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Abstract

A well known problem in EEG recordings deals with the unknown potential of
the reference electrode. In the last years several authors presented comparisons
among the most popular solutions, the global conclusion being that the tradi-
tional Average Reference (AR) and the Reference Standardization Technique
(REST) are the best approximations [25, 17, 20, 4]. In this work we do not
aim to further compare these techniques but to enlighten the fact that both
solutions can be derived from a general inverse problem formalism for reference
estimation. In particular, we show that the AR is the minimum norm solution,
while REST is a weighted minimum norm including some approximate propaga-
tion model. AR is thus a particular case of REST, which itself uses a particular
formulation of the source estimation inverse problem.

Keywords: EEG, Reference potential, Inverse problems

1. Introduction

The EEG signals measure the potential difference between an electrode,
placed somewhere on the head surface, and a reference electrode, placed some-
where else on the body. Ideally, the reference electrode should be placed in the
most electrically inactive position, far from the region of interest. In practice,
the reference is contaminated with unknown local and/or propagated electrical
activity. Still, most of the studies need reference free potentials for better re-
sults [8, 6, 36, 17, 27]. For example, cortical connections are estimated using
coherence and phase delays among EEG channels, and the reference potential
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might strongly affect these methods1 [27, 7, 26, 13, 12]. A previous study showed
that even Blind Source Separation techniques might be affected by the reference
problem [33].

This paper focuses on EEG recorded using a scalp reference. In this case,
the reference electrode captures the same kind of activity as any other elec-
trode, that is a mixture of brain sources. In this context, the most popular
solution for cancelling the reference potential is to subtract the spatial average
of the recorded signals from all measurements. This solution, known as aver-
age reference montage (AR) was challenged by the Reference Standardization
Technique (REST) [36]. Several authors compared the two solutions (or other
re-referencing techniques) [38, 37, 25, 17, 32, 20, 11], the overall conclusion being
that REST is deemed to yield better results, although this is not always the case,
especially when the head model is prone to inaccuracies. The goal of this paper
is to theoretically show that both AR and REST belong to the same family of
inverse problems widely encountered in EEG analysis, i.e., weighted minimum
norms. If the same idea was recently put forward by [16, 15], our paper proposes
an alternative simple algebraic proof (another algebraic proof can be found also
in [32], in French). To avoid redundancies with the previously cited papers, we
do not propose an extensive simulation protocol in order to asses if or when one
of the solutions should be used, but we present an evaluation of the difference
between them depending on the used head model (necessary for REST).

2. EEG measurement model

Consider the classical EEG linear model given by:

x = As (1)

where x ∈ Rm×1 is a vector with unknown real potentials under each electrode
with respect to infinity, from here defined as absolute potentials for the m
electrodes, A ∈ Rm×p is the mixing lead-field matrix and s ∈ Rp×1 is the
source vector. Note that the reference potential is included among the m; for
convenience, it will be assumed in the rest of the paper that this potential
is the m-th one. In EEG, the matrix A represents the head model, obtained
either by analytical approximations (e.g. spherical head models) or numerically,
for realistic head models obtained after MRI segmentation of head structures
(brain, CSF, skull, scalp). The sources vector s contains the amplitudes of the
dipoles that model the neural sources [2]. For these realistic models, possible
source emplacements depend on the brain volume discretization but, regardless
of the used head model, the number of sources p is far bigger than the number
of electrodes m (p � m). Equation (1) introduces the so-called instantaneous

1Although some of these studies were focused on intracranial EEG, the effect of the refer-
ence potential is the same. Note though that for iEEG, the reference estimation techniques
are different, as they assume that the reference is sufficiently far from the measuring electrodes
to be considered independent/uncorrelated [14, 21, 31].
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mixture model, with the matrix A time-invariant and of rank m. For real
signals recorded in time, i.e., having n � 1 time samples, the vectors x (s)
become matrices m× n (p× n), and we consider during all the paper that x is
full-row rank m.

