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Abstract

In numerical models, the connections among component members are crucial for the

prediction of structural behaviour under different type of solicitations. In reinforced

structures, the connections are often assumed rigid, what may not be realistic in many

practical cases. As alternative, a semi-rigid behaviour depending on a set of indepen-

dent parameters can be proposed. In this case, a new difficulty arises, which is finding

the appropriate values for those parameters. The present study proposes a numerical

strategy for identification of the connection parameters based on the Constitutive Rela-

tion Error (CRE). To include all available information, an augmented version (Modified

CRE) is implemented. The parameters search is iterative and require large amount

of system response analysis. To increase the computational efficiency, a reduced order

model is adopted. The proposed approach shows low-sensitivity to limited lack of in-

formation and also to support condition variability, both of them verified numerically.

∗Corresponding author, email: hugoitaime@gmail.com
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Running head: Wall-slab joint parameter identification using modal data

In this work, experimental tests for a real 1:4 scale structure is utilized for finding

the parameters corresponding to the first three modal shapes. A good agreement be-

tween numerical predictions and observations is verified, what highlights the accuracy

and stability of the proposed numerical approach. The present study may also find

applications in the domain of design of experiments.

Keywords— Finite Element Model Updating, Constitutive Relation Error, Semi-rigid joints,

Vibrating regime

1 Introduction

In reinforced concrete structures, wall-slab system consists in having walls and slabs concreted

monolithically at once, without beams or pillars. The entire apparatus of slabs and walls forms a

large structural single piece. This system permits high quality control on the building site when

compared to other traditional methods (such as beam-column). It also has reduced maintenance

costs along the lifespan. It is found in different structural systems including bridges, viaducts, low-

rise and tall buildings, nuclear power-plants [1, 2, 3]. The basic structural components are concrete

walls and slabs which are widely documented in the literature and in the international codes. In

the case of their union, much progress has been achieved for understanding their behaviour along

the last decades including the proposition of new assembling methods [4].

Previous works show that connection strength is influenced by the geometrical features of

neighbouring elements, and also by loading type and ratios [5]. When low reinforcement ratio is

adopted (as for walls and slabs), an overestimation of the shear resistance may be observed at the

connection level [6]. The accurate stiffness estimation is crucial, because in this region, a complex

combination of stresses is responsible for transmitting the preferred dynamical load path (from

slabs to walls until the foundations) [7].

Some experimental studies have been developed for investigating the behaviour of wall-slab con-

nections under earthquake loading. They indicate that increasing the amount of slab reinforcement

is not sufficient for strengthen the connection [8, 9]. In terms of topology, it has been observed that

anchorage bracing connection has higher strength, higher ductility and less damage as compared to

cross-bracing connections for tunnel forms [10]. The connection is also the place for concentration

of non-linear phenomena such as crack formation and propagation for both vertical and horizontal
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loadings [11].

Considering the entire structure, when different structural elements are joined, numerical in-

vestigation point that damage starts at the connection region between slabs and walls [12]. The

traditional Finite Element Method (FEM) analysis can be computational time-consuming and some

alternatives exist for decreasing computational effort without great accuracy losses. The Frame-

work Method (FWM) may be practicable for wall-slab systems containing openings [13]. Local

models of plasticity may be used for representing the damage effects for different seismic load cases

[14, 15, 16].

Despite the remarkable progress made in the recent years for structural analysis, additional

work is still needed for improving tests and design [17, 18]. Practical applications reveal consider-

able discrepancies between numerical predictions and experimental results, particularly for dynamic

loadings [19]. One alternative for fading these discrepancies is modifying the model input parame-

ters until the correlation of numerical results and test verification satisfies the needed requirements.

This process is known in the literature as Finite Element Model Updating, or parameter identifi-

cation. Several techniques have been proposed particularly concerning the Finite Element Method

[20, 21]. Not only local measures can be included, but also the whole field information [22, 23].

Non-deterministic sampling can be used for better identifying global minimum when there is no

previous knowledge about the reference parameters [24]. The same principle has found wide appli-

cability in other engineering fields such as soil mechanics and dams where accurate predictions for

design parameters have great impact in risk management [25, 26, 27, 28].

Due to its high degree of redundancy, wall-slab connection is often admitted as rigid for practical

purposes [29]. In this case, any damage at this region can compromise the global stability because

it put at risk the effective load transmission, becoming a weak link. In the present investigation,

we propose considering such connection initially as semi-rigid. The idea is similar to those found

in elastic joints widely used in the context of framed structures [30]. The advantage is a better

control over the effort transmission and accurate predictability under vibrating regimes. However,

finding the most representative parameter values is not a simple task because there are no specific

tests for this end. So, numerical strategies of parameter identification become imperative in this

domain.

