Introduction to Computer Arithmetic for Efficient Hardware Implementations

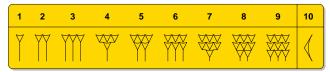
Arnaud Tisserand

CNRS, Lab-STICC

CEA-SPEC Seminar, Nov. 2019

Use of a positional number system with:

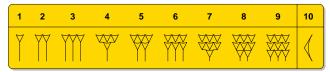
- primary radix 60
- auxiliary radix 10
- digits in the set:



$$\boxed{ \left(\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right) } =$$

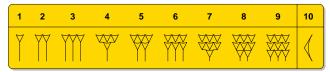
Use of a positional number system with:

- primary radix 60
- auxiliary radix 10
- digits in the set:



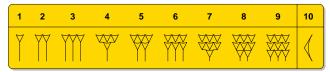
Use of a positional number system with:

- primary radix 60
- auxiliary radix 10
- digits in the set:



Use of a positional number system with:

- primary radix 60
- auxiliary radix 10
- digits in the set:



$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \longmapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$
$$= M(6, 24, 0)$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$
$$= M(6, 24, 0)$$
$$= M(3, 48, 0)$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$

$$= M(6, 24, 0)$$

$$= M(3, 48, 0)$$

$$= M(1, 96, 48)$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$

$$= M(6, 24, 0)$$

$$= M(3, 48, 0)$$

$$= M(1, 96, 48)$$

$$= M(0, 192, 144)$$

$$M(n, m, p) = n \times m + p$$

Rewriting rules:

 $R1: M(0, m, p) \longmapsto p$

 $R2: M(2n, m, p) \longmapsto M(n, 2m, p)$

R3: $M(2n+1, m, p) \mapsto M(n, 2m, p+m)$

$$12 \times 12 = M(12, 12, 0)$$

$$= M(6, 24, 0)$$

$$= M(3, 48, 0)$$

$$= M(1, 96, 48)$$

$$= M(0, 192, 144)$$

$$= 144$$

representations of numbers

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_q$

algorithms

$$\pm, \times, \div, \sqrt[q]{}, \text{mod},$$

 $\leq \leq, e^x, \simeq f(x), \dots$

representations of numbers $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_q$

algorithms $\pm, \times, \div, \sqrt[q]{}, \mod,$ $\stackrel{\leq}{=}, e^x, \simeq f(x), \dots$

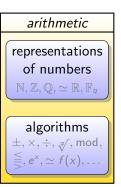
implementation soft GPP/SP, ASIC, FPGA

representations of numbers $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_q$

algorithms $\pm, \times, \div, \sqrt[q]{}, \mod,$ $\leq, e^x, \simeq f(x), \dots$

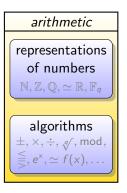
implementation

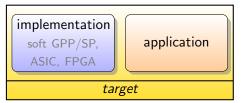
soft GPP/SP, ASIC, FPGA application

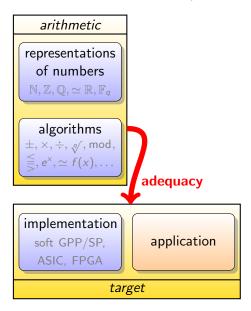


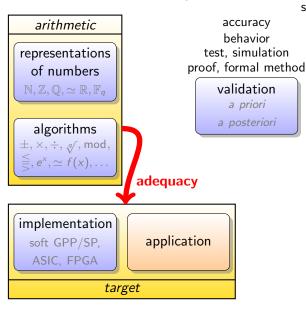
implementation

soft GPP/SP, ASIC, FPGA application



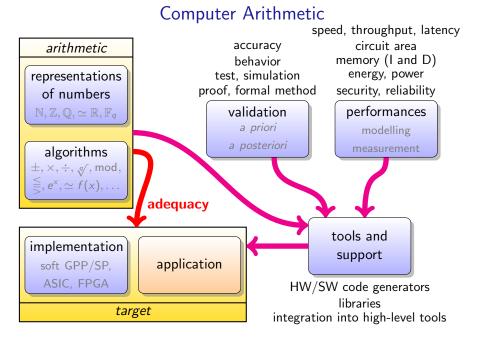






speed, throughput, latency circuit area memory (I and D) energy, power d security, reliability

> performances modelling measurement



Number Systems

- set of represented numbers
 - ▶ integers: \mathbb{N}, \mathbb{Z}
 - rationals: Q
 - ▶ real approximations: subset of R
 - ► complex approximations: subset of C
 - ▶ finite fields: \mathbb{F}_p , \mathbb{F}_{2^m} , \mathbb{F}_{3^m}
- system properties
 - positional or non positional
 - redundant or non redundant
 - fixed precision or arbitrary precision (multiple precision)
 - completeness (in a finite set)

Number system =

- 1. data format and encoding
- 2. a set of interpretation rules for the encoding

$$X = \sum_{i=-m}^{n-1} x_i \beta^i = (x_{n-1}x_{n-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-m})$$

- radix β (usually a power of 2)
- digits x_i ($\in \mathbb{N}$) in the digit set \mathcal{D}
- rank or position i, weight β^i
- n integer digits, m fractional digits

- $\beta = 10, \mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\beta = 2, \mathcal{D} = \{0, 1\}$

$$X = \sum_{i=-m}^{n-1} x_i \beta^i = (x_{n-1}x_{n-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-m})$$

- radix β (usually a power of 2)
- digits x_i ($\in \mathbb{N}$) in the digit set \mathcal{D}
- rank or position i, weight β^i
- n integer digits, m fractional digits

- $\beta = 10, \mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\beta = 2, \mathcal{D} = \{0, 1\}$
- carry save: $\beta = 2, \mathcal{D}_{cs} = \{0, 1, 2\}$
- borrow save: $\beta = 2, \mathcal{D}_{bs} = \{-1, 0, 1\}$

$$X = \sum_{i=-m}^{n-1} x_i \beta^i = (x_{n-1}x_{n-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-m})$$

- radix β (usually a power of 2)
- digits x_i ($\in \mathbb{N}$) in the digit set \mathcal{D}
- rank or position i, weight β^i
- n integer digits, m fractional digits

- $\beta = 10, \mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\beta = 2, \mathcal{D} = \{0, 1\}$
- carry save: $\beta = 2, \mathcal{D}_{cs} = \{0, 1, 2\}$
- borrow save: $\beta = 2, \mathcal{D}_{bs} = \{-1, 0, 1\}$
- signed digits: $\beta > 2$, $\mathcal{D}_{\mathrm{sd},\alpha,\beta} = \{-\alpha,\ldots,\alpha\}$ with $2\alpha + 1 \geq \beta$

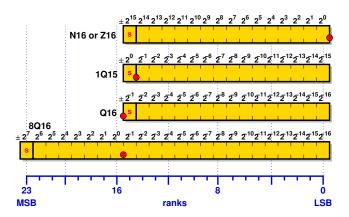
$$X = \sum_{i=-m}^{n-1} x_i \beta^i = (x_{n-1}x_{n-2} \cdots x_1x_0 \cdot x_{-1}x_{-2} \cdots x_{-m})$$

- radix β (usually a power of 2)
- digits x_i ($\in \mathbb{N}$) in the digit set \mathcal{D}
- rank or position i, weight β^i
- n integer digits, m fractional digits

- $\beta = 10, \mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\beta = 2, \mathcal{D} = \{0, 1\}$
- carry save: $\beta = 2, \mathcal{D}_{cs} = \{0, 1, 2\}$
- borrow save: $\beta = 2, \mathcal{D}_{bs} = \{-1, 0, 1\}$
- signed digits: $\beta > 2$, $\mathcal{D}_{sd,\alpha,\beta} = \{-\alpha,\ldots,\alpha\}$ with $2\alpha + 1 \geq \beta$
- theoretical systems: $\beta = \frac{1+\sqrt{5}}{2}$, $\beta = 1+i$...

