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Babylonian Arithmetic

Use of a positional number system with:
® primary radix 60
® auxiliary radix 10

° in the set:

7 8 9 10‘

‘123456
T W% % & |(

Example:

AT -
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Babylonian Arithmetic

Use of a positional number system with:
® primary radix 60
® auxiliary radix 10

° in the set:

7 8 9 10‘

‘123456
T W% % & |(

Example:

CCCCECRR] - 53 o0+ 30 =200
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Rewriting rules:

R1:
R2:
R3:

Example:

Arnaud Tisserand. CNRS —Lab-STICC

Egyptian Multiplication

M(n,m, p) = nx m+p

M(0, m, p) — p
M(2n, m, p) — M(n,2m, p)
M(2n + 1, m, p) — M(n,2m, p + m)

12 x 12
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Egyptian Multiplication

M(n,m,p) = nx m-+p
Rewriting rules:
R1: M(0,m,p)— p
R2: M(2n,m,p) — M(n,2m, p)
R3: M(@2n+1,m,p)— M(n,2m,p+ m)
Example:

12 x 12 = M(12,12,0)

M(
(6,24,0)
(
(

3,48,0)

M
M
M(1,96, 48)
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Egyptian Multiplication

M(n,m,p) = nx m-+p
Rewriting rules:
R1: M(0,m,p)— p
R2: M(2n,m,p) — M(n,2m, p)
R3: M(@2n+1,m,p)— M(n,2m,p+ m)

Example:

12 x 12 = M(12,12,0)
6,24,0)

M(
(
(3,48,0)
(
(

1,96, 48)

M
M
M
M(0,192, 144)
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Egyptian Multiplication

M(n,m,p) = nx m-+p
Rewriting rules:
R1: M(0,m,p)— p
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Example:
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Computer Arithmetic

T
representations
of numbers

N,Z,Q,~R,F,

algorithms
) ><,‘+7 \‘/,‘ mOd'
,e5, >~ f(x),...

VIA H
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arithmetic

ST
representations
of numbers

Computer Arithmetic

speed, throughput, latency
circuit area
memory (I and D)
energy, power

accuracy
behavior
test, simulation
proof, formal method

security, reliability
N,Z,Q,~ R,F, validation performances
a priori modelling
algorithms a posteriori measurement
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arithmetic

T
representations
of numbers
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algorithms

; X, %, g/, mod,

e, ~ f(x),...

VIIA H

adequacy
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speed, throughput, latency
circuit area
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energy, power
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implementation
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tools and
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integration into high-level tools
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Number Systems

® set of represented numbers

> integers: N, Z
rationals: Q
real approximations: subset of R
complex approximations: subset of C
finite fields: IFp, Fom, Fam
>

vvyvyy

® system properties

» positional or non positional

> redundant or non redundant

> fixed precision or arbitrary precision (multiple precision)
> completeness (in a finite set)
>

Number system =
1. data format and encoding

2. a set of interpretation rules for the encoding
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Positional Number System(s)

n—1
X = Z Xi ' = (Xp—1Xp—2 "+ X1X0 - X_1X_2*** X_pn)

i=—m

radix 5 (usually a power of 2)
digits x; (€ N) in the digit set D

e rank or position i, weight 5

® n integer digits, m fractional digits
Examples:

e 3=10,0=1{0,1,2,3,4,5,6,7,8,9}

e 3=2,D={0,1}
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Positional Number System(s)

n—1
X = Z Xi ' = (Xp—1Xp—2 "+ X1X0 - X_1X_2*** X_pn)

i=—m

radix 5 (usually a power of 2)
digits x; (€ N) in the digit set D

e rank or position i, weight 5

® n integer digits, m fractional digits
Examples:
e 3=10,0=1{0,1,2,3,4,5,6,7,8,9}
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Positional Number System(s)

n—1
X = Z Xi ' = (Xp—1Xp—2 "+ X1X0 - X_1X_2*** X_pn)

i=—m

radix B (usually a power of 2)
digits x; (€ N) in the digit set D

e rank or position i, weight 5

® n integer digits, m fractional digits
Examples:
e 3=10,0=1{0,1,2,3,4,5,6,7,8,9}
f=2,D={0,1}
® carry save: 3 =2,D, ={0,1,2}
® borrow save: 3 =2,Dys = {—1,0,1}
® signed digits: > 2,Dggap ={—0,...,a} with2a+1>f

e theoretical systems: 3 = % B=14+i...
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Fixed-Point Representations

Widely used in DSPs and digital integrated circuits for higher speed, lower
silicon area and power consumption compared to floating point

t2222222222222222
‘Nt6orzie [s| |

i20 2—1 2—2 2—3 2—4 2—5 2—6 2—7 2—9 2—9 2—102-112-122-132-142-15
UL 1 T 1 1 UL
1Q15 |SL T — I N T —— . |

i2-1 2—2 2-3 2-4 2—5 2—6 2-7 2—8 2—9 2—102-112-122-132-142-152-16

Q1sl | L : [ : T N R B |

80
+27 28 2% of 2 22 z 2L g 22 23 2“ 25 zs 27 78 29 2‘“2“2‘22132”5‘52‘6
1 1 1 1 1 1
| s | L L L L L L ! L L L L L L L L L L L L L L L |
I T T I T T T I T T T I T T T I T T T I T T T I
23 16 8 0
MSB ranks LSB

