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REGULARITY OF BIASED 1D RANDOM WALKS IN RANDOM

ENVIRONMENT

ALESSANDRA FAGGIONATO AND MICHELE SALVI

Abstract. We study the asymptotic properties of nearest-neighbor random walks in
1d random environment under the influence of an external field of intensity λ ∈ R. For
ergodic shift-invariant environments, we show that the limiting velocity v(λ) is always
increasing and that it is everywhere analytic except at most in two points λ− and λ+.
When λ− and λ+ are distinct, v(λ) might fail to be continuous. We refine the assumptions
in [?] for having a recentered CLT with diffusivity σ2(λ) and give explicit conditions for
σ2(λ) to be analytic. For the random conductance model we show that, in contrast with
the deterministic case, σ2(λ) is not monotone on the positive (resp. negative) half-line
and that it is not differentiable at λ = 0. For this model we also prove the Einstein
Relation, both in discrete and continuous time, extending the result of [?].

AMS subject classification (2010 MSC): 60K37, 60Fxx, 82D30.

Keywords: random walk in random environment, asymptotic speed, central limit the-
orem, random conductance model, environment seen from the particle, steady states,
Einstein relation.

1. Introduction

The response of a system to an external field of intensity λ is relevant in many applica-
tions. In particular, one is interested in the quantitative and qualitative behavior of some
large-scale quantities when λ varies. As an example we mention linear response theory,
where the first order λ–expansion of the observed quantities is analyzed (see e.g. [?, ?]).

The above issues have been considered both for dynamical systems and for stochas-
tic systems. For stochastic systems whose evolution depends on a random environment
(modeling some structural disorder), one could further ask how the disorder influences the
response. Here we consider the special case of 1d nearest–neighbor RWRE’s, and focus on
the λ–dependence of the asymptotic velocity v(λ) and the diffusion coefficient σ2(λ). Some
non–rigorous results in this direction are provided in [?]. According to [?], differently from
the higher dimensional case treated in [?], the presence of disorder in one dimension can
make v(λ) and σ2(λ) irregular. This picture is confirmed by some of our rigorous results.

In this paper we investigate the behavior of the quantities v(λ) and σ2(λ) as functions
of the parameter λ. In particular, we focus on their monotonicity, differentiability and
analyticity, and we derive the Einstein Relation for the random conductance model (RCM)
extending the result of [?]. The advantage of working with nearest neighbor walks on the
one-dimensional lattice is that v(λ) and σ2(λ) have an explicit representation in terms of
suitable series (see [?]).

Before entering in the details of our results we describe some previous contributions on
related problems. The monotone behavior of the speed of RWRE’s in dimension d ≥ 2 has
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2 A. FAGGIONATO AND M. SALVI

been considered in several papers. One of the most interesting and most studied models
is that of a walk on the infinite supercritical percolation cluster, where the speed has been
proved to be positive up to a critical value of λ and equal to zero above this threshold [?, ?].
This non-monotone nature of the speed as a function of the bias has been also recently
observed for walks among elliptic conductances [?]. Results concerning the continuity of
the speed have been obtained e.g. for a random walk in a one–dimensional percolation
model [?] and for the 1d Mott random walk [?] (in [?] also the differentiability has been
studied). The behavior of one dimensional RWRE’s that are transient but with zero-speed
has been studied in [?, ?, ?] for i.i.d. jump probabilities and in [?, ?] for the RCM. The
continuity of the diffusion matrix at λ = 0 has been derived in [?] for diffusions in random
environment. In the context of random walks on groups, analyticity of the speed and of
the asymptotic variance has been proved in [?], while in [?] the same result is proved with
dynamical ideas for general hyperbolic groups. Finally, a particular attention has been
devoted to the linear response of RWRE’s for a weak bias (also in higher dimension). This
has lead to the proof of the Einstein relation, which claims the equivalence between the
derivative of v(λ) at λ = 0 and the diffusion coefficient of the unperturbed process σ2(0)
(see [?, ?, ?, ?, ?, ?, ?, ?, ?, ?]).

We now describe our results and outline the paper. We analyze in detail biased 1d
nearest–neighbor RWRE’s both in discrete and in continuous time. The discrete time
model is introduced in Section ??, while the continuous time case is introduced in Section
??. In Section ?? we state our main assumptions and introduce the concept of a reflection
invariant environment. The random conductance model (RCM), which is of particular
interest in what follows, appears in Section ??.

Section ?? is dedicated to the study of the asymptotic velocity vX(λ) of a generic
discrete time random walk as a function of the external bias, while Section ?? treats the
velocity vY (λ) in the continuous time case. We show that vX(λ) is analytic everywhere
with exception of at most two values λ− ≤ λ+, it is strictly increasing on (−∞, λ−)
and (λ+,+∞) and it is zero on (λ−, λ+) (cf. Proposition ??). The same holds for vY (λ)
(cf. Proposition ??). If λ− = λ+ then vX(λ) is continuous on all R, see Proposition ??. The
corresponding result for vY (λ) appears in Proposition ??. Sections ?? and ?? deal with
the reflection invariant environment case. Finally we exhibit examples with an irregular
behavior of the speed. Example ?? (resp. Example ??) shows a pathological model for
which vX(λ) (resp. vY (λ)) is not continuous in λ±. Even when the environment is given
by a (genuinely random) i.i.d. sequence of jump probabilities, vX(λ) is not differentiable
at the two points λ− < λ+, see Example ??. The discrete time RCM with i.i.d. genuinely
random conductances has speed vX(λ) without second derivative at λ+ = λ− = 0, see
Example ??. In continuous time, the RCM regularizes (Example ??), but we provide
another elementary model (see Example ??) where vY (λ) does not have second derivative
at λ+ = λ− = 0.

Section ?? is dedicated to the proof of the Einstein relation for the biased RCM. In
Theorem ?? we provide a shorter alternative proof to the one appearing in [?] and also
extend the result to more general hypothesis.

In Section ?? we move to the study of the central limit theorem (CLT) when the random
walk is ballistic, restricting to the case of discrete time. Theorem ?? extends the CLT
discussed in [?] and Proposition ?? provides an alternative description of the diffusion
coefficient σ2(λ). In Proposition ?? we give some conditions that guarantee analyticity
of σ2(λ). Finally, in Subsection ?? we gather some sufficient conditions for the CLT
to hold that are easier to verify. Applications are given in Example ?? for the case of
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an environment given by i.i.d. jump probabilities and in Section ?? for the RCM with
i.i.d. conductances.

In Section ?? we focus on σ2(λ) for the RCM with i.i.d. conductances. In Theorem
?? we explicitly calculate σ2(λ) and in Proposition ?? we prove that σ2(λ) is continuous
everywhere, it is analytic on R\{0} but it is not differentiable at λ = 0 if the conductances
are genuinely random. Moreover, we show that, differently from the case of deterministic
conductances, σ2(λ) is neither monotone on [0,∞) nor on (−∞, 0].

Sections ?? and ?? are the discussions of Examples ?? and ??, respectively. In the
Appendix we collect some technical proofs.

2. Models

In this section we introduce our nearest–neighbor random walks on Z and fix our no-
tation. We distinguish between discrete time random walks and continuous time random
walks.

2.1. Discrete time random walks. We first consider discrete time random walks on
Z in random environment. To this aim we let Ω = (0, 1)Z be the space of environments
endowed with the product topology and with a probability measure P (E will denote
the associated expectation). We write ω = (ω+

x )x∈Z for a generic element of Ω and set
ω−x := 1 − ω+

x . We introduce then an external force, or bias, of intensity λ ∈ R. This
results in modifying the environment in the following way: fixed λ ∈ R we define

ω−x (λ) :=
ω−x e−λ

ω−x e−λ + ω+
x eλ

, ω+
x (λ) :=

ω+
x eλ

ω−x e−λ + ω+
x eλ

. (1)

Given a realization ω of the environment, (Xω,λ
n )n≥0 will be the discrete time random

walk starting at the origin and jumping from x to x ± 1 with probability ω±x (λ). We

write P ω,λ
0 and E ω,λ

0 for the associated probability and expectation, respectively, with the

convention that we will write simply Xn when dealing with P ω,λ
0 , E ω,λ

0 . In particular, we
have

P ω,λ
0

(
Xn+1 = x− 1 |Xn = x

)
= ω−x (λ) , P ω,λ

0

(
Xn+1 = x+ 1 |Xn = x

)
= ω+

x (λ) .

Finally we define

ρx(λ) :=
ω−x (λ)

ω+
x (λ)

. (2)

When λ = 0 we will refer to the unperturbed random walk and omit the index λ, writing
simply Xω

n , Pω0 and Eω0 , ρx. Note in particular that we have

ρx(λ) =
ω−x (λ)

ω+
x (λ)

=
ω−x
ω+
x

e−2λ = ρxe−2λ . (3)

We think of Xω,λ
n as a perturbation of Xω

n due to the presence of an external field of
intensity λ.

2.2. Continuous time random walks. When considering continuous time random walks,

we let Θ =
(

(0,+∞)×(0,+∞)
)Z

be the space of environments endowed with the product
topology and with a probability measure P (E will denote the associated expectation). We
let ξ :=

(
(r−x , r

+
x )
)
x∈Z be a generic element of Θ. Fixed λ ∈ R we set

r−x (λ) = r−x e−λ , r+
x (λ) = r+

x eλ .
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Then (Y ξ,λ
t )t≥0 will denote the continuous time random walk on Z starting at the origin,

having nearest–neighbour jumps with probability rate for a jump from x to x±1 given by

r±x (λ). Below (cf. Assumption ??) we will give conditions assuring that (Y ξ,λ
t )t≥0 is well

defined a.s. (i.e. no explosion takes place a.s.).

We denote by P ξ,λ
0 and E ξ,λ

0 the associated probability and expectation and also in this

case we will just write Yt for the random walk when it appears inside P ξ,λ
0 or E ξ,λ

0 . In
particular, we have

P ξ,λ
0

(
Yt+dt = x− 1 |Yt = x

)
= r−x (λ)dt , P ξ,λ

0

(
Yt+dt = x+ 1 |Yt = x

)
= r+

x (λ)dt .

When λ = 0 we will refer to the unperturbed random walk and omit the index λ, writing

simply Y ξ
t , P ξ

0 and E ξ
0 .

We note that the associated discrete time version recording only the jumps (the so
called jump process), has probability for a jump from x to x± 1 given by

ω±x (λ) :=
r±x (λ)

r−x (λ) + r+
x (λ)

=

r±x
r−x +r+x

eλ

r−x
r−x +r+x

e−λ + r+x
r−x +r+x

eλ
=

ω±x e±λ

ω−x e−λ + ω+
x eλ

, (4)

where

ω±x :=
r±x

r−x + r+
x
. (5)

Note that identities (??) are satisfied. In particular, the jump process associated to the

perturbed continuous time random walk (Y ξ,λ
t )t≥0 is the perturbed Markov chain associ-

ated to the jump process of (Y ξ
t )t≥0. When dealing with continuous time random walks

we will keep the definitions (??), (??) and define ρx and ρx(λ) according to (??). Note
that

ρx =
r−x
r+
x
, ρx(λ) = ρxe−2λ .

2.3. Assumptions on the environment. For both the discrete time and the continuous
time random walks we will always make the following assumption:

Assumption 2.1 (Main Assumption). The law P of the environment is stationary and
ergodic with respect to shifts and E[log ρ0] is well defined, with ±∞ as possible values.

We point out that Assumption ?? corresponds to Assumption 2.1.1 in [?].

Lemma 2.2. Under Assumption ??, for the continuous time random walk a.s. explosion

does not take place and therefore Y ξ,λ
t is well defined for all times t.

Proof. Let ω be defined by (??) and consider the associated biased discrete time random

walk (Xω,λ
n )n≥0. Then one can introduce the continuous time random walk as a random

time change of (Xω,λ
n )n≥0 by imposing that, once arrived at site x, the random walk

remains at x for an exponential random time with mean
(
r+
x (λ)+r−x (λ)

)−1
. Take now M >

0 such that P(r+
0 (λ) + r−0 (λ) ≤M) > 0. Consider the random set A := {x ∈ Z : r+

x (λ) +
r−x (λ) ≤M}. Then, by the ergodic theorem and Assumption ??, a.s. A∩Z+ and A∩Z−
are infinite sets. By Assumption ?? and [?, Thm. 2.1.2], a.s. the random walk (Xω,λ

n )n≥0

visits an half-line of Z. Hence limn→∞ f(n) = +∞ where f(n) := |{k ∈ {0, 1, . . . , n} :

Xω,λ
k ∈ A}|. As a consequence, for almost all realizations of (Xω,λ

n )n≥0, when we condition

to the realization of (Xω,λ
n )n≥0 we get that the n–th jump of the continuous time random

walk takes place at a random time tn which stochastically dominates the sum of f(n) i.i.d.
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exponential random variables with mean M−1. Therefore, tn goes to infinity as n → ∞
a.s. �

While Assumption ?? will always hold in what follows, in order to build special coun-
terexamples we will sometimes make the following assumption (this will be clearly specified
in the text):

Assumption 2.3 (Reflection invariance - discrete time case). The law of the environment
is left invariant by the spatial reflection with respect to the origin, i.e. by the transformation
(ω+
x )x∈Z 7→ (ω−−x)x∈Z.