Fixed-Point Representations

Widely used in DSPs and digital integrated circuits for higher speed, lower silicon area and power consumption compared to floating point



Typical fixed-point formats: 16, 24, 32 and 48 bits

Representation(s) of Numbers and Power Consumption

Impact of the representation of numbers:

- operator speed
- circuit area
- useful and useless activity

cycle	value	2's complement	t_{c2}	sign/magnitude	t _{sm}
0	0	0000000000000000	0	000000000000000000000000000000000000000	0
1	1	0000000000000001	1	0000000000000001	1
2	-1	11111111111111111	15	1000000000000001	1
3	8	000000000001000	15	000000000001000	3
4	-27	1111111111100101	15	100000000011011	4
5	27	000000000011011	15	000000000011011	1
total			61		10

sign/magnitude (absolute value):

A =
$$(s_a a_{n-2} \dots a_1 a_0) = (-1)^{s_a} \times \sum_{i=0}^{n-2} a_i 2^i$$

• 2's complement:

$$A = (a_{n-1}a_{n-2} \dots a_1a_0) = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Floating-Point Representation(s)

Radix- β floating-point representation of x:

- sign s_x , 1-bit encoding: $0 \Rightarrow x > 0$ and $1 \Rightarrow x < 0$
- exponent $e_x \in \mathbb{N}$ on k digits and $e_{min} \leq e_x \leq e_{max}$
- mantissa m_x on n+1 digits
- encoding:

$$x = (-1)^{s_X} \times m_X \times \beta^{e_X}$$

$$m_X = x_0 \cdot x_1 x_2 x_3 \cdots x_n$$

$$x_i \in \{0, 1, \dots, \beta - 1\}$$

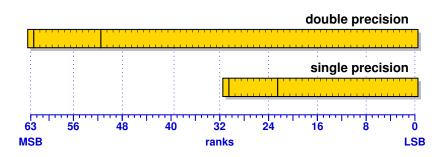
For accuracy purpose, the mantissa must be normalized $(x_0 \neq 0)$

Then $m_x \in [1, \beta[$ and a specific encoding is required for the number 0

IEEE-754: basic formats

Radix $\beta=2$, the first bit of the normalized mantissa is always a "1" (non-stored implicit bit)

	number of bits			
format	total	sign	exponent	mantissa
double precision	64	1	11	52 + 1
simple precision	32	1	8	23 + 1

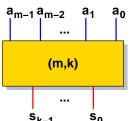


Basic Cells for Addition

Useful circuit element in computer arithmetic: counter

A (m, k)-counter is a cell that counts the number of 1 on its m inputs (result expressed as a k-bit integer)

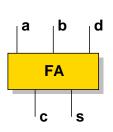
$$\sum_{i=0}^{m-1} a_i = \sum_{j=0}^{k-1} s_j 2^j$$



Standard counters:

- half-adder or HA is a (2,2)-counter
- full-adder or FA is a (3,2)-counter

FA Cell



a	b	d	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

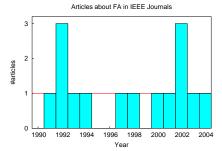
Arithmetic equation:

$$2c + s = a + b + d$$

Logic equation:

$$s = a \oplus b \oplus d$$

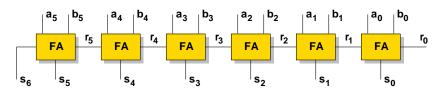
 $c = ab + ad + bd$



There many implementations of the FA cell

Carry Ripple Adder (CRA)

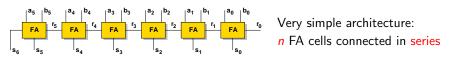
Very simple architecture: *n* FA cells connected in series

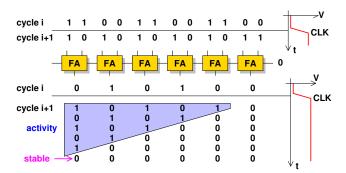


	complexity
delay	O(n)
area	<i>O</i> (<i>n</i>)

Warning: Sometimes a CRA is also called *Carry Propagate Adder* (CPA), but CPA also means a non-redundant adder (that propagates)

Useless Activity in a Carry Ripple Adder



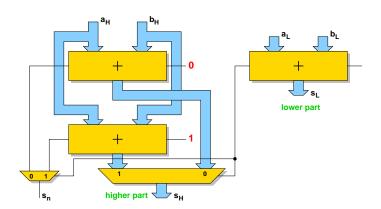


Theoretical models (equiprobable and uniform distribution of inputs):

- worst case $n^2/2$ transitions
- average 3n/2 transitions and only n/2 useful

Carry-Select Adder

Idea: computation of the higher half part for the 2 possible input carries (0 and 1) and selection when the output carry from lower half part is known



Recursive version $\longrightarrow O(\log n)$ delay

but there is a fanout problem...

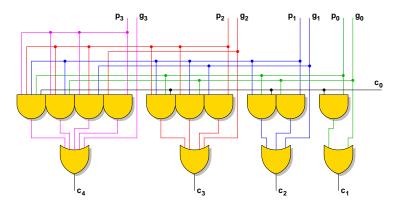
Carry Lookahead Adder: 4-Bit Example

$$c_1 = g_0 + p_0c_0$$

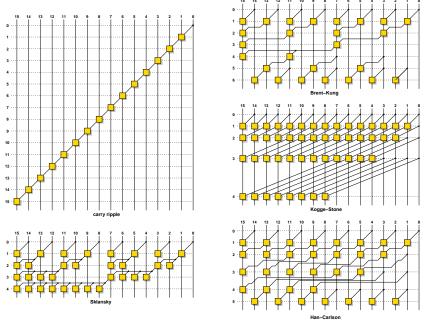
$$c_2 = g_1 + p_1g_0 + p_1p_0c_0$$

$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

$$c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$



Parallel-Prefix Addition: Standard Architectures



Redundant or Constant Time Adders

To speed-up the addition, one solution consists in "saving" the carries and using them (this makes sense only in case of multiple additions)

In 1961, Avizienis suggested to represent numbers in radix β with digits in $\{-\alpha,-\alpha+1,\ldots,0,\ldots,\alpha-1,\alpha\}$ instead of $\{0,1,2,\ldots,\beta-1\}$ with $\alpha<\beta-1$

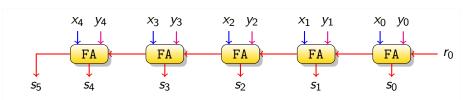
Using this representation, if $2\alpha+1>\beta$ some numbers have several possible representation at the bit level. For instance, the value 2345 (in the standard representation) can be represented in radix 10 with digits in $\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$ by the values 2345, 235(-5) or 24(-5)(-5)

Such a representation is said redundant

In a redundant number system there is constant-time addition algorithm (without carry propagation) where all computations are done in parallel

Addition

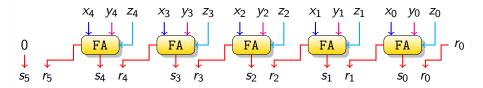
Q: How can we speed up addition?



