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Tree searches for the Sequential Ordering Problem
Luc Libralesso and Abdel-Malik Bouhassoun and Hadrien Cambazard and Vincent Jost1

Abstract. We study several generic tree search techniques applied
to the Sequential Ordering Problem. This study enables us to propose
a simple yet competitive tree search. It consists of an iterative beam
search that favors search over inference and integrates prunings that
are inspired by dynamic programming. The resulting method proves
optimality on half of the SOPLIB instances, 10 to 100 times faster
than other existing methods. Furthermore, it finds new best-known
solutions on 6 among 7 open instances of the benchmark in a small
amount of time. These results highlight that there is a category of
problems (containing at least SOP) where an anytime tree search is
extremely efficient (compared to classical meta-heuristics) but was
underestimated.

1 INTRODUCTION
While facing a hard operations research problem, two types of

approaches are usually considered:

• Exact methods that find the optimal solutions at the price of a
potentially very long computation time. Mixed Integer Program-
ming, Constraint Programming are part of this category. This type
of methods generally uses tree search techniques combined with
strong bounds (cutting planes, branch-and-price, etc.)

• Meta-heuristics that allow to find near-optimal solutions. These
methods are usually local-search-based (tabu-search, simulated
annealing) or population-based (evolutionary algorithms).

It is common to find the following discourse in many publications,
for instance [17]:

“Tree search approaches like branch-and-bound are in essence
designed to prove optimality [...] Moreover, tree search has an expo-
nential behavior which makes it not scalable faced with real-world
combinatorial problems inducing millions of binary decisions.”

Classifying tree searches as exact methods is surprising since they
are successfully used as heuristics, mainly in AI/planning [35, 26],
and also sometimes in operations research [33, 29]. In this paper, we
present an example in which tree searches can compete with classical
meta-heuristics. We consider a well-studied operations research prob-
lem with a published benchmark (the SOP and the SOPLIB) where a
large variety of intricate and advanced approaches have been applied
for more than 30 years [11]. We show that a simple anytime tree
search algorithm is competitive against classical meta-heuristics.

Actually, the resulting algorithm performed beyond expectations. It
finds better solutions than the currently best-known ones on 6 among
7 open instances of the SOPLIB in a short amount of time (less than
600 seconds on a laptop computer compared to days for some other
methods). Furthermore, this algorithm reports optimality proofs on
large (very constrained) instances about 10 to 100 times faster than the
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existing exact approaches. This method is so simple that it could be
considered as a baseline algorithm in AI/planning. Indeed, it consists
of an iterative beam search with a closed-list mechanism using no
heuristic information other than the prefix cost (i.e. h(n) = 0). This
study shows that anytime tree searches are a crucial component (at
least on the SOPLIB) and might deserve a greater consideration while
designing optimization algorithms.

The source code and solutions can be downloaded at https:
//gitlab.com/librallu/cats-ts-sop.

This paper is structured as follows: Section 1 presents the Sequen-
tial Ordering Problem and a quick survey of existing methods. Section
2 presents the SOP specific bounds we use and compare (namely pre-
fix bound, ingoing/outgoing bound, MST bound). Section 3 presents
the generic branch and bounds parts we use (namely DFS, LDS, Beam
Search and Prefix Equivalence). Finally, Section 4 presents numerical
results on the impact of the search strategy and a comparison with
existing state of the art algorithms.

1.1 SOP formal definition
Sequential Ordering Problem (SOP) is an Asymmetrical Traveling
Salesman Problem with precedence constraints. See Figure 1 for an
illustrative example.

An instance of SOP consists of a directed graph G = (V,A), arc
weights w : A → R, a set of precedence constraints C ⊆ V × V
modeled as another graph, a start vertex s ∈ V , and a destination
vertex t ∈ V . G is complete except for edges (u, v) where (v, u) ∈
C.

We search for a permutation of vertices that starts with s, ends
with t, satisfies the precedence constraints (i.e. for each precedence
constraint (a, b) ∈ C, vertex a must be visited before vertex b) and
that minimizes the weighted sum of the arcs joining the vertices in
the permutation.

