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Zermelo-Markov-Dubins problem and extensions in marine navigation®

Jean-Baptiste Caillau! Sofya Maslovskaya? Thomas Mensch® Timothée Moulinier? Jean-Baptiste Pomet?

Abstract— This note accounts for optimal control techniques
applied to marine navigation for seismic acquisition. More
precisely, the goal is to gain time in turns and alignment
maneuvers. A model for the kinematics of the marine vessel and
sea current is proposed, then extended to include the evolution
of the shape of the towed underwater cables during the
maneuver. Two minimum time problems are stated, depending
on whether the shape of the streamers is in the model or
not. The simpler case is the so-called Zermelo-Markov-Dubins
problem, recently studied in the literature. It generalizes the
classical Dubins problem. The complete model is not standard,
and preliminary analysis of controllability and of properties of
minimum time trajectories are given.

I. INTRODUCTION

The motivation for the present work is to optimize turns and
maneuvers of marine vessels towing a set of long and fragile
underwater cables. This motivation coming from marine
seismic acquisition is described in details in Section [, From
an optimal control point of view, this has previously been
set as a Dubin’s problem [6]: the magnitude of the speed
being fixed, one seeks the shortest path from a point to
another (including direction of the tangent) with a bound on
curvature. The maximum curvature has to be small enough
in order to preserve the integrity of the towed equipment
during the turn. There are two drawbacks to this approach: it
does not take into account possible sea currents, and it does
not contain any description of the hydrodynamic behavior
of the towed cables (the dynamic equations only contain a
kinematic of the ship itself). Adding the sea current into
the problem, without modelling the cable behavior, leads
to a so-called Zermelo-Markov-Dubins problem (the term
was coined in [2]), i.e. a Dubin’s problem with a drift. Both
optimal control problems lead to singular curves that are
straight lines and bang-bang curves that are circles in the case
of Dubin’s problem and trochoids in the case of Zermelo-
Markov-Dubins problem. See [6] for the original solution
of Dubin’s problem. It has then been revisited in terms
of optimal control using Pontryagin Maximum Principle,
see [3], [11]. Zermelo-Markov-Dubins problem appeared in
the first place from airplane path planning with constant
wind [9], it is also well documented in [2] and [12].
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In this paper, we propose a model for the vessel including
dynamics of the towed cables and a preliminary analysis
of the associated minimum time problem. We do not know
of any previous attempt in this direction. Note that the
Zermelo-Markov-Dubins problem can be seen as minimum
time for a “unicycle” with constant speed magnitude and
bounded turning rate, where rolling without sleeping holds
with respect to a horizontal plane moving with constant
speed. Our model presented here adds a “trailer” to this
unicyle. See [8], [10] for unicycles, cars and trailers. To
the best of our knowledge, even without the constant slip,
minimum time for Dubin’s problem with one or more trailers
has no yet been solved.

The paper is organised as follows. Section |ll| details the
marine acquisition problem and its setting in optimal control
terms. Section describes the kinematic models behind
the Zermelo-Markov-Dubins problem as well as the one
where the towed streamers are explicitly taken into account.
Section gives some insights on the obtained control
system and preliminary results on controllability. Section
finally gives an analysis of the obtained extremal flow for
the system with one trailer.

II. THE MARINE NAVIGATION PROBLEM

Marine seismic acquisition aims at collecting data to image
the subsurface of the Earth. It is done by deploying seismic
sources and a large number of pressure sensors, distributed
along underwater cables (streamers); up to 14 streamers each
separated by 100 m and possibly 10 km long are towed
between 7 and 50 m below the sea surface. An example of
seismic spread is displayed Figure[I} At short time intervals,
the seismic sources emit an acoustic signal which propagates
in the subsurface so that hydrophones located along the
cable record the resulting reflected wave field. These data
are then used to build structural images of the subsurface
and to delineate possible oil and gas reservoirs. During
marine surveys, the seismic vessel sails parallel acquisition
lines back and forth, at low speed, in order to cover the
survey area. In production, the typical vessel speed in water
is around 5 knots, that is about 2.5 m/s. (Limitations are
due to limits to the maximum working load of the towed
spread and to the power of the vessel engine.) At the
end of an acquisition line, the vessel typically performs a
large 180° turn maneuver (U-turn) followed by a straight
“run-in” segment in order to start the next acquisition line
with the towed cables aligned. Figure [2] illustrates a typical
acquisition pattern for a seismic survey (see [7] for more
details about seismic acquisition). Obviously there are strict
geographical constraints (following predefined lines) on the