Addition

Q: How can we speed up addition?

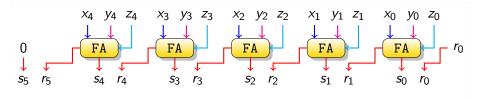
R: Save the carries!



Addition

Q: How can we speed up addition?

R: Save the carries!



$$X + Y + Z = S + R = \sum_{i=0}^{n} (s_i + r_i) 2^i$$

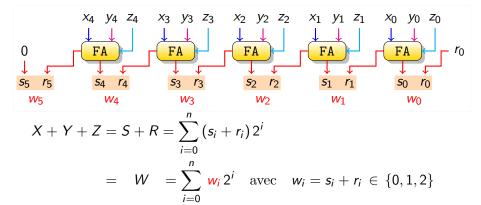
The computation time does $\frac{1}{n}$ not depend on $\frac{1}{n}$

T(n) = O(1)

Addition using the carry-save representation

Q: How can we speed up addition?

R: Save the carries!



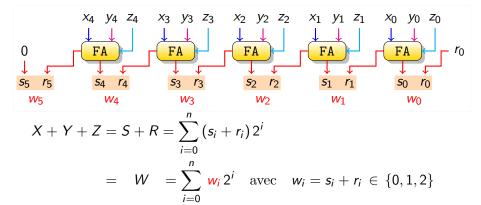
The computation time does $\frac{1}{n}$ not depend on n

T(n) = O(1)

Addition using the carry-save representation

Q: How can we speed up addition?

R: Save the carries!



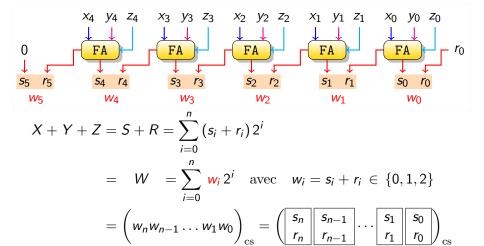
The computation time does $\frac{1}{n}$ not depend on n

T(n) = O(1)

Addition using the carry-save representation

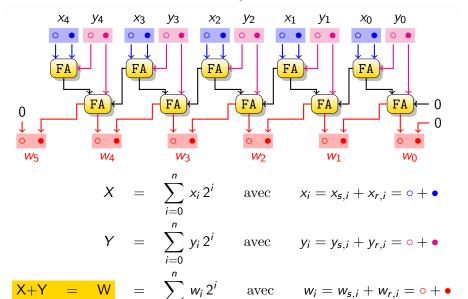
Q: How can we speed up addition?

R: Save the carries!



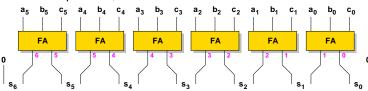
The computation time does not depend on $n \longrightarrow T(n) = O(1)$

Addition of 2 Carry-Save Numbers



Carry-Save Trees

Example with 3 inputs: A, B and C



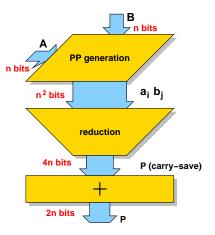
Carry-save reduction tree: n(h) non-redundant inputs can be reduced by a h-level carry-save tree where $n(h) = \lfloor 3n(h-1)/2 \rfloor$ and n(0) = 2

h	1	2	3	4	5	6	7	8	9	10	11
n(h)	3	4	6	9	13	19	28	42	63	94	141

Fast Multipliers

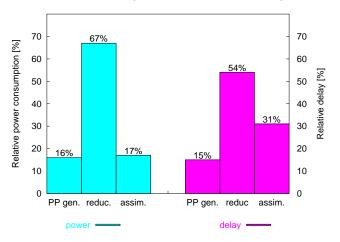
- partial products generation a_ib_j (with or without recoding)
 delay in O(1) (fanout a_i,b_j O(log n))
- sum of the partial products using a carry-save reduction tree → delay in O(log n)
- assimilation of the carries using a fast adder

 → delay in O(log n)



Multiplication delay $O(\log n)$, area $O(n^2)$

Power Consumption in Fast Multipliers



- 30% to 70% of redundant transitions (useless)
- place and route steps based on the internal arrival time
- add a pipeline stage

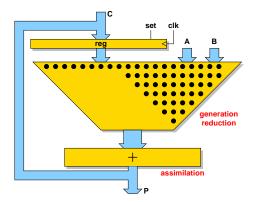
MAC and FMA

MAC: multiply and accumulate $P(t) = A \times B + P(t-1)$

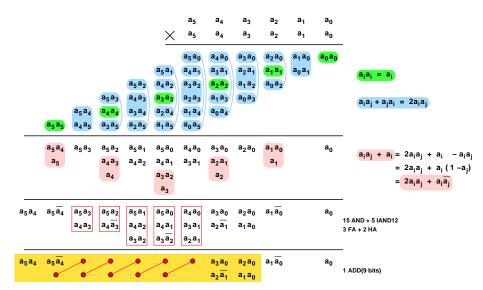
A, B are n-bit values and P a m-bit with m>>n (e.g.,

 $16 \times 16 + 40 \longrightarrow 40$ in some DSPs)

FMA: fused multiply and add $P = A \times B + C$ where A, B, C and P can be stored in different registers (recent general purpose processors, e.g., ltanium)



Squarer



Multiplication by Constants (1/2)

Problem: substitute a complete multiplier by an optimized sequence of shifts and additions and/or subtractions

Example: $p = 111463 \times x$

	111400	11
algo.	$p = 111463 \times x =$	#op.
direct	$(x \ll 16) + (x \ll 15) + (x \ll 13) + (x \ll 12) + (x \ll 9)$	10 ±
	$+(x \ll 8)+(x \ll 6)+(x \ll 5)+(x \ll 2)+(x \ll 1)+x$	
CSD	$(x \ll 17) - (x \ll 14) - (x \ll 12) + (x \ll 10)$	7 ±
	$-(x \ll 7) - (x \ll 5) + (x \ll 3) - x$	
Bernstein	$(((t_2 \ll 2) + x) \ll 3) - x$	5 ±
	where	
	$t_1 = (((x \ll 3) - x) \ll 2) - x$	
	$t_2=t_1\ll 7+t_1$	
Our	$(t_2 \ll 12) + (t_2 \ll 5) + t_1$	4 ±
	where	
	$t_1 = (x \ll 3) - x$	
	$t_2=(t_1\ll 2)-x$	

CSD: canonical signed digit, $111463 = 11011001101100111_2 = 100\overline{1}0\overline{1}0100\overline{1}0\overline{1}0100\overline{1}_2$

Multiplication by Constants (2/2)

Power savings: 30 up to 60%

operator	init.	[1]	[2]	our
DCT 8b	300	94	73	56
DCT 12b	368	100	84	70
DCT 16b	521	129	114	89
DCT 24b	789	212	_	119

Power savings: 10%

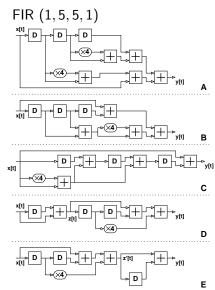
operator	init.	[1]	[2]	our
8 × 8 Had.	56	24	_	24
(16, 11) RM.	61	43	31	31
(15,7) BCH	72	48	47	44
(24, 12, 8) Golay	76	_	47	45

Power savings: up to 40%

operator	init.	[22]	our
8 bits	35	32	24
16 bits	72	70	46

Parks-McClellan filter

remez(25, [0 0.2 0.25 1], [1 1 0 0]).