Also in the continuous time setting we will sometimes consider models with a special
symmetry:

Assumption 2.4 (Reflection invariance - continuous time case). The law of the envi-
ronment is left invariant by the spatial reflection with respect to the origin, i.e. by the
transformation

(
(r−x , r

+
x )
)
x∈Z 7→

(
(r+
−x, r

−
−x)

)
x∈Z.

2.4. Random conductance model. In what follows, when referring to random conduc-
tances, we will mean a family of positive random variables (cx)x∈Z, stationary and ergodic
w.r.t. shifts. The number cx is called the conductance of the edge {x, x + 1}. Then the
discrete time random conductance model (RCM) is given by the random walk Xω

n where

ω+
x := cx

cx−1+cx
and ω−x := cx−1

cx−1+cx
for all x ∈ Z. The random walk Xω,λ

n represents the

biased discrete time RCM. The continuous time RCM is given by the random walk Y ξ
t

where ξ =
(

(r−x , r
+
x )
)
x∈Z ∈ Θ satisfies r+

x = cx = r−x+1 for all x ∈ Z. The random walk

Y ξ,λ
t represents the biased continuous time RCM.

Remark 2.5. Our main assumption (see Assumption ??) for the random conductance
model is satisfied if E[| log c0|] < ∞ since log ρ0 = log c−1 − log c0. We point out that
E[| log c0|] <∞ if c0, c

−1
0 ∈ L1(P).

3. Discrete time asymptotic velocity vX(λ)

As in [?, Eq. (2.1.7)-(2.1.8)] we set

S̄(λ) :=
1

ω+
0 (λ)

+

∞∑
i=1

1

ω+
−i(λ)

i−1∏
j=0

ρ−j(λ) , F̄ (λ) :=
1

ω−0 (λ)
+

∞∑
i=1

1

ω−i (λ)

i−1∏
j=0

ρ−1
j (λ).

Proposition 3.1. [?, Theorem 2.1.9] The limit vX(λ) := limn→∞
Xω,λ
n
n exists P⊗Pω0 –a.s.,

is not random and is characterized as follows:

(a) E[S̄(λ)] <∞ =⇒ vX(λ) = 1
E[S̄(λ)]

;

(b) E[F̄ (λ)] <∞ =⇒ vX(λ) = − 1
E[F̄ (λ)]

;

(c) E[S̄(λ)] =∞ and E[F̄ (λ)] =∞ =⇒ vX(λ) = 0 .

Lemma 3.2. It holds

S̄(λ) = 1 + 2

∞∑
i=0

ρ0ρ−1 · · · ρ−i e−2λ(i+1) , F̄ (λ) = 1 + 2

∞∑
i=0

ρ−1
0 ρ−1

1 · · · ρ
−1
i e2λ(i+1) .
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Proof. We observe that 1
ω+
x (λ)

= 1 + ρxe−2λ. Hence

S̄(λ) = 1 + ρ0e−2λ +

∞∑
i=1

(1 + ρ−ie
−2λ)ρ0ρ−1 · · · ρ−i+1e−2iλ

= 1 + ρ0e−2λ +

∞∑
i=1

ρ0ρ−1 · · · ρ−i+1e−2iλ +

∞∑
i=1

ρ0ρ−1 · · · ρ−i+1ρ−ie
−2(i+1)λ

= 1 +

∞∑
i=1

ρ0ρ−1 · · · ρ−i+1e−2iλ +

∞∑
i=0

ρ0ρ−1 · · · ρ−i+1ρ−ie
−2(i+1)λ .

The proof for F̄ (λ) is similar. �

To describe some regularity properties of the asymptotic velocity vX(λ) we introduce
the thresholds λ− and λ+ as follows:

λ− := sup{λ ∈ R : vX(λ) < 0} , λ+ := inf{λ ∈ R : vX(λ) > 0} ,
with the convention that sup ∅ = −∞ and inf ∅ = +∞.

Proposition 3.3. The velocity vX(λ) is increasing in λ and λ− ≤ λ+. Moreover, vX(λ)
is strictly increasing and analytic on (−∞, λ−) and on (λ+,+∞), while it is zero on
(λ−, λ+).

Remark 3.4. Due to the above proposition, vX(λ) is analytic everywhere with possible
exception at λ−, λ+, where it can be irregular (even discontinuous, see Section ??).

Proof of Proposition ??. Due to the representation given in Lemma ?? one gets that the
function S̄ : R → [0,+∞] is decreasing, and that the function F̄ : R → [0,+∞] is
increasing. Combining this observation with Proposition ??, one gets that vX(λ) is in-
creasing in λ, thus implying that λ− ≤ λ+ and that vX(λ) = 0 on (λ−, λ+). Note
that λ+ = inf{λ ∈ R : E[S̄(λ)] < ∞}. Hence, for λ > λ+ we have S̄(λ) < ∞ P–
a.s. This property and the form of S̄ given in Lemma ?? allow to conclude that, given
λ+ < λ < λ′, S̄(λ) > S̄(λ′) P–a.s. Since E[S̄(λ)] and E[S̄(λ′)] are finite, we then conclude
that E[S̄(λ)] > E[S̄(λ′)] and therefore that vX(λ) < vX(λ′) (cf. Item (a) in Proposition
??). In a similar way, one proves that vX(λ) is strictly increasing in (−∞, λ−).

It remains to prove that vX(λ) is analytic on (−∞, λ−) and on (λ+,+∞). We show its
analyticity on (λ+,+∞), the case (−∞, λ−) is similar. Since vX(λ) = 1

E[S(λ)]
and E[S̄(λ)]

is finite and positive on (λ+,+∞), it is enough to prove that the map λ 7→ h(λ) := E[S̄(λ)]
is analytic on (λ+,+∞). This follows from Lemma ?? in Appendix, which is based on the
Theorem of Pringsheim-Boas (cf. [?, Thm. 3.1.1]). �

As already pointed out, there are models for which vX(λ) is discontinuous at λ− or λ+.
On the other hand, if λ− = λ+ this cannot happen:

Proposition 3.5. If λ− = λ+, then vX(λ) is continuous. Moreover, it must be λ− =
λ+ = E[log ρ0] and vX(λ±) = 0.

Proof. The continuity for λ > λ+ and for λ < λ− is given by Proposition ??. Let us check
that λ− = λ+ = E[log ρ0] and that vX(λ) is continuous at λ = E[log ρ0] when this value is

finite. First of all we notice that E[S̄(λ)] is finite iff
∑∞

i=0 E[ρ0 · · · ρi]e−λ(i+1) is finite (see
Lemma ??). Since, by Jensen’s inequality,

E[ρ0 · · · ρi] = E[elog ρ0+···+log ρi ] ≥ eE[log ρ0+···+log ρi] = eE[log ρ0](i+1) , (6)
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we always have that λ+ ≥ λ̄ := E[log ρ0].

Analogously, E[F̄ (λ)] is finite iff
∑∞

i=0 E[ρ−1
0 · · · ρ

−1
i ]eλ(i+1) is finite and

E[ρ−1
0 · · · ρ

−1
i ] = E[e− log ρ0−···−log ρi ] ≥ eE[− log ρ0−···−log ρi] = e−E[log ρ0](i+1) ,

so that it is always true that λ− ≤ λ̄ := E[log ρ0]. It follows that, if λ− = λ+, it must be
λ− = λ+ = λ̄ = E[log ρ0]. If E[log ρ0] = ±∞, there is nothing left to prove.

From now on we assume that λ̄ = E[log ρ0] is finite. From the observations we just
made, it also follows that vX(λ̄) = 0, since at λ̄ both E[S̄(λ)] and E[F̄ (λ)] are infinite.
W.l.o.g. we assume now by contradiction that there is a discontinuity to the right of λ̄. If
this is the case, we must have limε→0 vX(λ̄+ε) > 0, or equivalently limε→0 E[S̄(λ̄+ε)] <∞.
But this is in contradiction with the following:

lim
ε→0

E[S̄(λ̄+ ε)] = 1 + 2 lim
ε→0

∞∑
i=0

E[ρ0 · · · ρi]e−(λ̄+ε)(i+1)

≥ 1 + 2 lim
ε→0

∞∑
i=0

eλ̄(i+1)e−(λ̄+ε)(i+1)

= 1 + 2 lim
ε→0

∞∑
i=0

e−ε(i+1) = 1 + 2 lim
ε→0

e−ε

1− e−ε
=∞ ,

where for the inequality we have used (??). �

3.1. Reflection invariance case. In the particular case of reflection invariant environ-
ments (cf. Assumption ??) we have the following:

Proposition 3.6. Suppose Assumption ?? to be satisfied. Then it holds

vX(λ) = −vX(−λ) . (7)

In particular, vX(0) = 0 and, if vX has n-th derivative at 0 with n even, then this derivative
must be 0. Moreover, the following dichotomy holds for λ ≥ 0:{

E[S̄(λ)] < +∞ =⇒ vX(λ) = 1
E[S(λ)]

> 0 ,

E[S̄(λ)] = +∞ =⇒ vX(λ) = 0 .

Proof. Identity (??) follows by symmetry, while the identity v
(n)
X (0) = 0 (for even n’s)

follows from (??). By Proposition ?? to get the dichotomy it is enough to check that

E[F̄ (λ)] =∞ for λ ≥ 0. Since ρ0 =
ω−0
ω+
0

and ρ−1
0 =

ω+
0

ω−0
, by Assumption ?? we have that ρ0

and ρ−1
0 have the same law. In particular, E[log ρ0] = 0 and therefore E[log(ρ−1

0 ρ−1
1 · · · ρ

−1
i )] =

0. By Jensen’s inequality and Lemma ?? we conclude that

E[F̄ (λ)] = 1 + 2
∞∑
i=0

E[ρ−1
0 ρ−1

1 · · · ρ
−1
i ] e2λ(i+1)

≥ 1 + 2
∞∑
i=0

eE[log(ρ−1
0 ρ−1

1 ···ρ
−1
i )] e2λ(i+1) = 1 + 2

∞∑
i=0

e2λ(i+1) =∞. �
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3.2. Examples of models with irregular asymptotic velocity vX(λ). We conclude
this section with three examples. In Example ?? vX(λ) is not continuous at λ+. This
example is rather exotic and if one is interested in models violating e.g. the analiticity
of vX(λ), then it is enough to consider random walks with i.i.d. and genuinely random
ω+
i (see Example ??) or the RCM with i.i.d. and genuinely random conductances (see

Example ??). In Example ?? vX(λ) is not differentiable in λ−, λ+ (in this case λ− < λ+),
while in Example ?? vX(λ) has not second derivative at 0 = λ− = λ+.

Example 3.7. vX(λ) is in general not continuous as in the following model. Fixed the
parameters A > 0 and γ > 2, we first introduce the random variables r(k, k − 1) and
r(k, k + 1), k ∈ Z. We set r(k, k − 1) := A for all k ∈ Z. To define r(k, k + 1) we proceed
as follows. We let τ̃ = (τ̃k)k∈Z be a renewal point process on Z such that τ̃0 = 0 and, for
k 6= 0, P(τ̃k+1 − τ̃k ≥ j) = 1/jγ for any j ∈ N+, N+ being the set of positive integers. We
write τ = (τk)k∈Z for the renewal point process given by the Z–stationary version of τ̃ (see
Section ??). For k ∈ Z, we set

r(k, k + 1) :=

{
1 if − k /∈ τ ,
2 if − k ∈ τ .

Finally, we take ω+
k := r(k,k+1)

r(k,k−1)+r(k,k+1) , ω−k := r(k,k−1)
r(k,k−1)+r(k,k+1) . Then Assumption ?? is

satisfied, vX(λ) > 0 for λ ≥ λ+ = 1
2 logA, while vX(λ) ≤ 0 for λ < λ+. In particular,

vX(λ) has a discontinuity at λ+. In addition, λ− is finite and λ− < λ+.

The discussion of the above example is given in Section ??.

Example 3.8. Consider the case of i.i.d. ω+
i ’s such that E[log ρ0] is well defined (this

assures that Assumption ?? is satisfied). Then λ+ = 1
2 logE[ρ0] and λ− = −1

2 logE[1/ρ0].

Moreover, if the ω+
i ’s are genuinely random then λ− < λ+ and vX(λ) is not differentiable

at λ+ if λ+ is finite. The same holds for λ−.

Discussion of Example ??. By applying Proposition ?? and Lemma ??, we have λ+ =
1
2 logE[ρ0], λ− = −1

2 logE[1/ρ0] and

vX(λ) =


1−E[ρ0]e−2λ

1+E[ρ0]e−2λ if λ > λ+ ,

0 if λ− ≤ λ ≤ λ+ ,

−1−E[1/ρ0]e2λ

1+E[1/ρ0]e2λ
if λ < λ− .

(8)

In particular, vX(λ) is continuous. Let us now restrict to genuinely random variables ω+
i .

