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Abstract—This paper deals with the influence of a wideband
signal key parameters on its spectrum reconstruction, for Internet-
of-Things (IoT) applications. The impact of the frequency resolu-
tion, the bandwidths of the sensed transmitters, and the frequency
spacing between their subbands are thoroughly analyzed. The
spectrum detection of LoRaWAN EU868, one of the IoT stan-
dards, is simulated and examined. In the framework of cognitive
networks or spectrum sensing, an input wideband signal, whose
bandwidth is exceptionally large (resulting in an extremely high
Nyquist rate), can be sampled at a much lower rate than the
Nyquist limit. Under the hypothesis of Compressed Sensing, this
paper deploys a sub-Nyquist sampling scheme, called Modulated
Wideband Converter (MWC). The spectrum reconstruction is
carried out from the sub-Nyquist samples, and then evaluated
based on the correct reconstruction and false alarm rates.

Index Terms—Modulated Wideband Converter, spectrum sens-
ing, sub-Nyquist sampling, frequency resolution, frequency band-
width, subbands spacing.

I. INTRODUCTION

The exponential growth of wireless hardware leads to the
shortage of spectrum resources to serve for application de-
mands. Especially, in the Internet-of-Things (IoT) applications
such as Smart City, a lot of wireless devices need to share a
specific spectrum. It can be saturated for high access demand,
while other spectrum bands are idle or vacant, but cannot
be used. In this context, cognitive networks and spectrum
sensing for IoT applications are proposed to re-use the licensed
spectrum which is not assigned to an owner or is not being used
by its owner. Hence, the applications of cognitive networks or
spectrum sensing need to work on a large bandwidth to seek
for the active channels or active subbands. According to the
Nyquist-Shannon theorem [1] [2], the sensed signal needs to
be sampled at a rate at least twice the input bandwidth to
ensure perfect reconstruction. A commercial analog-to-digital
converter (ADC) sampling rate cannot adapt with a very large
bandwidth of a spectrum sensing application, which is usually
up to several tens GHz. Consequently, Compressed Sensing
[3] [4] is valuable in reducing sampling rate due to the
reconstruction from sub-Nyquist samples under the sparsity
assumption. Sub-Nyquist sampling techniques, in literature,
have been proposed such as multicoset sampling [5], random
demodulator [6] and Modulated Wideband Converter (MWC)
[7].

The MWC is considered as the most practical sub-Nyquist
sampling system, since it has been implemented into analog
front-end hardware [8]. The MWC is a multi-physical channels
system, each of them including a mixer, a lowpass filter and
a conventional ADC. This system is a blind detector, having
no knowledge of the input signal frequency support, which is
only supposed to be sparse. To adapt with the post-processing
or format of the post-hardware/software, however, the specific
number of sub-Nyquist samples and specific features of input
signal, which can ensure correct reconstruction, need to be
studied.

The significant reduction of the MWC sampling rate results
in a meaningful lowering of its cost, power consumption and
complexity hardware. The IoT is currently considered as a Low
Power Wide Area (LPWA) network since it usually consists
in deploying low power wireless devices over a wide area
network [9]. In this paper, the MWC is dedicated to detect
the spectral occupancy of some common IoT standards which
are being implemented on cellular network such as SIGFOX
[10], LoRaWAN [11] (operate on sub-GHz) and NB-IoT [12]
(coexists with LTE network). To demonstrate this capability,
the simulation scenarios are set to adapt with the parameters
of these standards. The frequency bands of these standards are
sub-GHz. For the NB-IoT standard, the transmitter bandwidth
is 180 kHz and the spacing between transmitters is 15 kHz.
The bandwidth of LoRaWAN standard is 125-500 kHz while
it is 200 kHz in SIGFOX. We aim detecting the spectra in
LoRaWAN EU868 standard which is deployed in Europe and
Vietnam as well. Therefore, all the scenarios are simulated with
1 GHz sensed frequency band and the key parameters such
as transmitter bandwidth, frequency resolution and transmitter
subbands frequency spacing bandwidth are changed to evaluate
the spectrum reconstructions.