Question: how many bits are correct?

$$\begin{cases} x_t &= (1.000\,000\,00)_2 & \textit{theoretical value} \\ x_c &= (0.111\,111\,11)_2 & \textit{value in the circuit} \\ |x_t - x_c| &= (0.000\,000\,01)_2 = 2^{-8} \end{cases}$$

Question: how many bits are correct?

$$\begin{cases} x_t &= (1.000\,000\,00)_2 & \textit{theoretical value} \\ x_c &= (0.111\,111\,11)_2 & \textit{value in the circuit} \\ |x_t - x_c| &= (0.000\,000\,01)_2 = 2^{-8} \end{cases}$$

Error, ϵ : distance between 2 objects (e.g. $\epsilon = ||f(x) - p(x)||$)

Accuracy, μ : (fractional) number of bits required to represent values with an error $\leq \epsilon$

$$\mu = -\log_2|\epsilon|$$

Question: how many bits are correct?

$$\begin{cases} x_t &= (1.000\,000\,00)_2 & \textit{theoretical value} \\ x_c &= (0.111\,111\,11)_2 & \textit{value in the circuit} \\ |x_t - x_c| &= (0.000\,000\,01)_2 = 2^{-8} \end{cases}$$

Error, ϵ : distance between 2 objects (e.g. $\epsilon = ||f(x) - p(x)||$)

Accuracy, μ : (fractional) number of bits required to represent values with an error $\leq \epsilon$

$$\mu = -\log_2|\epsilon|$$

Notation: μ expressed in terms of correct or significant bits ([cb], [sb])

Question: how many bits are correct?

$$\begin{cases} x_t &= (1.000\,000\,00)_2 & \textit{theoretical value} \\ x_c &= (0.111\,111\,11)_2 & \textit{value in the circuit} \\ |x_t - x_c| &= (0.000\,000\,01)_2 = 2^{-8} \end{cases}$$

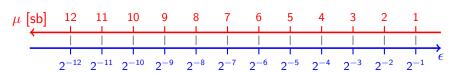
Error, ϵ : distance between 2 objects (e.g. $\epsilon = ||f(x) - p(x)||$)

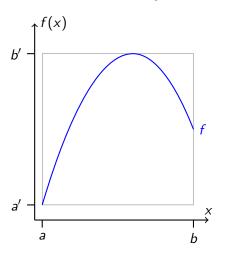
Accuracy, μ : (fractional) number of bits required to represent values with an error $\leq \epsilon$

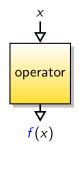
$$\mu = -\log_2|\epsilon|$$

Notation: μ expressed in terms of correct or significant bits ([cb], [sb])

Example: error $\epsilon = 0.0000107$ is equivalent to accuracy $\mu = 16.5$ sb

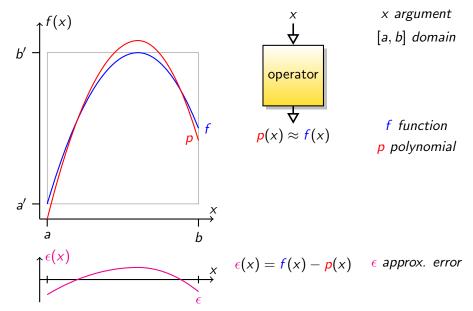


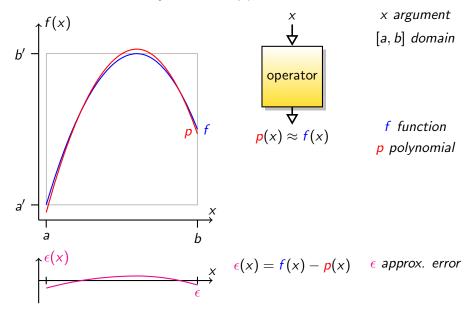


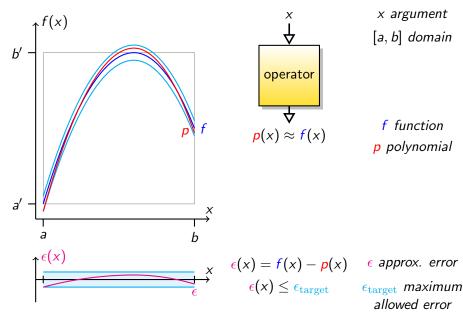


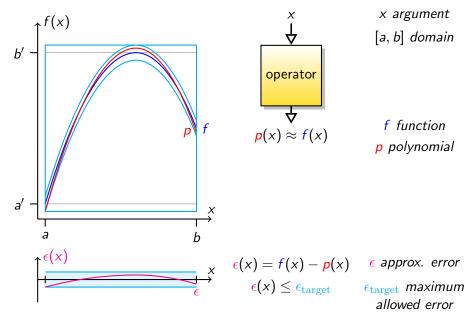
x argument [a, b] domain

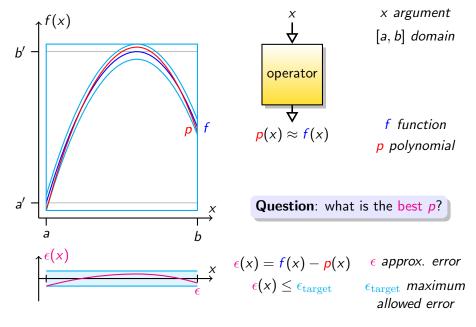
f function

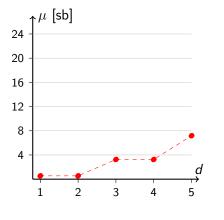


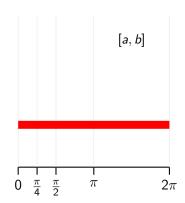


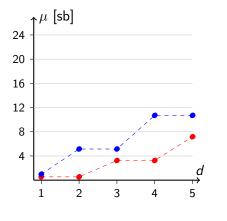


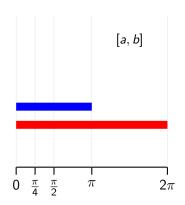


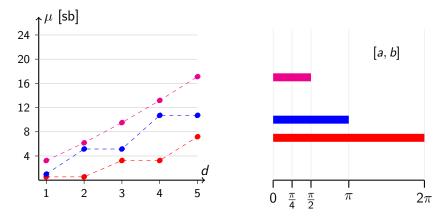






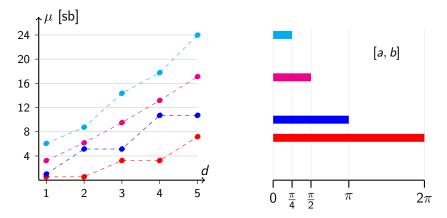






- higher accuracy

 higher degree
- higher degree ⇒ more costly evaluation



- higher accuracy

 higher degree
- higher degree ⇒ more costly evaluation

Polynomial Evaluation Schemes

scheme	computations	# ±	# ×
direct	$p_0 + p_1 x + p_2 x^2 + p_3 x^3$	3	5
Horner	$p_0 + (p_1 + (p_2 + p_3 x)x)x$	3	3
Estrin	$p_0 + p_1 x + (p_2 + p_3 x) x^2$	3	4

Trade-off:

- ullet direct scheme \longrightarrow high operation cost and smaller accuracy
- Horner scheme → smallest cost but sequential
- ullet Estrin scheme \longrightarrow some internal parallelism

Polynomial Evaluation Schemes

scheme	computations	# ±	# ×
direct	$p_0 + p_1 x + p_2 x^2 + p_3 x^3$	3	5
Horner	$p_0 + (p_1 + (p_2 + p_3 x)x)x$	3	3
Estrin	$p_0 + p_1 x + (p_2 + p_3 x) x^2$	3	4

Trade-off:

- direct scheme → high operation cost and smaller accuracy
- Horner scheme → smallest cost but sequential
- Estrin scheme → some internal parallelism

Question: what is the best evaluation scheme?