One successful technique for model updating is formulating the parameter search as an opti-

mization problem using the concept of Constitutive Relation Error (CRE) [31, 32]. This concept
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was originally developed for measuring the quality of approximate solutions, and since then, the

CRE has been developed and validated in distinct application areas including the complex phe-

nomena of damping [33]. Based on a strong physical sense, the CRE has been demonstrated to be

a robust performance measure [34].

In the present study, the connection between structural elements are assumed semi-rigid. Then

we propose a numerical procedure based on the CRE formulation for identifying the corresponding

set of elastic parameters. The procedure is designed to consider all information available from

the vibrating regime. The algorithm robustness is manifested on its ability to handle support

condition variabilities and also a limited lack of information. As application, the model predictions

are compared to experimental results to assess its practical usability and stability.

2 CRE Problem formulation

2.1 Continuous form

Let Ω represent the domain of interest for the present study. The solid is composed of inde-

pendent deformable solids, Ωi ⊂ R3, each with boundary, ∂Ωi. The environmental actions can

be specified by displacement constraints Udi on a part ∂1Ωi ⊂ ∂Ωi, and traction forces Fdi on

∂2Ωi ⊂ ∂Ωi, for any instant of time t ∈ [0, T ]. The constraints are applied on complementary parts

of each body, ∂1Ωi∪∂2Ωi∪Γij = ∂Ωi. The connection region among two arbitrary domains is noted

Γij = ∂Ωi ∩ ∂Ωj . The body forces are denoted fdi acting through the domain Ωi. A schematic

structure composed of two plates is shown in Figure 1.

The core aspect of CRE theory is separating the governing equations in the following two dis-

tinct categories [32]: the reliable field comprises all equations that must be strictly respected, and

the unreliable field include only the equations susceptible to be doubtful. The choice of which equa-

tion belongs to which category is not unique. It is the designer who is responsible for evaluating the

best scenario according to the problem to be solved. In the present case, the following categories

are adopted.

Category 1: The field is reliable whenever it holds:

� Kinematic admissibility. The displacement field is kinematically admissible, Ui ∈ U i, when-

ever it satisfies:
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– Regularity conditions,

– Initial conditions, ∀M ∈ Ωi

Ui(t = 0) = U0
i ,

dUi

dt
(t = 0) = U̇

0
i (1)

– Constraints conditions: ∀t ∈ [0, T ],

Ui|∂1Ωi
= Udi (2)

– Substructure/interface compatibility: ∀t ∈ [0, T ],

Ui|Γij= Ûi (3)

It is defined the homogeneous constraint displacement field in Ωi × [0, T ]:

U i
0 = {Ui(M, t) ∈ U i,Ui(M, t)|∂1Ωi

= 0}

� Dynamic admissibility. The stress field is dynamically admissible, σi ∈ S i, if ∀t ∈ [0, T ],

∀U∗
i ∈ U i

0 , then it holds:

∫
Ωi

(
ρi
d2Ui

dt2
+ fdi

)
·U∗

i dΩi +

∫
Ωi

Tr(σiε(U
∗
i ))dΩi =

∫
∂2Ωi

Fdi ·U
∗
i d∂Ωi +

∫
Γij

σinU
∗
i dΓ (4)

– Substructure/interface compatibility: ∀t ∈ [0, T ]

σin|Γij+σ̂in|Γij= 0 (5)

� Substructure Constitutive relation field.

– Material behaviour. The constitutive material of each independent solid is assumed

homogeneous, isotropic and linear. The material model is expressed by:

∀M ∈ Ωi,∀t ∈ [0, T ] σi = Kiε(Ui) (6)

where Ki is the material Hooke tensor and ε(Ui) is the small strain tensor.
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Category 2: The field is unreliable for the following expression:

R̂|Γij= C(Ûi − Ûj) ∀M ∈ Γij ,∀t ∈ [0, T ] (7)

These categories are valid for each entity separately. The hat in expressions (3) and (5) indi-

cates the interface quantities. To solve the mechanical problem, it is necessary to specify how the

hatted quantities are related. It is worth mentioning the formulation enables exploring different

constitutive relations for representing various interface behaviours. In the present study, the con-

nections are assumed having no mass and linear response, which is expressed by the relation (7).