By Jensen inequality we have λ− < λ+. We also notice that the right derivative of vX(λ)

for λ ≥ λ+ is 4E[ρ0]e−2λ

(1+E[ρ0]e−2λ)2
, which is equal to 1 in λ+ if λ+ is finite. Hence vX(λ) is not

differentiable in λ+. Similar considerations hold for λ−. �

Let us now consider a discrete time RCM with with conductances (cx)x∈Z (see Sec-
tion ??). We collect some observations which will be used in the next Example ??.
Since ρx = cx−1

cx
we have ρ0ρ−1 · · · ρ−i = c−i−1

c0
. By Lemma ?? we then get S̄(λ) =

1 + 2
∑∞

i=0
c−i−1

c0
e−2λ(i+1) and by using the translation invariance of the conductances we

conclude that

E[S̄(λ)] = 1 + 2
∞∑
i=1

E
[c0

ci

]
e−2λi . (9)
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Finally, we note that for the RCM Assumption ?? is equivalent to saying that the sequences
(cx)x∈Z and (c−x)x∈Z have the same law. In particular, if the conductances are i.i.d. as in
Example ?? below, Assumption ?? is satisfied.

Example 3.9. Consider the discrete time RCM with i.i.d. conductances such that E[c0] <
∞, E[1/c0] < ∞ and c0 is not almost surely constant. Then the model is reflection
invariant and at λ+ = λ− = 0 vX(λ) is continuous, has first derivative but has no second
derivative.

Discussion of Example ??. As discussed above and due to Remark ??, Assumptions ??
and ?? are satisfied. Take λ ≥ 0 and let A := E[c0] and B := E[1/c0]. Note that by
Jensen’s inequality AB > 1, since c0 is non deterministic. By (??) we have

E[S̄(λ)] = 1 + 2AB
e−2λ

1− e−2λ
=

1− e−2λ + 2ABe−2λ

1− e−2λ
.

By Proposition ?? we conclude that λ+ = 0 and

vX(λ) =
1− e−2λ

1− e−2λ + 2ABe−2λ
, λ ≥ 0 . (10)

A similar analysis can be done for λ < 0. By a Taylor expansion, for λ ≥ 0 we have

vX(λ) =
2λ− 2λ2 + o(λ2)

2λ+ 2AB − 4ABλ+ o(λ)
=

1

AB
· λ− λ2 + o(λ2)

1 + (1/AB − 2)λ+ o(λ)

=
1

AB

(
λ− λ2 + o(λ2)

)(
1−

( 1

AB
− 2
)
λ+ o(λ)

)
=

1

AB
λ+

AB − 1

(AB)2
λ2 + o(λ2) .

Since v(λ) = −v(−λ), the above Taylor expansion shows that v(λ) is continuous and has
a first derivative at λ = 0. On the other hand, ∂+

λλvX(0)/2 = (AB − 1)/(AB)2> 0 (recall
that AB > 1). By Proposition ?? we conclude that vX(·) has no second derivative at
0. �

Remark 3.10. In Example ?? with ρi equal to a fixed constant C, we have vX(λ) =
1−Ce−2λ

1+Ce−2λ for each λ ∈ R. In particular, vX(λ) is everywhere analytic. Analogously, in Ex-

ample ?? with conductances equal to a fixed constant, then vX(λ) = 1−e−2λ

1+e−2λ and therefore

vX(λ) is again everywhere analytic. In particular, in both cases the emergence of the irreg-
ularity of the asymptotic velocity vX corresponds to the randomness of the environment.

4. Continuous time asymptotic velocity vY (λ)

We set

Ŝ(λ) :=
1

r+
0 (λ)

+

∞∑
i=1

1

r+
−i(λ)

i−1∏
j=0

ρ−j(λ) ,

F̂ (λ) :=
1

r−0 (λ)
+

∞∑
i=1

1

r−i (λ)

i−1∏
j=0

ρ−1
j (λ).

Proposition 4.1. The limit vY (λ) := limt→∞
Y ξ,λt
t exists P ⊗ P ξ,λ0 –a.s., is not random

and is characterized as follows:

(a) E[Ŝ(λ)] <∞ =⇒ vY (λ) = 1
E[Ŝ(λ)]

;

(b) E[F̂ (λ)] <∞ =⇒ vY (λ) = − 1
E[F̂ (λ)]

;
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(c) E[Ŝ(λ)] =∞ and E[F̂ (λ)] =∞ =⇒ vY (λ) = 0 .

The proof of Proposition ?? has some intersection with the one for the discrete time
case, see [?, Theorem 2.1.9]. The main difference is related to the continuous time version
of [?, Lemma 2.1.17], since new phenomena have to be controlled. For completeness, the
proof of Proposition ?? is given in Appendix ??.

For the computation of E[Ŝ(λ)] and E[F̂ (λ)] we have the following fact (which can be
easily verified):

Lemma 4.2. It holds:

E[Ŝ(λ)] = E
[e−λ

r+
0

(
1 +

∞∑
i=1

ρ1ρ2 · · · ρie−2λi
)]
, (11)

E[F̂ (λ)] = E
[ eλ

r−0

(
1 +

∞∑
i=1

ρ−1
−1ρ

−1
−2 · · · ρ

−1
−i e

2λi
)]
. (12)

Similarly to the discrete time case we introduce the thresholds λ− and λ+ as

λ− := sup{λ ∈ R : vY (λ) < 0} , λ+ := inf{λ ∈ R : vY (λ) > 0} ,
with the convention that sup ∅ = −∞ and inf ∅ = +∞.

Having Proposition ?? and Lemma ??, by exactly the same arguments used to derive
Proposition ?? we have:

Proposition 4.3. The velocity vY (λ) is increasing in λ and λ− ≤ λ+. Moreover, vY (λ)
is strictly increasing and analytic on (−∞, λ−) and on (λ+,+∞), while it is zero on
(λ−, λ+).

Remark 4.4. Due to the above proposition, vY (λ) is analytic everywhere with possible
exception at λ−, λ+, where it can be irregular (even discontinuous, see Section ??).

By the same arguments used to prove Proposition ?? one easily gets the following:

Proposition 4.5. Assume that E
[
1/r±0

]
< +∞, E

[
log r±0

]
< +∞ and λ− = λ+. Then

vY (λ) is continuous, λ− = λ+ = E[log ρ0] and vY (λ±) = 0.

In the continuous time setting, the RCM has always a regular asymptotic velocity vY (λ):

Example 4.6. For the continuous time RCM satisfying our main assumption (see Re-
mark ??) it holds

vY (λ) =
eλ − e−λ

E[1/c0]
. (13)

In particular vY ≡ 0 iff E[1/c0] = +∞. Moreover, vY is always an analytic function of λ.

Discussion of Example ??. Since ρi = ci−1

ci
from (??) we have

E[Ŝ(λ)] = E
[e−λ

c0

(
1 +

∞∑
i=1

c0

c1

c1

c2
· · · ci−1

ci
e−2λi

)]
= E

[e−λ

c0
+

∞∑
i=1

e−λ

ci
e−2λi

]
= E

[ 1

c0

]
e−λ

∞∑
i=0

e−2λi ,

(14)

thus implying that

E[Ŝ(λ)] =

{
E
[

1
c0

]
1

eλ−e−λ
λ > 0 ,

+∞ λ ≤ 0 .
(15)
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Similarly from (??) we have

E[F̂ (λ)] = E
[ eλ

c−1

(
1 +

∞∑
i=1

c−1

c−2

c−2

c−3
· · · c−i

c−i−1
e2λi

)]
= E

[ eλ

c−1
+

∞∑
i=1

eλ

c−i−1
e2λi

]
= E

[ 1

c0

]
eλ
∞∑
i=0

e2λi ,

thus implying that

E[F̂ (λ)] =

{
E
[

1
c0

]
1

e−λ−eλ
λ < 0 ,

+∞ λ ≥ 0 .
(16)

From (??), (??) and Proposition ?? we get (??). The conclusion then follows from (??).
�

4.1. Reflection invariance. In the case of reflection invariant environments (cf. Assump-
tion ??) we prove an analogous of Proposition ??:

Proposition 4.7. Suppose Assumption ?? to be satisfied. Then it holds

vY (λ) = −vY (−λ) . (17)

In particular, vY (0) = 0 and, if vY has n-th derivative at 0 with n even, then this derivative
must be 0. Moreover, the following dichotomy holds for λ ≥ 0:{

E[Ŝ(λ)] < +∞ =⇒ vY (λ) = 1
/
E
[

e−λ

r+0

(
1 +

∑∞
i=1 ρ1ρ2 · · · ρie−2λi

)]
∈ (0,+∞)

E[Ŝ(λ)] = +∞ =⇒ vY (λ) = 0 .
(18)

Proof. By Assumption ??, (??) and (??) we have that

E[F̂ (λ)] = E
[ eλ

r−0

(
1 +

∞∑
i=1

ρ−1
−1ρ

−1
−2 · · · ρ

−1
−i e

2λi
)]

= E
[ eλ

r+
0

(
1 +

∞∑
i=1

ρ1ρ2 · · · ρie2λi
)]

= E[Ŝ(−λ)] , (19)

which implies vY (λ) = −vY (−λ) by Proposition ??. The second property, concerning
the derivatives of vY , follows from (??). Finally, to prove the dichotomy, it is enough

to check that E[F̂ (λ)] = ∞ whenever λ ≥ 0. From (??) we clearly see that, for λ ≥ 0,

E[F̂ (λ)] = E
[

eλ

r+0

(
1 +

∑∞
i=1 ρ1ρ2 · · · ρie2λi

)]
≥ E[Ŝ(λ)]. This implies that, whenever λ ≥ 0

and E[Ŝ(λ)] =∞, also E[F̂ (λ)] =∞. If on the other hand we have λ ≥ 0 and E[Ŝ(λ)] <∞,

then again we must have E[F̂ (λ)] = ∞. Otherwise we would have, by parts (a) and (b)

of Proposition ??, vY (λ) = E[Ŝ(λ)]−1 and at the same time vY (λ) = −E[F̂ (λ)]−1, which
is a contradiction. �

4.2. Examples of models with irregular asymptotic velocity vY (λ).

Example 4.8. Recall Example ?? and in particular the random variables r(x, x ± 1)
introduced there. Consider the continuous time random walk with jump rates r±x := r(x, x±
1). Then its asymptotic velocity vY (λ) is discontinuous at λ+.

The proof of the above statement follows from the same arguments presented in Section
?? and therefore is omitted.
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Example 4.9. The following model is reflection invariant and its asymptotic velocity
vY (λ) has no second derivative at λ+ = λ− = 0. The jump rates are given by the following.
First of all we sample two independent sequences of positive i.i.d. r.v.’s (a+

m)m∈Z and
(a−m)m∈Z. We call A := E[a+

0 ] and B := E[1/a+
0 ] and suppose A and B to be finite. Then

we toss a fair coin and do the following (see Figure ??):

• If it comes Heads, for all m ∈ Z we put{
r+

2m+1 := a+
m = r−2m+2 ,

r−2m+1 := a−m = r+
2m+2 ;

• If it comes Tails, for all m ∈ Z we put{
r+

2m := a+
m = r−2m+1 ,

r−2m := a−m = r+
2m+1 .

The above Example ?? is discussed in Section ??.

τ+
k

a−m a−ma+
ma+

m

2m+ 22m+ 1 Heads

2m+ 12m Tails

Figure 1. Jump rates for Example ??

5. Einstein Relation

In this section we give the proof of the Einstein relation for a discrete time random walk
among random conductances. We point out that any 1d nearest-neighbor random walk in
random environment, for which the process environment viewed from the walker admits a
reversible distribution, is indeed a random walk among random conductances.

For the continuous time case the Einstein relation follows easily from the expression
(??) of vY (λ), since the diffusion coefficient of the unbiased random walk is given by
σ2(0) = 2/E[1/c0]. We recall that, assuming E[c0] < ∞, one can prove an annealed
invariance principle with diffusion coefficient 2/E[1/c0] (cf. [?, Eq. (4.22)] and references
therein), while a quenched invariance principle can be proved by means of the corrector
under the additional assumption E[1/c0] <∞.

For what concerns the discrete time random walk among random conductances we recall
that, assuming A := E[c0] and B := E[1/c0] to be finite, in the unbiased case (i.e. when
λ = 0) an annealed (also quenched) CLT holds with diffusion coefficient σ2(0) = 1/AB
(see [?, Eq. (4.20), (4.22)] and [?, Eq. (4.20) and Exercise 3.12]).

We prove the Einstein relation under two different sets of assumptions: the first one
requires the ergodicity of the conductances and some moments conditions; we point out
that this is the equivalent set of conditions that [?] would require in our setting, but we
give an alternative, shorter proof. We extend this result including a different hypothesis,



REGULARITY OF BIASED 1D RANDOM WALKS IN RANDOM ENVIRONMENT 13

just requiring the weakest possible integrability of the conductances and very mild mixing
conditions.

Theorem 5.1. Consider a random sequence of conductances (cx)x∈Z, stationary and er-
godic w.r.t. shifts. Suppose that at least one of the following two conditions holds:

(i) c0 ∈ Lp(P) and 1/c0 ∈ Lq(P) with p, q ∈ [1,∞], p−1 + q−1 = 1;
(ii) limi→∞ E[c0/ci] = E[c0]E[1/c0], with E[c0] <∞ and E[1/c0] <∞.