Round-off Errors

Round-off errors occur during most of computations:

- due to the finite accuracy during the computations
- small for a single operation (fraction of the LSB)
- accumulation of such errors may be a problem in long computation sequences
- need for a sufficient datapath width in order to limit round-off errors

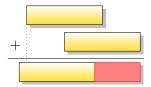
Examples: $1/3=0.33333333\ldots \to 0.3333$ or 0.3334 in $1\mathrm{Q}_{10}4$ format

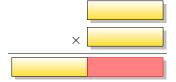
Round-off Errors

Round-off errors occur during most of computations:

- due to the finite accuracy during the computations
- small for a single operation (fraction of the LSB)
- accumulation of such errors may be a problem in long computation sequences
- need for a sufficient datapath width in order to limit round-off errors

Examples: $1/3=0.33333333... \rightarrow 0.3333$ or 0.3334 in $1Q_{10}4$ format





Round-off Errors

Round-off errors occur during most of computations:

- due to the finite accuracy during the computations
- small for a single operation (fraction of the LSB)
- accumulation of such errors may be a problem in long computation sequences
- need for a sufficient datapath width in order to limit round-off errors

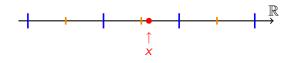
Examples: $1/3 = 0.33333333... \rightarrow 0.3333$ or 0.3334 in $1Q_{10}4$ format

Question: what is the best datapath width?

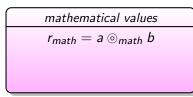
Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\triangle(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0, $\mathcal{N}(x)$ towards the nearest



representable values midpoints

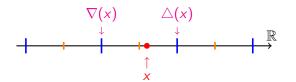


 $finite\ precision\ values$ $r_{finite}=a\odot_{finite}b$

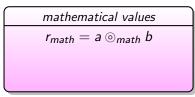
Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\triangle(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0, $\mathcal{N}(x)$ towards the nearest



representable values midpoints

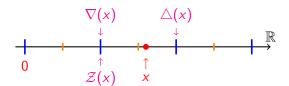


 $finite\ precision\ values$ $r_{finite}=a\odot_{finite}b$

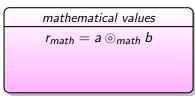
Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\triangle(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0, $\mathcal{N}(x)$ towards the nearest



representable values midpoints

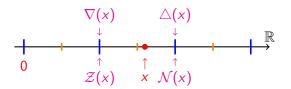


finite precision values $r_{finite} = a \odot_{finite} b$

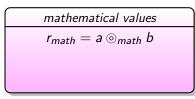
Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\triangle(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0, $\mathcal{N}(x)$ towards the nearest



representable values midpoints

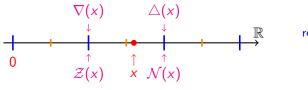


 $finite\ precision\ values$ $r_{finite}=a\odot_{finite}b$

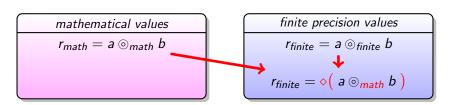
Rounding Modes and Correct Rounding

Notations:

- \odot is an operation $\pm, \times, \div \dots$
- \diamond is the active rounding mode (or quantization mode) IEEE-754: $\triangle(x)$ towards $+\infty$ (up), $\nabla(x)$ towards $-\infty$ (down), $\mathcal{Z}(x)$ towards 0, $\mathcal{N}(x)$ towards the nearest



representable values midpoints



Bounding Round-off Errors

Problem: it is very difficult to get tight bounds

Solutions:

- qualification: exhaustive or selected simulations
 simple but only validated bounds for small systems

Gappa Overview

- developed by Guillaume Melquiond
- goal: formal verification of the correctness of numerical programs:
 - software and hardware
 - ▶ integer, floating-point and fixed-point arithmetic $(\pm, \times, \div, \checkmark)$
- uses multiple-precision interval arithmetic, forward error analysis and expression rewriting to bound mathematical expressions (rounded and exact operators)
- generates a theorem and its proof which can be automatically checked using a proof assistant (e.g. Coq or HOL Light)
- reports tight error bounds for given expressions in a given domain
- ullet C++ code and free software licence (CeCILL \simeq GPL)
- publication: ACM Transactions on Mathematical Software, n. 1, vol. 37, 2010, pp: 2:1–20, doi: 10.1145/1644001.1644003
- source code and doc: http://gappa.gforge.inria.fr/

Gappa Example

Degree-2 polynomial approximation to e^x over [1/2, 1] and format 1Q9:

```
p0 = 571/512; p1 = 275/512; p2 = 545/512;
2
3 \times = fixed < -9, dn > (Mx):
4
5 \text{ y1 fixed} < -9, dn > = p2 * x + p1;
   fixed < -9, dn > = y1 * x + p0;
8 Mp = (p2 * Mx + p1) * Mx + p0;
10 {
     Mx in [0.5,1] /\ |Mp-Mf| in [0,0.001385]
11
12->
|p-Mf| in ?
14 }
```

```
Gappa-0.14.0 result ([a, b], x\{(\approx x)_{10}, \log_2 x\}, xby = x2^y): Results for Mx in [0.5, 1] and |Mp - Mf| in [0, 0.001385]: |p - Mf| in [0, 193518932894171697b-64 {0.0104907, 2^(-6.57475)}]
```

Question: what is the best (or a good) *p*?

Question: what is the best (or a good) datapath width?

Question: what is the best (or a good) evaluation scheme?

```
Question: what is the best (or a good) p?

mathematical p: minimax approximations

implemented p: simple selection of representable coefficients

links to other methods and tools
```

Question: what is the best (or a good) datapath width?