C stands for Hooke operator depending on a set of real parameters, θ.

According to the CRE theory, it is important to define a functional for measuring the quality

of a given solution. Let the pair (U, σ) = s be admissible, i.e. it verifies the reliable equations. For

a given solution s, the functional E2
RdC has the following properties:

E2
RdC(U, σ) > 0 (8)

E2
RdC(U, σ) = 0⇔ (U, σ) satisfies exactly the unreliable equations (9)

In the present study, the performance functional is specified along the interface region, but not

exclusively. It may also include the support conditions because they can be interpreted as interfaces

between the structure and the ground. This measure is expressed by the following equation:

E2
RdC =

1

2

∫
Γij

(R̂|Γij−C(Ûi − Ûj))C
−1(R̂|Γij−C(Ûi − Ûj))dΓij (10)

The intended applications consist of structures under vibrating regime. In this case, the inverse

problem needs to include all information collected from the data acquisition system. In general,

this information can be transformed into displacements for modal analysis. To consider these

displacement measures, the performance functional needs to be augmented [35]. The new functional

is called Modified Constitutive Relation Error (MCRE) and it is defined as follows:

(11)
η2 =

1

2

∫
Γij

(R̂|Γij − C(Ûi − Ûj))C
−1(R̂|Γij − C(Ûi − Ûj))dΓij

+
1

2

r

1− r
(ΠU− Ũ(ω))Gu(ΠU− Ũ(ω))

Note that equation (10) and (11) are quadratic forms. Both the functionals are in agreement
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with the properties expressed in equations (8) and (9). In expression (11), Gu is defined as the

Hookean operator condensed at the points where the displacement field is being measured. Ũ(ω)

stands for the measured field at a specific frequency. r is a real number belonging to interval [0, 1)

that permits agreeing more confidence to the model or to the reference measures. The field Ûi is

a subset of Ui. The effort transmission at the interface is controlled by the set of real parameters,

C = C(θ). Any changes in θ have an implicit influence on Ui, and consequently, on Ûi. In this

case, η2 is a function of θ and the searched joint parameters correspond to those minimizing the

quantity expressed by equation (11).

The final problem can be written in a continuous form as follows:

Problem 1

Find the parameter set θ such that:

• each pair (σm,Um) belongs to the admissible set of reliable equations;

• θ∗ minimizes η2(θ) (equation (11)).

It is worth mentioning σ depends on dynamical admissibility conditions, whereas U is originated

from the compatible kinematically admissible field. When both of them respect the connection

constitutive relation (equation (7)), mathematically, the value of E2
RdC becomes zero. However,

for real-world application this norm rarely comes to zero due to several sources of uncertainties,

for example, measurement noise, presence of neglected non-linear phenomena, further modelling

errors, etc. In despite of that, the solution depends continuously on C which represents the key

aspect for the identification procedure.

2.2 Discrete form

The Problem 1 is solved using the standard FEM formalism. Let {U} be the discrete kinemati-

cally admissible field, {V } is the corresponding dynamical admissible field, {Ũ} is the discrete field

measures, [C(θ)] is the connection constitutive matrix, and [Π] and [Ξ] are projector matrices. The

discrete version of MCRE is written as follows:

η2(U, V, θ) =
1

2
{[Π](U − V )}T [C({θ})] {[Π](U − V )}+

1

2

r

1− r
{[Ξ]U − Ũ}T [Gu]{[Ξ]U − Ũ} (12)

The dynamical equilibrium equation is included using the Lagrangian augmented form expressed
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by:

L(U, V, θ, λ) =
1

2
{[Π](U − V )}T [C({θ})] {[Π](U − V )}+

1

2

r

1− r
{[Ξ]U − Ũ}T [Gu]{[Ξ]U − Ũ}

−{λ}T
(
[K] {V } − ω2[M ] {U} − {F}

)
(13)

The pair of admissible fields is obtained from the stationarity of the augmented Lagrangian

maintaining {θ} fixed at a given ω. Let {θ}f represent the fixed parameter set, and [C({θ}f )] = [C].