1.2 Literature review
SOP was originally presented alongside some exact algorithms

based on a mathematical programming model [11]. It has been ex-
tensively studied in the past 30 years, and many applications and
resolution methods have been considered. SOP generalizes several
combinatorial problems: Relaxing the precedence constraints gives
the Asymmetric Traveling Salesman Problem (ATSP) [23]. If, more-
over, arc lengths are symmetric, we get the symmetric TSP. We present
in this section the most common applications and algorithms for SOP.

SOP arises in many industrial applications. On stacker crane tra-
jectory optimization [2], one has to fulfill transportation jobs as fast
as possible. This problem can be modeled using SOP where vertices
represent jobs and arc weights represent the time needed to go from
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Figure 1: Example of a SOP instance with 5 vertices and 1 precedence
constraint where a is the start vertex and e the end vertex. Permutation
a, d, c, b, e is a feasible (since d is visited before c) and has cost
2 + 2+ 4+ 2 = 10. Permutations a, b, c, d, e and a, c, b, d, e are not
feasible. Permutation a, b, d, c, e is optimal with cost 1+1+2+2 = 6.

a job to another. In automotive paint shops [32] where the goal is to
minimize the set-up cost of a paint job (flushing old paint, retrieving
new color etc.). Also, since car lanes relative order cannot be changed
during retrieval, precedence constraints need to be taken into account.
SOP also occurs in the switching energy minimization of compilers
[30]. While compiling a program, the compiler has to visit operations
so that the switching cost is minimized. Since some operations require
other operations to be done before starting, precedence constraints
also need to be considered. One can also note the use of SOP in freight
transportation [12], flexible manufacturing systems [2], and helicopter
visiting [13].

Many exact approaches have been proposed to solve the Sequential
Ordering Problem. As we discuss in this section, most of the literature
focuses on finding strong lower bounds. Earlier approaches to SOP
include cutting planes [3] and Lagrangian relax and cut algorithm
[12]. A mathematical programming model solved with a branch and
bound in which the branching is performed in order to decompose the
problem as much as possible was also studied [24]. The uncapacitated
m-PDTSP, which is a generalization of SOP, led to competitive results
on SOP using a branch and cut algorithm combined with a generalized
variable neighborhood search [18]. Also, decision diagrams made a
huge impact by generating automatically good quality bounds [7, 21].
In 2015, a dedicated branch and bound has been proposed [30], it com-
bines quick and elementary bounds (prefix, ingoing/outgoing degrees
and MST) with a technique inspired from TSP dynamic programming
called History Cuts that allows to prune dominated partial solutions.
Despite the simplicity of its bounds, the later method obtained ex-
cellent numerical results. It therefore inspired us to study further the
impact of the branch and bound components. This algorithm has been
further improved by the integration of a custom assignment bound
and a local-search at each node of the search tree [22].

In meta-heuristics, numerous works focus on a local-search move
called SOP-3-exchange and combine it with various searches. It is a
3-OPT move optimized to take into account precedence constraints
and asymmetrical arc weights. This SOP-3-exchange procedure is
presented in alongside an Ant Colony Optimization algorithm [15]. It
has also been used within a particle swarm optimization algorithm [1],
by a hybrid genetic algorithm using a new crossover operator referred
to as Voronoi Quantized Crossover [28], as well as a bee colony
optimization [34], and a parallel roll-out algorithm [19].

Since the hybrid ant colony algorithm HAS-SOP [15] obtained
excellent numerical results, a considerable amount of work has been
done to improve it. First, by the integration of a better data structure
called the don’t push stack [16]. HAS-SOP was again improved by

the integration of a Simulated Annealing scheme [31]. Recently, the
LKH heuristic was improved to be able to solve SOP instances [20].
These two last methods obtained the best solutions on large instances
of the SOPLIB.

According to the literature review on the Sequential Ordering Prob-
lem, the existing works seem to consider as a working hypothesis
that local-search is a key feature to obtain state of the art solutions
on large instances and that strong lower bounds are the key compo-
nents of Branch and Bound algorithms. Moreover, since 2006, every
work based on meta-heuristics use the SOPLIB as a standard bench-
mark, as we do here [1, 7, 16, 18, 19, 20, 22, 24, 30, 31, 34]. In the
next sections of this paper, we investigate different branch and bound
components and show that specific combinations can build very ef-
ficient methods that provide new best known solutions on large and
constrained SOPLIB instances and prove optimality on half of them
(which is not possible with most local-search strategies).