The method to estimate the frequency supports of wideband
signal based on the minimal of each single band and the small-
est spacing between bands has been proposed in [13]. In this
paper, the problem is addressed in a different way. The MWC
scheme is implemented in simulation to detect the wideband
signal and then from the MWC output sub-Nyquist samples,
the reconstruction will be made. We consider two scenarios of
simulation. Firstly, the minimum bandwidth of one transmitter
that the system can perfectly detect is examined with respect



to both Nyquist and sub-Nyquist number of samples. Then,
this minimum bandwidth is fixed to search for a maximum
number of active subbands in that bandwidth, i.e. the number
transmitters that can be detected belonging to this width. The
number of transmitters, however, must respect the sparsity
condition of Compressed Sensing and MWC system [14]. In the
second scenario, the frequency resolution is changed to observe
the impact on the spectrum reconstruction in terms of Signal-
to-Noise Ratio (SNR) levels. Moreover, the frequency spacing
between two subbands increases gradually. This approach is
intended to search for the minimum frequency spacing and
the frequency resolution that allow the system to detect two
adjacent subbands correctly in the presence of noise. The results
are provided in terms of correct reconstruction and false alarm
rates.

This paper is organized as follows. Section II-A is a brief
introduction about the MWC and post-processing steps. In
Section III, the minimum bandwidth of one transmitter that can
be detected by the MWC is found out. Section IV presents the
number of transmitters and cumulative bandwidth in one and
several active subbands which can be correctly detected. Section
V investigates the minimum frequency spacing between two
adjacent subbands and examines the spectrum reconstruction of
LoRaWAN EU868 standard. The conclusion is given in Section
VI.

II. THE MODULATED WIDEBAND CONVERTER

A. Operating principles and system description

The block diagram of the MWC is represented in Fig. 1.
The signal x(t) is considered as a multi-band signal, having an
unknown, sparse spectrum. The MWC consists of M physical
channels. The input signal is multiplied with pseudo-random
mixing sequence pi(t). The idea of mixing function pi(t) is to
shift all useful subbands into baseband. Then, the lowpass filter,
with the cutoff frequency Fc = Fs/2, stores only the baseband
input signal content. The signal in this stage is confined in the
interval [−Fs/2;Fs/2] width. Let us assume, for convenience,
that the ADC converts the filtered signal into the digital domain
using a sampling rate of Fs.

Fig. 1: The MWC scheme and processing stages.

The mixing function pi(t) is chosen as a periodic pseudo-
random waveform, with the period Tp. The signal xi(t) after

the mixer is
xi(t) = pi(t)x(t), (1)

and the signal yi(t) after the lowpass filter reads as

yi(t) = h(t) ∗ xi(t), (2)

with h(t) the transfer function of the lowpass filter. Finally, the
digital signal is given by

y[n] = yi(nTs), (3)

with Ts the sampling period. In the Nyquist bandwidth, let
us denote that L the ratio between FNyq and Fp, with L =
FNyq/Fp. It means that in the Nyquist bandwidth, there are L
subbands with Fp bandwidth. The main goal of the MWC is to
detect the active subbands l where the transmitters are located
in, with L = 2L0 + 1 and −L0 ≤ l ≤ L0.

In principle, at each physical channel of the MWC, there is
one transmitter falling in the baseband lth subband. Hence, the
higher the number of MWC physical channels M , the larger
the number of transmitters able to be detected by the MWC.
In practice, however, the MWC becomes significantly more
expensive as M is getting larger. Consequently, a collapsing
factor q is proposed to collapse the number of physical channels
M . Instead of sampling M physical channels at Fs, the signal
will be considered as if q ×M channels are sampled at Fp,
with q = Fs/Fp [14]. Theoretically, the number of physical
channels of the MWC is extended to q ×M channels. Then,
the maximum number of transmitters that can be detected by
the MWC increases to q ×M transmitters. In the simulation,
assuming that all the components of the MWC are ideal, the
parameters of the MWC are chosen as M = 4, L = 192, q = 7
and FNyq = 2 GHz, so that to have a configuration compatible
with LoRaWAN standard.