Typical fixed-point formats: 16, 24, 32 and 48 bits
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Representation(s) of Numbers and Power Consumption

Impact of the representation of numbers:
® operator speed
® circuit area
e useful and useless activity

[ cycle [ value H 2's complement [ teo H sign/magnitude [ tsm ]
0 0 0000000000000000 0 0000000000000000 0
1 1 0000000000000001 1 0000000000000001 1
2 -1 1111111111111111 15 1000000000000001 1
3 8 0000000000001000 | 15 0000000000001000 3
4 =27 1111111111100101 15 1000000000011011 4
5 27 0000000000011011 15 0000000000011011 1
total 61 10

® sign/magnitude (absolute value): n_2
A= (ssapn—2...a130) = (—1)% x Za;2i
i=0

® 2's complement: n_o
A= (ap—1ap—2...a1a0) = —ap—12""" + E a;2'
i=0
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Floating-Point Representation(s)

Radix-$ floating-point representation of x:
® sign sy, 1-bit encoding: 0 = x >0and 1 = x <0
® exponent e, € N on k digits and enin < ex < €max
® mantissa my on n+ 1 digits

® encoding:
x = (=1)% x my x
my = Xp . X1 X2 X3 -+ Xp

xi€{0,1,...,8—1}

For accuracy purpose, the mantissa must be normalized (xp # 0)

Then m, € [1, 8] and a specific encoding is required for the number 0

Arnaud Tisserand. CNRS —Lab-STICC 9/48



|[EEE-754: basic formats

Radix 8 = 2, the first bit of the normalized mantissa is always a 1"

(non-stored implicit bit)

number of bits

format total | sign | exponent | mantissa
double precision 64 1 11 52+ 1
simple precision 32 1 8 23+1

double precision

||vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
L

VVVVVVVVVVVVVVVVVVVVVV|

AT T A S S T T S S S T T M SR

PR T T T S M S T B A M M B A

single precision :

LI I B e e

AAAAAAAAAAAAAAAAAAAAAA|

. T
||A

——
63 56 48 40 32 24 16 8 0
MSB ranks LSB

Arnaud Tisserand. CNRS —Lab-STICC
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Basic Cells for Addition

Useful circuit element in computer arithmetic: counter

A (m, k)-counter is a cell that counts the number of 1 on its m inputs
(result expressed as a k-bit integer)
@m-18m-2 41 4o

a; = szj (m-k)

3
|
L
T
L

Il
o
.

Il
o

Standard counters:
¢ half-adder or HA is a (2,2)-counter
e full-adder or FA is a (3,2)-counter

Arnaud Tisserand. CNRS —Lab-STICC 11/48



FA Cell

p[dels]
a b d olofolfoo Arithmetic equation:
‘ ‘ ‘ 00101
Ol1]{0(0]1 2c+s=a+b+d
FA of1[1([1]0
1]lolollo]1 Logic equation:
‘ ‘ 1[o[1][1]o0
c 'S I[1]o|[1]0 s = avbad
111 ]1]1 ¢ = ab+ad+ bd

Articles about FA in IEEE Journals

There many implementations of
the FA cell

#articles

0 Lt .
1990 1992 1994 1996 1998 2000 2002 2004
Year

Arnaud Tisserand. CNRS —Lab-STICC 12/48



Carry Ripple Adder (CRA)

Very simple architecture: n FA cells connected in series

e Y Y s il
N L SN U S e N I 20 N S fo
E ‘35 N54 ‘53 ‘52 ‘51 ‘50
’ H complexity ‘
delay O(n)
area O(n)

Warning: Sometimes a CRA is also called Carry Propagate Adder (CPA),
but CPA also means a non-redundant adder (that propagates)
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Useless Activity in a Carry Ripple Adder
‘35 ‘bs ‘b4 aa ‘b3 ‘az ‘bz ‘al ‘bl ao ‘bu

= H = H o H . H o H > H, Very simple architecture:

n FA cells connected in series

Vv
cyclei 1 1 o0 1 1 o0 1 1 00
. CLK
cyclei+1 1 0 1 0 1 0 1 0 1 0 1 1

% ‘F(A‘ H ‘F(A‘ H ‘F(A‘ H ‘F(A‘ H ‘F(A‘ H ‘F(\‘ F o t

Se

\J
cycle i 0 1 0 1 0 0
CLK
cycle i+1 1 0 1 0 1 0
0 1 0 1 0 0
activity | 1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
stable —0 0 0 0 0 0

t

Theoretical models (equiprobable and uniform distribution of inputs):
® worst case n?/2 transitions
® average 3n/2 transitions and only n/2 useful

Arnaud Tisserand. CNRS—Lab-STICC 14/48



Carry-Select Adder

Idea: computation of the higher half part for the 2 possible input carries (0
and 1) and selection when the output carry from lower half part is known

+ L0

| &,

L J lower part
+ I—

T
<L

1
Sh higher part &SH

Recursive version — O(log n) delay but there is a fanout problem...