The stationarity condition is expressed when:

∂L

∂U
= [Π]T [C][Π]{U − V }+

r

1− r
[Gu] {[Ξ]U − Ũ}+ ω2[M ]{λ} = {0} (14)

∂L

∂V
= [Π]T [C][Π]{U − V }+ [K]{λ} = {0} (15)

∂L

∂λ
= [K]{V } − ω2[M ]{U} − {F} = {0} (16)

These equations can be written in a linear system form:


[Π]T [C][Π] r

1−r [Gu] ω2[M ]

[Π]T [C][Π] 0 [K]

−[K] [K]− ω2[M ] 0



U − V

U

λ

 =


r

1−r [Gu][Ξ]Ũ

0

F

 (17)

The matrix [C] and [K] depend on the vector parameter {θ}f , so does the solution of the linear

system. Using the output quantities {U}, {V } and {λ} from equation (17), the norm expressed by

equation (12) provides a direct way to calculate the sensitivity with respect to {θ} at the fixed set

{θ}f . This dependence can be found using the Lagrangian for a given ω:

∂

∂θi
η2(θ) =

∂

∂θi
L(U(θ), V (θ), λ(θ), θ) (18)

∂

∂θi
η2(θ) =

∂L

∂U︸︷︷︸
=0

∂U

∂θi
+
∂L

∂V︸︷︷︸
=0

∂V

∂θi
+
∂L

∂λ︸︷︷︸
=0

∂λ

∂θi
+
∂L

∂θi
(19)

The quantities
∂L

∂U
,
∂L

∂V
and

∂L

∂λ
are null because they come from the Lagrangian stationariness.

It comes:

∂

∂θi
η2(θ) =

∂L

∂θi
(20)
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∂

∂θi
η2(θ) =

∂

∂θi

[
1

2
{[Π](U − V )}T [C({θ})] {[Π](U − V )}+

1

2

r

1− r
{[Ξ]U − Ũ}T [Gu]{[Ξ]U − Ũ}

−{λ}T
(
[K] {V } − ω2[M ] {U} − {F}

) ]
(21)

It leads to the final expression for the gradient of the Modified Constitutive Relation Error (12):

∇i =
∂

∂θi
η2(θ) =

1

2
{U − V }T [Π]T

∂[C({θ})]
∂θi

[Π]{U − V } − {λ}T ∂[K]

∂θi
{V } (22)

The classical steepest gradient approach was utilized for updating the design variables. However,

other algorithms may perform better such as Newton or BFGS. Despite the fact that the system

from equation (17) is linear, it may become computationally expensive for real-world structures.

In this case, Model Order Reduction (MOR) is an available technique for improving efficiency. Let

the reduced quantities be identified by subscript R and be written as follows:

{X} = [H]{XR} , ∀ {X} equal to {U} , {V } , {λ} , (23)

[KR] = [H]T [K][H] , [MR] = [H]T [M ][H] , [GuR] = [H]T [Gu][H] , [CR] = [H]T [C][H], (24)

in which [H] denotes reduced basis. The reduced basis consists in a truncated real modal basis

which is built by taking N real eigenmodes {φi}, i = 1 to N [36]. Substituting equations (23)

and (24) into linear system given by equations (17) yields to a much smaller linear system to solve

whose dimension is three times those reduced basis:

[AR]{XR} = {BR}, (25)

where [AR], {XR} and {BR} are expressed as follows:

[AR] =


[ΠR]T [CR][ΠR] r

1−r [GuR] ω2[MR]

[ΠR]T [CR][ΠR] 0 [KR]

−[KR] [KR]− ω2[MR] 0

 , (26)
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with

{XR} =


UR − VR

UR

λR

 and {BR} =


r

1−r [GuR][Ξ]Ũ

0

FR

 . (27)

These equations can be implemented using the majority of FEM purpose software. In the

present study, Cast3m software [37] was used for implementing the procedure described in Algo-

rithm 1.

Algorithm 1 Proposed task sequence

1: procedure SetInputData
2: Load geometry, material, mesh, fixing conditions
3: Set the initial parameter set {θ}
4: procedure SetReferenceMeasure
5: Load the available experimental measures

6: loop:
7: Obtain the pair of dynamical and kinematical admissible fields ( Equation (25))
8: Calculate the MCRE (Equation (12))
9: if MCRE > Tolerance then

10: Calculate the gradient ∇i from Equation (22).
11: θi ← θi + α∇i.
12: goto loop
13: else
14: goto endloop

15: endloop:
16: procedure PostProcessing
17: Post treat all required information

3 Application to a representative reinforced concrete

structure

3.1 Presentation of the structure

In the present section, we describe how the MCRE norm can be helpful on real world situations.

