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1. Network definition

A biochemical reaction network is defined by

• Species: A finite set S = {S1 , · · · , Sd} of d ≥ 1 species.
• Reaction: A finite set R = {R1 , · · · , Rn} of n ≥ 1 relation between linear combination

of species, that is

Ri :

d∑
j=1

αijSj →
d∑
j=1

βijSj .

where αij , β
i
j are non-negative integers and called respectively reactant and product stoichio-

metric coefficients for reaction i and species j. The set of reactions defines a directed graph
between linear combination of species (called ”complexes” in the reaction network community).

2. Deterministic mass-action model

A deterministic mass-action dynamic model associated to the biochemical reaction network
(S,R) is given by the set of ordinary differential equations

dxj
dt

=

n∑
i=1

(
βij − αij

)
ki

d∏
l=1

x
αi

l

l , j = 1 , 2 , · · · , d , (1)

and a set initial conditions xj(0) ∈ R+, j = 1..d. The law of mass-action assumes that the
rate of reaction Ri is proportional to the concentration of its reactants to the power of their
stoichiometry. The constant ki is called the rate constant of reaction Ri.
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3. Stochastic mass-action model

A stochastic mass-action dynamic model associated to the biochemical reaction network
(S,R) is given by a continuous-time Markov chain, with transitions

(X1 , X2 , · · · , Xd)→
(
X1 + βi1 − αi1 , X2 + βi2 − αi2 , · · · , Xd + βid − αid

)
, i = 1, · · · , n , (2)

occurring at rates κi
∏d
j=1

(Xj

αi
j

)
, and with initial conditionsXj(0) ∈ N+, j = 1..d. The stochastic

law of mass-action assumes that the rate of reaction Ri is proportional to the number of possible
combination of its reactants. The constant ki is called the rate constant of reaction Ri.

4. Observation model

An obervation model is a function h that links the kinetic variable x to the data y, with
possible additional measurement parameters and taken into account some noise term ε

y = h(x, ε) . (3)

Additive noise model can be re-written as

y = h(x) + ε , (4)

while multiplicative noise model can be re-written as

y = h(x)ε . (5)

5. Modeling β-arrestin recruitment kinetics at the FSH receptor

5.1. Topological model. The species list is given by

S = {FSH,FSHR,FSHFSHR, βarrestin, FSHFSHRβarrestin} . (6)

The reaction list together with its rate constants are given by

• FSH + FSHR
kon−−−⇀↽−−−
koff

FSHFSHR

• βarrestin+ FSHFSHR
k+−−→ FSHFSHRβarrestin

• FSHFSHRβarrestin k−−−→ ∅

5.2. Dynamic model and experimental conditions. After taking care of each experimental
conditions (see main text), we obtain the full dynamic model that includes 7 experiments
(state variables are indexed by a label i = 1, · · · , 7 for each different doses) together with the
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observation model:

d

dt
FSHi = −konFSHi · FSHRi + koffFSHFSHRi , t ≥ 0

d

dt
FSHRi = −konFSHi · FSHRi + koffFSHFSHRi , t ≥ 0

d

dt
FSHFSHRi = konFSHi · FSHRi − koffFSHFSHRi − k+βarrestini · FSHFSHRi , t ≥ 0

d

dt
βarrestini = −k+βarrestini · FSHFSHRi , t ≥ 0

d

dt
FSHFSHRβarrestini = k+βarrestini · FSHFSHRi − k−FSHFSHRβarrestini , t ≥ 0

FSHi(t = 0) = Init FSHi ,

FSHRi(t = 0) = Init FSHR ,

FSHFSHRi(t = 0) = 0 ,

βarrestini(t = 0) = Init βarrestin ,

FSHFSHRβarrestini(t = 0) = 0 ,

Induced BRETi(t) = kf · FSHFSHRβarrestini(t) + εt , t ≥ 0

(7)
where εt is a collection of independent Gaussian random variable of zero mean and variance σ2,
and the initial quantities for FSH are given by

(Init FSHi)i=1,··· ,7 = (0.0128, 0.064, 0.32, 1.6, 8, 40, 200) 10−9M . (8)
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5.3. Parameterization. To improve parameter optimization, we use an adimentionalized sys-
tem and parameters, namely we define

xi1(t) =
FSHi(t)

