structured liquid 3.

3Liquid structuring in central in reference [51]
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Next to a solid surface, density oscillations are ex-
pected. If two solid surfaces immersed in a fluid are
separated by a short distance, liquid molecules must
accommodate the geometric constraint, leading to
solvation forces between the two surfaces, even in the
absence of attractive walls. Depending on both sur-
face properties (well ordered, rough, fluid-like) and
fluid properties (asymmetrically shaped molecules,
with anisotropic or non pair-wise additive interaction
potential), the resulting solvation forces can be either
monotonic or non-monotonic, repulsive or attractive.
See reference [49] for more details. Notice that, in the
case of water molecules, solvation forces are called
hydration forces.

Hydrophobic forces come from interactions be-
tween water and low water-soluble objects (molecules,
clusters of molecules...). These substances usually
have long carbon chains that do not interact with
water molecules, resulting in a segregation and an
apparent repulsion between water and nonpolar sub-
stances. The hydrophobic effect, which results from
the presence of hydrophobic forces, is actually an
entropic effect: each water molecule can form four
hydrogen bonds in pure water, but can not form as
much if surrounded by hydrophobic (apolar) species.
Hence, apolar molecules (or clusters of molecules)
will rearrange themselves in order to minimize the
contact surface with water. An example is the mix-
ing of fat and water, where fat molecules tend to
agglomerate and minimize the contact with water.

Non-conservative forces, such as friction or vis-
cous forces, are referred as non-conservative forces
because they involve energy transfer from one body
to another. Contrary to other forces, which act on a
body and generate a motion according to the second
law of Newton, non-conservation forces have no force
law and arise as a reaction to motion. Inside a liquid,
friction is linked to a fluid property: the viscosity,
which is a property of a fluid to resist to a shear. It
comes from collisions between neighbouring particles
that are moving at different velocities. For example,
when a fluid flows through a pipe, the particles gen-
erally move quickly near the pipe’s axis and slowly
near its walls, leading to stress. The friction between
water molecules leads to a dissipation that has to
be overcome, for example by a pressure difference
between the two ends of the pipe, to keep the fluid
moving.

Other forces, such as gravitational or inertial forces,
are of lesser importance in nanofluidics and are not
discussed here.

2.4 Some consequences

The previously described forces give rise to a large
variety of phenomena. As an illustration, some of
them are presented here.

Cohesion is related to attractive forces between
molecules of the same substance. It is due to inter-
molecular attractive forces. They can be van der
Waals forces or hydrogen bonding. Cohesion is at
the origin, for example, of the tendency of liquids to
resist separation.

Adhesion corresponds to attractive forces between
unlike molecules. They are caused by forces acting be-
tween two substances, which can have various origins,
such as electrostatic forces (attraction due to oppo-
site charges), bonding forces (sharing of electron),
dispersive (van der Waals forces) etc. For example,
water tends to spread on a clean glass, forming a
thin and uniform film over the surface. This is be-
cause the adhesive forces between water and glass
are strong enough to pull the water molecules out of
their spherical formation and hold them against the
surface of the glass.

Surface tension is related to the elastic tendency
of liquids which makes them acquire the least surface
area possible. This results from the fact that when
exposed to the surface, a molecule is in an energeti-
cally unfavorable state. Indeed, the molecules at the
surface of the liquid lack about half of their cohesive
forces, compared to the inner molecules of the bulk
liquid [52]. Hence a molecule at the surface has lost
about half its cohesion energy. Surface tension is a
measure of this lost of energy per surface unit. In
the thermodynamic point of view, it is defined as
the excess of free energy due to the presence of an
interface between two bulk phases [53]. The surface
tension γ is of the order of magnitude of the bond
energy ε between molecules of the fluid divided by
the cross section area of a molecule σ2:

γ ∼ ε

σ2
.

Finally one may notice that surface tension is also
present at liquid-liquid, liquid-solid and solid-air in-
terfaces.