Question: what is the best (or a good) evaluation scheme?

```
Question: what is the best (or a good) p?
       → mathematical p: minimax approximations
       \rightarrow implemented p: simple selection of representable coefficients
          links to other methods and tools
Question: what is the best (or a good) datapath width?
         basic optimization method better heuristics under development...
```

Question: what is the best (or a good) evaluation scheme?

```
Question: what is the best (or a good) p?
      → mathematical p: minimax approximations
       \rightarrow implemented p: simple selection of representable coefficients
          links to other methods and tools
Question: what is the best (or a good) datapath width?
      → basic optimization method→ better heuristics under development...
Question: what is the best (or a good) evaluation scheme?
      → Horner or specific scheme examples. . .→ work still in progress. . .
```

Minimax Polynomial Approximations

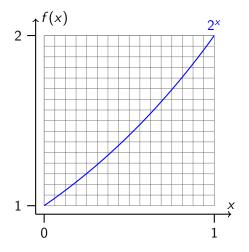
- approximation error $\epsilon_{
 m app} = ||f-p||_{\infty} = \max_{a \leq x \leq b} |f(x)-p(x)|$
- minimax polynomial approximation to f over [a, b] is p^* such that:

$$||f - p^*||_{\infty} = \min_{p \in \mathcal{P}_d} ||f - p||_{\infty}$$

- \mathcal{P}_d set of polynomials with real coefficients and degree $\leq d$
- p* computed using an algorithm from Remez (numerically implemented in Maple, Matlab, sollya...)

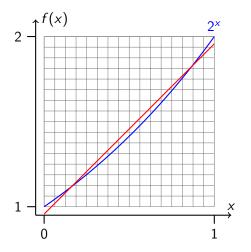
Problems:

- p^* coefficients in $\mathbb{R} \Longrightarrow$ conversion to finite precision
- during p^* evaluation, some round-off errors add up to ϵ_{app}



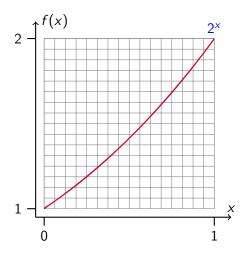
d	μ [sb]	$\epsilon_{ m app}$
1	4.53	4.31×10^{-2}
2	8.65	2.48×10^{-3}
3	13.18	$1.08 imes 10^{-4}$
4	18.04	3.71×10^{-6}
5	23.15	1.07×10^{-7}

p* '



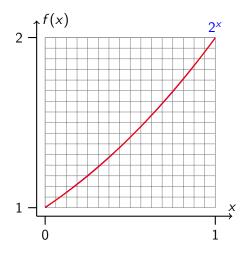
d	μ [sb]	$\epsilon_{ m app}$
1	4.53	4.31×10^{-2}
2	8.65	2.48×10^{-3}
3	13.18	$1.08 imes 10^{-4}$
4	18.04	3.71×10^{-6}
5	23.15	1.07×10^{-7}

$$p^* = 0.956964333 + 1.0000000000 \times$$



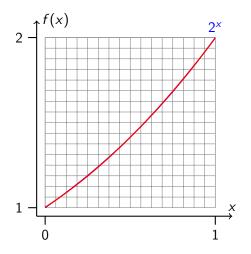
d	μ [sb]	$\epsilon_{ m app}$
1	4.53	4.31×10^{-2}
2	8.65	2.48×10^{-3}
3	13.18	$1.08 imes 10^{-4}$
4	18.04	3.71×10^{-6}
5	23.15	1.07×10^{-7}

$$p^* = 1.002476056 + x \times (0.651046780 + x \times 0.344001106)$$



d	μ [sb]	$\epsilon_{ m app}$
1	4.53	4.31×10^{-2}
2	8.65	2.48×10^{-3}
3	13.18	$1.08 imes 10^{-4}$
4	18.04	3.71×10^{-6}
5	23.15	1.07×10^{-7}

$$p^* = 0.999892965 + x \times (0.696457394 + x \times (0.224338364 + x \times 0.079204240))$$



d	μ [sb]	$\epsilon_{ m app}$
1	4.53	4.31×10^{-2}
2	8.65	2.48×10^{-3}
3	13.18	$1.08 imes 10^{-4}$
4	18.04	3.71×10^{-6}
5	23.15	1.07×10^{-7}

$$p^* = 1.000003704 + x \times (0.692966122 + x \times (0.241638445 + x \times (0.051690358 + x \times 0.013697664)))$$

Example: $f(x) = e^x$ over [1/2, 1] with d = 2, the remez function from sollya gives:

$$p^* = 1.116019297... + 0.535470348... \times x + 1.065407185... \times x^2$$

Example: $f(x) = e^x$ over [1/2, 1] with d = 2, the remez function from sollya gives:

$$p^* = 1.116019297... + 0.535470348... \times x + 1.065407185... \times x^2$$

Question: what are "good" representable values for p_0 , p_1 and p_2 ?

Problem: p^* is the best theoretical approximation to f (i.e. $p_i \in \mathbb{R}$)

Need: find good approximations with "machine-representable" coefficients

Example: $f(x) = e^x$ over [1/2, 1] with d = 2, the remez function from sollya gives:

$$p^* = 1.116019297... + 0.535470348... \times x + 1.065407185... \times x^2$$

Question: what are "good" representable values for p_0 , p_1 and p_2 ?

Problem: p^* is the best theoretical approximation to f (i.e. $p_i \in \mathbb{R}$)

Need: find good approximations with "machine-representable" coefficients

Above example with 1Q9 format (all values for domain [1/2, 1]):

- $\epsilon_{\mathrm{app}} = ||f p^*||_{\infty} \simeq 1.385 \times 10^{-3} \quad \leadsto \quad \simeq 9.4 \; \mathrm{sb}$
- $\frac{571}{512} + \frac{137}{256}x + \frac{545}{512}x^2 \rightarrow 8.1 \text{ sb} \quad (\forall i \text{ use } \mathcal{N}(p_i))$

Example: $f(x) = e^x$ over [1/2, 1] with d = 2, the remez function from sollya gives:

$$p^* = 1.116019297... + 0.535470348... \times x + 1.065407185... \times x^2$$

Question: what are "good" representable values for p_0 , p_1 and p_2 ?

Problem: p^* is the best theoretical approximation to f (i.e. $p_i \in \mathbb{R}$)

Need: find good approximations with "machine-representable" coefficients

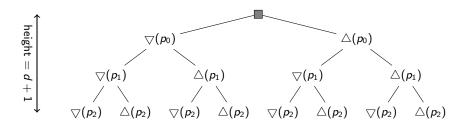
Above example with 1Q9 format (all values for domain [1/2, 1]):

- $\epsilon_{\mathrm{app}} = ||f p^*||_{\infty} \simeq 1.385 \times 10^{-3} \quad \leadsto \quad \simeq 9.4 \; \mathrm{sb}$
- $\frac{571}{512} + \frac{137}{256}x + \frac{545}{512}x^2 \rightarrow 8.1 \text{ sb} \quad (\forall i \text{ use } \mathcal{N}(p_i))$
- $\frac{571}{512} + \frac{275}{512}x + \frac{545}{512}x^2 \rightarrow 9.3 \text{ sb}$ (best selection)

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p_i^*

- round up $p_i = \triangle(p_i^*)$, round down $p_i = \nabla(p_i^*)$
- 2 values per coeff. \Longrightarrow total of 2^{d+1} values (but d is small)
- for each polynomial p evaluate $\epsilon_{\rm app}=||f-p||_{\infty}$, then select polynomial(s) with the smallest $\epsilon_{\rm app}$

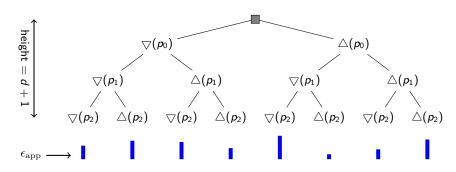


Result: $p(x) = \sum_{i=0}^{d} p_i x^i$ where all p_i are representable in target format