Init FSHR
, t ≥ 0

xi2(t) =
FSHRi(t)

Init FSHR
, t ≥ 0

xi3(t) =
FSHFSHRi(t)

Init FSHR
, t ≥ 0

xi4(t) =
βarrestini(t)

Init FSHR
, t ≥ 0

xi5(t) =
FSHFSHRβarrestini(t)

Init FSHR
, t ≥ 0

kon =
konInit FSHR

k−
,

koff =
koff
k−

,

k
+

=
k+Init FSHR

k−
,

Init xi1 =
Init FSHi

Init FSHR
,

Init x4 =
Init βarrestin

Init FSHR
,

kf = kf · Init FSHR , t ≥ 0

(9)
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and we replace the system (7) by

d

dt
xi1 = −konk−xi1 · xi2 + koffk

−xi3 , t ≥ 0

d

dt
xi2 = −konk−xi1 · xi2 + koffk

−xi3 , t ≥ 0

d

dt
xi3 = konk

−xi1 · xi2 − koffk−xi3 − k
+
k−xi4 · xi3 , t ≥ 0

d

dt
xi4 = −k+k−xi4 · xi3 , t ≥ 0

d

dt
xi5 = k

+
k−xi4 · xi3 − k−xi5 , t ≥ 0

xi1(t = 0) = Init xi1 ,

xi2(t = 0) = 1 ,

xi3(t = 0) = 0 ,

xi4(t = 0) = Init x4 ,

xi5(t = 0) = 0 ,

Induced BRETi(t) = kf · xi5(t) + εt , t ≥ 0

(10)

Thus, to perform data fitting, we actually simulate the system (10). For the optimization
algorithm, we further transform the parameter in log scale, so that we search for the parameter
set

θ =
(

log10(kon), log10(koff ), log10(k
+

), log10(k−), log10(Init FSHR), log10(Init x4), log10(kf), log10(σ)
)

(11)

5.4. Parameter ranges for numerical optimization. To start multi-run deterministic op-
timizations (using D2D), we used uniform distributions with following ranges to search for the
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optimal parameter sets (in log10 scale):

Parameter Min Max

kon −10 10

koff −10 10

k
+ −10 10

k− −10 10

Init FSHR −20 0

Init x4 −10 10

kf −10 10

σ −4 1

(12)

5.5. Objective function. To search for best parameter sets, we minimize the −2log(L), where
L is the likelihood function according to the error measurement model. Thus, we are lead to
minimize

J(θ) =

nt∑
k=1

7∑
i=1

log(2πσ2) +

(
di,k − Induced BRETi(tk)

σ

)2

, (13)

where we denoted by di,k the measured induced BRET signal for experiment i at time tk.

6. Example of over parameterization

We show in a slightly different model a concrete case of over parameterization. The following
model is an example of catalysis signaling cascade, where the complex Ligand-Receptor catalyse
the activation of a downstream molecule (like cAMP for instance). We take as species list

S = {x1, x2, x3, x4, x5} . (14)

The reaction list together with its rate constants are given by

• x1 + x2
kon−−−⇀↽−−−
koff

x3

• x3 + x4
k+−−→ x3 + x5

• x5
k−−−→ ∅

Suppose as in the BRET measurement technique that one observes the activated molecule x5,
up to an unknown constant kf . Thus, the dynamic model together with the observation model
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is given by (note the close similarity with the system (7)):

d

dt
x1 = −konx1 · x2 + koffx3 , t ≥ 0

d

dt
x2 = −konx1 · x2 + koffx3 , t ≥ 0

d

dt
x3 = konx1 · x2 − koffx3 , t ≥ 0

d

dt
x4 = −k+x4 · x3 , t ≥ 0

d

dt
x5 = k+x4 · x3 − k−x5 , t ≥ 0

x1(t = 0) = Init x1 ,

x2(t = 0) = Init x2 ,

x3(t = 0) = 0 ,

x4(t = 0) = Init x4 ,

x5(t = 0) = 0 ,

Induced BRET (t) = kf · x5(t) + εt , t ≥ 0 .

(15)

In the system (15), a structural identifiability analysis reveals that the parameters (Init x4, kf)
are not identifiable, and actually only the product Init x4 ·kf can be identified. In this example,
this fact can actually be shown doing an adimentionalization step, normalizing the variables x4
and x5 by Init x4.
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