2 A SEARCH TREE FOR SOP

When designing a tree search algorithm, it is common to divide
it into two parts. The search tree (problem specific part, i.e. how to
branch, bounds, pruning, etc.) and the generic parts (a search strategy,
such as DFS, Beam Search etc. or generic prunings, in our case
domination prunings). This section presents the problem specific parts
and the next section presents the generic parts.

During the implementation of the search trees, we focused on
fast bounds (O(1) for ingoing/outgoing bounds and O(|E|) for the
Minimum Spanning Tree bound). The key idea is to favor search over
bounding/filtering. In the specific case of the SOPLIB, we show that
using stronger bounds dramatically affects the performance of the
method, even if the resulting branch and bound explores a smaller
tree and has a better guidance.

We branch as follows: The root node contains the start vertex s.
Each child of a given node corresponds to each possible next vertex
to be visited (vertices not already added to the prefix and whose
predecessors have all been added already to the prefix).

2.1 Definition and computation of lower bounds

We define our bounds as it is usually done in AI Planning. For a given
node n we define the lower bound as follows: f(n) = g(n) + h(n)

where:

• g(n) is the prefix bound (i.e. cost of arcs between already selected
vertices)

• h(n) is the suffix bound (i.e. an optimistic estimate of the remaining
work to be done). The three bounds we develop in this section only
differ on this criterion.

2.2 Prefix bound

The prefix bound consists in setting f(n) = g(n) for any node of the
search tree. That is h(n) = 0.

This bound (i.e. g(n)) can be computed in O(1) along a branch
of the search tree, simply by accessing, when adding vertex b to a
prefix that ended with vertex a, the cost wab from the input. Within
the scope of validity of our computational experiments, and despite
its simplicity, this bound revealed itself as the best among the three
bounds considered.
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2.3 Ingoing/Outgoing bound
For the Ingoing/Outgoing (or I/O) bound, we keep the prefix bound
and add a lower bound on the suffix.

Consider a node n of the search tree. Let prefix(n) = v1 . . . vk−1

be an ordered set of already visited vertices excluding the last added
vertex vk, and suffix(n) the set of remaining vertices to add. We
remind that s denotes the start vertex and t the end vertex of the SOP
instance.

We design the optimistic estimate of remaining cost h(n) =
max(hin(n), hout(n)) where:

hin(n) =
∑

v∈suffix(n)

min
u∈V,uv∈A

wuv

hout(n) =
∑

u∈(suffix(n)∪{vk})\{t}

min
v∈V,uv∈A

wuv

This bound can be computed in O(1) along a branch of the search
tree. Indeed, one can precompute the sum of ingoing arcs at root node.
When adding a vertex v to the prefix, this sum can be updated in
constant time by removing the minimum ingoing arc for v. The same
algorithm can be applied for outgoing arcs. Note that arcs considered
in this bound can have one of their endpoint in the prefix. One can
consider implementing a stronger bound that removes such arcs to
further improve this bound.

2.4 Minimum spanning tree bound
For the MST bound, we keep the prefix bound and add a lower bound
on the suffix.

Let wab = +∞ if b must be visited before a. Define w′ab =
min(wab, wba). The suffix cost h(n) is then computed using Prim’s
algorithm on the graph spanned by the vertices not yet visited, with
edge costs w′.

A key analysis, on the instances used for this paper, revealed that it
would be pointless to try to speed-up the implementation of the MST
bound, because, even if it could be computed as fast as the prefix
bound, it would not lead to better solutions than the algorithms using
this weaker bound. We ran an algorithm with MST within the time
limit. Then ran algorithms with cheaper bounds restricting the number
of nodes to the number opened by the MST based algorithm.

3 TREE SEARCH GENERIC COMPONENTS
In this paper, we examine several tree search components (namely
the search strategy and the prefix equivalence, which can be seen as
a form of dynamic programming or no-good recording embedded
within a branch and bound scheme). We present a comprehensive
study of the impact of these blocks and provide an efficient method
based on this study.