vessel during production lines. On the contrary, during the
turn, that we may also call the line change, the trajectory is
free, constrained only at start and end times where the ship
has to be at specific geographical points with a given sailing
direction (and ideally a given configuration of the streamers).
This is why there is room for optimizing the duration of this
phase: reducing this duration may significantly benefit to the
survey productivity by reducing non-productive time.

The optimal control problem will then be minimum time.
Let us describe dynamics and constraints. The usual setting
is to set a maximum turn rate (or minimum turn radius) of
the vessel during the line change, chosen small enough to
preserve the spread integrity during the turn with regards
to mechanical and hydrodynamic equipment limitations; it
depends mainly on the size of the seismic spread (i.e. width
of the spread, length and number of the towed cables);
typically the minimum turn radius for a seismic vessel towing
equipment in water is between 4 and 5 km. The minimum
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Fig. 1. Example of seismic acquisition spread towed by a vessel. The
equipment at sea consists in seismic sources towed behind the seismic vessel
and long streamers containing the hydrophones spread with large vanes.
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Fig. 2. Typical acquisition pattern for a seismic survey. The sequence of
acquired lines is chosen for minimizing the line change duration assuming
no sea current and a given minimum turn radius.

time problem described so far is Dubins problem [6]. Opti-
mal path candidates are made of straight lines and circle arcs,
and computing the correct succession between given initial
and final conditions is straightforward. It is the method used
for pre-planning the line changes prior to the survey (see
Figure |Z[) In absence of sea current, this seems sufficient.
Most of the time, whatever the ocean current conditions are,
the turning path is described with respect to the ground as
a sequence of straight lines and arc circles (Dubins path).
However, in the case of strong sea current conditions this
type of line changes may not be adapted both for survey
efficiency and in-water equipment safety reasons. Equipment

mechanical limitations are related to the speed and to the
turning rate with respect to the fluid rather than the ground,
and when the current is strong, they differ a lot. Writing that
the turning rate bound is satisfied with respect to a frame
moving with the fluid leads to Dubin’s paths in that frame,
or to the optimal control problem that we called Zermelo-
Markov-Dubins in the introduction and further. One last
consideration is that, as mentioned above (Figure |Z|), a “run
in” phase (typically one streamer long) is usually added to
re-align the streamer because the optimization does not take
its shape into account. A way to reduce, and ideally remove,
the run-in phase is to include its shape in the optimal control
problem, adding a constraint on the shape of the towed cable
(and its stability) to the optimization. The model presented
in section and the elements towards a solution of the
associated minimum time problem presented in Section [V]
go in this direction.

ITI. MODEL

We consider a ship moving in a portion of ocean undergoing
a constant current (the whole fluid has constant horizontal
velocity W) and towing a spread. Let us first model the
movement of the ship alone, then of the ship with its towed
streamer.

A. A ship in water with current

Fix a reference frame, attached to the Earth, and call “water
frame” the frame that moves with constant velocity W and
coincides with the fixed frame at time zero. Denoting by
(z,y) the coordinates of the ship in the reference frame,
its coordinates in the water frame are (x — tW,,y — tWW))),
where W,,, W, are the coordinates of 1. Define v and 6, the
magnitude and polar angle of the ship’s velocity with respect
to the water frame, as follows:

T—-We\ _ cos
(y' — Wy> =Y (sin9> : M

We use a very simple kinematic model in which v and 9
are considered as inputs, i.e. they can be assigned. The real
controls are the rudder angle and the thrust of the engine,
hence we have not taken into account the dynamic effects,
like the dynamics of the ship itself; this is legitimate because,
given a prescribed path ¢ — (x(t),y(t)), some lower level
control loops (auto-pilot) are in charge of controlling the
engine and rudders to produce that precise prescribed path.
Here we idealize these control loops. We constrain the two
controls v and 6 as follows:

v > 0 is constant, || < p (2)

where p is a positive number to be determined later. Defining
u as § = wu, one gets a control system with state (x,y,0)
and control u that depends on the two positive numbers
p,v and the vector W as parameters. Let us normalize
these parameters. Re-scaling time and length, one easily
normalizes v and p to 1. Then, rotating the reference frame
so that its (Ox) axis is aligned in the direction of W puts its
second component W, to zero and renders its first component