Arnaud Tisserand. CNRS —Lab-STICC 15/48



Carry Lookahead Adder: 4-Bit Example

C1 = 8o + poco

C2 = 81 + p18o + P1PoCo

C3 = &2 + p281 + P2p180 + P2P1PoCo

C4 = &3 + p3g2 + p3p281 + p3p2p18o + P3P2pP1PoCo

P393 P2, 92 Pi, 91 Po, 9

HA

Cy4 c3 cy cy

H—
| 4

Arnaud Tisserand. CNRS —Lab-STICC 16/48



carry ripple

Parallel-Prefix Addition: Standard Architectures

17/48
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Redundant or Constant Time Adders

To speed-up the addition, one solution consists in “saving” the carries and
using them (this makes sense only in case of multiple additions)

In 1961, Avizienis suggested to represent numbers in radix § with digits in
{—a,—a+1,...,0,...,a — 1, a} instead of {0,1,2,...,3 — 1} with
a<f-1

Using this representation, if 2a.+ 1 > /3 some numbers have several possible
representation at the bit level. For instance, the value 2345 (in the standard
representation) can be represented in radix 10 with digits in
{-5,—4,-3,-2,-1,0,1,2,3,4,5} by the values 2345, 235(-5) or
24(-5)(-5)

Such a representation is said redundant

In a redundant number system there is constant-time addition algorithm
(without carry propagation) where all computations are done in parallel

Arnaud Tisserand. CNRS —Lab-STICC 18/48



Addition

Q: How can we speed up addition?

X4 Y4 X3 ¥3 X2 ¥2 X1 n X0 Yo
[ \FA J— FA f— FA f— FA ) @‘7’0
1 1 1 1
S5 S4 S3 Cy) 51 50
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Addition

Q: How can we speed up addition?
R: Save the carries!

X4 Y4 Z4 X3 Y3 Z3 X2 Yo Z2 X1 Y1 Z1 X0 Yo 20

0 FA FA FA FA ro
! 1 1 7 1 rr

S5 Iy Sq4 Ig 53 I3 S I S1 N So h
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Addition

Q: How can we speed up addition?
R: Save the carries!

X4 Y4 Z4 X3 Y3 Z3 X2 Yo Z2 X1 Y1 Z1 X0 Yo 20

0 FA FA FA FA ro
1 L_I_W W rr

S5 Iy Sq4 Ig 53 I3 S I S1 N So h

X+Y+Z:S+R:Z(s;+r;)2"
i=0

The computation time does not depend on n —_ T(n) = 0(1)
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Addition using the carry-save representation
Q: How can we speed up addition?
R: Save the carries!

X4 Y4 Z4 X3 Y3 Z3 X2 Yo Z2 X1 Y1 Z1 X0 Yo 20

0 FA FA FA FA ro
1 L_I_W W rr

S5 Ig S4 Ip S3 I3 S N S1 n So h
W Wa w3 1% w1 wo

X+Y+Z:S+R:Z(s;+r;)2"
i=0

n
= W :ZW,‘2i avec w;=s;+r € {0,1,2}
i=0

The computation time does not depend on n —_ T(n) = 0(1)
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Addition using the carry-save representation
Q: How can we speed up addition?
R: Save the carries!

X4 Y4 Z4 X3 Y3 Z3 X2 Yo Z2 X1 Y1 Z1 X0 Yo 20

0 FA FA FA FA ro
1 L_I_W W rr

S5 Ig S4 Ip S3 I3 S N S1 n So h
W Wa w3 1% w1 wo

X+Y+Z:S+R:Z(s;+r;)2"
i=0

n
= W :ZW,Q[ avec w;=s;+r € {0,1,2}
i=0

_ _ Sn || Sn—1 51 || S0
= | WaWp—_1...WI1W = r r r p
cs n n—1 1 0 cs

The computation time does not depend on n —_ T(n) = 0(1)
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Addition of 2 Carry-Save Numbers

X4 Y4 X3 y3 X2 Y2 X1 i X0 Yo
O @€ O e O @€ O e O @€ O e O @€ O e O @€ O e

X = Z X 2 avec Xi=Xsj+Xj=o0+e
i=0
n .
Y = > yi2  avec  yi=ysityi=o+e
i=0
n
XY = W = Z w; 2' avec Wi=Wsi+Ww=0+e
i=0

Arnaud Tisserand. CNRS —Lab-STICC 20/48



Carry-Save Trees

Example with 3 inputs: A, B and C
a bs ¢ a; by, ¢4, ag by c3 a, by, c, a; by c; a; by cq
\ \ \ \ \ \ \ \ \

HWWWWWH

Carry-save reduction tree: n(h) non-redundant inputs can be reduced by a
h-level carry-save tree where n(h) = [3n(h —1)/2] and n(0) =2

567 [8]9]10] 11|
13[19 |28 [ 426394 141 |

Arnaud Tisseran d. CNRS—Lab-STICC 21/48



Fast Multipliers

B
1. partial products generation a;b; &“b‘ts
(with or without recoding)
— delay in O(1) (fanout a;,b; n bits
O(log n)) nzbitsJ |7 a; b

2. sum of the partial products using

PP generation

a carry-save reduction tree reduction
— delay in O(log n)
3. assimilation of the carries using a 4n bits 4 g P (carry-save)
fast adder e
< delay in O(logn
y ( g ) 2n bits P

Multiplication delay O(log n), area O(n?)