3.1 Search strategies
Consider a search tree which is composed of a root node, bounds, and
a children generation procedure for each node. The search strategy
explores this tree, aiming to find the best possible solution, and, if
possible, explores the whole tree which implies proving optimality.
Since the 60s, new and efficient search strategies have been published.
In this section, we describe some popular strategies within tree search
algorithms that we use in our analysis.

3.1.1 Depth First Search

(DFS) explores a tree starting by the most promising child, explores
the corresponding sub-tree entirely and eventually goes to the next
child. This algorithm consumes a limited amount of memory while
running (O(nd) where n is the maximum number of children per
node and d is the maximal depth of the tree).

However, DFS suffers from bad decisions made early in the tree
exploration. Indeed, the search trees are usually so large that it is
virtually impossible for DFS to overcome a bad decision taken at the
root node. We note that many mechanisms such as random restarts or
search strategies such as LDS have been designed to compensate this
drawback of DFS. We precisely focus in this paper on such search
strategies.

3.1.2 Limited Discrepancy Search

Given a maximum number of allowed discrepancies d, an iteration of
LDS explores all nodes that have at most d deviations from the best
child according to the guide (in our case the lower bound f(n)). Each
node stores an allowed number of discrepancies. The root node starts
with d allowed discrepancies. Its first best child is given d allowed
discrepancies, its second best d− 1 and so on. Nodes with negative
discrepancies are not considered and pruned. This allows to explore
the most promising branches of the tree while performing a restricted
exploration of the other branches. It usually gives better solutions than
DFS but can miss the optimal solutions. If d = 1, LDS behaves like a
greedy algorithm. If d =∞, LDS behaves like DFS.

Algorithm 1 shows the pseudo-code of an iterative LDS algorithm.
We start by 1 allowed discrepancy. When the search ends, we restart
with 2 allowed discrepancies until the stopping criterion is met.

Algorithm 1: Iterative LDS algorithm
Input :G = (V,A), precedence constraints
Output :permutation of V

1 d← 1;
2 while stopping criterion not met do
3 root.d← d;
4 Stack← root;
5 while Stack 6= ∅ do
6 n← Stack.pop();
7 i← 0;
8 for c ∈ sortedChildren(n) do
9 c.d← n.d− i;

10 Stack.push(c);
11 if c.d = 0 then
12 break;
13 end
14 i← i+ 1;
15 end
16 end
17 d← d+ 1;
18 end
19 Report best solution found;

3.1.3 Beam Search

In LDS, nodes are selected depending on a comparison with their
siblings and not depending on their absolute quality. We now present
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Beam Search (BS) that aims to explore a subset of a tree that only
keeps the best nodes at a given level. Beam Search has been used suc-
cessfully to solve many scheduling problems [25, 27]. Beam Search is
a tree search algorithm that uses a parameter called the beam size (D).
Beam Search behaves like a truncated Breadth First Search (BFS).
It only considers the best D nodes on a given level. The others are
discarded. Usually, we use the bound of a node to choose the most
promising nodes. It generalizes both a greedy algorithm (if D = 1)
and a BFS (if D = ∞). We consider the iterative version of beam
search that performs a series of beam with sizes doubling at each
iteration. We stop the algorithm either if the time limit is reached or
the search tree is depleted by the last beam executed (in this case, we
have proven the optimality).

Algorithm 2 shows the pseudo-code of an iterative beam search.
The algorithm runs multiple beam searches starting with D = 1
(line 1) and increases geometrically the beam size (line 8). Each run
explores the tree with the given parameter D. At the end of the time
limit, we report the best solution found so far (line 10).

Algorithm 2: Iterative Beam Search algorithm
Input :G = (V,A), precedence constraints
Output :permutation of V

1 D ← 1;
2 while stopping criterion not met do
3 Candidates← {root} ;
4 while Candidates 6= ∅ do
5 nextLevel←

⋃
n∈Candidates children(n);

6 Candidates← best D nodes among nextLevel;
7 end
8 D ← D× 2;
9 end

10 Report best solution found;

3.2 Prefix equivalence pruning
Prefix equivalence pruning are a way to eliminate symmetries

and dominated partial-solutions. It can be seen as a form of dynamic
programming integrated within a tree search algorithm. It stores all
explored sub-states. Each node compares its prefix subset and last
vertex to existing entries in the database. If it is dominated, the node
is pruned. This strategy has been used in a large variety of methods.
For instance, memorization in branch and bounds ([30, 29]).

