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Abstract The largest earthquakes propagate laterally after saturating the fault's seismogenic width and
reach large length‐to‐width ratios L/W. Smaller earthquakes can also develop elongated ruptures due
to confinement by heterogeneities of initial stresses or material properties. The energetics of such
elongated ruptures is radically different from that of conventional circular crack models: they feature
width‐limited rather than length‐dependent energy release rate. However, a synoptic understanding of
their dynamics is still missing. Here we combine computational and analytical modeling of long
ruptures in three dimension (3D) and 2.5D (width‐averaged) to develop a theoretical relation between
the evolution of rupture speed and the along‐strike distribution of fault stress, fracture energy, and
rupture width. We find that the evolution of elongated ruptures in our simulations is well described by
the following rupture‐tip‐equation‐of‐motion:

Gc ¼ G0 1−
_vrW
v2s

γ
AαPs

� �
(1)

where Gc is the fracture energy, G0 is the steady state energy release rate, vs is the S wave speed, vr is the
rupture speed, _vr ¼ dvr=dt is the rupture acceleration, and γ=AαPs is a known function of rupture speed.
The steady energy release rate is limited by rupture width as G0 = γΔτ2W/μ, where γ is a geometric factor,
Δτ is the stress drop (spatially smoothed over a length scale smaller than W), and μ is the shear modulus.
If Gc is a constant and exactly balanced by G0, the rupture can in principle propagate steadily at any speed.
If Gc increases with rupture speed, steady ruptures have a well‐defined speed and are stable. When Gc ≠ G0,
the rupture acquires an inertial effect: the rupture‐tip‐equation‐of‐motion depends explicitly on rupture
acceleration. This inertial effect does not exist in the classical theory of dynamic rupture in 2‐D unbounded
media and in unbounded faults in 3D, but emerges in 2‐D bounded media or, as shown here, as a
consequence of the finite rupture width in 3D. These findings highlight the essential role of the
seismogenic width on rupture dynamics. Based on the rupture‐tip‐equation‐of‐motion we define the rupture
potential, a function that determines the size of next earthquake, and we propose a conceptual model that
helps rationalize one type of “supercycles” observed on segmented faults. More generally, the theory
developed here can yield relations between earthquake source properties (final magnitude, moment rate
function, radiated energy) and the heterogeneities of stress and strength along the fault, which can then be
used to extract statistical information on fault heterogeneity from source time functions of past earthquakes
or as physics‐based constraints on finite‐fault source inversion and on seismic hazard assessment.

1. Introduction

Elucidating what controls earthquake rupture speed has significant implications for understanding
earthquake physics and seismic radiation. The theory of linear elastic fracture mechanics (LEFM; Aki &
Richards, 2002; Freund, 1998; Kostrov, 1964; Madariaga, 1983) provides a fundamental framework to predict
the propagation of ruptures in basic two‐dimensional (2‐D) problems, via a crack‐tip‐equation‐of‐motion
that relates rupture length, L, to its first derivative, rupture speed, vr = dL/dt. It takes the form of the
following energy flux balance equation:

Gc ¼ G vr ; L;Δτð Þ (2)

where G is the energy release rate, defined as the energy flux from the elastic medium to the crack
tip per unit of crack tip advance, and Gc is the fracture energy dissipated in the vicinity of the
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rupture front. This differential equation has been crucial to conceptually understand the first‐order
controls on the evolution of rupture in 2‐D earthquake models (Aki & Richards, 2002; Burridge, 1973;
Freund, 1979) and in laboratory experiments (Kammer et al., 2018; Svetlizky et al., 2017; Svetlizky &
Fineberg, 2014).

However, the 2‐D crack‐tip‐equation‐of‐motion may be inadequate for large crustal earthquakes in 3D
whose rupture length exceeds the seismogenic width (Figure 1a). Whereas in 2D the energy release rate
grows linearly with rupture length, in 3‐D elongated faults the interaction between the rupture and the seis-
mogenic boundaries makes the energy release rate dependent on rupture width rather than rupture length
(Dalguer & Day, 2009; Day, 1982; Weng & Yang, 2017). For example, 3‐D numerical simulations have shown
that whether a long rupture is self‐arresting or runaway depends on seismogenic width, fault stress, and fric-
tional parameters, but not on rupture length (Weng & Yang, 2017). Elongated rupture models of large earth-
quakes have been classically considered in seismology (Haskell, 1964) and offer one plausible explanation
for observations of source spectra with two corner frequencies in teleseismic analyses (e.g., Denolle &
Shearer, 2016). The second corner frequency, if related to the risetime of slip, can have a lower bound dic-
tated by the seismogenic width (Day, 1982; Savage, 1972). Elongated rupture models are also considered
in the context of earthquake moment‐area scaling relations (Luo et al., 2017) and moment‐duration scaling
of slow and regular earthquakes (Gomberg et al., 2016).