Arnaud Tisserand. CNRS —Lab-STICC 22/48



Power Consumption in Fast Multipliers

70 67% 4 70

60 -

50 -

40

30 F

Relative delay [%)]

207 16% 17%

Relative power consumption [%]

10

PP gen. reduc. assim. PP gen. reduc assim.

—_— delay

® 30% to 70% of redundant transitions (useless)
® place and route steps based on the internal arrival time
® add a pipeline stage
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MAC and FMA

MAC: multiply and accumulate P(t) = A x B+ P(t — 1)
A, B are n-bit values and P a m-bit with m >> n (e.g.,

16 x 16 + 40 — 40 in some DSPs)
FMA: fused multiply and add P = A x B+ C where A, B, C and P can be

stored in different registers (recent general purpose processors, e.g.,
ltanium)

0000000000000 OCCGOFOGOIODS
00000O0OGOIOGIOS
00000 OGONOS
o000 00O
o000 0O
® ® @ 7 generation

[ ]
L) reduction

_|_

I PR
assimilation
P
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Squarer

ag a, ag a, a; ay

X as a, ag ay a; a,

asa; aza; agay a,ag a;a; (agdy
asa; aza; aza; a,a; (@;a; aga
aga, a,a, aza, (Ba; aj;a, aga,
4593, (4243 | (@EEP|| @293 || @243/ @ola aja +aja; = 233
asa, (aza, aza, @aja, a;a, aga,

asag azas azas ayas a;as Aapas

aga, agaz aga, agad; asdy a48p azdy aydy aidg EN _
aja; + aj = 2aiaj ta -ay
ag azag aza, aza; agza; a,a a;
= 2a;3; + & (1-g)
a aza a
4 332 2 =
= 2aj3; + ajg;
as
asa, asa, |asaz| |asay| |asai| |asag| |azag| asza; a,a; ajag EN

15 AND + 5 IAND12

ajas| |asas| |asa,| |a4a;| |aza;| a,a; a;a
433| |a483) |88y (843 (Agdy| @a; 139 3FA+2HA

a3ay| |23y 223

asa, asa, agag aap aag 2o
— 1 ADD(9 bits)
a,a; a;a,
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Multiplication by Constants (1/2)

Problem: substitute a complete multiplier by an optimized sequence of
shifts and additions and/or subtractions
Example: p = 111463 x x

| algo. [ p =111463 X x = [ #op. ‘

direct | (x < 16)+(x < 15)+(x < 13)+(x < 12)+(x < 9) | 10 +
+(x € 8)+(x € 6)+(x K€ 5)+(x « 2)+(x < 1)+x

CSD | (x < 17)—(x < 14)—(x <« 12)+(x < 10) ==
—(x € 7)—(x € 5)+(x < 3)—x
Bernstein | (((t2 < 2)+x) < 3)—x 5+
where

= (((x <3)—x) € 2)—x
b=t L7+t

Our | (tr < 12)+(t2 < 5)+t 4+
where

t=(x < 3)—x
th = (tl < 2)—X

CSD: canonical signed digit, 111463 = 11011001101100111, = 100101010010101001,

Arnaud Tisserand. CNRS —Lab-STICC
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Multiplication by Constants (2/2)

FIR (1,5,5,1)
Power savings: 30 up to 60% X . .
[ operator [[init. [ [1] | [2] [ our | oiriel
DCT 8b 300 94 73 56
DCT 12b 368 | 100 84 70
DCT 16b 521 | 129 | 114 89
DCT 24b 789 | 212 — 119
Power savings: 10%
[ operator [[init. T AT [ 2] [ our ] B
8 x 8 Had. 56 24 | — | 24
(16,11) R-M. 61 | 43|31 | 31 ym
(15,7) BCH 72 | 48 | 47 | 44 D
(24,12,8) Golay || 76 | — | 47 | 45 Tt
X1 . . .
Power savings: up to 40% [] tzh 10 o]+ "y
[ operator [[ init. [ [22] [ our | LD D
8 bits 35 [ 32 [ 24
16 bits || 72 | 70 | 46 sl el R+ -,
Parks-McClellan filter ~(<B) @
E

remez(25,[0 0.2 0.25 1],[1 1 0 0]).
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Error and Accuracy
Question: how many bits are correct ?

Xt = (1.000 000 00), theoretical value
Xe =(0.11111111), value in the circuit
x; — x| = (0.00000001); =278
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Error and Accuracy
Question: how many bits are correct ?

Xt = (1.000 000 00), theoretical value
Xe =(0.11111111), value in the circuit
Ix. — x| = (0.00000001); =278

Error, e: distance between 2 objects (e.g. e =||f(x) — p(x)|])

Accuracy, i (fractional) number of bits required to represent values with
an error < ¢
p=—log, |e|
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Xt = (1.000 000 00), theoretical value
Xe =(0.11111111), value in the circuit
Ix. — x| = (0.00000001); =278

Error, e: distance between 2 objects (e.g. e =||f(x) — p(x)|])

Accuracy, i (fractional) number of bits required to represent values with
an error < ¢
p=—log, |e|

Notation: p expressed in terms of correct or significant bits ([cb], [sb])
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Error and Accuracy
Question: how many bits are correct ?