B. Number of active subbands estimation

In this subsection, we introduce the estimation method for
the number of active channels. This task is considered as a pre-
processing step in Fig. 1, before the spectrum reconstruction.
In the output of the MWC, the vector yi[n] (1 ≤ i ≤ M ) has
N sub-Nyquist samples. Then, this output is considered as a
M ×N matrix y, or qM ×N in the case of using collapsing
factor q.

The method to estimate the number of active subbands
is based on the singular values of matrix y ∈ CM×N , or
equivalently the associated autocorrelation matrix eigenvalues.
Indeed, their variation is directly related to the number of active
subbands s. Moreover, there are exactly s non-zero eigenvalues
in the noiseless case. In the case of additive white Gaussian
noise, all the M − s or qM − s (using collapsing factor q)
smallest values are equal to the noise variance. In the case of
very strong noise, it is difficult to determine exactly the number
of active subbands.

In the simulations, the number of active subbands s is
estimated using the method proposed in [15].



C. Spectrum reconstruction

A sensing matrix is formed from the periodic pseudo-
random mixing sequences pi(t), such as (P)il = pil [7],
with pil = Fp

∫ Tp/2

−Tp/2
pi(t)e

−j2πlFptdt the Fourier coefficient
derived from pi(t). Let us denote by zl[n], l = 1..L, the Fourier
transform of the multi-subband input signal in the lth subband.
Consequently, the system equation [8] [14] is y = Pz, with
P ∈ CqM×L.

This system equation complies with the Compressed Sensing
main constraint s ≤ Mq − 1, with s is the number of active
subbands or the non-zero elements in z. The size of output y
(q×M ) is much smaller than the size of input z (L elements).
The reconstruction principle is to search z from y. The methods
to solve such problem are called greedy algorithms or iterative
methods [16] [17]. In the simulation, the greedy algorithm
Orthogonal Matching Pursuit (OMP) [18] is used. To reach
the solution vector, the process is divided into many iterations.
In the first iteration, the unknown vector z is assumed to have
only null elements. Then, the column Pj of matrix P, which is
most correlated to the measurement vector y, is searched. At
each iteration, the updated solution vector is found by adding
nonzero components to the previously obtained vector z, so that
to minimize the norm of the residual vector r = z−Pjy, which
measures the reconstruction error. The iterations are stopped
when s non-zero elements are added.

III. MINIMUM BANDWIDTH OF ONE TRANSMITTER

For all simulation scenarios, the parameters of the MWC are
chosen as M = 4, L = 192, q = 7 and FNyq = 2 GHz. Then,
the other parameters can be derived: the repetition frequency
of mixing function Fp = FNyq/L = 10.4 MHz, the sampling
frequency Fs = q × Fp = 72.8 MHz, the cutoff of lowpass
filter Fc = Fs/2 = 36.4 MHz.

In the first scenario, the number of samples of the wide-
band input signal sampled at the Nyquist rate is chosen as
Ne = 2n × L, in which 2n is for the efficiency of Fast
Fourier transform. Firstly, n = 11 is chosen, resulting in
Ne = 393216 samples. Since Fs =

q×FNyq

L , then, the sub-
Nyquist number of samples at MWC output, which is sampled
at Fs, is N = q×Ne

L = 14336 samples for each physical channel
of the MWC. Overall, the number of samples at MWC output
is Ntotal = N×M = 57344 samples. It is easy to observe that
the sampling rate is reduced by a factor r =

FNyq

Fs×M = L
q×M ,

and in this case, the sampling rate is reduced 6.9 times at the
output of the MWC. By estimating the percentage of correct
detection subbands, the correct reconstruction rate is calculated
by Pc = %(Br

⋂
Bd)

%Br
, with Br the real subbands from input

signal and Bd the detected subbands. The false alarm rate is
calculated by Pf = %((Bd\Br)∩B̄r)

1−%Br
.