Elongated ruptures can happen also in moderate earthquakes (Figure 2) and even in small earthquakes, as
suggested by spectra with double corner frequencies (Imanishi & Ellsworth, 2006; Uchide & Imanishi, 2016)
and source inversion studies (Okuda & Ide, 2018). The rupture width of moderate and small earthquakes
may be confined by other constraints such as heterogeneities of initial stresses and fault materials. An exam-
ple is the 2004 Mw6 Parkfield earthquake, whose rupture depth extent is about 6 km and aspect ratio is
between 3 and 5 (Custódio et al., 2005; Uchide & Ide, 2010). Ruptures nucleated near the bottom of the seis-
mogenic zone can remain confined at depth without breaking the entire seismogenic width due to the decay-
ing stress available in shallower areas if the fault is loaded from the bottom by deep fault creep. This
interpretation has been proposed for the 2015 Mw7.8 Gorkha, Nepal earthquake (Avouac et al., 2015;
Michel et al., 2017).

Elongated rupturesmay play an important role also in induced seismicity. Rupture widthmay be confined to
the intersection of a fault and a fluid reservoir if there are unfavorable stresses or velocity‐strengthening fault
materials outside the fluid‐injection layer (Galis et al., 2017; Galis et al., 2018). In producing gas fields, the
rupture width of induced earthquakes may be limited by the width of stress concentrations along the top
or bottom of a fault/reservoir intersection caused by differential compaction between the reservoir compart-
ments offset by the fault (e.g., Buijze et al., 2019).

In contrast to equation (2), if the 2‐D elastic medium has a finite width W in the crack‐normal direction
and the crack is longer than W, the energy release rate is length‐independent (Goldman et al., 2010;
Marder, 1998). In this so‐called “strip configuration”, an approximate crack‐tip‐equation‐of‐motion is
(Marder, 1998)

Gc ¼ G0 1−
_vrW
v2P

1
2α4R

� �
(3)

where G0 is the steady state energy release rate, _vr ¼ dvr=dt is the crack acceleration, vP is the P wave

speed, αR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− vr=vRð Þ2

q
, and vR is the Rayleigh speed. The steady energy release rate does not depend

on rupture length; it is G0 = γΔτ2W/μ, where Δτ is the stress drop, μ is the shear modulus, and γ is a
geometric factor of order 1. Equation (3) was developed under the assumption that the crack accelerates

slowly, W _vr=v
2
P≪1; that is, its speed changes little over the time scale of propagation of waves up to the

boundaries. The equation has been validated by laboratory experiments of mode I crack in the strip
configuration (Goldman et al., 2010). In contrast to equation (2) in 2‐D unbounded media, equation (3)
features an “inertial effect”: it depends explicitly on crack acceleration.

Here we demonstrate that 3‐D elongated ruptures obey a rupture‐tip‐equation‐of‐motion similar to that of
the 2‐D strip‐crack problem. To enable mathematical tractability and affordable computational cost, we
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study systematically a reduced‐dimensionality (2.5‐D) model that accounts approximately for the finite
rupture width. Our 2.5‐D results are then validated by a selected set of 3‐D dynamic rupture simulations
on very long faults. We find that the rupture‐tip‐equation‐of‐motion similar to equation (3) describes well
the dynamics of elongated ruptures in 2.5‐D and 3‐D simulations. To illustrate how this theoretical result
provides valuable insight into earthquake physics, we analyze its implications for the stability of rupture
speed, including rupture arrest, to heterogeneities of fracture energy and initial fault stress. We also
discuss implications of the theory for physics‐based hazard assessment and for inferences of fault
mechanical properties from geophysical observations.