Xt = (1.00000000)> theoretical value
Xe =(0.11111111), value in the circuit
Ix. — x| = (0.00000001); =278

Error, e: distance between 2 objects (e.g. e =||f(x) — p(x)|])
Accuracy, p: (fractional) number of bits required to represent values with
an error < ¢

1= —log, |e

Notation: p expressed in terms of correct or significant bits ([cb], [sb])

Example: error ¢ = 0.0000107 is equivalent to accuracy p = 16.5 sb

! ! ! ! ! ! ! ! ! ! ! ! >E
2712 2711 2710 279 278 277 276 275 274 273 272 271

Arnaud Tisserand. CNRS —Lab-STICC 28/48
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Polynomial Approximations

£(x) X x argument
% [a, b] domain
b/ —
operator
f v f function
f(x)
a' X
T T
a b
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Polynomial Approximations

b/_
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X

v

operator

v

p(x) = f(x)

x argument

[a, b] domain

f function
p polynomial

€ approx. error
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Polynomial Approximations

b/_
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X

v

operator

v

p(x) = f(x)

e(x) = F(x) = p(x)

E(X) < & arget

x argument

[a, b] domain

f function
p polynomial

€ approx. error

€target maximum
allowed error
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Polynomial Approximations

b/_

Arnaud Tisserand. CNRS —Lab-STICC

X

v

operator

v

p(x) = f(x)

e(x) = F(x) = p(x)

G(X) < ¢ arget

x argument

[a, b] domain

f function
p polynomial

€ approx. error

€target maximum
allowed error

20/48



Polynomial Approximations

£(x) X X argumen.t
$ [a, b] domain
b/ —
operator
* f functio
P b = f(0) o
p polynomial
a1l X Question: what is the best p?
| |
a b
IG(X) X e(x) = f(x) — p(x) € approx. error
I \é E(X) < €target €target maximum

allowed error
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Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x € [a, b]:

1 [sb]

24 -

20 [a. ]

16 -

12 -
81 Lo I
4 1 //,,,,,// .
T3 3 4 3 T Al
4 2
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Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x € [a, b]:

1 [sb]
24
20 [a. ]
16
12 . e
81 o [ ——
. //’”:/:/”7‘/,
L * *d [ —— |
1 2 3 4 5 oz 7 o
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Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x € [a, b]:

1 [sb]
24 -
20 A

[a, b]

16 |
/./
T -- e [N
.

12 4
i
8 S a °
- 7
41e .-~ - - J
#7771/ T T T I
1 2 3 4 5 0

® higher accuracy = higher degree
® higher degree =—> more costly evaluation

Arnaud Tisserand. CNRS —Lab-STICC
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Accuracy, Degree and Evaluation Cost

Degree-d minimax approximation polynomials to sin(x) with x € [a, b]:

1 [sb]
24 + ]
20 - -

[a, b]

16 A
' g .
d B
7 . e---e
|

12
- > .
g - - - - .

o e L7 P

e ---e -
41e .-~ - - J

#7774*// T T T I
1 2 3 4 5 0

® higher accuracy = higher degree
® higher degree =—> more costly evaluation

Arnaud Tisserand. CNRS —Lab-STICC
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Polynomial Evaluation Schemes

scheme computations #+ | # x
direct po + p1x + pax? + p3x® 3 5
Horner || po + (p1 + (p2 + p3x)x)x | 3 3
Estrin po + p1x + (p2 + p3x)x? 3 4

Trade-off:
® direct scheme — high operation cost and smaller accuracy
® Horner scheme — smallest cost but sequential

® Estrin scheme — some internal parallelism
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Polynomial Evaluation Schemes

scheme computations #+ | # x
direct po + p1x + pax? + p3x® 3 5
Horner || po + (p1 + (p2 + p3x)x)x | 3 3
Estrin po + p1x + (p2 + p3x)x? 3 4

Trade-off:
® direct scheme — high operation cost and smaller accuracy
® Horner scheme — smallest cost but sequential

® Estrin scheme — some internal parallelism

Question: what is the best evaluation scheme?
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Round-off Errors

Round-off errors occur during most of computations:
® due to the finite accuracy during the computations
® small for a single operation (fraction of the LSB)

® accumulation of such errors may be a problem in long computation
sequences

® need for a sufficient datapath width in order to limit round-off errors

Examples: 1/3 = 0.33333333... — 0.3333 or 0.3334 in 1Q4 format

| ]
+ ] <]
| | |
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Round-off Errors

Round-off errors occur during most of computations:
® due to the finite accuracy during the computations
® small for a single operation (fraction of the LSB)

® accumulation of such errors may be a problem in long computation
sequences

® need for a sufficient datapath width in order to limit round-off errors

Examples: 1/3 = 0.33333333... — 0.3333 or 0.3334 in 1Q4 format
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Round-off Errors

Round-off errors occur during most of computations:
® due to the finite accuracy during the computations
® small for a single operation (fraction of the LSB)

® accumulation of such errors may be a problem in long computation
sequences

® need for a sufficient datapath width in order to limit round-off errors

Examples: 1/3 = 0.33333333... — 0.3333 or 0.3334 in 1Q4 format
] ]
+ L] < |

| [

Question: what is the best datapath width?
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Rounding Modes and Correct Rounding

Notations:
® © is an operation £, x,+...
® ¢ is the active rounding mode (or quantization mode)
IEEE-754: A(x) towards +o00 (up), V(x) towards —co (down), Z(x) towards 0,
N(x) towards the nearest