A prefix equivalence pruning for the Sequential Ordering Problem
can be defined as follows (inspired from TSP dynamic programming
[6], history cuts [30] and the call-based dynamic programming [4]):

Two solution prefixes n1, n2 are called equivalent if they cover the
same subset S ⊆ V of vertices and end with the same last vertex v. If
the prefix cost g(n1) (i.e. the sum of selected arcs between vertices
from S ∪ {v}) is (strictly) greater than g(n2), then n1 is (strictly)
dominated by n2 and thus can be pruned.

In other words, the Prefix Equivalence prunings can be seen as
a form of dynamic programming where the formulation can be de-
scribed as follows where pred(S, j) indicates that j is not a predeces-
sor of any vertex in S:

f∗(S, i) = minj∈S∧pred(S,j)(f
∗(S \ {j}, j) + wji

Our implementation of Prefix equivalence consists in altering the
behavior of the branch and bound as follows: Each time a node n is
opened, the prefix of n is compared to what exists in the database. If
the subset of vertices spanned by n does not exist in the database it
is added to it, otherwise it is compared to the best equivalent prefix
found so far. If the subset has a prefix cost worst than the one in the
database, the node n is pruned.

We implement the database using a hash table. In our numeric exper-
iments, we notice that a branch and bound using the prefix equivalence
opens on average 4 to 5 times less nodes than its equivalent version
without prefix equivalence.

In some versions of the Prefix Equivalence (for instance the one
found in history cuts [30]), nodes are pruned if their prefix matches
an existing entry in the database even if their cost is equal. Notice
that we restart tree searches (i.e. Iterative Beam Search and Limited
Discrepancy), which perform heuristic prunings (they prune nodes
to avoid saturating the memory and to ensure reaching feasible solu-
tions). To allow our algorithms to close an instance (i.e. to prove the
optimality of the best solution it found), we prune nodes only if they
are strictly dominated by the best equivalent recorded in the database.
The reason for doing so is that, although the value recorded in the
database corresponds to a node that has been already explored, this
exploration might have been partial and we need to ensure that the
search does not perform any heuristic pruning to provide a proof of
optimality.

4 COMPUTATIONAL RESULTS

Results were obtained from a Intel(R) Core(TM) i5-3470 CPU @
3.20GHz with 8GB RAM. We run each pair of instance-algorithm for
600 seconds. Instances come from the SOPLIB benchmark available
here
http://www.idsia.ch/~roberto/SOPLIB06.zip
The Instances are randomly generated and their names contain 3

numbers indicating: the number of nodes (from 200 to 700), the range
of the cost drawn uniformly (either between 0 and 100 or between
0 and 1000), and the percentage of precedence constraints. Notice
that the Instance R.200.100.60 is ill defined as its costs are drawn
between 0 and 1000.

Best known bounds and solutions are an aggregation of results
coming from [31, 18, 24, 22, 20]. Note that the Lin Kernighan Hels-
gaun 3 Algorithm [20] was run on each instance for 100.000 seconds.
The Enhanced Ant Colony System with Simulated Annealing [31]
was run 30 times per instance for 600 seconds so 18.000 seconds per
instance. The time limit of 600s used in the present paper is therefore
considerably smaller.

Performance of tree search components We ran 18 different tree
searches (DFS, LDS and Beam Search) with and without Prefix equiv-
alence using the prefix, Ingoing/Outgoing degrees or the MST bound
for 600 seconds. It turns out that there are two clear winners out of
these methods (Beam Search + Prefix Equivalence + Prefix or Ingo-
ing/Outgoing bound). Since the results of the two best methods are
very similar, we choose to put the emphasis on the simplest one (i.e.
Beam Search + Prefix Equivalence + Prefix bound). We show in Table
1 that any deviation of search strategy, prunings or bounds lead to a
performance drop (except for the Beam Search + Prefix Equivalence
+ Ingoing/Outgoing degree bound). For the sake of clarity, we only
show deviations of BS+PE+P and not the 18 algorithms.