The actually measured potentials are given by the common reference mon-
tage (CR), with potentials xCR modeled by subtracting the potential of the
chosen reference electrode from the other electrodes. This can be seen as a
matrix transform of the absolute potentials from (1):

xCR = TCRx = TCRAs = ACRs (2)

with TCR the m− 1 rank matrix:

TCR =
[

Im−1 −1m−1

]
(3)

where Im−1 is the (m − 1) × (m − 1) identity matrix and 1m−1 ∈ Rm−1×1 is
a vector of 1’s. As mentioned above and with no loss of generality, we assume
the reference electrode potential as the last absolute potential in EEG linear
model (1). Note that, unlike x in (1, the dimension of xCR is m− 1 (number of
available signals).

The most employed solutions propose to cancel the reference by transform-
ing the CR into other EEG montages (average reference - AR, bipolar - BM,
Laplacian - LM)[14, 38, 8, 19, 10]. A more elaborated solution, based on head
modeling, is the reference standardization (REST) [36]. Among these, only AR
and REST propose absolute potential estimations, the BM and the LM being
local estimators (along with the reference potential, they also cancel propagated
activities originating in far situated regions). We will only focus here on the
former.

2.1. Average Reference (AR)

The classical rationale behind average reference montages (AR) is that, un-
der the hypothesis of equidistributed electrodes covering the whole head, the
sum of all electrode potentials on the scalp should be zero (see [3] for a proof
for the spherical head model).

In practice, as the only available signals are xCR, AR signals are obtained
by calculating the sum of the m−1 xCR signals, dividing it by the total number
of electrodes m and subtracting it from each measurement [28, 29, 6]. More
formally, the AR is obtained by averaging over all electrodes (reference electrode
included with a null potential (i.e., its potential with respect to itself):

xAR =

(
Im −

1

m
1m1T

m

)[
xCR

0

]
= TARxCR (4)

with

TAR =

[
Im−1 − 1

m1m−11
T
m−1

1
m1T

m

]
(5)
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As we can see, xAR has a dimension of m and rank of m − 1, i.e., it preserves
the rank of xCR (one less than x). In practice, the average signal is included as
the last row (xm,AR)2.

2.2. Reference Electrode Standardization Technique (REST)

The REST method [36, 38] allows to estimate absolute potentials at any
point on the scalp by solving a forward problem with “equivalent sources” s̃ con-
strained to a dipolar layer completely surrounding the actual sources, i.e., the
brain. Several versions can be theoretically proposed, depending on the con-
figuration chosen for the dipolar layer (e.g., a sphere circumscribing the whole
brain, or the numerically approximated cortical surface). The chosen dipolar
layer will yield a specific forward model between the dipoles situated on this
layer and the actual electrodes placed on the head surface. Let this model be
Ã. The equivalent dipolar sources on this layer are estimated from scalp EEG
recordings (equivalently in CR or in AR) by using a simple inverse problem
formalism. We give below only the CR based approach:

ˆ̃s = Ã+
CRxCR (6)

with + designating the classical Moore-Penrose pseudo-inverse. Of course, ÃCR

depends on a mixing model (see Eq. (3)), here assumed Ã . A forward model
using the assumed Ã and the estimated equivalent sources ˆ̃s yield the REST
estimations of the EEG absolute potentials:

xREST = Ãˆ̃s = ÃÃ+
CRxCR = TRESTxCR (7)

It is important to recall that different REST solutions can be obtained by choos-
ing different dipolar layer configurations and thus different Ã models.

3. Unified Inverse Problem Modeling

As seen above, two main solutions exist for estimating the absolute poten-
tials: average montage and REST. Three relatively recent comparative studies
[17, 25, 20] conclude that both solutions present valid theoretical arguments
and that both are acceptable. Our aim is to deepen the analysis, to show the
connections between the two techniques and their integration in a larger inverse
problem framework.

Consider the case of a EEG recording with a cephalic reference as given in
(Eq. 2). The estimation of absolute potentials x from the measured xCR and
matrix transformation TCR, is an ill-posed inverse problem somehow similar to
the classical EEG source estimation with a known mixing model TCR.