Then the discrete time RCM satisfies the Einstein relation: i.e. d
dλvX(λ)|λ=0 = σ2(0).

Proof. Due to Remark ??, our main assumption (see Assumption ??) is satisfied. We
prove that ∂+

λ vX(0) = σ2(0) (by similar arguments one can prove the same identity for
the left derivative). By standard methods we know that σ2(0) = E[c0]−1E[1/c0]−1 (see
[?, Eq. (4.20), (4.22)] and [?, Eq. (4.20) and Exercise 3.12]). Furthermore, by (??) it is
easy to see that both sets (i) and (ii) of hypotheses guarantee E[S̄(λ)] <∞ for all λ > 0.
Note that, by translation invariance,

∑∞
i=1 E

[
c0
ci

]
= limk→∞ E

[
c−1

0 (c−1 + c−2 + · · ·+ c−k)
]
.

By the LLN and the monotone convergence theorem, we get that
∑∞

i=1 E
[
c0
ci

]
= ∞, i.e.

E[S̄(0)] =∞. Hence, by Proposition ??, we get for λ > 0

vX(λ)− vX(0)

λ
=

1

λ+ 2λ
∑∞

i=1 E[c0/ci]e−2λi
. (20)

We must show that letting λ→ 0 in (??) gives E[c0]−1E[1/c0]−1. We prove that, in fact,
2λ
∑∞

i=1 E[c0/ci]e
−2λi → E[c0]E[1/c0] as λ→ 0.

Case (i): We let ψλ := (e2λ − 1)
∑∞

i=1
1
ci

e−2λi. By Birkhoff ergodic theorem with
exponential weights we have that

lim
λ→0

ψλ
Lq−→ E[1/c0] . (21)

This can be seen, for example, by setting mn := (c−1
1 + c−1

2 + · · · + c−1
n )/n for each

n = 1, 2, ... and rewriting ψλ = (1 − e−2λ)2
∑∞

n=1 ne−2λ(n−1)mn. From this and the fact

that (1− e−2λ)2
∑∞

n=1 ne−2λ(n−1) = 1, we can bound

∥∥ψλ − E[1/c0]
∥∥
q
≤ (1− e−2λ)2

∞∑
n=1

ne−2λ(n−1)
∥∥mn − E[1/c0]

∥∥
q
. (22)

Since mn →Lq E[1/c0], given ε > 0 by the classical Lq Birkhoff ergodic theorem, we can
choose N ∈ N such that

∥∥mn − E[1/c0]
∥∥
q
< ε for each n ≥ N . We observe that the

contribution from the first N − 1 terms in the r.h.s. of (??) vanishes as λ→ 0. Hence, as
λ→ 0, we can bound the r.h.s. of (??) by o(1) + ε. This completes the proof of (??).

We write now 2λ
∑∞

i=1 E[c0/ci]e
−2λi = 2λ

e2λ−1
E[c0ψλ]. We finally bound by Hölder’s

inequality∣∣E[c0ψλ]− E[c0]E[c−1
0 ]
∣∣ =

∣∣E[c0(ψλ − E[c−1
0 ])]

∣∣ ≤ ‖c0‖p ·
∥∥ψλ − E[c−1

0 ]
∥∥
q

λ→0−−−→ 0 ,

where the convergence comes from (??). This concludes the proof of Case (i).
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Case (ii): For i ∈ N we let E[c0/ci] = E[c0]E[c−1
0 ] + ε(i). For each fixed k ≥ 1, we can

therefore write

2λ
∞∑
i=1

E[c0/ci]e
−2λi = O(λ) + 2λ

∞∑
i=k

E[c0]E[c−1
0 ]e−2λi + 2λ

∞∑
i=k

ε(i)e−2λi

= O(λ) + 2λE[c0]E[c−1
0 ]

e−2λk

1− e−2λ
+ 2λ

∞∑
i=k

ε(i)e−2λi .

Since |
∑∞

i=k ε(i)e
−2λi| ≤ supi≥k{|ε(i)|}e−2λk/(1− e−2λ), sending λ → 0 we see therefore

that for each k ≥ 1

E[c0]E[c−1
0 ]− sup

i≥k
{|ε(i)|} ≤ lim

λ→0
2λ

∞∑
i=1

E[c0/ci]e
−2λi ≤ E[c0]E[c−1

0 ] + sup
i≥k
{|ε(i)|} .

Finally we let k →∞ and, since ε(i)→ 0, we conclude that (??) converges to E[c0]−1E[1/c0]−1

as λ→∞, thus implying the thesis. �

6. Central limit theorem for ballistic discrete time random walks

In this section we consider the discrete time random walk Xω,λ
n and, when ballistic, we

investigate its gaussian fluctuations, i.e. the validity of the CLT. As application of the
results presented in this section, we will study the CLT for two special model: the discrete
time RCM (cf. Section ??) and the discrete time random walk with i.i.d. ω+

i ’s (see end of
this section).

For simplicity of notation, we write v(λ) instead of vX(λ). We know that if E[S̄(λ)] <
+∞ then v(λ) = 1/E[S̄(λ)] > 0 (see Proposition ??) and moreover the environment

viewed from the perturbed discrete time random walk Xω,λ
n admits a steady state Qλ [?].

In addition, there is a closed formula for the Radon-Nikodym derivative dQλ/dP that
reads (see [?, page 185]),

dQλ

dP
=

Λλ
E[Λλ]

,

where

Λλ :=
1

ω+
0 (λ)

(
1 +

∞∑
i=1

i∏
j=1

ρj(λ)
)

= (1 + ρ0e−2λ)
(

1 +
∞∑
i=1

ρ1ρ2 · · · ρie−2λi
)
. (23)

It is simple to prove that E[Λλ] = E[S̄(λ)] = 1/v(λ).
For n ∈ Z, we introduce also the nth shift of the function S̄(λ) as

θnS̄(λ) := 1 + 2
∞∑
i=0

ρnρn−1 · · · ρn−i e−2λ(i+1) .

Equivalently, θnS̄(λ)[ω] = S̄(λ)[θnω] (in the r.h.s. θ denotes the usual shift on Ω with
(θω)x := ωx+1).

Assumption 6.1. The expectation E[S̄(λ)] is finite. Furthermore, there exists ε > 0 such
that

EQλ [ω+
0 (λ)S̄(λ)2+ε + ω−0 (λ)θ−1S̄(λ)2+ε] <∞ (24)
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and moreover it holds ∑
n≥1

√
E
[
E[v(λ)S̄(λ)− 1 | G−n]2

]
<∞ , (25)

where, for each k, Gk is any σ-algebra for which the random variables (θiS̄(λ))i≤k are
measurable.

Theorem 6.2. Under Assumption ??, the discrete time random walk in random environ-
ment satisfies the annealed CLT

Xω,λ
n − vX(λ) · n√

n
−→ N (0, σ2(λ)) under P⊗ Pω,λ0 .

The diffusion coefficient is given by

σ2(λ) = σ2
1(λ) + v(λ)σ2

2(λ)∈ (0,∞) , (26)

where

σ2
1(λ) := v(λ)2EQλ

[
ω+

0 (λ)
(
S̄(λ)− 1

)2
+ ω−0 (λ)

(
θ−1S̄(λ) + 1

)2]
= v(λ)3E

[
Λλω

+
0 (λ)

(
S̄(λ)− 1

)2
+ Λλω

−
0 (λ)

(
θ−1S̄(λ) + 1

)2]
,

(27)

and

σ2
2(λ):=E

[(
v(λ)S̄(λ)− 1

)2]
+ 2

∑
n≥1

E
[(
v(λ)S̄(λ)− 1

)(
v(λ)θnS̄(λ)− 1

)]
. (28)

The series in (??) is absolutely convergent. Furthermore, σ2(λ) is analytic on every open
interval given by values of λ that satisfy Assumption ??.

The proof of the above theorem is postponed to Appendix ??.

Theorem ?? is an extension in our context of Theorem 2.2.1 in [?]1. In fact, condition
(??) is replaced therein by the stronger condition

EQλ [S̄(λ)2+ε + θ−1S̄(λ)2+ε] <∞ (29)

and (??) is stated there with G−n given by the σ-algebra generated by ω±i with i ≤ −n.
We point out that condition (??) is in general not optimal. For example in the random
conductances case (??) is much less restrictive. The fact that G−n could be taken more
general than in [?, Theorem 2.2.1] is implicit in the proof provided in [?]. As it turns out,
sometimes it might be more natural to work with more general σ-algebras, see for example
Proposition ?? and its application for the proof of Theorem ??.

Remark 6.3. The arguments used in the proof of Theorem ?? that show how to replace
condition (??) by (??) are general. In particular, Theorem 2.2.1 in [?] can be proved
substituting assumption (2.2.2) therein by EQ(ω+

0 S̄
2+ε(ω) + ω−0 S̄(θ−1ω)2+ε) < ∞, which

is the equivalent of (??) in the general setting. Here we have used the notation of [?].

We provide now alternative formulas for (??) and (??) and give a sufficient condition for
the analyticity of σ2(λ). In the next subsection we also give some comments on Assumption
??.

1In the definition of σ2
P,1 given in [?, Theorem 2.2.1] there is a typo. One should replace Q by Q̄,

otherwise the centered formula above (2.2.8) in [?] fails.
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Proposition 6.4. Set

U = U(ω, λ) :=
∞∑
i=0

ρ0 . . . ρ−ie
−2λ(i+1) and V = V (ω, λ) :=

∞∑
i=1

ρ1 . . . ρie
−2λi .

Then

σ2
1(λ) =

4E[U2 + V + 2V U2 + 2V U ]

(1 + 2E[U ])3
, (30)

and

v(λ)σ2
2(λ) =

4

(1 + 2E[U ])3

[
E[U2]− E[U ]2 + 2

∑
n≥1

(
E[UθnU ]− E[U ]2

)]
. (31)

The series in (??) is absolutely convergent.

Remark 6.5. Identity (??) can also be written as

v(λ)σ2
2(λ) =

4

(1 + 2E[U ])3

∑
n∈Z

Cov(U, θnU) .

Proof of Proposition ??. We note that S̄(λ) = 1 + 2U and Λλ = 1
ω+
0 (λ)

(1 + V ), and start

looking at σ2
1(λ). For each n ∈ Z, θnU(ω, λ) and θnV (ω, λ) will just indicate respectively

U(θnω, λ) and V (θnω, λ). We have

Λλω
+
0 (λ)

(
S̄(λ)− 1

)2
= 4(1 + V )U2 (32)

and

Λλω
−
0 (λ)

(
θ−1S̄(λ) + 1

)2
= ρ0(λ)

(
1 +

∞∑
i=1

ρ1 . . . ρie
−2λi

)(
2 + 2θ−1U

)2

= 4
( ∞∑
i=0

ρ0 . . . ρie
−2λ(i+1)

)(
1 + θ−1U

)2
= 4θ−1V

(
1 + θ−1U

)2
.

(33)

Taking the expectation and using the translation invariance of P we see then that

E
[
Λλω

−
0 (λ)

(
θ−1S̄(λ) + 1

)2]
= 4E[V (1 + U)2] . (34)

Putting together (??) and (??) back into (??) we obtain (??).
We move to σ2

2(λ) and notice that the first addendum in (??) is equal to 4E[(U −
E[U ])2]/(1 + 2E[U ])2. For second addendum in (??) we notice that

E
[(
v(λ)S̄(λ)− 1

)(
v(λ)θnS̄(λ)− 1

)]
= v(λ)2E

[(
S̄(λ)− E[S̄(λ)]

)(
θnS̄(λ)− E[S̄(λ)]

)]
=

4E
[(
U − E[U ]

)(
θnU − E[U ]

)]
(1 + 2E[U ])2

,

thus implying (??). �

Proposition 6.6. Let Assumption ?? be satisfied with λ in a given open interval I. Given
n ≥ 1 and k ≥ 0 set

an,k :=
∑

i,j≥0: i+j=k

Cov(ρ0 · · · ρ−i, ρn · · · ρn−j) (35)
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and suppose that
∞∑
k=0

e−2λk
( ∞∑
n=1

|an,k|
)
<∞ ∀λ ∈ I . (36)

Then the coefficient σ2(λ) is analytic in I.

Proof. To get the thesis we apply Lemma ?? below to prove the analyticity of σ2
1(λ) and

of vX(λ)σ2
2(λ) separately. By Proposition ?? and ?? we already know that vX(λ), and

therefore 1/(1 + 2E[U ])3, is analytic and positive. Hence, to prove the analyticity of σ2
1(λ)

it is enough to prove the analyticity of the numerator in the right term in (??). We prove
the analyticity of E[V U2] by Lemma ?? (the other contributions in the numerator can be
treated similarly). We set

an :=
∑

(i,j,k)∈N3
+:

i+j+k=n

E
[
(ρ0ρ−1 · · · ρ−i+1)(ρ0ρ−1 · · · ρ−j+1)(ρ1ρ2 · · · ρk)

]
.