Figure 1. (a) A subduction zone megathrust with seismic and aseismic zones, including heterogeneities in the
seismogenic zone. (b) Antiplane (mode III) rupture model along a planar dip‐slip fault with finite seismogenic
width (yellow region) in an unbounded elastic medium. The red star marks the hypocenter. The patches inside
the yellow region are snapshots of slip rate at different times, illustrating a typical pulse‐like rupture due to the
seismogenic boundaries. The gray regions are aseismic zones (no coseismic slip). The pink curve shows the slip
profile across the depth.
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2. Theoretical and Numerical Models
2.1. Problem Statement in 3D

Our general goal is to gain theoretical insight into the dynamics of elongated earthquake ruptures. To facil-
itate mathematical and computational analysis while preserving the essence of the real problem, we make
here a number of simplifying assumptions. We consider a vertical fault of infinite length and finite width
W, embedded in a 3‐D unbounded, homogeneous, linear elastic medium (Figure 1b). The shear modulus
and Swave speed of themedium are denoted μ and vs, respectively. To avoid the complications of supershear
ruptures (propagating faster than S wave speed) that can occur in long strike‐slip faults, in this study we
focus on dip‐slip faulting. We adopt a Cartesian coordinate system in which x3 denotes depth. The fault is
located on the x2 = 0 plane and has a strike parallel to x1 and slip parallel to x3.

We assume that slip and tractions on the fault are related by a friction law with finite fracture energy Gc,
which may be a material property or depend on local fault variables such as slip or slip velocity. Our work
combines theory and modeling, and in each approach friction is described with a different level of detail.
Our theoretical analysis is within the small scale yielding regime of fracture mechanics, in which the size
of the process zone near the rupture front is small compared to other length scales of the problem. In such
regime, fracture energy is an essential parameter and the details of the friction law are of secondary
importance. In contrast, in our numerical simulations a specific friction lawmust be prescribed. To have full
control on the fracture energy in our simulations, we assume that the fault is governed by the linear
slip‐weakening friction law (Andrews, 1976a, 1976b; Freund, 1979; Ida, 1972). The fault normal stress is
time‐independent owing to the symmetries of the problem, and the frictional strength parameters prescribed
are the static strength τs, the dynamic strength τd, and the slip‐weakening distance d0. The fracture energy is
Gc = 0.5(τs − τd)d0. The nominal stress drop is Δτ = τ0 − τd and τ0 is the initial shear stress; the real stress
drop in simulations is slightly different due to overshoot or undershoot effects.

Large ruptures nucleate at depth, then reach the fault width, and continue their propagation laterally as
bilateral slip pulses (Ampuero & Mao, 2017; Day, 1982). The focus of our work is on the later stage of lateral
pulse‐like rupture. For simplicity, in our numerical simulations we consider only symmetric ruptures, but
this is not a strong assumption because in fast bilateral pulse‐like ruptures the two fronts do not interact.

2.2. Reduction to a 2.5‐D Model

The 3‐D problem is approximated here by a reduced‐dimensionality (2.5‐D) model (Appendix A.1.). There
are two interpretations of the 2.5‐D model: the Elsasser's model and the Fourier transform analogy.
Whereas the latter is our preferred interpretation and our original contribution, we mention the former
mostly for historical reasons.

Figure 2. (a) Aspect ratio L/W versus moment magnitude for global earthquakes, from the catalogs of Wells and Coppersmith (1994), Henry and Das (2001), and
the online SRCMOD database (Mai & Thingbaijam, 2014). (b) Aspect ratio versus seismogenic width W for strike‐slip earthquakes. The thin black vertical line
marks the critical width of strike‐slip catalogs, above which ruptures with very high aspect ratios have occurred. The gray curve is the result of 3‐D dynamic rupture
simulations by Weng and Yang (2017) and the blue curves are derived in this paper assuming two different values of the critical widthWc = μGc/γΔτ

2= 12 km and
20 km, respectively.
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A 2.5‐D Elsasser‐type formulation was developed for quasi‐static faulting in an elastic layer over a viscoelas-
tic half‐space by Rice (1980) and Lehner et al. (1981). The approach involves variables andmomentum equa-
tions averaged across the thickness of the elastic layer, analogous to the shallow water approximation for
tsunami waves. It was extended to dynamic faulting by Johnson (1992) to study the effect of lithospheric
thickness on earthquake rupture. For purely elastic media (without viscosity), a scalar version of the 2.5‐D
equations for strike‐slip faulting was introduced by Lapusta (2001) and used in dynamic rupture studies
under the name of “crustal plane model” (e.g., Appendix A of Kaneko and Lapusta (2008)). Similar 2.5‐D
governing equations were used in earthquake cycle models (Langer et al., 1996; Myers et al., 1996) and to
study the effect of seismogenic width on the growth and evolution of fault systems and on the earthquakes
they produce (Shaw, 2004; Spyropoulos et al., 2002).

