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Abstract—We study an iterative discretization algorithm for solving
optimization problems regularized by the total variation norm. Its
design relies on ideas from the Frank-Wolfe algorithm, as well as
from semi-infinite programming. For smooth regularity terms, we
prove an eventual linear convergence rate guarantee.

I. EXCHANGE ALGORITHMS

For a bounded subset Ω ⊆ Rd, let M(Ω) denote the space
of Radon measures of bounded total variation ‖ · ‖M. For an
operator A :M(Ω)→ Rm and a function f : Rm → R ∪ {∞},
we consider the following optimization problem

min
µ∈M(Ω)

‖µ‖M + f(Aµ). (P)

This formulation encompasses for instance the infinite-
dimensional Basis Pursuit and the BLASSO, which in particular
can be applied in superresolution [1], [2], [11], [4]. The dual
program of (P) is given by

sup
q∈Rm,‖A∗q‖∞≤1

−f∗(q). (D)

In this work, we present theoretical properties of numerically
finding a solution of (P) provided one follows:

Algorithm A
1) Given a grid Ωk ⊆ Ω, find a solution pair (µk, qk) of the

(finite-dimensional) restrictions of (P) and (D);

min
µ∈M(Ωk)

‖µ‖M + f(Aµ) (Pk)

sup
q∈Rm,supx∈Ωk

|(A∗q)(x)|≤1

−f∗(q). (Dk)

2) Calculate the set Xk of local maximizers x of |A∗qk| with
|(A∗qk)(x)| > 1. Define new grid Ωk+1 := Ωk ∪Xk.

3) Repeat until convergence.
This strategy is an example of a so-called exchange algorithm,
applied to solve the semi-infinite program (D) [9], [7], [10].
Notably, it also has interesting connections to the so-called Frank-
Wolfe or Conditional gradient method [6], [5], [3].

II. EVENTUAL LINEAR CONERGENCE

It is not hard to prove that our exchange algorithm in great
generality will converge towards a solution pair of (P)–(D). Our
main finding is that this will occur at an eventually linear rate
under the following reasonable regularity assumptions:

1) The function f is differentiable, with an L-Lipschitz gradient

2) The measurement functions aj are all C2
0 .

3) (P) has a unique solution µ? =
∑s
i=1 α

?
i δξi .

4) The associated dual solution q? obeys the following :
a) |A∗q?(x)| = 1 only if x ∈ ξ
b) x 7→ |A∗q?(x)| is strongly concave around each ξi.

Statements like 4) have been proven to be true in the important
special case of f(v) = λ

2
‖v − b‖22 for a b = Aµ0 for an atomic

µ0 with well-separated support, at least for large values of λ, for
many classes of measurement operators A (see [4], [8]).

We may now formulate our main result. We say that the
algorithm has entered a τ -regime if in all future iterations, only
points within a distance τ from ξ will be added to the grid.

Theorem II.1. Under the above assumptions, Algorithm A obeys:

1) For each τ > 0, the algorithm will enter a τ -regime after
finitely many iterations.

2) After a finite number of iterations N , the algorithm will add
exactly one point xik in the proximity of each ξi.

3) For small τ > 0, the algorithm will enter a τ -regime after
at most N + C log(τ−1) iterations. For such k, we will
furthermore have inf (Pk) ≤ inf (P) + κτ2. That is, the
algorithm will eventually converge linearly.

III. STOPPING CRITERION AND MERGING

Since the grid Ωk will get increasingly fine around the points ξi,
the discretized problems will inevitably become increasingly ill-
conditioned, and we must hence typically stop the algorithm quite
early. A computable stopping criterion is given by the following
proposition.

Proposition III.1. Assume that each local maximizer xik is at a
distance at most δ from the grid Ωk. We then have

sup (Dk) ≤ sup (D) + Cδ2 , ‖qk − q?‖2 ≤ C2δ,

If f is strongly convex, δ is small and A obeys an additional
regularity condition, µk will furthermore be supported on clusters
Ki with supx∈Ki

‖x− ξi‖2 ≤ C3δ. If we merge such clusters to
their centers of mass, we obtain a measure

∑s
i=1 α̃

0
i δx̃0

i
with

sup
i
‖x̃0

i − ξi‖2 ≤ C3δ, ‖α̃− α?‖2 ≤ C4δ.

The last assertion of Proposition III.1 allows efficient merging
operations that pave the way to postprocessing the measure.
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