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Abstract—There is clear empirical evidence that the use of redundant
dictionaries instead of orthogonal bases can significantly improve the
recovery results in compressed sensing. The theoretical understanding of
this phenomenon is however still partial. The objective of this work is to
better understand the so-called synthesis formulation in the framework
of random Gaussian measurements. We derive new sharp guarantees for
robust recovery of coefficient representations and of signals using the
machinery of conic Gaussian widths.

I. INTRODUCTION

Consider a signal u ∈ Rn and let A ∈ Rm×n be a random Gaus-
sian sensing matrix. Given some linear measurements y = Au + e,
where e ∈ Rm models measurement noise with ‖e‖2 ≤ η, we wish
to recover an approximation of u by solving the `1 problem

X̂
def.
= argmin

x∈Rd

‖x‖1 s.t. ‖AΦx− y‖2 ≤ η. (1)

In this equation, Φ = [φ1, . . . , φd] ∈ Rn×d is a given surjective
matrix (dictionary) with d ≥ n. Given a solution x̂ ∈ X̂ , we can
form an estimate û of u as û = Φx̂.

When dealing with redundant dictionaries, two formulations are
possible: the synthesis and the analysis formulations [1]. Problem
(1) is a synthesis problem since a signal u is ’synthesized’ as a
linear combination of atoms (columns) of the dictionary. Most of the
recent theoretical activity revolved around the analysis formulation
[2]–[5], while both approaches yield similar results with well chosen
dictionaries. Surprisingly, we are only aware of a single paper devoted
to the synthesis formulation [6]. The authors study the uniform
recovery of all s-sparse vectors using the notion of coherence of the
dictionary µ = maxi,j |〈φi, φj〉|. Put roughly, their main result states
that for all s-sparse x0 with s = O( 1

µ
), the condition m & s log(d/s)

is enough to ensure the stable recovery of x0 and hence u. This result
suffers from several problems:

• The condition s = O(µ−1) is restrictive: in particular, any dic-
tionary composed of correlated atoms (e.g. translation invariant
wavelet transform) is ruled out. In addition, it implicitly suffers
from the square-root bottleneck [7] which imposes s = O(

√
n).

• Recovering a specific s-sparse vector instead of all s-sparse
vectors may lead to a better understanding of the problem’s
geometry.

• Recovering the coefficients x0 is often less relevant than the
signal u itself. This may lead to very different conditions.

In what follows we address the above limitations by providing tight
bounds on the number of measurements needed for the recovery of
a specific signal u and of its coefficients in the case of Gaussian
measurements.

II. MAIN RESULTS

The set of minimal `1 representations of u is defined by

X`1
def.
= argmin

x∈Rd

‖x‖1 s.t. Φx = u. (2)

Following [8], we let D(x) denote the descent cone of ‖ · ‖1 at x
and σmin(Φ,D(x)) denote the minimal conic singular value of Φ,
restricted on D(x). The Gaussian width of a cone C is defined as

wc(C)
def.
= E

[
sup

x∈C∩Sd−1

〈g, x〉

]
, (3)

where g is a standard normal vector of Rd and Sd−1 denotes the unit-
sphere in Rd. Our main results are given below. The proofs follow
the methodologies in [8], [9].

Theorem II.1 (Coefficient recovery). Assume that X`1 = {x`1}
is a singleton. Let κ = σmin(Φ,D(x`1)). Every x̂ ∈ X̂ satisfies
‖x̂− x`1‖2 = O(η) with probability larger than 1− ε, if

m &
‖Φ‖22→2

κ2
s log

(
1

ε

)
. (4)

Now, we let x+
`1

denote the element in X`1 of maximal support
and s+ = |supp(x+

`1
)| denote the cardinality of its support.

Theorem II.2 (Signal recovery). Every û ∈ ΦX̂ satisfies ‖û−u‖2 =
O(η) with probability larger than 1− ε, if

m & wc(ΦD(x+`1))2 log

(
1

ε

)
(5)

There is no hope to recover the coefficients of u if X`1 is
not a singleton. In that case, Theorem II.1 states that the key
quantity to control the conic singular value σmin(Φ,D(x`1)). The
result is sharp in the sense that X`1 is a singleton, if and only if
σmin(Φ,D(x`1)) > 0. In particular, if Φ is orthogonal, we retrieve
the usual bound on the number of measurements. Theorem (II.2)
involves the Gaussian width of the cone C = ΦD(x+

`1
). We

propose various upper-bounds on this quantity by using the following
methodology:

1) Show that C can be described as a conic hull of the form

C = cone
({
±s+φi − Φ · sign(x+`1), i = 1, . . . , d

})
2) Decompose this polyhedral cone into a subspace LC of dimen-

sion s+ (e.g. its lineality space) and its orthogonal complement,
i.e.

C = LC ⊕ (C ∩ LC)⊥.

3) Embed (C ∩ LC)⊥ into a circular cone of angle α.
We can then show the bound

w2
c(C) . dim(LC) +

log(d)

(cosα)2
. (6)

If the circular cone in 3) is chosen adequately, the term (cosα)−2 can
be shown to be of the same order as dim(LC) = s+. This approach
allows to take highly correlated atoms (e.g. duplicate atoms) and
still requires a low number of measurements. In case the paper gets
accepted, we will discuss these phenomena and compare them to the
analysis formulation [5].
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