2Note that in [11], the formulation is done differently (i.e., , they use a TR of dimension
Ne × Ne, m = Ne in our case), but they are equivalent (i.e., , one of the rows of TR

has only zeros). Our rationale was to start,as in classical inverse problems, from the actual
measurements xCR and not from the absolute potentials. Still, the two formulations yield the
same conclusions.
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Thus, the absolute potentials inverse problem writes as follows:

x̂ = TxCR = TTCRx (8)

where the unknown matrix T ∈ Rm×m−1 is a generalized inverse of the common
reference transformation matrix TCR:

T = W−1TT
CR

[
TCRW−1TT

CR

]−1
(9)

with W a weighting matrix allowing infinite solutions. In the next paragraphs
we describe several particular Weighted Minimum Norm (WMN) solutions.

3.1. WMN Optimal Solution: Oracle1

The underdetermined system (8) has an infinite number of solutions. In
theory, the best inverse transform T can be estimated by minimizing the least-
squares error between absolute and measured potentials. This optimal transform
TO1 can be obtained by multiplying absolute potentials x by the Moore-Penrose
pseudo inverse of measured potentials xCR:

TO1 = xxT
CR

[
xCRxT

CR

]−1
= AΣsA

TTT
CR

[
TCRAΣsA

TTT
CR

]−1
(10)

where Σx is the absolute potentials covariance matrix, A the head model and
Σs the source covariance matrix (for completeness, the proof in given in the
appendix. This optimal solution is equivalent to (9) for W−1 = Σx = AΣsA

T .
Of course, it remains theoretical, because neither the absolute potentials covari-
ance matrix nor, equivalently, the propagation coefficients between the actual
sources s and the sensors (depending on the sources positions and orientations
and on the head model) and the source covariance matrix, are known in practice.

3.2. WMN Sub-Optimal Solutions: Oracle2 and REST

If, in practice, Σs is not known, rather accurate head models can be obtained
for A for all possible source locations inside the brain volume.

Ignoring the source covariance matrix but supposing that we have some a
priori knowledge on their positions and orientations, as well as a good head
model (i.e., making Σs = Ip but assuming a known A), one obtains:

TO2 = AATTT
CR

[
TCRAATTT

CR

]−1

= A [TCRA]
+

= AA+
CR (11)

A step further towards more realistic situations is to ignore the source positions
and orientations, but to still assume a complete head model, i.e., a mixing
matrix AC corresponding to a complete lead-field matrix for all possible source
configurations (of course, in practice it will be computed for a grid of points
inside the brain volume). The equations are exactly the same as (11), with
a complete mixing matrix AC replacing A (which is an incomplete lead-field
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matrix, in the sense that it accounts only for the a priori known source positions
and orientations). Finally, as pointed out in [36], distributing equivalent sources
on a layer surrounding the actual brain sources, theoretically yields another
mixing model AR used in the REST solution.

If Oracle1 and Oracle2 cannot be used in practice (because they are based
on unknown information on the actual sources), it is noteworthy that REST-like
solutions (either based on a complete volume model or an equivalent layer) could
be in principle used, because they only need a propagation model between some
chosen sources and the surface electrodes, and these models can be estimated
with more or less accuracy from imaging techniques and physical considerations
(see e.g. [9] for a review of the forward problem in EEG)).

Finally, it is easy to see that all these weighted minimum norm solutions
share the same equation (11), which enlightens the fact that any full-rank matrix
Ã can be used to construct a generalized inverse of TCR. Indeed,

TCRÃÃTTT
CR

[
TCRÃÃTTT

CR

]−1

= Im−1

regardless of the accuracy of the model Ã. In this sense, a completely false or
random model Ã will yield false estimates of the absolute potentials x̃, but they
will still verify xCR = TCRx̃.