I | | | R representable values
| | ¢ | |
T
X
( mathematical values ] f finite precision values ]
Imath = @ ©math b Ifinite = @ ©finjte b
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Notations:
® © is an operation £, x,+...
® ¢ is the active rounding mode (or quantization mode)
IEEE-754: A(x) towards +o00 (up), V(x) towards —co (down), Z(x) towards 0,
N(x) towards the nearest

V(x) A(x)
I f f | R representable values
| | ¢ | |
0 P
Z(x) x
( mathematical values ] f finite precision values ]
Imath = @ ©math b Ifinite = @ ©finite b
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Rounding Modes and Correct Rounding

Notations:
® © is an operation £, x,+...
® ¢ is the active rounding mode (or quantization mode)
IEEE-754: A(x) towards +o00 (up), V(x) towards —co (down), Z(x) towards 0,
N(x) towards the nearest

V(x) A(x)
I f f I R representable values
I I hd I I
0 T T T
Z(x) x N(x)
( mathematical values ] f finite precision values ]
Imath = @ ©math b Ifinite = @ ©finjte b
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Rounding Modes and Correct Rounding

Notations:
® © is an operation £, x,+...
® ¢ is the active rounding mode (or quantization mode)
IEEE-754: A(x) towards +o00 (up), V(x) towards —co (down), Z(x) towards 0,
N(x) towards the nearest

V(x) A(x)
I f _ f I R representable values
I I e I I
0 T T T
Z(x) x N(x)
( mathematical values ] f finite precision values ]
Imath = @ ©math b Ifinite = @ ©finite b
2

Ifinite = <>( a ©math b )
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Bounding Round-off Errors

Problem: it is very difficult to get tight bounds

Solutions:

® worst case: assume 1/2 LSB error for each operation
~ simple but very pessimistic

® qualification: exhaustive or selected simulations
~» simple but only validated bounds for small systems

® specific tools: formal accurate analysis (and proof)
~» we use gappa developed by Guillaume Melquiond

Arnaud Tisserand. CNRS —Lab-STICC 34/48



Gappa Overview

® developed by Guillaume Melquiond
® goal: formal verification of the correctness of numerical programs:

> software and hardware
> integer, floating-point and fixed-point arithmetic (&, x, +, /)

® uses multiple-precision interval arithmetic, forward error analysis and
expression rewriting to bound mathematical expressions (rounded and
exact operators)

® generates a theorem and its proof which can be automatically checked
using a proof assistant (e.g. Coq or HOL Light)

® reports tight error bounds for given expressions in a given domain
® C++ code and free software licence (CeCILL ~ GPL)

® publication: ACM Transactions on Mathematical Software, n. 1, vol.
37, 2010, pp: 2:1-20, doi: 10.1145/1644001.1644003

® source code and doc: http://gappa.gforge.inria.fr/
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http://gappa.gforge.inria.fr/

Degree-2 polynomial approximation to e* over [1/2,1] and format 1Q9:

1p0 = 571/512; pl =

2

3x = fixed<—9,dn>(Mx);

4

Gappa Example

275/512; p2 =

syl fixed<—9,dn>= p2 * x + pl;
ep fixed<—9,dn>= yl *x x + p0;

7

sMp = (p2 * Mx + pl) * Mx + pO;

9
10 {

11 Mx in [0.5,1] /\
2—>

13 | p—Mf| in ?

14}

Gappa-0.14.0 result ([a, b],

Results for Mx in [0.5, 1] and |Mp - Mf| in [0, 0.001385]:

| Mp—Mf |

x{(~ x)10, logy x},

545/512;

in [0,0.001385]

xby = x2Y):

l[p - Mf| in [0, 193518932894171697b-64 {0.0104907, 2~ (-6.57475)}]

Arnaud Tisserand. CNRS —Lab-STICC
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Still Pending Questions

Question: what is the best (or a good) p?

Question: what is the best (or a good) datapath width?

Question: what is the best (or a good) evaluation scheme?
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mathematical p: minimax approximations
implemented p: simple selection of representable coefficients

links to other methods and tools
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Question: what is the best (or a good) evaluation scheme?
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Question: what is the best (or a good) p?

mathematical p: minimax approximations
implemented p: simple selection of representable coefficients

links to other methods and tools

Question: what is the best (or a good) datapath width?

basic optimization method

better heuristics under development. . .

Question: what is the best (or a good) evaluation scheme?
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Still Pending Questions

Question: what is the best (or a good) p?

mathematical p: minimax approximations
implemented p: simple selection of representable coefficients
links to other methods and tools

Question: what is the best (or a good) datapath width?

basic optimization method

better heuristics under development. . .

Question: what is the best (or a good) evaluation scheme?

Horner or specific scheme examples. . .

work still in progress. ..
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Minimax Polynomial Approximations

® approximation error €app, = ||f — plloc = Maxa<x<p|f(x) — p(x)]

® minimax polynomial approximation to f over [a, b] is p* such that:

1 = plloc = minpep,[[f = plloo

Pq set of polynomials with real coefficients and degree < d

® p* computed using an algorithm from Remez (numerically
implemented in Maple, Matlab, sollya. . .)