The structure under interest is a 1:4 reduced scale model of a representative reinforced concrete

wall-slab junction, with usual construction provisions in nuclear industry. This reinforced concrete

structure (herein referred to as mock-up) is used for validating purposes of numerical models con-
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sidering dynamical actions. The experimental tests were performed at CEA (French Alternative

Energies and Atomic Energy Commission), by means of the AZALEE shaking table, as part of re-

search program launched and funded by Electricité De France (EDF) and CEA [38]. The mock-up

geometrical perspective is showed in Figure 2. The material parameters adopted in the following

exposition are shown in Table 1 and the geometrical dimensions are illustrated in Figure 3.

The physical mock-up is represented by a numerical model (Figure 4) developed with Cast3m

[37]. The supporting mesh is composed by 616 quadrilateral shell elements and 60 three-dimensional

beam elements. The gap between the bottom wall and the shaking table is handled by kinematic

relations. The physical joints are classified into 4 types, as shown in Figure 4. Connection type 1

represents the four top pillar joints. Connection type 2 encompasses the four bottom pillar joints.

Connection 3 represents the two joints below the wall. Connection wall-slab represents the physical

union between both structural members. Each connection can have at most 6 linear stiffness (three

translational and three rotational) according to each Cartesian axis. These stiffnesses control the

transmission of efforts, and the total number of parameters to be identified can reach up to 24. It

is not evident such identification because it depends on the amount and quality of the available

information and also in the interrelation among the parameters. These aspects are further discussed

hereafter.

The experimental mock-up possesses accelerometers distributed along all structural members.

The measures are made for translation according to the three axes. The corresponding position

on the numerical model is illustrated by small points in Figure 5. Note that there are sensors

near the fixation region in order to capture eventual movements in these regions. There are also

sensors located on the vibrating table which are used to verify the eventual differential deformation

referring to the mock-up connection supports.

3.2 The effects of corrupted data

Essentially every measure of any physical system is uncertain. Part of this uncertainty is

statistically intrinsic and depends on the available measurement devices. It is distinct from the

systematic error, where other manageable sources of variabilities are present. The idea behind this

application is showing how the MCRE can be helpful in finding corrupted data. To achieve this, the

numerical model showed in Figure 4 is used to create controlled corrupted modal measures. The

target parameter is the rotational stiffness around y, under the wall (Connection 3). Its reference

11



Running head: Wall-slab joint parameter identification using modal data

value is 1.76×107N.m/rad. The corrupted data is generated by choosing one sensor randomly and

inverting its measurement axis. Note that, when fixing the sensors in the experimental apparatus, it

is not rare to reverse the measuring axes especially when there are numerous sensors to be installed.

The effects of the corrupted data are shown in Figure 6. The integrate reference data makes the

MCRE norm tend to zero before convergence. This behaviour is not the case when the corrupted

data is utilized. The reason is that the shape predicted by the defective sensor cannot be met by

the numerical model under hypothesis of continuity. This gap between model and measure creates

a residue in the second term of equation (12) that can be minimized, but not brought to zero. This

residue is observed on the flat part of the graphic. In terms of parameter convergence (Figure 7),

it is possible to see that both reference data lead to the same value for the identified parameter.

The corrupted data slows the convergence process due to the loss of gradient predictability in

localized regions. However, the algorithm maintains its robustness and stability in finding the

correct parameter. The next question is: in what extent?

To identify the limits of procedure robustness, the number of defective sensors is increased and

the effects are monitored by the change on the behaviour of the MCRE norm. Let CS stands for

Corrupted Sensor. The evolution of MCRE according to the number of CS is shown in Figure

8. The number of CS varies from 0 to 15 (around 40% corrupted data). It can be seen the

negative effect for the identification process. The MCRE norm loses its quadratic-like behaviour

and eventually become flat or monotonically increasing. In this situation, the target parameter

cannot be correctly identified.

It is important to verify whether the mesh refinement has impacted these results or not. For this

purpose, three meshes containing increasing number of finite elements are defined such as: Level 1

contains 616 elements, Level 2 contains 2344 elements and Level 3 contains 5224 elements. The three

meshes are illustrated in Figure 9. Then, the numerical test for identifying rotational stiffness is

performed for each mesh assuming no corrupted sensors. The results can be seen in Figure 10. The

refinement level seems to impact the cost function history, in particular, far from the convergence

point. However, the identified parameter remains the same in all cases. This suggests that good

estimations of searched parameter can be obtained even in the presence of relatively coarse meshes.