3.3. Minimum Norm Solution, MN

Within this context, the most evident solution of equation (9), without any
a priori information about the mixture or the sources (i.e., neither on A nor
on the source covariance), is the Minimum Norm Solution (MN) obtained when
W = Im. Then, an estimation of absolute potentials is given by:

x̂ = TT
CR

(
TCRTT

CR

)−1
xCR

= T+
CRxCR (12)

with T+
CR the Moore-Penrose pseudo-inverse of the common reference trans-

formation matrix TCR.
Proposition. The minimum norm solution to the inverse reference problem

is the AR solution from (5):
T+

CR = TAR

Proof. By Sherman-Morrison formula and using the definition of the Moore-
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Penrose pseudo-inverse and the expression of TCR (3), one can write:

T+
CR = TT

CR(TCRTT
CR)−1

=

[
Im−1

−1T
m−1

]([
Im−1 − 1m−1

] [ Im−1

−1T
m−1

])−1

=

[
Im−1

−1T
m−1

] [
Im−1 + 1m−11

T
m−1

]−1

=

[
Im−1

−1T
m−1

](
Im−1 − 1m−1

1T
m−1

1 + 1T
m−11m−1

)

=

[
Im−1

−1T
m−1

](
Im−1 − 1m−1

1

m
1T
m−1

)
= TAR (13)

In the first row, we use block-matrix multiplication, while in the second we use
the Sherman-Morrison formula (or more generally the Woodbury identity), see
for example [30]). Readers interested by a second algebraic proof are directed
to [32].

Note that the AR montage obtained by pseudo-inverting TCR can be seen
as another particular case of REST, obtained for a dipolar layer having the head
geometry and situated infinitely close below the electrodes (closely mimicking
an Ã = Im).

4. Results

The aim of this section is to briefly present numerical results, both on sim-
ulated and real data, supporting the previous analysis.

4.1. Simulation

The simulations presented here illustrate the fact that the accuracy of dif-
ferent estimations of the absolute potentials, obtained using the previously de-
scribed approaches. These estimated potentials are compared with simulated
ground truth potentials, computed as follows: a three shell mesh model (Colin
27) was extracted from Brainstorm [1] toolbox in order to have a realistic ge-
ometry. The cortical layer mesh (inner shell) had 642 nodes with 13mm mean
distance between neighbouring points, while the scalp mesh (outer shell) had
1922 nodes.

A regularly spaced grid was constructed inside the inner shell (brain), with a
13mm distance between neighbouring points, which yielded 1774 points. Several
source configurations were tested, namely using p = {10, 100, 500} dipolar brain
sources randomly chosen among the inner shell grid points. The orientations
were random, and the time courses were simulated as spatially and temporally
correlated Gaussians of length Ns =

(
m
8 + 1

)
× fs seconds (rule derived from

[18]), fs being sampling frequency and m the number of scalp electrodes. Three
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sensor setups were tested using m = {64, 128, 256} scalp electrodes placed on
the head surface (outer shell) according to the 10-10 system, one of them being
the reference electrode. Sensor coordinates were also extracted from the Brain-
storm toolbox and snapped to the mesh vertices by nearest-neighbour rule. The
absolute EEG scalp potentials were simulated by projecting the sources of in-
terest to the sensors using the BEM model implemented in the Helsinki toolbox
[34], with conductivity ratios of 40:1 between the brain and the skull and 1:1
between brain and scalp. Simulated absolute potentials x were transformed into
measured potentials xCR by (2). One hundred simulations were performed for
every configuration (position, orientations and time courses of the dipoles).

In order to test the influence of the model accuracy on the results, we
tested the different weighted inverse solutions, from the fully specified Oracle
(10) to the model-free average reference (4), passing through REST and volume
RESTv (11). For RESTv, the lead-field AC was computed for the complete grid
of 1774 volume points inside the brain shell and all three orientations (m×5322).
For REST, the lead-field A was computed for the cortical layer of 642 points
and for dipoles orthogonal to the scalp (m × 642). For completeness, we also
implemented a REST-like solution, in which we used a random A mixing model
(m × 642, generated as a spatially correlated uniform random variables), with
no physical significance. We re-emphasize here that all models (including the
random one) perfectly explain the CR measurements. The evaluation criterion
was the relative error introduced in [36]:

RE = ‖X− X̂‖/‖X‖ (14)

where X contains the absolute potentials, X̂ are the estimates and ‖ · ‖ is the
Frobenius norm.

The simumation results confirm the hypothesis that the accuracy of the
estimated zero-referenced potentials is proportional to the amount of additional
correct information injected in the solution. Completely wrong models (random
A) yield the worst solutions, far below the average reference AR (they are not
figured here in order to ease the comparisons among the other methods). In
principle, one should use as complete models as possible (Figs 2). If we put
aside the Oracles, very accurate but impossible to use in practice, the complete
full-volume RESTv model generally outperforms the cortical REST, at least
for the same spatial density of the lead-field matrix (not shown here, a denser
cortical layer REST also improves the estimations)3.