4

http://www.idsia.ch/~roberto/SOPLIB06.zip


Discussion As expected, tree-search performs better (even more
with prefix-equivalence prunings) on most-constrained instances
(proving optimality on the 60% and 30% and competitive results
on the 15%) while obtaining poor results on loosely constrained ones
(1%)

The MST based tree searches open less nodes (1.000 to 10.000
times less than the ingoing/outgoing bound). This leads to less solu-
tions found (sometimes none within the time limit) and is overall less
efficient. It appears that on medium size instances, the MST bound
does not provide a significant guide improvement (and thus harms
performance since it is more expensive to compute than the Prefix
or Ingoing/Outgoing bound). One might wonder whether a possible
incremental evaluation of the MST bound, that is, a computation of it
along a branch of the search tree taking advantage of the similarity
between the MST for a node and the MST for one of its child, would
make a difference. For the benchmark we used, it would make abso-
lutely no difference. In the best scenario, we would end up with a third
algorithm equivalent to our other two champions. We do not report
numerical results on this issue here, but restricting the algorithms by
the number of nodes, and not by time limit, we observed that the MST
bound did not improve the results overall.

We remark that the search strategy also plays an important role
while finding good solutions or closing instances within the time limit.
Globally, the Beam Search strategy finds better solutions than LDS
which in turns finds better solutions than DFS. Although DFS is able
to find the optimal solution and to prove optimality on some instances,
it doesn’t match the quality of the solutions of either Beam Search
or LDS. The main advantage of DFS is that it does not reopen any
node, its main drawback is that it struggles to provide good quality
solutions fast. In comparison, Beam Search reopens nodes, but by
finding very good solutions fast, it is able to prune more nodes and
thus, close more instances. In this study, the beam search strategy
(using prefix equivalence) appears to be the best strategy, both for
proving optimality and finding the best solutions within the time limit.

We compare the Beam Search + Prefix Equivalence + Prefix or
Ingoing/Outgoing bound against the best solutions reported in the
literature by other state of the art algorithms. Our method finds new
best known solutions on 6 among 7 open instances of the SOPLIB in a
much shorter time than the other algorithms. It also proves optimality
quickly on all instances with 30 and 60 percent precedence (about
10 to 100 times faster than the DFS+prefix equivalence+stronger
bounds+local-search [22]). We remark that the proposed method fails
to provide good solutions for 1% precedence due to the poor quality
of bounds on these instances that are close to ATSP.

5 CONCLUSION AND FUTURE WORKS
In this paper, we discussed the importance considering anytime tree
searches while designing algorithms for large-scale instances. In this
(striking) example, we showed that even a simple tree-search algo-
rithm (that could also be considered as a baseline algorithm due to
its simplicity) could outperform state-of-the-art operations research
intricate and advanced meta-heuristics on a well studied benchmark.

The search algorithms usually considered in operations research
(namely DFS and LDS) proved to be clearly dominated by the beam
search performance-wise on the SOPLIB. Beam search outperformed
DFS by proving optimality on 25 instances (DFS proved optimality
only on 17 instances) in less than 600 seconds. It outperformed ex-
isting algorithms in finding new best known solutions on 6 among 7
open instances in a short amount of time. We also demonstrated the

importance of deconstructing optimization algorithms (in this case a
tree-search) and of the analysis of contribution and computational cost
of each separate building block. Indeed, neither beam search alone,
nor the prefix equivalence prunings with DFS/LDS alone were able to
outperform state-of-the art, but together, they did.

While aiming to implement an efficient all-purpose SOP solver, one
(in our opinion) should integrate a Beam Search and prefix equivalence
as it proves itself to be a very efficient and complementary approach
on large and constrained instances. However, we note that such tree-
search methods are not as efficient on loosely constrained instances
as LP-based branch-and-bounds or local-search, thus the importance
of hybridizing them together in such all-purpose solver.

The existing SOPLIB contains mostly very constrained instances
(at the exception of the 1% precedencies). It was probably designed in
such a way that local-search an LP-based approaches struggle to find
good solutions. As tree-search outperform these approaches on 15%
instances and is outperformed on 1% instances, it is an interesting
question to update the benchmark with intermediate densities (5%,
10% etc.) as they would probably be harder considering both classes
of algorithms.