Wetting is the study of the spreading of a liquid
deposited on a solid (or liquid) substrate. When
a small amount of liquid is put in contact with a
flat solid surface, there are two different equilibrium
situations: partial wetting, when the liquid shows a
finite contact angle θ, and total wetting, in which the
liquid spreads completely over the surface and where
θ is not defined. The property of the fluid to spread
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on the surface is characterized by the spreading pa-
rameter S which measures the difference between the
energy per unit area of the dry surface of the solid
substrate and the wetted surface:

S = γSV − (γSL + γLV ) (17)

where γSV , γSL and γLV denote the free energies per
unit area of respectively the solid-vapour interface,
the solid-liquid interface and the liquid-vapour inter-
face equal to the surface tension γ. In the case of
a positive S, the surface energy of the dry surface
is larger than the energy of the wetted surface, so
the liquid tends to extend completely to decrease
the total surface energy, hence θ is equal to zero. A
negative S corresponds to a partial wetting situation,
where the liquid does not completely spread on the
surface and forms a spherical cap, adopting an angle
θ > 0. From the equilibrium of the capillary forces
at the contact line or from the work cost for moving
the contact line, one gets the Young-Dupr relation:

cos θ =
γSV − γSL

γ
. (18)

Capillary forces originate in the adhesion between
the liquid and the solid surface molecules. It is
strongly linked to the existence of a surface tension,
as well as to the concept of wetting and contact
angle. In certain situations, those forces pull the
liquid in order to force it to spread the solid surface.
Depending on the configuration, it can make the
liquid fill a solid channel for example.

2.5 Transport in nanochannels

In this section, we consider various transport phe-
nomena that can occur in a nanochannel separating
two reservoirs containing an electrolyte. The purpose
is to give a simple expression of each flux as a func-
tion of various driving forces (mechanical pressure,
solute concentration and electrical potential gradi-
ents). For the sake of simplicity, the nanochannel
is chosen to be a slit (∼ 2D) and entrance effects
are not taken into account 4. The walls are perpen-
dicular to z, respectively located in z = ±h/2 and
driving forces are applied along x, see figure 4. The
channel has a length L along x and a width w along
y. The Reynolds number Re = ρvL/µ (where ρ and
µ are respectively the fluid density and the dynamic
viscosity and v and L are respectively the character-
istic velocity and length of the flow) is assumed to

4Note that hydrodynamic entrance effects are discussed in
references [32, 54].

be lower than one and the problem to be stationary.
Hence, the governing equation for the flow is the
Stokes equation:

η4 ~u = ~∇p+ ~F (19)

where η is the fluid viscosity, ~u is the velocity field, p
is the hydrodynamic pressure and ~F a volume force.
The surface charge density is Σ, and will be different
from 0 if specified only. Unless otherwise stated, the
height of the channel h will be considered large in
comparison to the typical range of the potential (i.e.
the Debye length). Unless otherwise stated, the no-
slip boundary condition will be used for the solvent
along walls. The system is shown on figure 4.

Σ

h

L

p-Δp/2
V-ΔV/2
c-Δc/2

p+Δp/2
V+ΔV/2
c+Δc/2

Q, I, J

x

z

Figure 4: Sheme of the 2D channel used for the
calculations.

A flow through the membrane can occur as a con-
sequence of a force near the membrane [55]. Here we
consider this force to be a mechanic pressure drop
∆p, difference in solute concentration ∆c or differ-
ence in electrical potential ∆V . We suppose that
the considered forcing are weak, so equilibrium pro-
files remain unmodified along z, and flows are linear
functions of the forces operating. Hereafter we will
study the volume flow Q, the ionic flow Ji and the
electrical current Ie resulting from ∆p, ∆c and ∆V .
The phenomenological equations linking the three
flows to the three forces write:

Q = L11∆P + L12∆c+ L13∆V,

Ji = L21∆P + L22∆c+ L23∆V, (20)

Ie = L31∆P + L32∆c+ L33∆V,

where LIJ are coefficients. According to Onsager’s
law, the matrix of coefficients LIJ is symmetrical,
i.e. LIJ = LJI . Finally, one assumes that in the
middle of the channel (z=0), concentration, electrical
potential and pressure evolve linearly with x.