4.2. Real signals

According to our previous argumentation, REST and AR solutions should
converge to the same solution when the dipolar layer used for REST approaches
the head surface and thus the sensors. We have evaluated their relationship us-
ing real data, without any previous knowledge on the sources. The EEG signals

3Note that Oracle solutions cannot function if the number of sources is below the number
of sensors because of the matrix inversion in (10) and (11).
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Figure 1: Relative errors RE. The bars represent mean errors over 100 simulations, the
standard deviations being given by the vertical whiskers on the top of each bar. Only the 128
sensors setup is shown here, but the results are similar for the other tested montages

Depth 10mm 8mm 6mm 4mm
RE 0.136 0.101 0.082 0.078

Table 1: Relative error between the AR and REST estimations, depending on the depth of
the dipolar layer

(resting state) were recorded at the Nancy University Hospital (CHU Nancy)
during routine clinical evaluation of an epileptic patient (XXXXXXXXX). Seventy-
six electrodes were placed according to the 10-10 system, the reference electrode
being chosen, for clinical reasons at FPz. The head (scalp, outer skull, inner
skull) were computed from the MRI of the patient using the BrainStorm pipeline
(1922 nodes and 3840 faces for each surface).

Several REST solutions were computed for the absolute potentials, for dipo-
lar layers placed at different depths with respect to the head surface, but outside
the brain (inner skull) mesh (see figure 2. The geometry of the layer was the
same as the one of the scalp, in order to be able to keep a constant distance
between the sensors and the layer, except in the lower part of the brain, where
we considered a flat surface 10 mm outside the inner skull. The number of
dipoles on the layer was constant and the same as the number of points on the
scalp mesh (1922). We used the same criterion RE for evaluating the difference
between REST and AR montages, REST being considered the ground truth (X

in (14)) and AR the estimate X̂. The results are given in table 1, for differ-
ent depths of the dipolar layer. As it can be seen, the closer the dipolar layer
to the surface, the smaller the “distance” (the relative difference, in Forbenius
norm) between the AR and REST estimates (for numerical reasons, dipolar
layers closer to the surface than 3mm yield worse results, in the sense that the
REST solution is less accurate than the simple average montage AR).
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Figure 2: Partial head mesh for the studied epileptic patient. To ease the visualization, only
the scalp and the inner skull are represented, along with the dipolar layer used for REST
(here at 8mm depth below the scalp surface)

5. Discussion

This work presents a unified inverse problem framework for the reference
problem in surface EEG, which is an algebraic alternative to the approach re-
cetly proposed by [11, 15]. The main difference is that our approach is purely
deterministic and based only on linear algebra (i.e., matrix pseudo-inverse es-
timation, the minimum norm solution and weighted minimum norm in the
least-squares (LS) sense [5, 35, 24] while Hu et al. approaches are semi [15]
or completely non deterministic [11]. In other words, our approach belongs to
the family of LS estimators and does not imply any distributional assumptions
as in frequentists statistics (maximum likelihood estimates, ML) of Bayesian
inference (maximum a posteriori, MAP) [23]. To the best of our knowledge,
this algebraic approach was not proposed elsewhere, even if the same unified
framework paradigm for the reference problem was discussed in [11, 15].

The LS solution is estimated when an inverse problem has no exact solution
and it can be extended to the general linear inverse problem as presented in
[22]. The solution to general linear inverse problems from the point of view of
LS yields to the Moore-Penrose pseudo-inverse. The absolute potentials estima-
tion by pseudo-inversion is an underdetermined inverse problem, as the number
of absolute potentials to be estimated is greater than the number of available
signals (m with respect to m − 1 in the notations used in this paper). Conse-
quently, the problem has an infinite number of solutions, parametrized by the a
priori information that can be injected. The different parametrizations lead to
different so-called Weighted MN solutions, having different accuracies depend-
ing on the quality of the injected a priori information, as we have shown in the
previous section.