Problems:

® p* coefficients in R = conversion to finite precision

® during p* evaluation, some round-off errors add up to €app
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Example f(x) = 2% and x € [0, 1]

f(x)
2X
2 —]
d || p [sb] €app
11 453 |431x102
, 21|l 865 |248x 1073
/ 3| 13.18 | 1.08 x 10~*
4 || 18.04 | 3.71 x 107
5 || 23.15 | 1.07 x 10~
1 X
I I
0 1
p*7?
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Example f(x) = 2% and x € [0, 1]

f(x)
2)(
2 —]
)4
d || p [sb] €app
11 453 |431x102
7 21|l 865 |248x 1073
74 3| 13.18 | 1.08 x 10~*
4 || 18.04 | 3.71 x 107
» 5 || 23.15 | 1.07 x 10~
1 - X
I I
0 1

p* = 0.956964333 4 1.000000000 x

Arnaud Tisserand. CNRS —Lab-STICC 39/48



Example f(x) = 2% and x € [0, 1]

f(x)
2X
2 -]
/
)4
d || p [sb] €app
} 1| 453 |431x1072
v 2 || 865 | 248 x10-3
yd 3| 13.18 | 1.08 x 10~*
v 4| 18.04 | 3.71 x 10-6
» 51| 23.15 | 1.07 x 107
1 - X
| |
0 1

p* = 1.002476056 + x x (0.651046780 + x x 0.344001106)
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Example f(x) = 2% and x € [0, 1]
f(x)

2X
2 —
/l
7
d || p [sb] €app
11 453 |431x102
v 2 || 8.65 | 248x1073
// 3 || 13.18 | 1.08 x 10~*
v 4| 18.04 | 3.71 x 10-6
) 5 || 23.15 | 1.07 x 10~
//
1 - X
I I
0 1

p* = 0.999892965 + x x (0.696457394 + x x (0.224338364 +
x x 0.079204240))
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Example f(x) = 2% and x € [0, 1]

f(x) ox
2 —
/l
)4
d || p [sb] €app
11 453 |431x102
v 2 || 8.65 | 248x1073
v 3| 13.18 | 1.08 x 104
// 4 || 18.04 | 3.71 x 107
B 5| 23.15 | 1.07 x 107
1 - X
I I
0 1

p* = 1.000003704 + x x (0.692966122 + x x (0.241638445 -+
x x (0.051690358 + x x 0.013697664)))
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Finite Precision Coefficients Selection Problem

Example: f(x) = e* over [1/2,1] with d = 2, the remez function from
sollya gives:

p* =1.116019297 ... + 0.535470348 ... x x + 1.065407185.... x x>
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Finite Precision Coefficients Selection Problem

Example: f(x) = e* over [1/2,1] with d = 2, the remez function from
sollya gives:

* =1.116019297 ... + 0.535470348 . .. x x + 1.065407185. .. x x>

Question: what are “good” representable values for pg, p1 and p>?

Problem: p* is the best theoretical approximation to f (i.e. p; € R)

Need: find good approximations with “machine-representable” coefficients
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Finite Precision Coefficients Selection Problem
Example: f(x) = e* over [1/2,1] with d = 2, the remez function from
sollya gives:

p* =1.116019297 ... + 0.535470348 ... x x + 1.065407185. .. x x>

Question: what are “good” representable values for pg, p1 and p>?

Problem: p* is the best theoretical approximation to f (i.e. p; € R)
Need: find good approximations with “machine-representable” coefficients

Above example with 1Q9 format (all values for domain [1/2,1]):
® capp = ||f — P*|Joo ~1.385 x 1073 ~» ~0.4sb
o ST 13T, 1 38552 . 81sb  (Viuse N(p;))
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Finite Precision Coefficients Selection Problem

Example: f(x) = e* over [1/2,1] with d = 2, the remez function from
sollya gives:

* =1.116019297 ... + 0.535470348 . .. x x + 1.065407185. .. x x>

Question: what are “good” representable values for pg, p1 and p>?

Problem: p* is the best theoretical approximation to f (i.e. p; € R)
Need: find good approximations with “machine-representable” coefficients

Above example with 1Q9 format (all values for domain [1/2,1]):
® capp = ||f — p*[loo ~1.385x 1073 ~» ~94sb

571 | 137, 5452 - _
® 25 Foaex + x>~ 8.1sb  (Viuse N(p)))
o 571 | 275, | 545 02

25 T EpX T xS~ 9.3sb  (best selection)
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Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p;
¢ round up p; = A(p}), round down p; = /(p})
® 2 values per coeff. = total of 29+ values (but d is small)

e for each polynomial p evaluate €,pp, = ||f — p||so, then select
polynomial(s) with the smallest €,y

V(po) A(po)

N / N
v(p1) A(p1) A(

p1)
/\ /N /\ /2

Vip) Alp) (k) Alp) vip2) Alp)  v(p2)

I+p=1sPRyYy

(p2)

Result: p(x) = 27:0 pix' where all p; are representable in target format
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e for each polynomial p evaluate €,pp, = ||f — p||so, then select
polynomial(s) with the smallest €,y
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N / N
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Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p;
¢ round up p; = A(p}), round down p; = /(p})
® 2 values per coeff. = total of 29+ values (but d is small)

e for each polynomial p evaluate €,pp, = ||f — p||so, then select
polynomial(s) with the smallest €,y