Direct terms

The direct terms of the matrix of transport (20)
correspond to the diagonal terms LII . They link
each flux with their natural force, respectively the
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solvent flow with the pressure gradient, the ionic
flow with the salt gradient and the ionic current with
the electrical gradient. Each of them is calculated
hereafter in the previously described configuration
(slit nanochannel).
L11 – the hydrodynamic permeability charac-
terizes the flow transport across a given structure
under a pressure gradient. Using both symmetry and
impermeability of the walls, one gets for the velocity
field: ~u = ux(z)~ux. So the Stokes equation 19 can
be written as η∂2

zux = ∂xp. A first integration of the
Stokes equation between 0 and z gives η∂zux = z∂xp,
where we used that ∂zux|z=0 = 0 by symmetry, and
that ∂xp does not depends on z. Another integration
between −h/2 and z using that ∂xp = ∆p/L gives

u(z) = uw +
1

η

(
z2

2
− h2

8

)
∆p

L
, (21)

where uw is the wall velocity, which depends on the
hydrodynamic boundary condition (see the definition
of the slip length, subsection 2.1). Finally, L11 in
case of the no-slip boundary condition (uw = 0) can
be written as

L11 =
Q

∆p
= − 1

12η
× wh3

L
. (22)

Hence the hydrodynamic permeability of a membrane
in the low Reynolds number regime is limited by the
viscosity of the fluid, and depends strongly on the
dimensions of the channel.
L22 – the ionic permeability characterizes the
ionic flow through a membrane under a salt concen-
tration gradient. From the Fick’s law of diffusion:

~j± = −D±~∇c±, (23)

where D± are diffusion coefficients of the ± species
respectively, one can write the total flow Ji assuming
that D+ = D− = D:

Ji =

∫
S

(~j++~j−). ~dS = −wD
∫ h/2

−h/2
∂x(c+(x)+c−(x))dz.

(24)
In a neutral channel, and assuming that c±(x) =
x∆c/L+ c0, it gives

L22 =
Ji
∆c

= −D × S

L
, (25)

where S = hw is the surface of the channel. Notice
that equation (25) describes ionic flow through a
membrane under salt gradient in absence of surface
charge. In case of the presence of a surface charge

density Σ, the nanochannel exhibits a selective perme-
ability for ion diffusive transport [1]. Consequently,
the concentration of counterions inside the channel
is higher that the bulk concentration, while the con-
centration in co-ions is lower. Therefore, ions of the
same charge as the nanochannel exhibit a lower per-
meability, while ions of the opposite charge have a
higher permeability through the nanochannel. Fol-

1e-05 0.0001 0.001 0.01 0.1 1

c
0
 (mol/L)

0

1

2

3

4

5

6

β

Figure 5: Equation (26) for β+ (continuous) and
β− (dashed) as a function of the bulk
concentration for a negatively charged
surface.

lowing Plesis et al., an effective nanochannel section
can be defined for each species S±eff = β±S where β
is an exclusion/enrichment coefficient [56]:

β± =
1

h

∫ h/2

−h/2
e∓φ(z)dz; (26)

where φ(z) = βeV (z) with V (z) the electrical poten-
tial. One can use the linearised Poisson-Boltzmann
equation to calculate the ion concentration profile in
the slit. An example is shown in figure 5.

L33 – the ionic conductance characterizes the
ionic current through a membrane under an applied
electrical potential difference: G = Ie/∆V . First, let
us define the (bulk) conductivity of the solution κb:

κb = e(µ+c+ + µ−c−) (27)

with µ± and c± respectively the mobility and the
volume density of ± ions [45]. At high ionic strength,
or for a neutral channel (Σ = 0), equation (27) can
be used directly to calculate the conductance of the
channel Gbulk = κbωh/L. However, for a non-neutral
channel (Σ 6= 0), if one looks at the ionic conductance
versus the salt concentration on a log-log scale, a
conductance plateau is observed at low ionic strength.