This paper only considers the Sequential Ordering Problem. How-
ever, a similar decomposition methodology of complicated algorithms
into simple building blocks and the assessment of their contribu-
tions, computational costs, and ideally synergies, can be applied on
other combinatorial optimization problems. For instance, anytime tree
searches have been successfully applied on various hard combinato-
rial optimization problems such as “simple assembly line balancing
problem” [5], “Longest Palindromic Common Sub-sequence” [10].
We believe that similar conclusions (anytime tree-search are underes-
timated by operations research practitioners) can be drawn on several
other problems.

Moreover, we limited this study to DFS, LDS and Beam Search
as search strategies. Many more exist (like Beam stack search [35],
BULB [14], Anytime Focal Search [8] etc.). Also, one can study other
branch and bound components like performing a local-search within
each node [22, 9] or the probing strategy (starting a greedy algorithm
at each node to obtain a better quality estimate). This would probably
lead to better insights on when and how using anytime tree searches
while facing operations research problems.

To try and evaluate the contribution of such building blocks and
ideas on various problems, we started developing a framework for
generic Tree-Search, which allows to define a combinatorial problem
as a branching scheme, specific prunings, LP cuts, and bounds and
then to apply generic Tree Search strategies. This might lead to a
new standard way (aside Mathematical Programming, Constraint
Programming, local-search [17], Satisfiability of Boolean Clauses,
etc.) to define and solve combinatorial problems.
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Instance BKLB BKUB BS,PE,P BS,PE,IO BS,PE,MST BS,P DFS,PE,P LDS,PE,P T record (s) T opt (s)
R.200.100.1 61 61 189 189 299 189 283 192 - -
R.200.100.15 1.792 1.792 1.792 1.792 1.887 1.796 3.740 2.325 19.5 -
R.200.100.30 4.216 4.216 4.216 4.216 4.216 4.249 4.216 4.216 0.1 0.6
R.200.100.60 71.749 71.749 71.749 71.749 71.749 71.749 71.749 71.749 0.0 0.0
R.200.1000.1 1.404 1.404 2.554 2.554 3.398 2.554 3.448 2.684 - -
R.200.1000.15 20.481 20.481 20.481 20.481 20.952 20.517 34.982 25.592 16.3 547.7
R.200.1000.30 41.196 41.196 41.196 41.196 41.196 41.728 41.196 41.196 0.1 0.4
R.200.1000.60 71.556 71.556 71.556 71.556 71.556 71.556 71.556 71.556 0.0 0.0
R.300.100.1 26 26 214 214 406 204 265 225 - -
R.300.100.15 3.152 3.152 3.152 3.152 3.458 3.201 5.355 4.081 178.9 -
R.300.100.30 6.120 6.120 6.120 6.120 6.330 6.200 6.120 6.120 2.2 7.9
R.300.100.60 9.726 9.726 9.726 9.726 9.726 9.726 9.726 9.726 0.0 0.0
R.300.1000.1 1.294 1.294 3.080 3.080 4.784 2.888 3.551 3.012 - -
R.300.1000.15 29.006 29.006 29.006 29.006 33.885 29.481 51.152 43.597 220.0 -
R.300.1000.30 54.147 54.147 54.147 54.147 54.491 54.533 55.791 54.147 0.4 3.6
R.300.1000.60 109.471 109.471 109.471 109.471 109.471 109.471 109.471 109.471 0.0 0.0
R.400.100.1 13 13 191 191 - 175 295 203 - -
R.400.100.15 3.879 3.879 3.879 3.879 5.011 3.961 8.103 6.584 176.7 -
R.400.100.30 8.165 8.165 8.165 8.165 8.210 8.183 8.165 8.165 0.4 2.1
R.400.100.60 15.228 15.228 15.228 15.228 15.228 15.228 15.228 15.228 0.0 0.0
R.400.1000.1 1.343 1.343 3.247 3.247 - 3.247 4.466 3.525 - -