W, positive. Gathering all the above, we get the following
normalised control system:

i =w+cosl, §=sinb, 0 =u, lu <1, 3)

where w is a non-negative number. We impose
0<w<1 “4)

because w > 1 would mean that the current is more powerful
than the ship, and clearly would make the system non-
controllable because x could never decrease. With z =
x + 1y, one may write (3) in complex notations:

t=w+e? O=u, |u<1. (5)

B. Modeling long streamers towed by the ship

The ship now tows a streamer. A precise model of this
deformable attachment would be a distributed one, governed
by PDEs, including some fluid dynamics and some inner
forces and couples. Such models account rather precisely
for the real behavior, they are suitable for simulations, but
we seek a less complex one, to be used for control design.
The simplest possibility is to depict the system as a chain of
elements that interact punctually with the fluid — simplest
interaction: a drag proportional to the speed with respect
to the fluid — and are joined by links that keeps distances
constant. As a first step, we consider the case of only one
such element. For lack of a better term, call this point a bead.
Figure [3| depicts the geometry of this simplified model that
is merely the ship plus one bead.
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Fig. 3. The ship and its simplified streamer

Ordinary differential equations can be rather readily de-
rived. One first assumption, that is also made when using
PDE models for the streamers, is that the dynamics of
the ship itself is not affected by the streamers, see more
justification right after (7). Hence equations (@) or () are
still valid. If the position of the bead is represented by a
complex number zp, the distance constraint imposed by the
link is |z — z1| = ¢. We define the angle o by

21 = 2z — L't (6)

There are two forces applied to zp: the tension from the
link, co-linear to the link, hence equal to T /0+2) with T
a positive real number, and the drag, given by —k (21 — w)
for some constant £ > 0. Dynamic equations hence read

mz =T e+ _ k(2 —w).

We make here the assumption of a quasi-static movement,
i.e. the mass of z; is small enough that the limit speed is
always attained immediately so that the equation becomes

T+ k(3 —w)=0. (7)

This assumption amount to say that the inertia of the towed
engine is very small compared to the drag forces. It is
consistent with the assumption that the speed of the ship can
be seen as a control, as explained in Section [[II-A] Getting
%1 from (@) and (3)), substituting in (7) and equating real and
imaginary parts yields
d:—zsinoz—u, T =pcosa. (8)
The second equation gives the tension, it is not needed to
write the dynamics, but it reveals that o must always satisfy

™ ™
—§<a<§ (9)

because T has to be positive; indeed, the link between the
ship and the bead (in fact the whole spread of streamers) has
to be in positive tension, or else the ship would “push” the
streamer, as if the link was a rod.

We arrive to the following control system:

sin «

& =w+cosf, y=sinb, ézu, &= — 7 —u, (10)
or, with complex notations
i=w+el f=u, oz:—SiI;a U, (11
where the control w is constrained by
lu] <1, (12)
and the two parameters w and ¢ satisfy
0<w<l1l, 0</l<1. (13)

The state space is Cx S x (—m/2,7/2) (we use the notation
C even when using (z,y) as coordinated). It is invariant in
positive time (for any control).

Remark 1 (alternative view of the same model). In the water
frame, the equations of the ship are the ones of a “rolling
penny”, or a “unicycle”: 6 is the direction of the axis of the
vehicle and its speed is parallel to this axis. Now assume
that z; is the center of the axle of a trailer attached to the
unicycle at point z. Writing that the distance between z and
z1 is constant equal to £ yields (6). Writing that the trailer
is rolling without slipping in the water frame amounts to
saying that the speed of z; with respect to the water frame,
equal to e — £i(u + &)e'?*+) according to (G), is aligned
with the line from 2z, to z, i.e. with ¢/®T%) This yields
the same equation for & as in (I0). We just showed that
the model we wrote is also the one of a unicycle with one
trailer (as described in [8] or references therein) where the
rolling without slipping is achieved in a frame that moves at
constant spee(ﬂ in the reference frame, w may be viewed as
a constant slip. Note that this analogy no longer holds when
one considers more than one element, i.e. when the spread
of streamers is modeled by two or more of these “floating
beads”.