The frequency resolution in this simulation is Rf =
FNyq

Ne
=

5 kHz. One transmitter is randomly generated in [0; 1] GHz and
its bandwidth is changed. Fig. 2 shows the correct reconstruc-
tion and false alarm rates at each SNR level as a function of
the transmitter bandwidth B from 5 kHz to 500 kHz. It can
be observed in Fig. 2 that for a small bandwidth 5 kHz, which

is equal to the frequency resolution, the correct reconstruction
rate is low. This rate increases when the bandwidth increases.
For high SNRs (25 and 30 dB), the correct reconstruction rate
can approach 100% with input bandwidth more than 250 kHz
while there is no false alarm for 30 dB and low false alarm
rate for 25 dB (less than 2%). At low SNR = 15 dB, the
minimum bandwidth raises up to 380 kHz to achieve 98% of
reconstruction, however, the false alarm rate is high for this
bandwidth as well.

Fig. 2: Correct reconstruction and false alarm rates in function of
bandwidths at 5 kHz frequency resolution.

It should be noted that in all the simulations the SNR is
evaluated in each active subband of the original spectrum, so
that it can be seen as the SNR in band of interest. Let us
denote the SNR in the whole Nyquist bandwidth SNRNyq . The
relationship between these two SNRs is

SNR = SNRNyq + 10 log

(
FNyq

2×Nt ×B

)
, (4)

with Nt the number of transmitters, and Nt = 1 for this
simulation. At SNR = 15 dB and B = 380 kHz, the SNRNyq
in the whole Nyquist bandwidth can be inferred as −19 dB.
A very high noise level in the whole Nyquist bandwidth that
makes the useful subbands to be aliased by the noise. It leads
to the over estimation of the number of active subbands s.
This explains the reason why at SNR of 15 dB, an incorrect
reconstruction and high false alarm can be obtained.

In Fig. 3, the number of Nyquist samples is reduced to
Ne = 98304 samples with n = 9, which means that the
frequency resolution Rf = 20.3 kHz in this simulation is
larger. It is easy to observe that the performance of correct
reconstruction at each SNR is reduced since the number of
samples is reduced. Compared to Fig. 2, the false alarm rate
increases at all SNRs and all values of bandwidth. In the first
approach, it can be concluded that when more samples are used,
the correct reconstruction rate is improved. It means that the
resolution frequency is getting better, so that the system can
detect a very small bandwidth of the transmitter.

IV. NUMBER OF TRANSMITTERS

A. Number of transmitters and cumulative bandwidth in differ-
ent active subbands

The goal of this simulation scenario is to examine the
number of transmitters in different active subbands, with respect



Fig. 3: Correct reconstruction and false alarm rates in function of
bandwidths at 20.3 kHz frequency resolution.

to the sparsity constraint on the number of active subbands
s ≤ qM − 1 [7]. According to the MWC principle, the
whole Nyquist bandwidth is divided into L subbands. In this
simulation, a number of transmitters Nt ∈ [1; 5] is randomly
generated in different active subbands. The number of samples
is fixed at Ntotal = 57344 samples (equivalent Ne = 393216
Nyquist samples). From Fig. 2, one transmitter with B = 60
kHz can be correctly detected at SNR = 30 dB. Consequently,
the bandwidth of each transmitter in this simulation is chosen
as 60 kHz. The MWC configurations are the same as in the
previous simulations. The correct reconstruction and false alarm
rates are shown in Fig. 4. To compute the correct reconstruction
rate, a threshold is fixed to determine detected transmitters.
In this figure, the correct reconstruction rate is reduced when
increasing the number of transmitters in the case of high noise
levels (SNR = 15 and 20 dB).

Fig. 4: Correct reconstructions and false alarm rates in function of
number of transmitters in different active subbands with B = 60 kHz
and Rf = 5 kHz.