In real world problems, complex meshes are often the case, what makes successive refinements

impractical. In these cases, stability, in terms of mesh dependence, is extremely valuable. Based

on these results, the Level 1 mesh is assumed in all analysis hereafter.
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For sake of efficiency, not all connections need to be updated at the same step in the numerical

procedure. The MCRE is helpful in deciding whether a joint should be updated or not. This choice

is guided by the contribution that each connection gives to the global MCRE measure. For that,

the first term of equation (12) serves as corrector indicator. The more the joint contributes to the

MCRE, the greater is the indicator and the more its parameters are updated. The corrupt data

can also impact this process.

In Figure 11, it is shown the evolution of the corrector indicator for each connection from 1 to

4 (4 represent the wall-slab connection) for the initial step without loss of generality. The increase

of the number of corrupted sensors are represented along the depth direction. According to this

figure, when there is no data corruption, the numerical procedure should update the connection 1.

This choice is unchanged up to reach 8 CS with a certain robustness. However, when there are 15

CS, the indicator will point out the connection 2 should be updated instead of 1. The decision on

which parameters to update can be misguided due to data corruption.

The norm presented in equation (12) still provides further information concerning corrupt data.

The second term is related exclusively to the reference measures. Let τi represent the partial

contribution of the i-th sensor. The operator [Gu] can be diagonal and located only at the specific

location of each sensor. In this case the norm results a scalar value representing the local deviation

from the reference shape. Let ns be the number of data sensors, one can define the following

expression:

τi =
{[Ξ]U − Ũ}T [Gu]i{[Ξ]U − Ũ}∑ns
l=1{[Ξ]U − Ũ}T [Gu]l{[Ξ]U − Ũ}

(28)

Considering the 38 sensors available, it is illustrated in Figure 12 the overall contribution

when there is no data corruption. Note that there are no appealing values among them. Even

contributions around 17% appears 4 times for the sensors 35, 36, 37 and 38. This value is about

three times superior when compared to the second highest (6%), but still not exclusive. Note

the difference in Figure 13 where one corrupt sensor is present. The sensor number 10 responds

alone for 60% of global error measure which is at least six times superior than the second highest

value. This is exactly the sensor used for generating the data corruption. The same behaviour is

observed when an additional sensor is considered corrupted. As shown in Figure 14, sensor 10 and

27 responds for about 40% and 33% respectively of the global error measure. These values are at

least six times greater than the second highest.
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Considering this information as indicator of data corruption, it is possible to focus attention

into these specific sensors. In this case, the source of data errors can be investigated and the

designer can decide whether the information can be still used or not. Suppose both sensors are

suppressed from the analysis. The new error measure contribution among the remaining sensors is

showed in Figure 15. Note the resemblance to the case having no data corruption (Figure 12), now

with two sensors less than previously.

Systematic errors can corrupt the information and have a negative impact on the parameter

identification process. The proposed MCRE formulation manifest a certain robustness to them

but is not immune, as any numerical approach. The major feature that can be retained from

this application is the fact that the proposed norm in equation (12) is a multivalent quantity. In

addition to serve as cost function and gradient calculation, it can be used for investigating the

eventual existence of corrupted data in the available information, and even serve to localize it. In

an identification algorithm, the model term may indicate which areas should be updated instead

of updating all areas at the same time. In other terms, it can behave as a filter. It is evident that

the control of input data is a crucial point. Provided the noise stays under accepted limits, the

proposed procedure can identify the intended parameter accurately.

It is worth mentioning that systematic errors might be better treated using different norm

propositions, in particular, less sensitive to input data errors. This is not a simple task from

a deterministic point of view. In this case, probabilistic approaches can be helpful in dealing

with different sources of errors at the same time [39]. Despite being promising, probabilistic cost

functions were not investigated in the present study.

3.3 The effects of boundary condition perturbations

Understanding the influence of boundary conditions is another key factor for both static and

dynamic actions. In statics, depending on the support positions it is possible to obtain structures

less compliant [40]. In dynamics, the existing supports can directly affect the low-frequency vibra-

tion regime of a structure. The inspiration for that comes from the experiments. It is remarked

that ideal boundary conditions are rarely met in complex structural experiments. For example,

fixed support conditions are essentially unachievable because all materials manifest deformation,

even very small ones. A more realistic condition is semi-rigid supports as those simulated in the

present application. So, the question is: if the real boundary conditions do not behave as ideally
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assumed, is the process of identification influenced? If so, in which manner?