IBest picture: a unicycle with one trailer rolling without slipping on a
conveyor belt.



Because of the above remark, we often use, in the next
sections, the term “trailer” for the attachment represented by
the point 27 in Figure |3| that figures the spread of streamers
towed by the ship.

C. Minimum time problem

The simplest way to set an optimal control problem is
on system (3)) (or (3)) alone. We are then seeking, for fixed
(20,600) and (zy, 0;), the smallest positive 7" such that there
is a solution of (B) such that z(0) = zo, 2(T) = =z,
6(0) = 6y and 0(T) = 6. The bound |u| < 1 is present to
ensure integrity of the spread of streamers: it is a bound on
the curvature of the trajectory observed in the water frame,
i.e. the one that really affects the vessel in its interactions
with the fluid. The optimal control problem is known as
the Zermelo-Markov-Dubins problem [9], [12], [2], already
mentioned in the introduction.

We noted in section [[I] that, in general, at the end of the
turn, the streamer does not have the stable configuration
required for acquisition, and this is corrected by adding to
the turn another phase (run-in) where the vessel sails along
a straight line to re-align the streamer to the stable shape
that it has when sailing straight in the following acquisition
line. In order to include realignment in the turn, we have
given a simple model of the streamer, represented by the
angle «. In the model, straight lines correspond to u = 0,
and clearly, from the equation for «, the stable position is
a =0, i.e., if one wants to gain the time this angle takes to
go to zero at the end of the turn, it is more efficient to set
up a minimum time problem for system rather than (3)),
with a desires final condition specifying o = 0. We give in
Section |V| preliminary results on the minimum time problem
for (IT) with a final condition (zf,60f,0). We note in the
next section that, anyway, large values of « are in general
not reachable.

IV. CONTROLLABILITY
Let us define the set of points reachable from a given point.

Definition 2 (reachable sets for (TI)-(12)). For any

(20,90, 010) in CXSQX(*g, g), let A+(2’0, 6070[0) be the set
of points (21, 61, 1) in CxS'x(—%, %) such that there exists
a positive number 7' and a solution (z(-),0(:), (), u(+))

of (TI)-(12) satisfying (2(0),6(0), a(0)) = (29, 0o, ap) and
(Z(T)’ Q(T)a O‘(T)):(zlv 01, al)'

Denote by a* the angle in (0,7/2) such that £ = sin ™.
Notice that as ¢ < 1, such an angle exists. The angle o* is an
asymptotically stable equilibrium of & = 1— (sin «) /¢ which
corresponds to the dynamics of « in (II) associated with
control v = —1. Symmetrically, —a* is an asymptotically
stable equilibrium of & with v = 1. In the case with trailer,
system (TI)-(I2) has the following important property.

Proposition 3 (Non controllability). For any (2,6, «) in Cx
St x (—a*,a*), one has

At (z,0,a) C CxS'x(—a*, a*). (14)

This defeats global controllability for (TI)-(I2): a point
that is not in the domain CxS*x(—a*, a*) cannot be reached
from it.

Let us return to our problem in marine navigation. The
constraints of the marine seismic acquisition problem which
motivated our studies suggest that not all states in Cx S x
(—a*,a*) need to be reached and only the states with the
stable configuration of the trailer (spread of streamers) are
important, i.e. the states at which the vessel may start an
acquisition line. In our model it can be translated in terms
of the angle «. The stable configuration means that the
control u is set to be zero and the final value of « should
be an equilibrium of & = —% sin o, which implies o = 0.
Therefore, the important problem to study is the reachability
of final states with o = 0. For this kind of final states we
have the following result.

Theorem 4. For any (zg,00,00) € Cx S x (—7/2,7/2)
and any (zy,0f) € CxS! there exists a control u such that
the corresponding trajectory of (I1)-(12) joins (20,60, o)
to (Zf, 9f, 0).

See our forthcoming paper [13] for the proof of the
statements above as well as results on the controllability in
the case without trailer (controllability for Zermelo-Markov-
Dubins problem).