The transmitter bandwidths in different subbands in Fig. 4
are not accumulated. As explained in Section III, when the
power of transmitter in one active subband is not significant
compared to the noise, for example in case of high noise at
Nyquist bandwidth SNRNyq = −20 dB with 5 transmitters at
SNR = 15 dB, it leads to a problem that the blind detection
system cannot separate the transmitter from the noise.

B. Number of transmitters and cumulative bandwidth in one
active subband

Fig. 5 presents the correct reconstruction and false alarm
rates at each SNR level in function of number of transmitters
in only one active subband. It can be seen that, the correct
reconstruction rates are high even if one transmitter has narrow
bandwidth (60 kHz) except SNR = 15 dB. When increasing the
number of transmitters (up to 5 transmitters) in one subband,
the correct reconstruction rate also increase. From the result of
Fig. 5, the MWC system can detect 3 transmitters with 100%
of reconstruction and low false alarm (less than 5%) at SNR
of 25 dB, equivalently SNRNyq = −12 dB.

The formula of SNRNyq mentioned above shows that the
width of detection can be accumulated by the system. If the
bandwidth of a transmitter is narrow, more transmitters are
needed to satisfy the requirement of signal power that the
system can detect correctly. For example in Fig. 2 and Fig. 5,
for a SNR of 30 dB, the bandwidth 60 kHz will be detected at
100% of reconstruction and no false alarm. Therefore, only one
transmitter of 60 kHz is needed in case 30 dB (SNR). At 25
dB, however, 240 kHz of bandwidth is required to be detected
correctly and low false alarm (Fig. 2). Then, it needs up to 4
transmitters of 60 kHz bandwidth (Fig. 5). It is interesting to
observe that at 15 dB, the correct reconstruction rate is high
with more than 3 transmitters (Fig. 5), however, the false alarm
rate is high also, it means that the system cannot separate
the useful spectra and the noise. One example of spectrum
reconstruction is shown in Fig. 6, where 4 transmitters with
60 kHz bandwidth are generated consecutively at 15 and 30
dB in only one subband [661.4; 671.8] MHz. In this case, for
example in Fig. 6a (SNR = 15 dB), it is difficult to discriminate
the transmitters from the reconstructed signal mixed with noise.
Moreover, the false alarm rate is equal to 13.9%. In Fig. 6b
(SNR = 30 dB), all transmitters are completely detected
without any false alarm. These values correspond to the false
alarm rate of one transmitter with 240 kHz bandwidth (in
Fig. 2). Fig. 2 and Fig. 5 show that the bandwidth of transmitters
in one active subband can be accumulated and it leads to a better
reconstruction if more bandwidths are accumulated, since the
proportion of signal power and noise in that band is enhanced
significantly.

Fig. 5: Correct reconstructions and false alarm rates in function of
number of transmitters in one active subband with B = 60 kHz and
Rf = 5 kHz.
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Fig. 6: Spectrum reconstructions of 4 transmitters generated in one
active subband at a SNR of 15 and 30 dB with B = 60 kHz and
Rf = 5 kHz.

V. FREQUENCY SPACING AND LORAWAN SPECTRUM
DETECTION APPLICATION

A. Minimum frequency spacing

In this section, the frequency spacing of 4 transmitters
increases gradually, from Rf = 5 kHz to 8Rf = 40 kHz
with B = 60 kHz. The transmitters are generated consecutively
in only one subband [859.3; 869.7] MHz. We introduce a
measurement PB which corresponds to the correct detection
rate of the minimum and maximum frequencies {ftmin

; ftmax
}

of all transmitter bandwidths, with t ∈ [1;Nt].
Fig. 7 illustrates the correct detection rate of {ftmin

; ftmax
}

and false alarm rate in function of frequency spacing. At
high noise levels (SNR of 15 and 20 dB), the reconstructions
are incorrect regardless the frequency spacing between these
transmitters is small or large. The high noise makes the detec-
tion of power transitions difficultly and leads to an incorrect
estimation of couples {ftmin