9



This is due to the contribution to the total current
of ions of the EDL. This excess counterions concen-
tration can be written as [57]:

ce =
2Σ

he
(28)

where the 2 accounts for the two surfaces. From this
excess counterions concentration, one can define a
surface conductance Gsurf = eµceωh/L. Then the
total conductance is the sum of a bulk conductance
and a surface conductance:

G = Gbulk +Gsurf = µcse
wh

L
+ 2Σµ

w

L
(29)

where we assumed that µ+ = µ− and defined cs = 2c0

with c0 the salt concentration. Finally, the ionic
current Ie and the voltage drop ∆V are linked as
follows:

L33 =
Ie

∆V
= µ (cseh+ 2Σ)× w

L
. (30)

Cross terms

Additionally to the direct terms, there are cross
phenomena coming from couplings between hydro-
dynamics, ion diffusion and electrostatics. Using
statistical mechanics, Onsager has shown the neces-
sity of equality between the term LIJ and LJI . So in
what follows, only three terms among the six cross
coefficients are explicitly calculated, the last three
being deduced from Onsager’s relation.
L13 / L31 – The phenomenon by which a difference
of electrical potential ∆V induces a water flow is
called electro-osmosis (L13). Its conjugate effect is
called streaming current (L31) and corresponds to
the generation of an electric current by a pressure
driven liquid-flow [58]. Hereafter, we will do explicit
calculations for the case of electro-osmosis (L13).

Electro-osmosis takes its origin in the ion dynamics
within the Electrostatic Double Layer (EDL), in
which the charge density ρe = e(ρ+ − ρ−) is non-
vanishing. The dynamics of the fluid is described by
the stationary Stokes equation with a driving force
for the fluid Fe = ρeEe, where the electric tangential
field Ee is defined as Ee = −∂xV = −∆V/L, and is
directed along x [59]:

η∂2
zux + ρeEe = 0. (31)

Using that the charge density is linked to the elec-
trostatic potential of the EDL as follows:

ρe = −ε∂
2V

∂z2
, (32)

one finds, after a double integration of the equation
(31):

ux(z) =
ε

η
(V (z)− ζ)Ee (33)

where we used the no slip boundary condition and
where ζ is the zeta potential, which is the value of
the electrostatic potential at the shear plane, i.e. the
position close to the wall where the velocity vanishes
5. In the no-slip case, the zeta potential is equal
to the surface potential Vs. As a remark, one can
notice that in the case of a finite slip at the wall,
characterized by a slip length b, the potential ζ takes
the expression:

ζ = Vs × (1 + bκeff) (34)

where Vs is the electrostatic potential at the wall and
κeff the surface screening parameter (κeff = −V ′(z =
0)/Vs). In the case of a weak potential, the screening
parameter is approximately equal to the inverse of
the Debye length λD. Note that the velocity in
the fluid results from a balance between the driving
electric force and the viscous friction force at the
surface.

An integration of equation (33) gives the following
expression for the total water flow:

Q = whUEO − surface correction terms, (35)

where UEO is the eletro-osmotic velocity UEO =
−εζEe/η. Figure 6 shows a scheme of the velocity

λD

UEO

Figure 6: Schematic representation of the velocity
profile, equation (33) without and with
surface correction terms, respectively on
the left and on the right.

profile, with and without the surface correction terms.
Finally, neglecting the surface correction terms (that

5Notice that sometimes the zeta potential is defined as Vs and
one has to consider an amplified electro-osmotic mobility
to take into account the effect of slippage.
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are of the order of λD/h� 1), one can write:

L13 =
Q

∆V
≈ ζε

η
× wh

L
. (36)

Hence electro-osmosis is caused by coulomb force
and limited by viscous dissipation.

Accordingly, the streaming current (L31), which is
the electric current generated by a pressure driven
liquid-flow can be written as

L31 =
Ie

∆P
=
ζε

η
× wh

L
. (37)

L12 / L21 – The generation of a flow under a solute
gradient is called chemi-osmosis (L12) [60]. Its conju-
gate effect is the generation of an excess flux of salt
under a pressure drop ∆p (L21). Here the expression
of the L12 coefficient is obtained in the case of a flow
generated by a solute gradient.