WXWXWXWXWXWWX do we need all that follows, till the Conclusion ?
WXWXWXWX
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In the other hand ML solutions of the linear inverse problem assumes data
with multivariate Gaussian distribution, unknown model parameters and if we
know the data covariance matrix the model parameters can be estimated [22].
Here, is the main difference ML solution seeks to estimate the model parameters
in order to find the inverse problem solution while WMN seek to estimate the
inverse problem solution from a known model. ML obtains the optimum val-
ues for the model parameters by maximizing the probability that the observed
data are in fact observed [22]. This means that the ML solution of the model
parameters is the weighted least squares (WLS) solution with the weighting
matrix as the inverse of the covariance matrix of the observed data. Now, in
the case of the underdetermined problem the LS inverse does not exist. This,
is because the distribution of the observed data has no well-defined maximum
with respect to variations of the model parameters. Thus, in order to solve this
underdetermined problem ML needs to add a priori information that allows
the distribution to have a well-defined peak. The way of doing this is explained
in [22], in resume the ML problem for an exact theory translates into finding
the maximum of the joint distribution of the a priori distribution of data and
the a priori probability distribution of model parameters. Note that if the a
priori probability distribution for the model parameters is much more certain
than that of the observed data, then the estimate of model parameters (the
maximum likelihood point) tends to be close to the a priori model parameters.
On the other hand, if the data are far more certain than the model parameters,
then the estimates of the model parameters primarily reflect information con-
tained in the data [22]. In this context the ML solution strongly depends of the
probability distribution of the model parameters.

MAP solution comes from Bayesian inference statistics and it works on a
posterior distribution not only the likelihood (i.e., the probability of the data
given the model parameters assuming true population of model parameters).
The posterior distribution in change, is the probability of the model parameters
given the data.

The algebraic proof that we propose allows to uncover a family of WMN
solutions, with in principle different performances from the methods for inverse
problem solutions based on inference statistics such as ML and MAP solutions.
Our presented solution enlightens the fact that a good model yields the best
solution, a false model yields a wrong solution and the model-free AR is some-
where in the middle, as REST (which outperforms AR if the model is right).
As we have discussed here, ML can be used to estimate a model that can be
used in the WMN solution in order to obtain solutions comparable with REST
or even better. MAP solutions can be used in the same way.

A second major difference with other similar works such as [11, 15] is how
we tackle the inverse problem of the reference. First, we start estimating the
generalized inverse of the common reference transformation matrix (i.e., the
matrix which is implicitly multiplying the unknown zero-reference potentials),
formally is the pre-multiplication of the reference transformation matrix with
the inaccessible zero-reference EEG potentials. The difference between our ref-
erence transformation matrix TCR is that is a non-square matrix. In the work
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presented by Hu in [11] they present their equivalent matrix H or Tr with the
difference that is a square matrix pre-multiplying the and is a square matrix
(i.e., INe − 1f t, where f is a vector of the same length as vector 1, vector of
ones). Our solution was obtained in one step because it is well known that the
generalized inverse has a known form, thus the inverse of our transformation
matrix is presented in eq.(9) with W a weighting matrix allowing infinite solu-
tions. If W is the identity we obtain the minimum norm solution in the least
squares sense which yields to the solution given by the average reference. This
approach also allows to replace W for any other matrix which describes the
variance of the signals to be estimated, that we need to know a priori and can
be obtained from the head model.

WXWXWXWXWXWXWXXWXWXWX

6. Conclusions

As mentioned, our aim is not to present new simulation results, for exten-
sive simulation results and comparisons (including the effects of model errors,
geometry or noise errors), the reader is referred to [38, 37, 25, 17, 20, 4]. The
main contribution of the work presented in this paper is the reformulation of
different reference estimation methods. Indeed, all methods, from the best pos-
sible model based Oracle1 to the model-free average reference, can be seen as
ill-posed inverse problems aiming to estimate absolute potentials from the mea-
surements. In particular, we have shown that the AR is the minimum-norm
solution to this problem, while the other methods are weighted norms, more or
less accurate depending on the amount and on the precision of the injected a
priori information.
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