Then E[V U2] =
∑

n≥0 ane−2λn (note that an ≥ 0, so terms can be ordered arbitrarily in

the involved series). Since we know by the CLT that σ2
1(λ) is well defined and finite for

λ ∈ I, by (??) it must be E[V U2] < ∞ for any λ ∈ I, and therefore
∑

n≥0 ane−2λn < ∞
for any λ ∈ I. By Lemma ?? we conclude that E[V U2] is analytic on I.

We move to vX(λ)σ2
2(λ) as expressed in (??). By applying the same arguments as

above we reduce to prove the analyticity on I of
∑

n≥1(E[U · θnU ] − E[U ]2). We write

Fn(λ) := E[U ·θnU ]−E[U ]2. By hypothesis (??) we have that Fn(λ) =
∑∞

k=0 e−2λ(k+2)an,k
and this series is absolutely convergent. Summing over n and using again hypothesis (??)
we have ∑

n≥1

Fn(λ) =
∑
k≥0

e−2λ(k+2)bk ,

where bk :=
∑

n≥1 an,k and the series in the right hand side of the last display is absolutely
convergent. By Lemma ?? this series is therefore an analytic function of λ in I. �

6.1. Sufficient conditions for Assumption ??.

Lemma 6.7. Assume E[S̄(λ)] <∞. Then (??) is satisfied if and only if both E[U2+ε] <∞
and E[V U2+ε] <∞.

Proof. By the same computations appearing in the proof of Proposition ?? we have

Λλω
+
0 (λ)S̄(λ)2+ε = (1 + V )(1 + 2U)2+ε , (37)

Λλω
−
0 (λ)θ−1S̄(λ)2+ε = (θ−1V )(1 + 2θ−1U)2+ε . (38)

Hence, using translation invariance, we see that (??) is satisfied as long as E[U2+ε] < ∞
and E[V U2+ε] <∞ (notice that E[V ] <∞ since E[S̄(λ)] <∞ by hypothesis). �

Proposition 6.8. Assume E[S̄(λ)] < ∞. Given ε > 0 suppose that there exists δ > 0
such that

∞∑
i=0

E[ρ2+ε
0 · · · ρ2+ε

−i ] e−2λi(2+ε−δ) <∞ , (39)

∞∑
i=0

∞∑
j=1

E[ρ2+ε
0 · · · ρ2+ε

−i ρ1 · · · ρj ] e−2λi(2+ε−δ)−2λj <∞ . (40)



18 A. FAGGIONATO AND M. SALVI

Then (??) is satisfied.

Proof. We apply Lemma ??. We show that (??) implies that E[U2+ε] <∞ and that (??)
implies E[V U2+ε] < ∞. We define the measure µ on N as µ(i) := e−2λαi, with α > 0

to be determined later. We write U = µ(f), with f(i) = ρ0 . . . ρ−i e−2λ(i+1)+2λαi. By
Hölder’s inequality we have U = µ(f) ≤ ‖f‖L2+ε(µ)‖1‖Lq(µ) = C ‖f‖L2+ε(µ), where q is the
conjugate exponent of 2 + ε and C > 0 is a finite constant. As a consequence

U2+ε ≤ C2+εµ(f2+ε) = C2+εe−2λ(2+ε)
∞∑
i=0

ρ2+ε
0 · · · ρ2+ε

−i e−2λi(2+ε−α(1+ε)). (41)

To prove (??) it is enough to choose α = δ/(1 + ε) and take the expectation w.r.t. P. To
prove (??) it is enough to multiply both sides of (??) by V and conclude as just done for
(??). �

We also give some comments on (??). First of all we notice that, by the definition of
U , (??) is equivalent to asking∑

n≥1

√
E
[
E[U − E[U ] | G−n]2

]
<∞ . (42)

We give sufficient conditions for this to hold.

Proposition 6.9. Suppose that E[U2] < ∞. Assume that there exists M > 0 such that,
for all i ∈ Z, ρi is independent from all ρj’s with |i− j| > M . Further suppose that

∞∑
i=0

E[ρ2
0 · · · ρ2

−i]
1/2 i e−2λi <∞ . (43)

Then (??) is satisfied with Gk being the σ-algebra generated by all the ρi with i ≤ k.

We point out that trivially θkS̄(λ) is Gk measurable.

Proof. We will check (??). Since E[U2] < ∞ by hypothesis, all terms in the series (??)
are finite. Therefore, without loss, we can ignore the first terms in (??) and prove that

∞∑
n=M

∥∥E[U − E[U ] | G−n]
∥∥
L2(P)

<∞ . (44)

Using the finite-range dependence assumption, we can bound

E[U − E[U ] | G−n] =

∞∑
i=0

(
E[ρ0 · · · ρ−i | G−n]− E[ρ0 · · · ρ−i]

)
e−2λ(i+1)

=
∞∑

i=n−M

(
E[ρ0 · · · ρ−i | G−n]− E[ρ0 · · · ρ−i]

)
e−2λ(i+1) .

Hence the l.h.s. of (??) can be bounded by
∞∑

n=M

∞∑
i=n−M

∥∥E[ρ0 · · · ρ−i | G−n]− E[ρ0 · · · ρ−i]
∥∥
L2(P)

e−2λ(i+1)

≤
∞∑

n=M

∞∑
i=n−M

2E[ρ2
0 · · · ρ2

−i]
1/2e−2λ(i+1) ,

which allows to conclude. �



REGULARITY OF BIASED 1D RANDOM WALKS IN RANDOM ENVIRONMENT 19

We conclude this section with an application of the above results. Another application is
given by the analysis of the gaussian fluctuations in the discrete time random conductance
model provided in the next section.

Example 6.10. Consider the case of i.i.d. ω+
i ’s such that E[ρ2+ε

0 ] < +∞ for some ε > 0.

Then Assumption ?? is satisfied. Moreover, for λ > 1
4 logE[ρ2

0] Assumption ?? is fulfilled

and therefore the content of Theorem ?? is valid, and σ2(·) is analytic.

Discussion of Example ??. It is trivial to check the validity of Assumption ??. By Hölder

inequality, if γ′ > γ > 0 then E[ργ0 ] ≤ E[ργ
′

0 ]γ/γ
′
. In particular, E[ργ0 ] < +∞ for any

γ ∈ (0, 2 + ε] and the function (0,+∞) 3 γ 7→ 1
γ logE[ργ0 ] ∈ (0,+∞] is (weakly) in-

creasing. By monotone convergence applied to E[ργ01ρ0≥1] and to E[ργ01ρ0<1], we get
that limγ↓2

1
2γ logE[ργ0 ] = 1

4 logE[ρ2
0]. In particular, for each λ > 1

4 logE[ρ2
0] we can

find ε′ ∈ (0, ε) such that λ >
(
2(2 + ε′)

)−1
logE[ρ2+ε′

0 ], i.e. E[ρ2+ε′

0 ] < e2λ(2+ε′). By
Propositions ?? and ?? (applied with ε′ instead of ε) one can check that Assumption

?? is satisfied if E[ρ2+ε′

0 ] < e2λ(2+ε′). In fact, this guarantees, by Hölder inequality, that

E[ρ0] ≤ E[ρ2+ε′

0 ]1/(2+ε′) < e2λ and E[ρ2
0] ≤ E[ρ2+ε′

0 ]2/(2+ε′) < e4λ. Thanks to these three
bounds it is easy to verify that E[S̄(λ)] <∞, E[U2] <∞ and that (??), (??) and (??) are
verified.

We show now that σ2(λ) is analytic for all λ satisfying E[ρ2+ε′

0 ] < e2λ(2+ε′). To this aim
we apply Proposition ??. We start looking at (??). When n > k we have by independence
an,k = 0. When this is not the case we estimate

|Cov(ρ0 · · · ρ−i, ρn · · · ρn−j)| ≤ Var(ρ0 · · · ρ−i)1/2Var(ρn · · · ρn−j)1/2

≤ E[ρ2
0 · · · ρ2

−i]
1/2E[ρ2

n · · · ρ2
n−j ]

1/2 = E[ρ2
0](i+j+2)/2 .

For n ≤ k we can therefore bound an,k ≤ (k + 1)E[ρ2
0](k+2)/2. By the above observations

we can bound the l.h.s. of (??) by

∞∑
k=0

e−2λkk(k + 1)E[ρ2
0](k+2)/2 .

The last display is finite as soon as E[ρ2
0] < e4λ, which we have shown to be true under

the condition E[ρ2+ε′

0 ] < e2λ(2+ε′). �

7. Diffusion coefficient in the discrete time random conductance model

We consider here the discrete time RCM with i.i.d. conductances and study in detail its
gaussian fluctuations. Assuming A := E[c0] and B := E[1/c0] to be finite, in the unbiased
case (i.e. when λ = 0) it is known that vX(0) = 0 and that, under diffusive rescaling, an
annealed (also quenched) CLT holds with diffusion coefficient σ2(0) = 1/AB (see [?, Eq.
(4.20), (4.22)] and [?, Eq. (4.20) and Exercise 3.12]). We recall that vX(λ) is given by
(??) for λ ≥ 0 and that vX(λ) = −vX(−λ) (see Proposition ??). By applying the results
obtained in Section ?? we get the following:

Theorem 7.1. Consider the discrete time RCM with i.i.d. conductances (ci)i∈Z. Suppose
that for some ε > 0 it holds E[c2+ε

0 ] < ∞ and E[1/c2+ε
0 ] < ∞. Then Assumption ?? is

satisfied. Moreover, for any λ ∈ R, the discrete time random walk in random environment
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satisfies the annealed CLT

Xω,λ
n − vX(λ) · n√

n
−→ N (0, σ2(λ)) under P⊗ Pω,λ0 . (45)

The above diffusion coefficient σ2(λ) satisfies σ2(0) = 1
AB , σ2(λ) = σ2(−λ) for all λ ∈ R

and it is given, for λ > 0, by

σ2(λ) =
4(e2λ − 1)2

(e2λ − 1 + 2AB)3

[ 2CD

e2λ + 1
+

4(A2D +B2C)

e4λ − 1
+

8A2B2

(e2λ − 1)(e4λ − 1)

+AB +
4AB −A2B2

e2λ − 1
− 2A2B2e2λ

(e2λ − 1)2

]
,

(46)

where A := E[c0], B := E[1/c0], C := E[c2
0] and D := E[1/c2

0].

The proof of Theorem ?? follows from the results presented in Section ?? by straight-
forward computations and is therefore postponed to Appendix ??.

In the deterministic case, that is, when the conductances are all equal to a constant,
we obtain a biased simple random walk whose diffusion coefficient σ2(λ) can be easily
computed (or, equivalently, derived from (??)):

σ2(λ) = 4/(eλ + e−λ)4 ∀λ ∈ R . (47)

See Figure ?? for a plot of σ2(λ). We note that in the deterministic case σ2(λ) is analytic, it
is strictly increasing for λ < 0 and strictly decreasing for λ > 0. The following proposition
treats the non deterministic case, in which a different behavior emerges.

-2 -1 0 1 2

1

Figure 2. The solid line represents the function σ2(λ) in the case of
i.i.d. conductances sampled from a uniform random variable in the inter-
val [1, 10]. This is plotted against the function σ2(λ) (dotted line) in the
deterministic case of constant conductances, cfr. (??).

Proposition 7.2. Take genuinely random i.i.d. conductances. Then σ2(λ) is continuous
everywhere and analytic on R \ {0}. σ2(λ) is not differentiable at λ = 0 and is non–
monotonic on (−∞, 0] and on [0,∞).
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Proof. The analyticity on R \ {0} follows from (??). Similarly, continuity on (0,+∞)
follows directly by (??). For small λ > 0 we can calculate, by a Taylor expansion,

1

(e2λ − 1 + 2AB)3
=

1

(2AB + 2λ+ o(λ))3
=

1

8A3B3

1

(1 + λ
AB + o(λ))3

=
1− 3λ

AB + o(λ)

8A3B3
.

Hence, for small λ > 0 we can rewrite (??) as

σ2(λ) =
1

2A3B3

(
1− 3λ

AB

)[
4(A2D +B2C)λ+ 4A2B2(1− λ)

+ (4AB −A2B2)2λ− 2A2B2(1 + 2λ)
]

+ o(λ)

=
1

AB
+ a1λ+ o(λ) ,

(48)

where

a1 :=
2(A2D +B2C)

A3B3
− 5

AB
+

1

A2B2
. (49)

Since σ2(λ) = σ2(−λ) by Theorem ?? and since σ2(0) is equal to (AB)−1 (see the dis-
cussion before Theorem ??) we see that also in the genuinely random case (i.e., when
AB 6= 1) σ2(λ) is a continuous function everywhere.

On the other hand, by reflection invariance, we note that if a1 6= 0 then σ2(λ) cannot
have first derivative in λ = 0 and in particular cannot be an analytic function. In fact,
σ2(λ) = σ2(−λ) implies that the right derivative of σ2 in 0 is equal to the opposite of
the left derivative. Hence, if the first derivative in 0 exists, it has to be equal to 0, that
is, we should have a1 = 0. Let us prove that this never happens for genuinely random
conductances. a1 is equal, up to a positive multiplicative constant, to 2(A2D + B2C) −
5A2B2 +AB. This quantity can be rewritten, after elementary manipulations, as

2(A2D +B2C)− 5A2B2 +AB = 2
(
Var(A/c0) + Var(Bc0)

)
+AB −A2B2 .