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p_i^*

- round up $p_i = \triangle(p_i^*)$, round down $p_i = \nabla(p_i^*)$
- 2 values per coeff. \Longrightarrow total of 2^{d+1} values (but d is small)
- for each polynomial p evaluate $\epsilon_{\rm app}=||f-p||_{\infty}$, then select polynomial(s) with the smallest $\epsilon_{\rm app}$

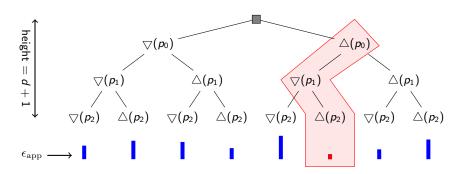


Result: $p(x) = \sum_{i=0}^{d} p_i x^i$ where all p_i are representable in target format

Basic Coefficient Selection Method

Idea: search among all the rounding modes for all the p_i^*

- round up $p_i = \triangle(p_i^*)$, round down $p_i = \nabla(p_i^*)$
- 2 values per coeff. \Longrightarrow total of 2^{d+1} values (but d is small)
- for each polynomial p evaluate $\epsilon_{\rm app}=||f-p||_{\infty}$, then select polynomial(s) with the smallest $\epsilon_{\rm app}$



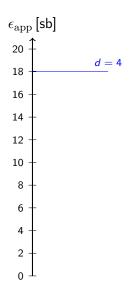
Result: $p(x) = \sum_{i=0}^{d} p_i x^i$ where all p_i are representable in target format

Example for $f(x) = 2^x$, $x \in [0, 1]$ and d = 4

$$\epsilon_{\rm app}(p^*) \quad \leadsto \quad 18.04 \text{ sb}$$

р	$\epsilon_{\mathrm{app}}(p)$	р	$\epsilon_{ m app}(extit{p})$
(12.00	$(\heartsuit, \heartsuit, \nabla, \nabla, \triangle)$	13.00
$(\heartsuit, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\nabla, \nabla, \nabla, \Delta, \Delta)$	14.03
$(\bigtriangledown, \bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown)$	13.00	$(\nabla, \nabla, \triangle, \nabla, \triangle)$	14.55
$(\bigtriangledown, \bigtriangledown, \triangle, \triangle, \bigtriangledown)$	14.99	$(\nabla, \nabla, \triangle, \triangle, \triangle)$	13.00
$(\bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\nabla, \triangle, \nabla, \nabla, \triangle)$	16.13
$(\bigtriangledown, \triangle, \bigtriangledown, \triangle, \bigtriangledown)$	17.12	$(\nabla, \triangle, \nabla, \triangle, \triangle)$	13.00
$(\heartsuit, \triangle, \triangle, \nabla, \nabla)$	15.71	$(\nabla, \triangle, \triangle, \nabla, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \triangle, \nabla)$	13.00	$(\nabla, \triangle, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	13.00
$(\triangle, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\triangle, \nabla, \nabla, \triangle, \triangle)$	13.00
$(\triangle, \nabla, \triangle, \nabla, \nabla)$	13.00	$(\triangle, \nabla, \triangle, \nabla, \triangle)$	13.00
$(\triangle, \nabla, \triangle, \triangle, \nabla)$	12.99	$(\triangle, \nabla, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.99	$(\triangle, \triangle, \nabla, \nabla, \triangle)$	12.98
$(\triangle, \triangle, \nabla, \triangle, \nabla)$	12.91	$(\triangle, \triangle, \nabla, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \nabla, \nabla)$	12.79	$(\triangle, \triangle, \triangle, \nabla, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \triangle, \bigcirc)$	12.00	$(\triangle, \triangle, \triangle, \triangle, \triangle)$	11.41

p represented by $(p_0, p_1, p_2, p_3, p_4)$

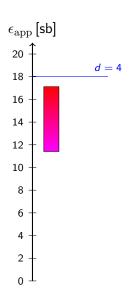


Example for $f(x) = 2^x$, $x \in [0, 1]$ and d = 4

$$\epsilon_{\rm app}(p^*) \quad \leadsto \quad 18.04 \text{ sb}$$

р	$\epsilon_{ m app}(p)$	р	$\epsilon_{ m app}(extbf{ extit{p}})$
(12.00	$(\heartsuit, \heartsuit, \nabla, \nabla, \triangle)$	13.00
$(\nabla, \nabla, \nabla, \Delta, \nabla)$	13.00	$(\nabla, \nabla, \nabla, \Delta, \Delta)$	14.03
$(\nabla, \nabla, \Delta, \nabla, \nabla)$	13.00	$(\nabla, \nabla, \Delta, \nabla, \Delta)$	14.55
$(\nabla, \nabla, \triangle, \triangle, \nabla)$	14.99	$(\nabla, \nabla, \triangle, \triangle, \triangle)$	13.00
$(\heartsuit, \triangle, \triangledown, \triangledown, \triangledown)$	13.00	$(\nabla, \triangle, \nabla, \nabla, \triangle)$	16.13
$(\nabla, \triangle, \nabla, \triangle, \nabla)$	17.12	$(\nabla, \triangle, \nabla, \triangle, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \nabla, \nabla)$	15.71	$(\nabla, \triangle, \triangle, \nabla, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \triangle, \nabla)$	13.00	$(\nabla, \triangle, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	13.00
$(\triangle, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\triangle, \nabla, \nabla, \triangle, \triangle)$	13.00
$(\triangle, \bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \nabla, \triangle, \nabla, \triangle)$	13.00
$(\triangle, \nabla, \triangle, \triangle, \nabla)$	12.99	$(\triangle, \nabla, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \nabla, \nabla, \nabla)$	12.99	$(\triangle, \triangle, \nabla, \nabla, \triangle)$	12.98
$(\triangle, \triangle, \nabla, \triangle, \nabla)$	12.91	$(\triangle, \triangle, \nabla, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \nabla, \nabla)$	12.79	$(\triangle, \triangle, \triangle, \nabla, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \triangle, \bigcirc)$	12.00	$(\triangle, \triangle, \triangle, \triangle, \triangle)$	11.41