; ftmax
}. For low noise level, the

reconstructions are improved. Thus, perfect reconstruction at
30 dB and high correct reconstruction rates at 25 dB can
be obtained, without any false alarm. It can be inferred that
the minimum frequency spacing is 5 kHz at SNR = 30
dB with perfect reconstruction and at SNR = 25 dB with
high correct reconstruction rate (more than 90%) and no false
alarm. Fig. 8 confirms the simulated results with the spectrum

reconstructions at a SNR of 20 and 30 dB. The ability to
discriminate two adjacent transmitters is directly related to the
frequency resolution shown in Fig. 7, and that the performances
of reconstruction depend only on the SNR.

Fig. 7: Correct detection rate of all couples {ftmin ; ftmax} and false
alarm rate in function of frequency spacing with B = 60 kHz and
Rf = 5 kHz.

B. LoRaWAN spectrum detection application

In this section, the frequency spacing between transmitters
in LoRaWAN is studied and the configuration of LoRaWAN
standard is simulated to examine the spectrum detection in the
IoT applications.

The LoRaWAN EU868 standard is used in the ISM band.
From 867.1 to 868.5 MHz frequency band, the LoRaWAN
standard can deploy up to 8 transmitters with 125 kHz band-
width and 75 kHz guard band (frequency spacing) for each
transmitter [19]. The total bandwidth of all transmitters is equal
to 8 × 0.125 = 1 MHz. The total sub-Nyquist number of
samples is Ntotal = 57434 and Nyquist number of samples
is Ne = 393216. The correct reconstruction and false alarm
rates of LoRaWAN EU868 standard with 8 transmitters from
867.1 to 868.5 MHz is shown in Table I. As the simulation
result from previous sections, the correct reconstruction and
false alarm rates can approach 100% in the case of SNR = 30
dB, corresponding to SNRNyq = 0 dB. Moreover, there is
no correct detection in cases of very high noise SNR = 15
and 20 dB, corresponding to SNRNyq = −15 and −10 dB.
Fig 9 illustrates one example of LoRaWAN EU868 standard
spectrum reconstruction with 30 dB (SNR). The spectra can
be obtained with a correction of number of transmitters and
frequency bands.

XXXXXXXX
SNR (dB) 15 20 25 30

PB 0.02 0.25 0.86 1
Pc 0.97 0.93 0.99 1
Pf 0.12 0.004 0 0

TABLE I: Correct detection of {ftmin ; ftmax}, correct reconstruction
and false alarm rates of 8 transmitters LoRaWAN in function of SNRs.

Overall, from the simulation results, the number of trans-
mitters, the frequency resolution and the cumulative or non-
cumulative bandwidth all cause an impact on the sensed spec-
trum reconstruction. Nevertheless, the biggest constraint is the
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Fig. 8: Spectrum reconstructions of 4 transmitters generated consec-
utively with frequency spacing 5 kHz at a SNR of 20 and 30 dB,
B = 60 kHz and Rf = 5 kHz.
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Fig. 9: Example of LoRaWAN EU868 blind spectrum reconstruction.

noise levels. The intensity of noise determines the corrections
of all the spectrum reconstruction in a spectrum sensing system.

VI. CONCLUSION

To conclude, this paper analyses the key parameters of a
wideband signal and studies their impact on the reconstructions
of a sub-Nyquist sampling system. With the aim of applying
spectrum sensing techniques to IoT applications, this research
focuses on the LoRaWAN EU868 standard and deploys the
MWC sub-Nyquist sampling system because it is a low-cost,

low complexity hardware and efficient in power consumption.
With regard to the results, the Compressed Sensing technique
can be used for IoT applications. In future work, the study
on the ability of discrimination between adjacent transmitters
will be improved to evaluate the limits and a particular interest
must be brought to the study according to the difference of
transmitted power levels. This will also allow us to parameterize
a real system by being able to do a compromise between
an improvement of performance and an extra computing cost
(therefore an extra power consumption).
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