/\

€app —> I I

\
./
N\
/

/\

Vip)  Alp) (k) Alp)  v(p2) Vip)  Alp2)

Result: p(x) = 27:0 pix' where all p; are representable in target format

Arnaud Tisserand. CNRS —Lab-STICC
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Example for f(x) =2%, x € [0,1] and d = 4

€app [Sb]

~» 18.04 sb

Eapp(P*)

<
Il
o
Il Il Il Il Il Il Il Il Il ]
T T T T T T T T T T 1
© ®©® © ¥ N O © ©W T o
N i Aol Aol i i
—~
UOMNMWOMOOOOO00OO®WO O
2SS omwS-H55555556a5o¥w
glvfFFnommamnomaaaa—H
i B B B B e e B e B B B e B B e T I B |
w

‘ €app(P) H

DO DIA4444d4d

e e e e e e e e S e e

p represented by (po, p1, p2, P3, P4)

42/48
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Example for f(x) =2%, x € [0,1] and d = 4

~» 18.04 sb

Eapp(P*)

‘ €app(P) H

e e e e N N e e

DO DIA4444d4d

e e e e e e e e S e e

p represented by (po, p1, p2, P3, P4)
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Example for f(x) =2%, x € [0,1] and d = 4

€app [Sb]

~» 18.04 sb

Eapp(P*)

20 1

‘ €app(P) ‘

‘ €app(P) H

e e e e N N e e

DO DIA4444d4d

e e e e e e e e S e e

p represented by (po, p1, p2, P3, P4)

42/48
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Example: 2% over [0,1] and u < 12sb (1/2)

Let us try with d = 3 (max. theoretical accuracy 13.18 sb):
p*(x) = 0.999892965 + 0.696457394x -+ 0.224338364x2 + 0.079204240x3

Coefficients (fractional part) size selection:

] / | 12 | 13 | 14 [ 15 | 16 |
G 12.38 [ 12.45 | 13.00 | 13.00 [ 13.02
# polynomials 0 0 2 2 7

Coefficients selection: for n = k 4+ | = 1 + 14 bits, we get:

(v,v,v,v) | 1141 || (v,Vv,V,4) | 12.00
(v, v,4,v) | 1200 || (V,v,H,4) | 12.84
(7,4, A,v7) | 13.00 (v, 0, A, A) | 12.36
(A7, 0,v) | 1223 || (A, v, A,40) | 1223
(A A 7,v) | 1213 || (A, A, v, 2) | 1212
(A, A, 0,) | 12,05 || (A, 0,A,0) | 11.64
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Example: 2% over [0,1] and u < 12sb (2/2)

Datapath size selection:

n | 14 [ 15 | 16 | 17 | 18 [ 19 | 20 |
€eval direct [[ 11.24 [ 11.86 [ 12.32 [ 12.62 [ 12.79 | 12.89 | 12.94
€eval Horner [[ 11.32 [ 11.93 | 12.36 | 12.65 | 12.81 | 12.90 | 12.95

Solution: d =3, n=k+/=1+14and ' =16
Implementation results:

’ solution H area ‘ period ‘ #cycles ‘ latency ‘ power ‘

wo. tools || 1.00 1.00 4 1.00 1.00
w. tools || 0.83 | 0.82 3 0.61 0.68
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Example: \/x over [1,2] and u < 8sb

Selection of coefficients leading to sparse recodings

p* = 1.00076383 + 0.48388463x — 0.071198745x

p =1+ (0.100001),x — (0.0001001),x>

replace x by a small number of +

solution H area ‘ period ‘ #cycles ‘ latency ‘ power \

wo. tools

1.00

1.00

2

1.00

1.00

w. tools

0.59

0.97

1

0.48

0.45
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Summary

cost /= delayxarea

accuracy

Important: non-optimal solutions BUT very good ones in practice
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Conclusion

When designing circuits with arithmetic operators:
® use adequate number system(s)

® use adequate algorithm(s)

® use specific operator(s) when possible

® use optimization (open-source) tool(s):
> floating-point data-paths: FloPoCo flopoco.gforge.inria.fr

> divider generator: divgen
http://lipforge.ens-lyon.fr/www/divgen/

» polynomial approx.: sollya http://sollya.gforge.inria.fr/

» rounding errors: gappa http://gappa.gforge.inria.fr/
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flopoco.gforge.inria.fr
http://lipforge.ens-lyon.fr/www/divgen/
http://sollya.gforge.inria.fr/
http://gappa.gforge.inria.fr/

The end, questions ?

Contact:

® mailto:arnaud.tisserand@univ-ubs.fr

® http://www-labsticc.univ-ubs.fr/~tisseran
e CNRS
Lab-STICC, Centre Recherche UBS
Rue St Maudé. BP 92116. 56321 Lorient cedex, France

Thank you

Arnaud Tisserand. CNRS —Lab-STICC 48/48


mailto:arnaud.tisserand@univ-ubs.fr
http://www-labsticc.univ-ubs.fr/~tisseran

	Historical Introduction
	Computer Arithmetic
	Number Systems
	Addition
	Fast Addition
	Redundant Adders
	Carry-Save Addition
	Fast Multipliers
	Squarer
	Multiplication by Constants
	Error and Accuracy
	Polynomial Approximations
	Conclusion