In Appendix A.1. we propose an alternative derivation of a 2.5‐D model in which, rather than depth‐
averaging, we consider a scalar wave equation and isolate a single vertical Fourier mode as a crude way to
account for the constrained depth profile of slip. The resulting 2.5‐D governing equation is

∂2u
∂x21

þ ∂2u
∂x22

−
u

γWð Þ2 ¼
1
v2s

∂2u
∂t2

(4)

where u is the displacement and γ is a coefficient that depends on the assumed depth distribution of slip.
For a fault embedded in an unbounded space, approximating the depth profile of slip as one half of a
cosine of wavelength 2W leads to γ = 1/π. In a shallow fault on a half‐space, γ = 2/π. For a buried fault
the value of γ is between 1/π and 2/π. Equation (4) is known as the Klein‐Gordon equation in physics and
a similar equation (Carlson et al., 1994) was introduced independently as the continuous limit of the
Burridge‐Knopoff model.

The 2.5‐Dmodel is convenient for two reasons. Compared to the 2‐D antiplane wave equation, the only dif-
ference in equation (4) is the additional term u/(γW)2. This similarity of governing equations makes it pos-
sible to study theoretically the 2.5‐D problem by exploiting 2‐D results. Moreover, the 2.5‐D approach
enables numerical simulations that approximately account for the 3‐D effect of a finite rupture depth at
the same computational cost as a 2‐D simulation.

For convenience, we define a reduced rupture width:

W ′ ¼ γW (5)

2.3. Energy Release Rate of a Steady State Rupture

We first consider a semiinfinite rupture propagating at constant speed. We assume a uniform stress drop,Δτ,
for 0 < x < L , and zero stress drop for x < 0. The near‐tip stresses Δσij in the 2.5‐D model have the same
asymptotic form as in the 2‐D mode III crack problem (Appendix A.3.):

Δσij r; θð Þ≈KIII vrð Þffiffiffiffiffiffiffiffi
2πr

p ΣIII
ij θ; vrð Þ (6)

where r and θ are the distance and azimuth in the polar coordinates centered at the rupture tip, KIII is the
stress intensity factor, and ΣIII

ij is a known universal function (Freund, 1998). The energy release rate is
(Appendix A.3.)

G ¼ 1
2μ

g vrð ÞK2
III vrð Þ (7)

where

g vrð Þ ¼ 1
αs

(8)

and αs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− vr=vsð Þ2

q
. The stress intensity factor is related to stress drop and rupture length, width, and

speed by (Appendix A.2.)
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KIII vrð Þ ¼ Δτ 2αsW ′½ �1=2· erf 1
αs

L
W ′

� �1=2( )
(9)

where erf is the error function. Our conclusions do not depend strongly on
the assumed spatial distribution of stress drop. In fact, the dependence of
KIII(vr) on an arbitrary spatially variable stress drop, Δτ(x) (Appendix
A.2.), involves a weight function that decays steeply behind the rupture
tip over a short distance W ′ αs comparable to the pulse size. Substituting
equations (8) and (9) into equation (7), the resulting energy release rate is

G ¼ G0·f L=W ′; vr=vsð Þ (10)

where

G0 ¼ Δτ2W ′

μ
(11)

and

f L=W ′; vr=vsð Þ ¼ erf2
1
αs

L
W ′

� �1
2

( )
(12)

The function f grows quickly from 0 to 1 as the normalized rupture length L/W′ increases. For a bilateral rup-
ture with half‐length L such that L/W ′ > 2, f ≈ 1 for different values of vr/vs (Figure 3), and thus G ≈ G0.
Hence, G0 is the steady state energy release rate, regardless of rupture speed and propagation distance.