So, let us assume the existence of a salt concen-
tration difference ∆c. The salt concentration in the
middle of the channel, cmid(x), is assumed to vary
linearly along the axis x: cmid(x) = c0 + ∆c× x/L,
where c0 is the concentration in the left reservoir (the
concentration in the right reservoir being c0 + ∆c).
From the mechanical equilibrium in z together with
the Stokes equation along z, one can deduce the
hydrostatic pressure profile:

p(x, z) = 2kBTcmid(x) [coshφ(x, z)− 1] + p0, (38)

where φ(x, z) = eβV (x, z). Injecting this expres-
sion in the Stokes equation along x, η∂2

zux(z) −
∂xp(x, z) = 0, one finds:

η∂2
zux(z) = 2kBT

∆c

L
(coshφ− 1) . (39)

Using Poisson-Boltzmann and assuming that λD �
h, one can find that the flow is:

Q = whUCO − surface correction terms, (40)

with UCO the chemi-osmotic velocity:

UCO = −kBT
η

ln(1− γ2)

2π`B

∆c

c0L
, (41)

where γ = tanh(φs/4). Neglecting surface correction
terms (on the order of λD/h � 1), the coefficient
L12 can be written:

L12 =
Q

∆c
≈ −kBT

ηc0

ln(1− γ2)

2π`B
× wh

L
. (42)

Chemi-osmosis causes flow towards lower electrolyte
concentration. As a complement we will discuss two
interesting cases: the case of non-equal diffusion
coefficient between + and − species, and the limit
of large Debye length λD compared to the channel
height h (this regime is called osmosis).

Supplement 1 – In the case of a difference in anion
and cation diffusivities, an electric field is induced,
and a supplementary electro-osmotic contribution
has to be taken into account [61]. Assuming a van-
ishing local current in the outer region and a sym-
metric electrolyte, this diffusion-induced electric field
is proportional to β0 = (D+ −D−)/(D+ +D−) :

ED =
kBT

e
β0

d ln c

dx
. (43)

So the contribution of this mechanism combined with
the previously calculated velocity (equation (41))
gives the following diffusio-osmotic velocity:

UDO = −kBT
η

[
β0ζ

ε

e
+

ln(1− γ2)

2π`B

]
∆c

c0L
, (44)

where we used equation (33). The first term corre-
sponds to the electro-osmotic effect, the direction
of the generated flow depending on the sign of the
product β0ζ, while the second term, called the chemi-
osmotic effect, causes a flow towards the lower elec-
trolyte concentration. Neglecting surface correction
terms, one can write:

L12 =
Q

∆c
≈ −kBT

ηc0

[
β0ζ

ε

e
+

ln(1− γ2)

2π`B

]
× wh

L
.

(45)

Supplement 2 – An interesting case is the limit
where the Debye length λD is much larger than the
channel height h. In this particular case, a constant
potential (independent of z) called Donnan potential
VD builds up in the entire channel. From the electro-
chemical equilibrium one gets:

c+

c−
= e−2φD , (46)

c+c− = c2
0, (47)

c+ − c− = −2Σ

eh
, (48)

where φD = eβVD. One can introduce the Dukhin
number Du = Σ/(ec0h). Then from equation (48),
and using that cosh2(x)− sinh2(x) = 1, one gets

cosh(φD) =
√

1 + Du2. (49)
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Injecting this expression in equation 39, which has
been obtained from mechanical equilibrium in z to-
gether with the Stokes equation, one gets

Q = − 1

12η

wh3

L
×∆Π, (50)

where the osmotic pressure ∆Π can be written as

∆Π = 2kBT∆c
(

1 +
√

1 + Du2
)
. (51)

Hence, when λD � h, one may write

L12 =
Q

∆c
= −kBT

6η

(
1 +

√
1 + Du2

)
× wh3

L
.