To address these questions, we propose a methodology using a controlled perturbation of the

boundary conditions. The reference structure has ideal pinned condition at connection 1, perfect

transmission of efforts at wall-slab joint, semi-rigid supports at connection 2 (Reference value

ky = 1 × 107N ·m) and 3 (Reference value kθy = 1.76 × 107N ·m/rad). Then we decrease 15%

in the stiffness at a given connection along a given direction to allow relative displacements. The

decrease occurs at connections other that where the target parameter is located. The idea is

checking if the target parameter inside a specified connection can still be identified when the other

connections around are perturbed.

The graphic shown in Figure 16 illustrates the response captured by the MCRE norm for

identifying the rotational rigidity at connection 3. Three cases are shown. The first one is when

there is no perturbation at any connection. The second is named Independent Perturbation (IP). It

occurs when the parameter being perturbed does not affect the parameter being identified. In this

example, the perturbed parameter is the translational stiffness along the y direction at connection

2. Although the MCRE norm does not assume the same values along the range, it presents the

same minimal point. So essentially, this kind of fluctuation is not problematic. The third class

of perturbation is called Dependent Perturbation (DP). It occurs when the perturbed parameter

disturbs the target parameter identification. In this case, there is some unknown relation between

the two variables that affects directly the cost function. The perturbed parameter now is the

translational stiffness along the z direction at connection 2. When it occurs, the target parameter

is still identified but it is underestimated. Note how this fluctuation can mislead the convergence

process.

A similar behaviour is observed for the second target parameter (translational rigidity along

y direction at connection 2). In Figure 17, it is shown the identification comparison. The IP

perturbing parameter is the rotational rigidity along the x direction at connection 1. The DP

parameter is the translational stiffness in along the z direction at the same connection. The IP

perturbation keeps almost unchanged the MCRE values whereas the DP overestimates the searched

parameter value. This effect can be problematic because the gradient optimization method can

easily fall into local minimum induced by the unknown interrelation among the support conditions.

The graphs plotted in Figures 16 and 17 were obtained using the first three modes of vibration.

The choice of which mode should be used for identifying a given parameter can also be challenging.
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The target parameter now is the translational rigidity along z direction at the wall-slab junction

(Reference value kz = 1×107N ·m). The DP parameter is the rotational rigidity along y direction at

connection 2, whereas the IP parameter is the translational stiffness along x direction at connection

1. It is shown in Figure 18 the evolution of the MCRE norm considering only the mode 1 or mode

2. None of them are able to identify correctly the parameter searched even in the absence of

perturbation. However, when the third mode shape is considered, the parameter can be identified

as shown in Figure 19. The same pattern previously observed appears with overestimation of the

target parameter for DP. The key reason for understanding this effect is the modal shape. In order

to identify a certain parameter, in general, one should dispose of a modal shape that mobilizes

enough energy where the identification is expected. Otherwise, the updating procedure risks being

unable to identify the wanted parameter.

To conclude, the answer for the question posed is positive under certain conditions. The pertur-

bation on the boundary conditions can still permit the identification of parameters at the distinct

connections. When the perturbations can be classified as IP, it poses no problem. However, when

the estimated perturbations are DP type it can disturb the convergence procedure and misguide

the algorithm. In this case, further care must be taken in order to mitigate these effects. It is worth

mentioning the possibility of enlarging the set of available information. Actions such as increasing

the amount of measure points or the number of measured modal shapes may lead a DP to become

an IP type.

3.4 Identifying the assembling rigidity

In the real world, all the above-mentioned effects occur simultaneously and a clear distinction

of their causes is rarely possible. In such a case, the previous discussions become handful for

eliminating spurious error sources that disturb the identification process. As a final application,

the intention now is finding the suitable parameters set that best represents the first three mode

shapes and frequencies observed on the experimental mock-up.

When dealing with identification problem under dynamic regime, it is important to have proper

estimates for effective masses. Comparing both models in terms of total mass, the experimental

estimation is 5.780 kg whereas the numerical mock-up is 5.776 kg. The good correspondence

between these two values shows the suitable mass parameters assumed for the remaining steps.

An important aspect is choosing which parameters need to be updated. There is no fixed rule
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for that. As a sign, the mock-up metallic supports manifest certain flexibility when the experiment

is performed. The slight movement observed correspond ideally to the rotation around the y axis

and translation along the z axis, both at connection 3. Based on such observations we chose to

update solely these two parameters. The remaining directions of effort transmission are assumed

ideal.