V. EXTREMAL FLOW

We give a preliminary analysis of the extremal trajectories
of the minimum time problem. Namely, we prove that the
extremal flow is integrable, which is an important step in
the search for the optimal synthesis. We consider the four-
dimensional dynamics in form with state (z,y) € R?,
6 € S! and o € (—7/2,7/2). The Hamiltonian of the
system writes

H = p® + p,(w+cos ) +p, sind + (pg —pa)u—%sina,
where p° and p = (ps, py,Pe,Pa) denote the adjoint vari-
ables to the cost (final time) and state, respectively. We
assume that endpoints conditions are prescribed and recall
that the scalar control is bounded, |u| < 1, while the two
parameters of the problem verify 0 <w < 1land 0 < ¢ < 1.

Theorem 5 (Pontrjagin maximum principle, [1]). If u is
a time minimizing control, there exists a non-trivial couple
(", p), po < 0 and p absolutely continuous such that, if q
is the associated trajectory and ty the minimum final time,
almost everywhere on [0,t]

_oH . 0H
q_(()p’

=%

while

0= Hg(),p(t),u(t)) = max H(q(t),p(t),v).



The adjoint system is

Dz =0,

py =0,

Do = Pz sinf — py cos 0,

. _ Pa

Pa =~ cosa,
so (pz,py) is a constant vector. We note that either
Do 1s identically zero, or it never vanishes. Because of
transversality conditions, the case p, = 0 occurs in particular
when the final value of the angle « is left free; then, it is
clear from the expression of the Hamiltonian that the system
is reduced to the dimension three Zermelo-Markov-Dubins
problem studied in [12], the angle « evolving independently
of the rest of the state coordinates. For this problem, it is
shown that, for distant enough initial and final points in R2,
the optimal solution is bang-singular-bang, singular arcs
being straight lines as in Dubins problem. (See [12] for a
complete account.) We focus on the case p, # 0 in the
rest of the section, assuming p, > 0 (the case p, < 0 is
symmetric). We classify the extremals according to whether
the constant vector (p,,p,) is zero or not.

a) Case (pz,py) = (0,0). We show that in the considered
domain only bang arcs are possible, that is arcs along which
the switching function pg — p, does not vanish identically.
Along such arcs, the maximization condition implies that the
control is equal to 1, depending on the sign of the switching
function.

Proposition 6. If (p,p,) = (0,0), there are no singular
arcs in the domain o € (—7/2,7/2).

Proof. Assume by contradiction that pg = p, on a non-
empty time interval. Since (p,, p,) = (0, 0), the adjoint state
py is constant, and so is p,. Then 0 = p, = (pa/{) cosa,
which is impossible for po, > 0 and o € (—7/2,7/2). O

b) Case (ps,py) # (0,0). We normalize the pair (p°,p)
according to p? —|—p§ = 1 and set p, = cos p, p, = sinp. In
this case, on the basis of the analysis for the 3-dimensional
model without trailer, one can expect that singular trajecto-
ries exist and play an important role in the synthesis. Set
q:= (z,y,0,a), so that the controlled dynamics writes
4 = Fo(q) + uFi(q) with

a . ,0 10
Fo—(w+c050)%+bm087y_2£
and
_ 9 _ 9
YT 00 0a

Denoting H; = (p, F;(¢)) the Hamiltonian lifts of these
vector fields, the switching function is H; = py — p, and
its derivative wrt. to time along a singular arc vanishes. As
H, = {H,H,} = {Hy, H,} using Poisson brackets, one
has H1 = Hy; = 0 along such an arc (with obvious notation
Hy := {Hy, H:}, and so forth). Differentiating again, one

gets Hyo1 + uHi01 = 0. Computing,

. Pa _ Pa
Hpy = sin(f — ¢) — 7 cosa, Hpo1 = 2
and
Hyp1 = cos(0 — ¢) — p7a sin av.
Using H = 0 and setting v := —p° — p,w, one actually

obtains Hig; = . The generalized Legendre-Clebsch condi-
tion states that H1¢; is nonnegative, and there are two cases:
either the constant ~ is positive, or v = 0 (implying that
singular arcs, if any, would be of order at least two). Now,
_Pa

2
so neither v nor u can vanish as p, is positive. We have
proven the following.