R.400.1000.15 35.364 38.963 38.963 38.963 53.789 39.722 76.463 69.342 157.2 -
R.400.1000.30 85.128 85.128 85.128 85.128 87.698 85.720 85.128 85.128 0.5 1.8
R.400.1000.60 140.816 140.816 140.816 140.816 140.816 140.816 140.816 140.816 0.0 0.0
R.500.100.1 4 4 267 275 - 202 272 232 - -
R.500.100.15 4.628 5.284 5.261 5.261 7.593 5.411 9.917 9.610 206.5 -
R.500.100.30 9.665 9.665 9.665 9.665 10.388 9.778 10.999 9.665 1.4 6.2
R.500.100.60 18.240 18.240 18.240 18.240 18.240 18.257 18.240 18.240 0.0 0.1
R.500.1000.1 1.316 1.316 4.079 4.079 - 3.541 4.703 3.717 - -
R.500.1000.15 43.134 49.504 49.366 49.366 71.888 50.624 103.985 94.625 120.8 -
R.500.1000.30 98.987 98.987 98.987 98.987 115.074 99.492 114.544 98.987 1.7 3.8
R.500.1000.60 178.212 178.212 178.212 178.212 178.212 178.355 178.212 178.212 0.0 0.0
R.600.100.1 1 1 289 289 - 289 306 246 - -
R.600.100.15 4.803 5.472 5.469 5.469 9.329 5.695 13.007 10.939 160.5 -
R.600.100.30 12.465 12.465 12.465 12.465 12.929 12.475 13.899 12.465 3.1 10.3
R.600.100.60 23.293 23.293 23.293 23.293 23.293 23.324 23.293 23.293 0.0 0.0
R.600.1000.1 1.337 1.337 4.030 4.030 - 3.853 4.814 4.074 - -
R.600.1000.15 47.042 55.213 54.994 54.994 90.977 55.748 115.295 108.164 183.6 -
R.600.1000.30 126.789 126.789 126.798 126.798 158.425 128.761 145.672 126.798 1.6 7.2
R.600.1000.60 214.608 214.608 214.608 214.608 214.608 214.608 214.608 214.608 0.1 0.1
R.700.100.1 1 1 186 250 - 186 281 258 - -
R.700.100.15 5.946 7.021 7.020 7.020 11.392 7.220 13.778 13.206 386.9 -
R.700.100.30 14.510 14.510 14.510 14.510 17.125 14.632 19.655 14.510 4.2 21.6
R.700.100.60 24.102 24.102 24.102 24.102 24.848 24.102 24.102 24.102 0.2 0.5
R.700.1000.1 1.231 1.231 4.403 4.403 - 4.042 4.629 4.028 - -
R.700.1000.15 54.351 65.305 64.777 64.777 108.627 65.775 141.544 121.189 25.5 -
R.700.1000.30 134.474 134.474 134.474 134.474 158.327 136.073 158.613 134.474 1.3 4.8
R.700.1000.60 245.589 245.589 245.589 245.589 245.688 245.752 245.589 245.589 0.1 0.1
nb closed 25 25 11 0 17 0

Table 1: Tree search components performance.

BKLB (resp. BKUB) refers to the Best Known Lower Bound (resp. Upper Bound) from our literature review.
BS,PE,P refers to the combination of Beam Search, Prefix Equivalence and Prefix bound.
BS,PE,IO refers to Beam Search, Prefix Equivalence and Ingoing/Outgoing bound.
BS,PE,MST refers to the Beam Search with Prefix Equivalence and MST bound.
BS,P refers to the Beam Search with the Prefix bound and without Prefix Equivalence.
DFS,PE,P refers to Depth First Search with Prefix Equivalence and Prefix bound.
LDS,PE,P refers to limited Discrepancy Search with Prefix Equivalence and Prefix bound.
“T record” indicates the time required by BS,PE,P to reach a solution of value BKUB or lower.
“T opt” indicates the time required by BS,PE,P to close the instance.

Bold instances are still open.
"-" (in column BS,PE,MST) indicate that no solution has been found by the method within 600 seconds.
"-" (in columns record (resp. opt)) indicate that no new record (resp. proof of optimality) was found by any of our methods.
Bold objective values indicate when the method was able to close the instance within the time limit.
Underlined objective values indicate an improvement of best known solutions.
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