We notice that AB −A2B2 is equal to Cov(A/c0, Bc0) and that it is a negative quantity,
since by Schwarz inequality 1 = E[

√
c0(
√
c0)−1]2 < E[c0]E[c−1

0 ] = AB (the strict inequality
follows from the non–degeneracy of the random variable c0). Using the fact that Var(X)+
Var(Y ) = Var(X + Y )− 2Cov(X,Y ), we obtain

2(A2D +B2C)− 5A2B2 +AB = 2Var(A/c0 +Bc0)− 3Cov(A/c0, Bc0) > 0 ,

so that a1 > 0.
This fact also shows that, in the case of genuinely random conductances, σ2(λ) is strictly

increasing for small λ > 0 and hence it is non-monotonic on [0,+∞) (notice that in every
case σ2(λ)→ 0 as λ→∞). By symmetry, σ2(λ) is non-monotonic also on (−∞, 0]. �

8. Discussion of Example ??

We recall that A > 0 and γ > 2 (for most of the arguments below one can take γ > 1
but at the end it is necessary to take γ > 2). Moreover, we have set r(k, k − 1) := A for
all k ∈ Z and we have introduced τ̃ = (τ̃k)k∈Z, which is a renewal point process on Z with
τ̃0 = 0 and, for k 6= 0, P(τ̃k+1 − τ̃k ≥ j) = 1/jγ for any j ∈ N+.

We write τ = (τk)k∈Z for the renewal point process given by the Z–stationary version
of τ̃ . More precisely, numbering the points of τ in increasing order with τ0 ≤ 0 < τ1, τ is
characterized as follows: (i) the law of τ is left invariant by integer shifts; (ii) the random
variables (τi+1 − τi : i ∈ Z) are independent and (iii) the random variables (τi+1 − τi : i ∈
Z \ {0}) have the same law of τ̃1. Such a renewal point process exists since E[τ̃1] <∞ (see
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[?] and [?, Appendix C]). Due to the above properties (ii) and (iii) it is trivial to build the
renewal point process τ once the joint law of (τ0, τ1) is determined. This last joint law can
be recovered from the basic identity given by [?, Eq. (C.3)]. Since in what follows we only
need the law of τ1 we explain how to get it. Taking [?, Eq. (C.3)] with test function f ≡ 1,
one gets that P(0 ∈ τ) = 1/E[τ̃1]. Let us now take a positive integer m and, given a subset
ξ ⊂ Z , we define f(ξ) = 1 if m is the smallest element in ξ ∩ [1,+∞), otherwise f(ξ) = 0.
Then applying [?, Eq. (C.3)] to such a test function f and using that P(0 ∈ τ) = 1/E[τ̃1],
we get

P(τ1 = m) = P(0 ∈ τ)P(τ̃1 ≥ m) =
m−γ

E[τ̃1]
, m ∈ N+ . (50)

From the above formula we have

c1m
1−γ ≤ P(τ1 ≥ m) ≤ c2m

1−γ , m ∈ N+ .

We recall our definition of the jump rates. For k ∈ Z, we define

Zk =

{
1 if k /∈ τ ,
1
2 if k ∈ τ ,

and set r(−k,−k + 1) = 1/Zk, ω
+
k := r(k,k+1)

r(k,k−1)+r(k,k+1) and ω−k := r(k,k−1)
r(k,k−1)+r(k,k+1) . Hence,

ρ−k = r(−k,−k−1)
r(−k,−k+1) = AZk (recall that r(·, · − 1) ≡ A). By construction, the model satisfies

Assumption ??.
Thanks to Lemma ?? we can now calculate

E[S̄(λ)] = 1 + 2

∞∑
i=0

E[Z0 · · ·Zi] (Ae−2λ)i+1 . (51)

We claim that

E[Z0 · · ·Zn] = n1−γ+o(1) . (52)

In fact, on the one hand it holds

E[Z0 · · ·Zn] ≥ E[Z1 · · ·Zn1τ1>n]/2 = P(τ1 > n)/2 ≥ (c1/2)(n+ 1)1−γ = n1−γ+o(1) . (53)

On the other hand, we take A(n) := d(γ − 1) log2 ne and we write

E[Z0 · · ·Zn] = E[Z0 · · ·Zn1{τA(n)≤n}] + E[Z0 · · ·Zn1{τA(n)>n}] . (54)

Notice that under the event {τA(n) ≤ n} we have that

Z0 · · ·Zn ≤ 2−A(n)≤n1−γ . (55)

The event {τA(n) > n}, instead, implies that the sum of the A(n) addenda τ1, τ2 − τ1,
τ3− τ2,..., τA(n)− τA(n)−1 is larger than n. In particular, at least one of the above addenda
is larger than n/A(n). Since in any case Z0 · · ·Zn ≤ 1, we can bound

E[Z0 · · ·Zn1{τA(n)>n}] ≤ P(τA(n) > n) ≤ P(τ1 > n/A(n)) +

A(n)∑
j=2

P(τj − τj−1 > n/A(n))

≤ c2(n/A(n))1−γ +A(n)(n/A(n))−γ = n1−γ+o(1) . (56)

As a byproduct of (??), (??) and (??) we conclude that E[Z0 · · ·Zn] ≤ n1−γ+o(1). The
above result and (??) imply our claim (??).

Now we take γ > 2, so that the series
∑∞

n=1 n
1−γ+o(1) is summable. By (??) and (??)

we see that E[S̄(λ)] < +∞ for all λ ≥ λ+ = 1
2 logA, while E[S̄(λ)] = +∞ for λ < λ+.
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It follows that vX(λ) > 0 for λ ≥ λ+, while vX(λ) ≤ 0 for λ < λ+, that is, vX has a
discontinuity in λ+. We also observe that λ− is finite and λ− < λ+. In fact, by Proposition
?? and Lemma ??, we have that vX(λ) < 0 iff E[F̄ (λ)] = 1 + 2

∑∞
i=0 E[ρ−1

0 · · · ρ
−1
i ]e2λ(i+1)

is finite. By Jensen’s inequality we can bound

E[ρ−1
0 · · · ρ

−1
i ] = A−i−1E[Z−1

0 · · ·Z
−1
−i ] = A−i−1E[2N(i)] ≥ A−i−12E[N(i)] ≥ A−i−12ci

where N(i) := #{τ ∩ {0, 1, . . . , i}} and c > 0 is a constant that only depends on γ (here
we are using the fact that N(i)/i → 1/E[τ̃1] almost surely). Therefore E[F̄ (λ)] = +∞ if
2ce2λ/A ≥ 1 and in particular λ− ≤ λ+ − c

2 log 2.

9. Discussion of Example ??

It is not hard to show that this environment satisfies Assumptions ?? and ?? (for the
latter, observe that the reflection of the Heads case has the same distribution of the Tails
case, and vice versa).

Let us first suppose that we have heads. Then for each m ∈ Z we get

ρ2m+1ρ2m+2 =
a−m
a+
m

a+
m

a−m
= 1 .

As a consequence, we have for i ≥ 1

ρ1ρ2 · · · ρi =

1 if i is even ,

ρi =
r−i
r+i

=
a−j
a+j

if i = 2j + 1 .

Hence for Heads we would have

∞∑
i=1

ρ1ρ2 · · · ρie−2λi =

∞∑
j=1

e−4λj +

∞∑
j=0

a−j

a+
j

e−2λ(2j+1) . (57)

Let us now suppose that we have tails. Then for each m ∈ Z we get

ρ2mρ2m+1 =
a−m
a+
m

a+
m

a−m
= 1 .

As a consequence, we have for i ≥ 1

ρ1ρ2 · · · ρi =


ρ1ρi =

r−1
r+1

r−i
r+i

=
a+0
a−0

a−j
a+j

if i = 2j ,

ρ1 =
a+0
a−0

if i is odd .

Hence for tails we would have

∞∑
i=1

ρ1ρ2 · · · ρie−2λi =

∞∑
j=1

a+
0

a−0

a−j

a+
j

e−4λj +

∞∑
j=0

a+
0

a−0
e−2λ(2j+1) . (58)
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Since r+
0 = a−−1 for Heads and r+

0 = a+
0 for Tails, from (??) and (??) we get

E[Ŝ(λ)] = E
[e−λ

r+
0

(
1 +

∞∑
i=1

ρ1ρ2 · · · ρie−2λi
)]

=
e−λ

2
E[1/a−−1]

(
1 +

∞∑
j=1

e−4λj +

∞∑
j=0

E
[
a−j /a

+
j

]
e−2λ(2j+1)

)
+

e−λ

2

(
1/E[a+

0 ] +

∞∑
j=1

E
[
1/a−0

]
E[a−j /a

+
j

]
e−4λj +

∞∑
j=0

E
[
1/a−0

]
e−2λ(2j+1)

)
=

e−λ

2
B
(
1 +

∞∑
j=1

e−4λj +AB

∞∑
j=0

e−2λ(2j+1)
)

+
e−λ

2
B
(
1 +AB

∞∑
j=1

e−4λj +

∞∑
j=0

e−2λ(2j+1)
)
.

(59)

Hence λ+ = 0 (which by reflection invariance implies that also λ− = 0) and, for λ > 0,

E[Ŝ(λ)] =
Be−λ

2(1− e−4λ)

(
2 + e−2λ(AB + 1) + e−4λ(AB − 1)

)
. (60)

From (??) we finally get

v(λ) =
2(1− e−4λ)

Be−λ
(
2 + e−2λ(AB + 1) + e−4λ(AB − 1)

) , λ ≥ 0 . (61)

By Taylor expansion of (??), since 2+e−2λ(AB+1)+e−4λ(AB−1) = 2(1+AB−3λAB+
λ)+o(λ), and since (1 + x)−1 = 1− x+ o(x) we have

v(λ) =
4λ− 8λ2 + o(λ2)

B(1− λ+ o(λ))(1 +AB)(1 + 1−3AB
1+AB λ+ o(λ))

=
(4λ− 8λ2 + o(λ2))(1 + λ+ o(λ))(1− 1−3AB

1+AB λ+ o(λ))

B(1 +AB)
.

(62)

The above equation implies that

v(λ) =
4

B(1 +AB)
λ+
−8 + 4− 41−3AB

1+AB

B(1 +AB)
λ2 + o(λ2)

=
4

B(1 +AB)
λ+ 8

AB − 1

B(1 +AB)2
λ2 + o(λ2) .

(63)

We then conclude that ∂+
λ,λv(0) = 16 AB−1

B(1+AB)2
.

From this expression, the second right derivative in λ = 0 is null if and only if AB = 1,
that is, when a+

0 is almost surely a constant. In all the other cases, the right second
derivative in λ = 0 is different from 0. Since this model satisfies Assumption 1, this
conclusion is absurd by Proposition ??.

Appendix A. A result on analytic functions

Lemma A.1. Let a, b, c be positive numbers with a < b and let (an)n≥0 be a sequence such
that

∑∞
n=0 |an|e−cλn < ∞ for any λ ∈ (a, b). Then the function f(λ) :=

∑∞
n=0 ane−cλn is

well defined and analytic for λ ∈ (a, b).



REGULARITY OF BIASED 1D RANDOM WALKS IN RANDOM ENVIRONMENT 25

Proof. The function f(λ) is well defined since by hypothesis the series is absolutely conver-
gent. To prove analiticity we apply the Theorem of Pringsheim-Boas (cf. [?, Thm. 3.1.1]).
To this aim we first need to show that f is C∞ on (a, b). This follows easily from the

dominated convergence theorem, which also implies that f (k), the kth–derivative of f , has
the form

f (k)(λ) :=

∞∑
n=0

ane−cλn(−cn)k ,

where the series in the r.h.s. is absolutely convergent.
Defining g(λ) := lim supk→∞ |f (k)(λ)/k!|1/k, we need to show that for any λ0 ∈ (a, b)

g(λ) is bounded from above uniformly as λ varies in a neighbourhood of λ0. Then the
Theorem of Pringsheim-Boas would imply the analiticity of f . To upper bound g we use

that (cn)k

k! ≤
ec nε

εk
for ε > 0 to estimate∣∣∣f (k)(λ)

k!

∣∣∣ ≤ ∞∑
n=0

|an|
k!

e−cλn(cn)k ≤ 1

εk

∞∑
n=0

|an|e−c(λ−ε)n =:
h(λ− ε)

εk
. (64)

By hypothesis h(λ− ε) is finite if λ− ε ∈ (a, b). We now take λ such that |λ−λ0| ≤ ε/10
where ε is defined as half of the distance between λ0 and {a, b}. Then both λ and λ − ε
are in (a, b) and by (??) we get that g(λ) ≤ 1/ε. �

Appendix B. Proof of Proposition ??

We follow the proof of [?, Theorem 2.1.9] and adapt the arguments to the continu-
ous time case. As already mentioned, the main difference lies in the proof of the result
analogous to [?, Lemma 2.1.17], where new phenomena have to be controlled.