OZH(H: +7u7

Proposition 7. If (p,,py) # (0,0), the constant vy is positive
and singular arcs are of order one. The singular control is

Us = pa/(’VZQ)-

Plugging this singular control into the original Hamiltonian
defines the singular Hamiltonian

Hy = p°+p, (w+cos 0)+py sin 6+ (pg —pa)%—% sin .
Defining
Y:={H, =0}, ¥ :={H = Hy =0},

the following is standard (see, e.g., [4]).

Lemma 8. The submanifold ' is invariant by the flow of
H,, and on X' extremals are integral curves of H,.

On singular arcs, one has

. Da sin « . Da
G=—— — = —cosa.
762 f ? p()z E
Rescaling time according to ¢t = /s, and setting A :=
Do/ (L), this subsystem can be written independently of ¢

(with ' = d/ds)

/

o =—-X—sina, N = Acosa. (15)

Lemma 9. Subsystem is Hamiltonian on T*S* and
has four equilibria: two saddles at (0,0) and (m,0) and
two centers at (m/2,—1), (—m/2,1). (See Figure [ for the
corresponding phase portrait.)

Proof. A suitable Hamiltonian is —A(A/2 + sin «). O

Proposition 10. The singular flow is Liouville integrable.

Proof. The previous lemma allows to integrate coordinates
(v, po), while the subsystem (6, pp) is also Hamiltonian on

* Ql
T*S* for )

Dy
cos (8 — .
0-9)+5 @
An additional integration suffices to retrieve (z,y). O

On the open complement of the codimension one switching
surface 3, the control is bang and one can define the



/

Fig. 4. Phase portrait of the Hamiltonian subsystem (T3). Coordinates
(a,\) € T*S*.

maximized (or regular) Hamiltonian by plugging into H the
value u = sign(py — pa):

H, = p® + py(w+ cos ) + p, sin 0 + |pg — pa| — % sin a.
The following readily holds.

Lemma 11. Outside Y, extremals are integral curves of the
regular Hamiltonian H,.

On regular arcs, one has v = 41 (constant) and

o =—u—

sin «v . Pa
Pa = — COS Q.

I 14
Rescaling as before according to ¢t = £s and A := p,/(v¢),
the subsystem can be written (with ' = d/ds)

o = —lu—sina, N = Acosa. (16)

Lemma 12. Subsystem @) is Hamiltonian on T*S" and has
two saddle equilibria: o« = —ua™® or m + ua®, and \ = 0,
with o = a*(¢) = arcsin /.

Proof. A suitable Hamiltonian is —A(¢u + sin ). O

The subsystem in (6, py) is also Hamiltonian on 7*S! for
cos(f — ) + peu but, by analogy with the analysis in the
case without trailer, we prefer to integrate as follows:

Lemma 13. Along bang arcs, (pg,pe) belongs to the union
of the two unit circles

(po—ce)® +p5 =1

whose centers abscisse are ¢+ = uy + po (1 + (u/f) sin a),
u==*l1.

Proof. Using H = 0, one obtains

upg — v — pa(u+ (1/€) sina) = —cos(f — @),

where p,(u + (1/€)sina) is constant along bang arcs (see
Lemma|12). Noting pg = sin(6 — ) allows to conclude. [

Combining the two previous lemmas and adding one quadra-
ture to retrieve = and y, we prove that

Proposition 14. The regular flow is Liouville integrable.

Theorem 15. The minimum time extremal flow of the ZMD
system with trailer is Liouville integrable.

Proof. In the case (py,py) # (0,0), there are only order
one singular arcs by Proposition [7] and Propositions [T0] and
[T4] imply that both regular (bang) and these singular arcs
are integrable. In the case (p,,p,) = (0,0), there are only
bang arcs so integrability also holds (Propositions [[4]remains
valid). O

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we developed a framework for productivity
optimization in the marine navigation for seismic acquisition.
The framework relies on optimal control. In this context
we showed the reachability of the desired configurations
and integrability of the extremal flow. A natural follow-up
is to establish the exact structure of the optimal flow in
terms of singular and regular arcs. Besides, other models
could be investigated as for instance models with more than
one element to approximate the shape of the real towed
underwater cables.
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