2.4. Numerical Models

We use both 3‐D and 2.5‐D dynamic rupture simulations to investigate the evolution of earthquake rupture
speed on elongated faults. As the computational cost is much lower in 2.5D than in 3D, we consider much
longer faults and study the problem more systematically in the 2.5‐D model. In both type of simulations, to
avoid the effects of waves reflected from the model boundaries, we consider a large domain and simulation
times shorter than the time required for the earliest seismic waves to reflect from the model boundaries
and travel back to the fault. In the 2.5‐D simulations, considering the symmetries of the problem, the
computational domain is restricted to a quarter of the actual model domain. In the 3‐D simulations, we
assume a Poisson's ratio of 0.25. The values of other material properties are not important because we
present results in nondimensional form.

Our simulations span a wide range of length scales. The smallest length scale of the problem is the
cohesive zone size Λ. For the slip‐weakening friction law in the 2‐D antiplane model it can be estimated
by (Day et al., 2005)

Λ ¼ αsΛ0; Λ0 ¼ 9π
32

μd0
τs−τd

(13)

where Λ0 is the static cohesive zone size. The cohesive zone size in the 2.5‐Dmodel is the same as in the 2‐D
model. The propagation of a rupture with finite cohesive length can be approximated by LEFM when the
cohesive zone size is much smaller than the dimensions of the rupture, Λ ≪ W and Λ ≪ L. To guarantee
sufficient numerical resolution, the grid size Δx is set much smaller than the static cohesive zone size,
Δx≪Λ0. Thus, our simulations require the condition Δx≪Λ0≪W≪ L. In 2.5D, we choose the parameters
and grid size to ensure Λ0/Δx = 32, to test different ratios of W/Λ0 between 1 and 30, and to test the largest
model with L/W = 60. In 3D, we set W/Λ0 = 5 and Λ0/Δx = 16, and our largest model has L/W = 10.

The simulations are based on the spectral element method (Ampuero, 2002; Komatitsch & Vilotte, 1998)
for the spatial discretization and on the explicit Newmark method for the time discretization. For
2.5‐D simulations we use the software SEMLAB (https://github.com/jpampuero/semlab) in Matlab on
a single processor, with vectorization optimizations. For 3‐D simulations we use the software

Figure 3. The ratio between dynamic and steady energy release rates
(the function f in equation (10)) for different values of normalized rupture
length L/W′ and speed vr/vs.
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SPECFEM3D (https://geodynamics.org/cig/software/specfem3d/) with the implementation of fault
dynamics by Kaneko et al. (2008) and Galvez et al. (2014) on a medium‐scale computing cluster with
64 cores and 384‐GB memory in each node. The time step is set according to the Courant‐Friedrichs‐
Lewy stability condition.

We initiate the ruptures at the fault center by imposing a time weakening of the friction coefficient
(Andrews, 1985) over a region expanding at speed 0.1 vs, up to a distance L/W = 2. Eventually, rupture pro-
pagation becomes spontaneous and accelerates, driven by slip weakening. Immediate fault healing is
assumed in 2.5D (the friction coefficient is restored to its static value when slip rate becomes zero), but
not in 3D (the friction coefficient remains at its dynamic value even after slip arrest).

3. Results
3.1. Rupture Acceleration Phase in 2.5D

We ran a set of 2.5‐D simulations assuming a spatially uniform ratio of fracture energy to steady energy
release rate, Gc/G0. This energy ratio is the same (except for the geometric coefficient γ) as the nondimen-
sional parameter κ introduced by Madariaga and Olsen (2000). After nucleation, ruptures accelerate toward
the S wave speed if Gc/G0 < 1 (Figure 4a). The value of the energy ratio controls the rupture evolution: the
smaller it is, the faster the rupture accelerates.

We hypothesize that the rupture‐tip‐equation‐of‐motion along a depth‐bounded fault in 2.5D has the
following form, similar to equation (3) in the strip configuration:

Gc ¼ G0 1−
_vrW ′

v2s

1

AαPs

� �
where vs is the S wave speed (the limiting speed in mode III), αs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− vr=vsð Þ2

q
, and A and P are two con-

stants to be determined. To test our hypothesis, we rewrite the equation as

_vrW ′

v2s 1−Gc=G0ð Þ ¼ AαPs (14)

After normalizing the rupture acceleration _vr by v2s 1−Gc=G0ð Þ=W ′, we find that all the acceleration versus
speed curves obtained in our simulations collapse onto a single curve (Figure 4b). We determine that the
best fitting values in the least squares sense are A = 1 and P = 3. Considering that the function α3s
approaches 0 for large rupture speed, we compare its inverse 1=α3s with the numerical results and find
remarkable agreement (Figure 5). The acceleration phases of all the models with Gc/G0 < 1 are thus well
predicted by the equation