(52)
L23 / L32 – The current generated under a salt

concentration gradient is called osmotic current and
the reciprocal effect is the generation of a salt flux
under an electrical potential gradient. The expres-
sion of L23 is here obtained in the first case, i.e. in
the case of the generation of current under a salt
concentration gradient.

The electrical current Ie can be written as

Ie = w

∫ h/2

−h/2
e (j+(z)− j−(z)) dz. (53)

Two contributions to the current can be expected,
a contribution from the diffusive flux of salt and a
contribution from the convective flux of salt. The
first one can be written as

ID = w

∫ h/2

−h/2
e (jD,+(z)− jD,−(z)) dz, (54)

with jD,± = −D±∇c± the diffusive flux of each ion.
Assuming that D = D+ = D− and rewriting the
current as

ID = −ew∂x
∫ h/2

−h/2
(c+(z)− c−(z)) dz, (55)

ID appears to be equal to zero from the global charge
electroneutrality

Σ + e

∫ h/2

−h/2
(c+(z)− c−(z)) dz = 0. (56)

Accordingly, considering the convective part in equa-
tion (53) only, the current can be written as

Ie = w

∫ h/2

−h/2
e (c+(z)− c−(z))ux(z)dz, (57)

where both species ± move at the same velocity ux(z)
(i.e. there is no electric field along z). Using that

λD � h (thin electric debye layers as compared to
the channel width), one writes:

Ie = 2w

∫ ∞
0

e (c+(z)− c−(z))ux(z)dz. (58)

In this assumption, one expects that the entire con-
tribution to the current Ie comes from the convection
of ions inside the electric double layers. From the
Poisson equation (6), one gets that

c+(z)− c−(z) = −∂
2φ

∂z2

1

4π`B
. (59)

Moreover, we know from previous section (see equa-
tion (39)) that the velocity field ux(z) under a solute
gradient is solution of

η
∂2ux
∂z2

= 2kBT
∆c

L
(coshφ− 1) . (60)

Injecting equation (59) in equation (58), performing
an integration by part (twice) in the spirit of [62],
one gets

Ie =
we

2π`B

[
φ
∂ux
∂z

]∞
0

− we

2π`B

∫ ∞
0

φ
∂2ux
∂z2

dz. (61)

From equation (60), one get

∂ux
∂z

∣∣∣∣
z=0

= −2kBT

η

∆c

L

∫ ∞
0

(coshφ− 1) dz. (62)

Hence, using that φ(z =∞) = 0, one gets

Ie = − we

π`B

kBT∆c

ηL

∫ ∞
0

(φs − φ)× (coshφ− 1)dz.

(63)
with φs the normalized surface potential. Using PB
equation ∇2φ = κ2 sinhφ, we make the following
change of variable:

dz = − dφ

κ
√

2(coshφ− 1)
, (64)

which allows to solve the integral in equation (63).
One finds [62]:

Ie = 2w
e

πη`B

kBT

κ

(
2 sinh

φs
2
− φs

)
∆c

L
, (65)

that can be rewriten in terms of surface charge (using
2 sinhφs/2 = eΣ/εkBTκ):

Ie = 2wΣ
kBT

2πη`B

(
1− κ`GC argsinh

1

κ`GC

)
∆c

Lc0
,

(66)

12



where we have introduce the Gouy-Chapmann length
`GC = e/(2πΣ`B). Neglecting the surface correction
terms one finds:

L23 =
Ie
∆c
≈ 2wΣ

kBT

2πη`B

1

Lc0
(67)

Reciprocally, the flux of salt under electrical gra-
dient can be written as

L32 =
Ji

∆V
≈ 2wΣ

kBT

2πη`B

1

Lc0
(68)

Various comments

We did not give an exhaustive list of phenomena that
can occur at the nanoscale. For example thermic
effects induced by temperature difference have not
been discussed.

Notice that in practice, it is not easy to study
each case alone. For example, a channel with a
difference of electrical potential, will be subjected
to various flux, leading to a charge accumulation
at each entrances, i.e. the apparition of an induced
salt difference. This is part of the complexity of
nanofluidics.
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