p represented by $(p_0, p_1, p_2, p_3, p_4)$

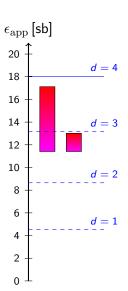


Example for $f(x) = 2^x$, $x \in [0, 1]$ and d = 4

$$\epsilon_{\rm app}(p^*) \quad \leadsto \quad 18.04 \text{ sb}$$

р	$\epsilon_{ m app}(p)$	р	$\epsilon_{ m app}(extbf{ extit{p}})$
(12.00	$(\heartsuit, \heartsuit, \nabla, \nabla, \triangle)$	13.00
$(\heartsuit, \heartsuit, \nabla, \triangle, \triangledown)$	13.00	$(\nabla, \nabla, \nabla, \Delta, \Delta)$	14.03
$(\nabla, \nabla, \Delta, \nabla, \nabla)$	13.00	$(\nabla, \nabla, \Delta, \nabla, \Delta)$	14.55
$(\nabla, \nabla, \triangle, \triangle, \nabla)$	14.99	$(\nabla, \nabla, \triangle, \triangle, \triangle)$	13.00
$(\heartsuit, \triangle, \triangledown, \triangledown, \triangledown)$	13.00	$(\nabla, \triangle, \nabla, \nabla, \triangle)$	16.13
$(\nabla, \triangle, \nabla, \triangle, \nabla)$	17.12	$(\nabla, \triangle, \nabla, \triangle, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \nabla, \nabla)$	15.71	$(\nabla, \triangle, \triangle, \nabla, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \triangle, \nabla)$	13.00	$(\nabla, \triangle, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown, \triangle)$	13.00
$(\triangle, \nabla, \nabla, \triangle, \nabla)$	13.00	$(\triangle, \nabla, \nabla, \triangle, \triangle)$	13.00
$(\triangle, \bigtriangledown, \triangle, \bigtriangledown, \bigtriangledown)$	13.00	$(\triangle, \nabla, \triangle, \nabla, \triangle)$	13.00
$(\triangle, \nabla, \triangle, \triangle, \nabla)$	12.99	$(\triangle, \nabla, \triangle, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \nabla, \nabla, \nabla)$	12.99	$(\triangle, \triangle, \nabla, \nabla, \triangle)$	12.98
$(\triangle, \triangle, \nabla, \triangle, \nabla)$	12.91	$(\triangle, \triangle, \nabla, \triangle, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \nabla, \nabla)$	12.79	$(\triangle, \triangle, \triangle, \nabla, \triangle)$	12.00
$(\triangle, \triangle, \triangle, \triangle, \bigcirc)$	12.00	$(\triangle, \triangle, \triangle, \triangle, \triangle)$	11.41

p represented by $(p_0, p_1, p_2, p_3, p_4)$



Example: 2^x over [0,1] and $\mu \leq 12$ sb (1/2)

Let us try with d = 3 (max. theoretical accuracy 13.18 sb):

$$p^*(x) = 0.999892965 + 0.696457394x + 0.224338364x^2 + 0.079204240x^3$$

Coefficients (fractional part) size selection:

1	12	13	14	15	16
$\epsilon_{ m app}$	12.38	12.45	13.00	13.00	13.02
# polynomials	0	0	2	2	7

Coefficients selection: for n = k + l = 1 + 14 bits, we get:

$(\heartsuit, \triangledown, \triangledown, \triangledown)$	11.41	$(\heartsuit, \heartsuit, \nabla, \triangle)$	12.00
$(\nabla, \nabla, \triangle, \nabla)$	12.00	$(\nabla, \nabla, \triangle, \triangle)$	12.84
$(\heartsuit, \triangle, \triangledown, \triangledown)$	12.00	$(\nabla, \triangle, \nabla, \triangle)$	13.00
$(\nabla, \triangle, \triangle, \nabla)$	13.00	$(\nabla, \triangle, \triangle, \triangle)$	12.36
$(\triangle, \bigtriangledown, \bigtriangledown, \bigtriangledown)$	12.00	$(\triangle, \nabla, \nabla, \triangle)$	12.25
$(\triangle, \bigtriangledown, \triangle, \bigtriangledown)$	12.23	$(\triangle, \nabla, \triangle, \triangle)$	12.23
$(\triangle, \triangle, \bigtriangledown, \bigtriangledown)$	12.13	$(\triangle, \triangle, \nabla, \triangle)$	12.12
$(\triangle, \triangle, \triangle, \bigtriangledown)$	12.05	$(\triangle, \triangle, \triangle, \triangle)$	11.64

Example: 2^x over [0,1] and $\mu \leq 12$ sb (2/2)

Datapath size selection:

n'	14	15	16	17	18	19	20
$\epsilon_{ m eval}$ direct	11.24	11.86	12.32	12.62	12.79	12.89	12.94
$\epsilon_{ m eval}$ Horner	11.32	11.93	12.36	12.65	12.81	12.90	12.95

Solution:
$$d = 3$$
, $n = k + l = 1 + 14$ and $n' = 16$ Implementation results:

solution	area	period	#cycles	latency	power
wo. tools	1.00	1.00	4	1.00	1.00
w. tools	0.83	0.82	3	0.61	0.68

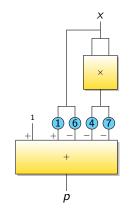
Example: \sqrt{x} over [1, 2] and $\mu \le 8$ sb

Selection of coefficients leading to sparse recodings

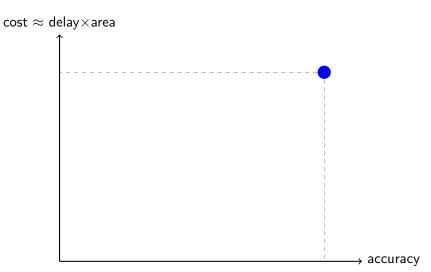
$$p^* = 1.00076383 + 0.48388463x - 0.071198745x^2$$

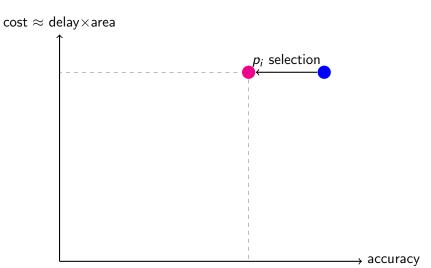
$$p = 1 + (0.10000\overline{1})_2 x - (0.0001001)_2 x^2$$

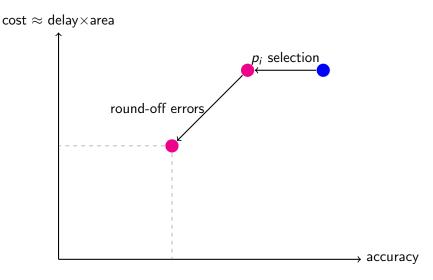
replace imes by a small number of \pm

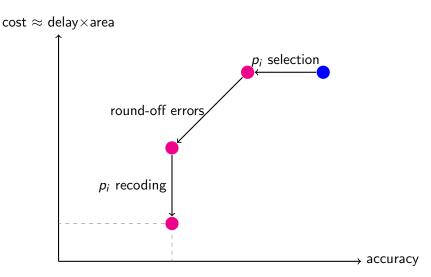


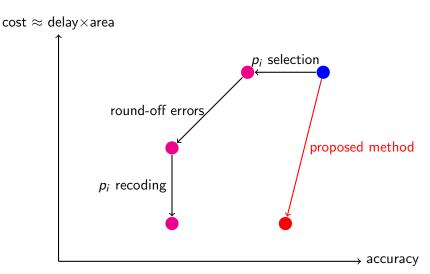
solution	area	period	#cycles	latency	power
wo. tools	1.00	1.00	2	1.00	1.00
w. tools	0.59	0.97	1	0.48	0.45











Conclusion

When designing circuits with arithmetic operators:

- use adequate number system(s)
- use adequate algorithm(s)
- use specific operator(s) when possible
- use optimization (open-source) tool(s):
 - ► floating-point data-paths: FloPoCo flopoco.gforge.inria.fr
 - divider generator: divgen
 http://lipforge.ens-lyon.fr/www/divgen/
 - polynomial approx.: sollya http://sollya.gforge.inria.fr/
 - rounding errors: gappa http://gappa.gforge.inria.fr/

The end, questions?

Contact:

- mailto:arnaud.tisserand@univ-ubs.fr
- http://www-labsticc.univ-ubs.fr/~tisseran
- CNRS
 Lab-STICC, Centre Recherche UBS
 Rue St Maudé. BP 92116. 56321 Lorient cedex, France

Thank you