In Figure 20, it is shown the MCRE as function of the rotational rigidity for the first mode of

vibration. The point of minimum value is 1.71× 107N ·m/rad and it corresponds to the searched

parameter. For the second parameter, the remaining two modes are used. Note that the second

mode does not permit its identification (Figure 21). Constant values of MCRE indicate that the

evolution of the parameter under question does not affect the cost function, or it is irrelevant to

the model. However, it happens for a specific mode. When the third mode is utilized, it becomes

possible to identify it. The value for the translational rigidity along z axis is 1.94× 108N/m.

The addition of these parameters to the initial model results in the model updated. The new

modes and frequencies updated are shown in Figure 22, Figure 23 and Figure 24. Essentially, no

substantial changes are observed on the modal shapes; that is a good feature because the initial

model possesses modal shapes close to the observed experimentally. So, the identification process

did not imply in shape losses. The crucial improvement occurs in terms of frequencies. The

numerical frequencies reach a good agreement with the real mock-up.

These results were obtained considering the selection and exclusion of the information from six

sensors. In order to show the impact that this choice represents, we repeat the calculations consid-

ering all the information available. The results are resumed in Table 2 and Table 3. Three study

cases are compared. The first one is the comparison with the initial numerical model considering

support conditions ideally pinned. The second case is obtained making the updating based on all

sensors available. The final case shows the identification carried out after selection and removing

the information from six sensors based on the methodology described on the item 3.2. It is observed

an improvement in the prediction capacity of the first three modal frequencies. The same trend is

observed in the Modal Assurance Criterion (MAC) showed in Figure 25.

These results permit to infer that the boundary conditions should effectively not be considered

as ideally pinned. The identified parameters show that a semi-rigid behaviour is an approach closer

to reality.

As can be seen, both the parameters identified represent a good choice for the problem posed.
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When the identified parameters do not correspond to the expected frequencies or shape, a possible

alternative is reviewing the hypothesis made on the assumed ideal connections. It may be necessary

to include other directions of effort transmission to be updated and performing the calculation again.

Often this task can be automated.

4 Conclusion

The present study concerned the numerical identification process. It was employed an algorithm

based on the Modified Constitutive Relation Error considering the joint parameters as source of

doubt. The approach enables the free choice on which parameter the designer wants to update.

The algorithm is basically an optimization problem which requires many calls of the numerical

model. To improve the computational efficiency, two main features were implemented: the model

reduction technique and the analytic gradient calculation.

The numerical investigation is focused on a real-world structure. The results show the capa-

bilities of the MCRE in terms of improving the parameter identification task so important in the

engineering context. The norm MCRE serves to several purposes such as being cost function and

calculating the sensibilities. In addition, it contains information about parameters having priority

to be updated which is a valuable information for complex problems. Also, the norm contains

information about possible defective sensors and it can actually serve as filter of information. All

these features together make it a robust quantity beneficial to the domain of Inverse Problems for

parameter investigation.

As perspective, more complex support conditions can be proposed including friction and viscous

responses. These conditions can be beneficial to higher order modes. In this case, the present study

can be seen as first order approximation.
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Resistance class C30/37
Feature Compression Know fck 30MPa
Concrete Tensile Strength fctm 2.9MPa
Concrete Young modulus Ecm 32000MPa
Concrete Poisson ratio νc 0.2
Concrete Unity weight ρc 2500kg/m3

Additional mass per slab 938kg
Steel Young modulus Es 200GPa
Steel Poisson ratio νs 0.3
Steel Unity weight ρs 7850kg/m3

Table 1: Mock-up material properties

Mock-up response Mode 1 Mode 2 Mode 3
(Hz) (Hz) (Hz)

Experimental results 8.32 10.0 14.57
Before identification 4.33 6.92 23.90
After identification considering all sensors 7.92 9.16 15.09
After identification with selected sensors 8.34 9.52 15.12

Table 2: Mock-up frequencies comparison

Mock-up response Mode 1 Mode 2 Mode 3
Error(%) Error(%) Error(%)

Before identification −48.1 −30.8 64.0
After identification considering all sensors −4.8 8.4 3.57
After identification with selected sensors 0.24 −4.80 3.77

Table 3: Mock-up frequencies error comparison
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Figure 25: Evolution of the MAC measure. (a) MAC axis (b) Experiments versus Numerical
Model before updating (c) Experiments versus Numerical Model updated considering all
sensors (d) Experiments versus Numerical Model after sensors selection
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