We denote by θ the shift on the space Θ of environments. In particular, we have
(θξ)x := ξx+1 = (r−x+1, r

+
x+1). For n ∈ Z, we introduce the hitting times

Tn = Tn(ξ, λ) := inf{t ≥ 0 : Y ξ,λ
t = n} , (65)

with the convention that the infimum of an empty set is +∞. We also set τ0 = 0 and

τn := τn(ξ, λ) = Tn − Tn−1 for n ≥ 1 ,

τ−n = T−n − T−n+1 for n ≥ 1 .

As in [?, Lemma 2.1.10], one can prove that if lim supt→∞ Y
ξ,λ
t = +∞ almost surely, then

the sequence {τi}i≥1 is stationary and ergodic. The idea is then to apply the ergodic
theorem to the sequence {τi}i≥1. We prove the equivalent of [?, Lemma 2.1.12]:

Lemma B.1. We have that

(a) E[Eξ,λ0 [τ1]] = E[Ŝ(λ)] ,

(b) E[Eξ,λ0 [τ−1]] = E[F̂ (λ)] .

Proof. We just show (a), since (b) can be proved in an identical way. For each environment
ξ we have

Eξ,λ0 [τ1] =
1

r+
0 (λ) + r−0 (λ)

+
r−0 (λ)

r+
0 (λ) + r−0 (λ)

(
Eθ
−1ξ,λ

0 [τ1] + Eξ0,λ[τ1]
)
. (66)

We now assume that Eξ,λ0 [τ1] is finite. Manipulating (??) we obtain

Eξ,λ0 [τ1] =
1

r+
0 (λ)

+ ρ0(λ)Eθ
−1ξ,λ

0 [τ1] , (67)
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so that also Eθ
−1ξ,λ

0 [τ1] must be finite and by iteration we get, for any integer m ≥ 0,

Eξ,λ0 [τ1] =
1

r+
0 (λ)

+
1

r+
−1(λ)

ρ0(λ) +
1

r+
−2(λ)

ρ0(λ)ρ−1(λ) + · · ·+

+
1

r+
−m(λ)

ρ0(λ)ρ−1(λ) . . . ρ−m+1(λ) + ρ0(λ)ρ−1(λ) . . . ρ−m(λ)Eθ
−m−1ξ,λ

0 [τ1] .

(68)

By positivity of all the summands, we deduce, for all environments ξ for which Eξ,λ0 [τ1]

is finite and for all m ∈ N, that Eξ,λ0 [τ1] ≥ 1
r+0 (λ)

+ · · · + 1
r+−m(λ)

ρ0(λ)ρ−1(λ) . . . ρ−m+1(λ).

Letting m → ∞ we obtain that Eξ,λ0 [τ1] ≥ Ŝ(λ) whenever Eξ,λ0 [τ1] is finite and therefore

E[Eξ,λ0 [τ1]] ≥ E[Ŝ(λ)]. This already shows that (a) holds if E[Ŝ(λ)] = +∞.

Conversely, let us suppose that E[Ŝ(λ)] is finite. We claim that Eξ,λ0 [τ1] ≤ Ŝ(λ), which
would complete the proof of the lemma thanks to the complementary bound proved above.
Similarly to (??) we obtain

Eξ,λ0 [τ11{τ1≤M}] ≤
1

r+
0 (λ) + r−0 (λ)

+
r−0 (λ)

r+
0 (λ) + r−0 (λ)

(
Eθ
−1ξ,λ

0 [τ11{τ1≤M}] + Eξ0,λ[τ11{τ1≤M}]
)
.

Hence, the equivalent of (??) now reads

Eξ,λ0 [τ11{τ1≤M}] ≤
1

r+
0 (λ)

+ ρ0(λ)Eθ
−1ξ,λ

0 [τ11{τ1≤M}] .

As in (??) we iterate this relation and bound

Eξ,λ0 [τ11{τ1≤M}] ≤ Ŝ(λ) + ρ0(λ)ρ−1(λ) . . . ρ−m(λ)M , ∀m ∈ N . (69)

Since we assumed that E[Ŝ(λ)] = E[ 1
r+0 (λ)

+ 1
r+−1(λ)

ρ0(λ) + 1
r+−2(λ)

ρ0(λ)ρ−1(λ) + . . . ] < ∞,

we must have that, P-a.s., limm→∞
1

r+−m(λ)
ρ0(λ)ρ−1(λ) . . . ρ−m+1(λ) = 0. We fix now an

ε > 0 small enough. By ergodicity, for almost every ξ there exists a ξ–dependent infinite
sequence m1 < m2 < m3 < . . . such that r+

−mk(λ) ≥ ε. But this, together with the
previous observation, implies that also limk→∞ ρ0(λ)ρ−1(λ) . . . ρ−mk+1(λ) = 0 for P-a.e. ξ.

In particular, rewriting (??) as Eξ,λ0 [τ11{τ1≤M}] ≤ Ŝ(λ) + ρ0(λ)ρ−1(λ) . . . ρ−mk(λ)M and

sending k → ∞, we have Eξ,λ0 [τ11{τ1≤M}] ≤ Ŝ(λ) for almost every ξ. Finally, we let
M →∞ and use dominated convergence to obtain the claim. �

We are finally ready to conclude the proof of Proposition ??. We prove the continuous
version of [?, Lemma 2.1.17], which will require some work. We can build the random

walk Y ξ,λ
t as follows. The environment {r±x (λ)}x∈Z is defined as usual on a probability

space with law P. We introduce a sequence γ = (γn)n≥0 of i.i.d. uniform random variables
with value on [0, 1] and another sequence W := (Wn)n≥0 of i.i.d. exponential random
variables with mean 1, both defined on some other probability space with probability Q
and independent of each other. On the product space with probability P ⊗ Q we define
the following objects (in what follows, when we write “a.s.”, we mean “P⊗Q –a.s.”). We
iteratively define X0 := 0 and

Xn+1 := Xn + 1(γn ≤ ω+
Xn

(λ))− 1(γn > ω+
Xn

(λ)) .

We also define Ŵn := (r+
Xn

(λ) + r−Xn(λ))−1Wn. Note that Ŵn is an exponential variable

of parameter r+
Xn

(λ) + r−Xn(λ). We set U0 := 0 and Un := Ŵ0 + Ŵ1 + · · · + Ŵn−1 for
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n ≥ 1. Take c0 > 0 such that r+
0 (λ) + r−0 (λ) ≤ c0 with positive probability. By [?,

Thm. 2.1.2] the random walk (Xn)n≥0 explores a.s. at least one half-line of Z. In particular,
it will visit infinitely many points x such that r+

x (λ) + r−x (λ) ≤ c0. It then follows that

limn→∞ Un = +∞ a.s. Therefore we can define a.s. for all t ≥ 0 the state Y ξ,λ
t as

Y ξ,λ
t := Xn(t) where n(t) is the unique integer such that Un(t) ≤ t < Un(t)+1.

Claim B.2. It holds

lim sup
t→∞

Y ξ,λ
t

t
≤ 1

E[Ŝ(λ)]
a.s.

Proof of Claim ??. Since Y ξ,λ
t is a random–time change of the associated jump process Xn,

by [?, Thm. 2.1.2] we have that either limt→∞ Y
ξ,λ
t = −∞ a.s., or lim supt→∞ Y

ξ,λ
t = +∞

a.s. In the first case we have nothing to prove since limt→∞ Y
ξ,λ
t /t ≤ 0 a.s. Hence we can

suppose that lim supt→∞ Y
ξ,λ
t = +∞.

Given t we call k(t) the unique integer such that Tk(t) ≤ t < Tk(t)+1 (recall definition

(??)). Equivalently, k(t) = sup{Y ξ,λ
s : 0 ≤ s ≤ t}. Since lim supt→∞ Y

ξ,λ
t = +∞ a.s., we

have that limt→∞ k(t) = +∞ a.s. As in [?], we combine Lemma ?? with the ergodicity of
the sequence {τi}i≥1 to obtain

lim
n→∞

Tn
n

= lim
n→∞

∑n
i=1 τi
n

n→∞−−−→ E[Eξ,λ0 [τ1]] = E[Ŝ(λ)] =: α a.s.

As a consequence, limn→∞ n/Tn = 1/α a.s. Since limt→∞ k(t) = +∞ a.s., we have that

limt→∞ k(t)/Tk(t) = 1/α a.s. By definition of k(t) we have Y ξ,λ
t ≤ k(t), so that

lim sup
t→∞

Y ξ,λ
t

t
≤ lim sup

t→∞

k(t)

Tk(t)
=

1

α
a.s.

This concludes the proof of our claim. �

Note that by similar arguments one can prove that lim inft→∞ Y
ξ,λ
t /t ≥ −1/E[F̂ (λ)] a.s.

In particular, if E[Ŝ(λ)] =∞ and E[F̂ (λ)] =∞, then we have that limt→∞ Y
ξ,λ
t /t = 0 a.s.

This concludes the proof of Proposition ??–(c).

Claim B.3. If α := E[Ŝ(λ)] ∈ (0,∞), then

lim inf
t→∞

Y ξ,λ
t

t
≥ 1

α
a.s.

We point out that Claim ?? together with Claim ?? gives Proposition ??–(a). By
similar arguments we can also get Proposition ??–(b) and the proof of Proposition ?? is
concluded.

Proof of Claim ??. Recall the arguments and definitions in the proof of Claim ??. By
Lemma ??–(a) τ1 is finite a.s. By iteration one gets that Tn = τ1 + · · · + τn is finite a.s.

(recall (??)). As a consequence lim supt→+∞ Y
ξ,λ
t = +∞ and limt→+∞ k(t) = +∞ a.s.

Given ` ∈ N call m` := inf{Y ξ,λ
s : T` ≤ s < T`+1}. Note that m` depends only on ξ and

γ. We have

mk(t) ≤ inf{Y ξ,λ
s : Tk(t) ≤ s ≤ t} ≤ Y

ξ,λ
t .

To conclude, since k(t) → ∞ a.s., we would only need to show that, fixed ε > 0, it holds
a.s.: m` > ` − 2ε` for each ` large enough. Indeed, this fact would imply that, for any
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fixed ε > 0, a.s. Y ξ,λ
t ≥ k(t)− 2εk(t) for t large. Hence,

lim inf
t→∞

Y ξ,λ
t

t
≥ lim inf

t→∞
(1− 2ε)

k(t)

t
≥ lim inf

t→∞
(1− 2ε)

k(t)

Tk(t)+1
=

1− 2ε

α
a.s.

Thanks to the arbitrariness of ε we would get the thesis.
It remains therefore to prove that

lim sup
`→∞

1(m` ≤ `− 2ε`) = 0 a.s. (70)

Take M > 0 so large that P(r+
0 (λ) + r−0 (λ) ≤M) > 1− ε/2. By the ergodic theorem

lim
`→∞

1

`

∑̀
j=1

1(r+
j (λ) + r−j (λ) ≤M) = P(r+

0 (λ) + r−0 (λ) ≤M) > 1− ε

2
P–a.s.

As a consequence, for P–a.e. ξ (let us say for all ξ ∈ A) there exists `0(ξ) such that∑̀
j=1

1(r+
j (λ) + r−j (λ) ≤M) ≥ `(1− ε) ∀` ≥ `0(ξ) .

This implies that ]{j ∈ [` − 2ε`, `] ∩ N : r+
j (λ) + r−j (λ) ≤ M} ≥ ε`, for all ` ≥ `0(ξ).

Suppose to know ξ (with ξ ∈ A), γ, that m` ≤ ` − 2ε` and that ` ≥ `0(ξ). Then the
time that the continuous time random walk needs to reach ` − 2ε` after visiting for the
first time ` is stochastically dominated from below by the sum of ε` i.i.d. exponential
random variables with mean 1/M . Let A1, A2, . . . be i.i.d. exponential random variables
with mean 1/M . Then, fixed δ > 0 such that δ/ε < 1/M , by Cramér theorem we have

P
( ε∑̀
j=1

Aj ≤ δ`
)

= P
( 1

ε`

ε∑̀
j=1

Aj ≤ δ/ε
)
≤ e−cε` ∀` ≥ `1

for suitable constants c, `1 > 0. This bound combined with the stochastic domination
implies that

P⊗Q(τ`+1 ≤ δ` | ξ, γ) ≤ e−cε` ,

on the event E`(ξ, γ) := {ξ ∈ A, m` ≤ `− 2ε`, ` ≥ `0(ξ) ∨ `1}. Hence,

P⊗Q
(
{τ`+1 ≤ δ`} ∩ E`(ξ, γ)

)
≤ e−cε` .

By the Borel–Cantelli lemma we get that there exists a random integer L such that, for
` ≥ L, the event {τ`+1 ≤ δ`} ∩ E`(ξ, γ) does not take place. With more elegance, we can
write

lim sup
`→∞

1
(
{τ`+1 ≤ δ`} ∩ E`(ξ, γ)

)
= 0 a.s.

which implies that

lim sup
`→∞

1(τ`+1 ≤ δ`, m` ≤ `− 2ε`) = 0 a.s. (71)

Now observe that, by Lemma ?? and the discussion preceding it, T`/`→ 1/α a.s., so that
T`+1/` → 1/α a.s., too. As a consequence, τ`+1/` = (T`+1/`) − (T`/`) → 0 a.s. It then
follows that

lim
`→∞

1(τ`+1 ≥ δ`) = 0 a.s. (72)

Since

1(m` ≤ `− 2ε`) ≤ 1(m` ≤ `− 2ε`, τ`+1 ≤ δ`) + 1(τ`+1 ≥ δ`) ,
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as a byproduct of (??) and (??) we conclude that lim sup`→∞ 1(m` ≤ ` − 2ε`) = 0 a.s.
This concludes the proof of (??). �

Appendix C. Proof of Theorem ??

The proof of the CLT is the same as in [?] with two exceptions: The different σ-algebra
for condition (??) and the unique step in [?] where (??) is used.

We start from the first issue. Call Fk the σ-algebra generated by (θiS̄(λ))i≤k. In the
proof of Theorem 2.2.1 in [?] one only needs inequality (??) with G−n replaced by F−n.
This is indeed automatically satisfied when (??) holds since Fk ⊂ Gk and therefore, for
each random variable Z,

E
[
E[Z | Fk]2

]
= E

[
E
[
E[Z | Gk] | Fk

]2] ≤ E
[
E
[
E[Z | Gk]2 | Fk

]]
= E

[
E[Z | Gk]2

]
,

where we have used Schwarz inequality.

We move to the second issue. As in [?], we set f(x, n, ω) := x − vX(λ)n + h(x, ω),
h(0, ω) := 0, ∆(x, ω) := h(x + 1, ω) − h(x, ω), ∆(x, ω) := −1 + vX(λ)S̄(λ)[θxω], M̄k :=

f(Xω,λ
k , n, ω), M̄0 := 0. Then, (??) is used in [?] to derive Eq. (2.2.8) there, and in par-

ticular that for P–a.a. ω the rescaled martingale M̄n/
√
n weakly converges to N (0, σ2

1(λ))

under Pω,λ0 . Hence, we need to show that (??) suffices to this task. To this aim, in what
follows we write P λω for the law on the path space ΩN of the environment viewed from the
walker when the latter starts at the origin in the environment ω. Eλω will denote the asso-
ciated expectation. We set ω̄ := (ω̄k)k∈N and ω̄k := τ

Xω,λ
k
ω. By working with the law P λω

we think of Xω,λ
k as an additive functional of ω̄. Since moreover Qλ is mutually absolutely

continuous w.r.t. P, we only need to prove that for Qλ–a.a. ω the martingale M̄n/
√
n

weakly converges to N (0, σ2
1(λ)) under P λω . This is indeed the same approach used in [?],

restated with our notation. As there, we apply [?, Lemma 2.2.4] with Zk defined as the
martingale difference Zk := M̄k − M̄k−1 and Fk given by the σ–algebra generated by ω̄0,
ω̄1,...,ω̄k. By straightforward computations we get

Zk+1 = vX(λ)1
(
Xω,λ
k+1 = Xω,λ

k + 1
)(
S̄(λ)[ω̄k]− 1

)
− vX(λ)1

(
Xω,λ
k+1 = Xω,λ

k − 1
)(
θ−1S̄(λ)[ω̄k] + 1

)
.

(73)

The verification, for Qλ–a.a. ω, of Condition (a) in [?, Lemma 2.2.4] is as in [?]. The
core is to check, for Qλ–a.a. ω, Condition (b) in [?, Lemma 2.2.4] using only (??) instead of
(??). We recall that in our context Condition (b) states that 1

n

∑n
k=1E

λ
ω

[
Z2
k+11(|Zk+1| >

δ
√
n)
]

converges to 0 as n → ∞, given δ > 0. By Markov’s inequality, we only need to
show that

lim
n→∞

n−
ε
2

1

n

n∑
k=1

Eλω
[
|Zk+1|2+ε

]
= 0 . (74)

Due to (??), Eλω
[
Z2+ε
k+1

]
= vX(λ)2+εEλω[f1(ω̄k) + f2(ω̄k)], where f1(ω) :=

(
S̄(λ)[ω] −

1
)2+ε

ω+
0 (λ) and f2(ω) :=

(
θ−1S̄(λ)[ω] + 1

)2+ε
ω−0 (λ). Due to (??) the nonnegative func-

tions f1, f2 are in L1(Qλ). Hence, we get (??) for Qλ–a.a. ω by Lemma ?? below.

Lemma C.1. Given a nonnegative function f ∈ L1(Qλ), for Qλ–a.a. ω it holds

lim
n→∞

n−
ε
2

1

n

n∑
k=1

Eλω
[
f(ω̄k)

]
= 0 . (75)



30 A. FAGGIONATO AND M. SALVI

Proof. We fix positive numbers α, γ such that γ < ε/2 and αγ > 1. We define An as

An :=
{
ω ∈ Ω : Eλω

[
Fn
]
> nγ

}
, Fn(ω̄) := n−1

n∑
k=1

f(ω̄k) .

By Markov’s inequality we have

Qλ(An) ≤ n−γEQλ

[
Eλω
[
Fn
]]

= n−γ‖Fn‖L1(Qλ⊗Pλω ) . (76)

Due to [?, Corollary 2.1.25] the measure Qλ ⊗ P λω on ΩN is stationary and ergodic (w.r.t.
time–shifts), hence by the L1–Birkhoff ergodic theorem Fn converges to EQλ [f ] in L1(Qλ⊗
P λω ) (here we use that f ∈ L1(Qλ)). This automatically implies the convergence of the
L1–norms. As a byproduct with (??) we get that Qλ(An) ≤ Cn−γ for some n–independent

positive constant C. Setting now nj := jα, since αγ > 1 and therefore
∑∞

j=1 n
−γ
j < ∞,

by Borel–Cantelli lemma we conclude that for Qλ–a.a. ω it holds ω 6∈ Anj for j ≥ j0(ω).

Hence, for Qλ–a.a. ω, it holds Eλω[Fnj ] ≤ nγj for j ≥ j0(ω). Take such an environment ω

and take n ≥ nj0(ω). Then there exists j ≥ j0(ω) such that jα = nj ≤ n < nj+1 = (j+1)α.
Using that f ≥ 0, for some n–independent constant C ′ > 0 we can bound

Eλω
[
Fn
]
≤ nj+1

nj
Eλω
[
Fnj+1

]
≤ nj+1

nj
nγj+1 ≤ n

γ
n1+γ
j+1

n1+γ
j

≤ C ′nγ . (77)

Since γ < ε/2 and n−
ε
2

1
n

∑n
k=1E

λ
ω

[
f(ω̄k)

]
= n−

ε
2Fn(ω̄), we get the thesis. �

Appendix D. Proof of Theorem ??

Assumption ?? is satisfied due to Remark ??. As already observed, since the conduc-
tances are i.i.d., also Assumption ?? is satisfied, i.e. the environment is invariant under

reflection. As a consequence, the law of (Xω,λ
n )n≥0 under P ⊗ Pω,λ0 equals the law of

(−Xω,−λ
n )n≥0 under P ⊗ Pω,−λ0 . In particular, it holds vX(−λ) = −vX(λ) and, if the an-

nealed CLT (??) holds for λ > 0, then the same formula (??) holds by replacing λ with
−λ and taking σ2(−λ) := σ2(λ). It remains therefore to prove the annealed CLT and
identity (??) for λ > 0. From now on we restrict to λ > 0. To get the annealed CLT,
due to Theorem ?? and since E[S̄(λ)] < ∞, we only need to verify Assumption ?? with
Gk being the σ-algebra generated by (ρi : i ≤ k). To this aim we first observe that, since
ρi = ci−1

ci
, we have

U =
∞∑
i=0

c−i−1

c0
e−2λ(i+1) and V =

∞∑
i=1

c0

ci
e−2λi .

Let i ≥ 0 and j ≥ 1. Since ρ0 · · · ρ−i = c−i−1/c0 and ρ1 · · · ρj = c0/cj , we have the identities

E[ρ2+ε
0 · · · ρ2+ε

−i ] = E[c2+ε
0 ]E[1/c2+ε

0 ] and E[ρ2+ε
0 · · · ρ2+ε

−i ρ1 · · · ρj ] = E[c2+ε
0 ]E[1/c1+ε

0 ]E[1/c0]

and E[ρ2
0 · · · ρ2

−i] = E[c2
0]E[1/c2

0]. Trivially, E[U2] < ∞. By Propositions ?? and ??,
Assumption ?? is therefore verified.
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To compute σ2(λ) we observe that

E[U ] = E[V ] = AB
e−2λ

1− e−2λ

E[U2] = DE
[ ∞∑
i=0

c2
−i−1e−4λ(i+1) +

∞∑
i 6=j=0

c−i−1c−j−1e−2λ(i+1)e−2λ(j+1)
]

= CD
e−4λ

1− e−4λ
+A2D

( e−4λ

(1− e−2λ)2
− e−4λ

(1− e−4λ)

)
= CD

e−4λ

1− e−4λ
+A2D

2e−6λ

(1− e−2λ)(1− e−4λ)

E[V U ] = AB
e−4λ

(1− e−2λ)2

E[V U2] = BE[V/c0]E[(c0U)2] = B2 e−2λ

1− e−2λ

(
C

e−4λ

1− e−4λ
+A2 2e−6λ

(1− e−2λ)(1− e−4λ)

)
From the above computations and (??) we get

σ2
1(λ) =

4

(1 + 2AB e−2λ

1−e−2λ )3
×

×
[CDe−4λ

1− e−4λ
+

2e−6λ(A2D +B2C)

(1− e−2λ)(1− e−4λ)
+

4A2B2e−8λ

(1− e−2λ)2(1− e−4λ)
+
ABe−2λ

1− e−2λ
+

2ABe−4λ

(1− e−2λ)2

]
.

Equivalently, we have

σ2
1(λ) =

4(e2λ − 1)3

(e2λ − 1 + 2AB)3

[ CD

e4λ − 1
+

2(A2D +B2C)

(e2λ − 1)(e4λ − 1)

+
4A2B2

(e2λ − 1)2(e4λ − 1)
+

AB

e2λ − 1
+

2AB

(e2λ − 1)2

]
.

(78)

For σ2
2(λ) we need to calculate E[UθnU ] for n ≥ 1. We first take n ≥ 2. In this case we

can write

E[UθnU ] = E
[
U

n−2∑
j=0

cn−j−1

cn
e−2λ(j+1)

]
+ E

[
U
c0

cn
e−2λn

]
+ E

[
U

∞∑
j=n

cn−j−1

cn
e−2λ(j+1)

]
=: C1 + C2 + C3 .

(79)

The three terms are calculated as

C1 = E[U ]AB
n−2∑
j=0

e−2λ(j+1) = A2B2 e−2λ

1− e−2λ

(e−2λ − e−2λn

1− e−2λ

)
= E[U ]2 −A2B2 e−2λ

(1− e−2λ)2
e−2λn (80)

C2 = AB
e−2λ

1− e−2λ
e−2λn

C3 = B2e−2λnE
[ ∞∑
i=0

c−i−1e−2λ(i+1)
∞∑
j=0

c−j−1e−2λ(j+1)
]

= B2e−2λnE[U2]

D
.
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In the case n = 1 (??) is again valid with the convention that C1 := 0. On the other hand,
for n = 1, the expression in (??) is zero, hence the above formulas for C1, C2, C3 are valid
also in the case n = 1. Hence we can calculate∑
n≥1

(
E[UθnU ]− E[U ]2

)
=
(
−A2B2 e−2λ

(1− e−2λ)2
+AB

e−2λ

1− e−2λ
+B2E[U2]

D

) ∞∑
n=1

e−2λn

= − A2B2e−4λ

(1− e−2λ)3
+

ABe−4λ

(1− e−2λ)2
+

B2Ce−6λ

(1− e−4λ)(1− e−2λ)
+

2A2B2e−8λ

(1− e−2λ)2(1− e−4λ)

On the other hand, by the above computations of E[U ], E[U2], we have

E[U2]− E[U ]2 = CD
e−4λ

1− e−4λ
+

2A2De−6λ

(1− e−2λ)(1− e−4λ)
−A2B2 e−4λ

(1− e−2λ)2
.

Due to the above identities and (??) we have

v(λ)σ2
2(λ) =

4(e2λ − 1)3

(e2λ − 1 + 2AB)3

[ CD

e4λ − 1
+

2A2D

(e2λ − 1)(e4λ − 1)
− A2B2

(e2λ − 1)2

− 2A2B2e2λ

(e2λ − 1)3
+

2AB

(e2λ − 1)2
+

2B2C

(e4λ − 1)(e2λ − 1)
+

4A2B2

(e2λ − 1)2(e4λ − 1)

]
.

(81)

By (??), summing the expressions (??) and (??), we get σ2(λ) and in particular (??).
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Effect of electric field on diffusion in disordered materials. II. Two- and three-dimensional hopping
transport. Phys. Rev. B 81, 115204 (2010).

[33] D. Ruelle; Structure and f-dependence of the A.C.I.M. for a unimodal map f of Misiurewicz Type.
Comm. Math. Phys. 287, 1039–1070 (2009).

[34] D. Ruelle; A review of linear response theory for general differentiable dynamical systems. Nonlinearity
22 (2009).

[35] O. Zeitouni; Random walks in random environment. École d’Été de Probabilités de Saint-Flour XXXI
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