_vrW ′

v2s 1−Gc=G0ð Þ ¼ α3s (15)

and the energy balance is well approximated by

Gc ¼ G0 1−
_vrW ′

v2s

1
α3s

� �
(16)

For steady ruptures (when _vr ¼ 0) equation (16) yields Gc = G0, consistently with our previous statement
that G0 is the steady energy release rate. Remarkably, G0 does not depend on rupture speed and, in parti-
cular, it is also the static energy release rate (at zero speed). In contrast, the energy release rate of steady
ruptures in unbounded 2‐D media depends strongly on rupture speed, for all rupture types including
self‐similar cracks (Freund, 1998), self‐similar pulses (Nielsen & Madariaga, 2003), and steady state pulses
(Rice et al., 2005).

For nonsteady ruptures, if G0 > Gc, the “inertial term” of the right‐hand side is nonzero and provides a
positive acceleration. As the rupture speed approaches the S wave speed, the function αs approaches 0
and equation (15) shows that the acceleration _vr vanishes too. The rupture‐tip‐equation‐of‐motion
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(equation (15)) does not depend explicitly on the rupture distance L, unlike the case of a 2‐D unbounded
medium (equation (2)).

3.2. Spatial Distribution of Rupture Speed Under Uniform Energy Ratio

Assuming that Gc/G0 is constant, the relation between rupture speed and propagation distance can be
determined analytically in closed form. Equation (15) can be written in the following differential form:

1−Gc=G0ð Þ
W ′

dt ¼ dvr
v2sα3s

(17)

Multiplying by vr both sides of equation (17), considering dL = vrdt, and integrating we get

1−Gc=G0ð Þ L1−L2ð Þ=W ′ ¼ α−1s1 −α
−1
s2 (18)

where L1 and L2 are two arbitrary rupture front positions along the
fault and αs1 and αs2 are the functions of rupture speed αs at the posi-
tions L1 and L2. Choosing a reference position L1 at which the rupture
speed is known, equation (18) gives a relation between rupture speed vr
and propagation distance L.

We find this approach fits well the simulation results (Figure 4a) in the
well‐developed rupture acceleration phase. Each predicted curve in
Figure 4a intercepts the horizontal axis (zero rupture speed), at a
rupture length defined as L0. This is not a fixed characteristic length
of the problem, but depends on details of the nucleation process
(Figure 6a). If the nucleation is vigorous, for instance if the prescribed
nucleation speed is high, the rupture reaches a high speed inside the
nucleation zone quickly and thus has a shorter L0. Choosing L0 as the
reference position, setting L1 = L0, αs2 = 1, and L2 = L in equation (18),
we get

1−Gc=G0ð Þ L−L0ð Þ=W ′ ¼ α−1s −1 (19)

The right‐hand side is a universal function that relates rupture speed to
relative propagation length for a constant Gc/G0. After normalizing the

Figure 4. (a) Normalized rupture speed (colored curves coded byGc/G0) as a function of normalized distance from the 2.5‐
D numerical simulations versus theoretical estimation (black thin curves). (b) Normalized rupture acceleration as a
function of normalized rupture speed, compared with the theoretical estimation.

Figure 5. Inverse of normalized rupture acceleration (black circles) as a
function of normalized rupture speed for the same models shown in
Figure 4, compared with the theoretical estimation (red curve).
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relative propagation length L − L0 by W ′ /(1 − Gc/G0), all the rupture speed versus propagation length
curves collapse onto this universal function (Figure 6b).

3.3. Effect of Steps in Fracture Energy and Stress Drop on Rupture Speed

As a first approximation to natural fault heterogeneity, we consider piecewise constant spatial distributions
of fracture energy or stress drop along the fault. We design models with a step function in the spatial distri-
bution of Gc, still such that Gc/G0 < 1. We consider jumps of the ratio Gc/G0 among the values 0.9, 0.96, and
0.98. We find that when ruptures run through an energy jump, their acceleration versus speed curves transi-
tion from one predicted curve to another one, both based on equation (15), after short transient
adjustments (Figure 7).

Figure 6. (a) The intercept of each predicted speed curve (e.g., in Figure 4a) with the horizontal axis as a function of Gc/
G0. vnuc is the nucleation speed of time weakening. (b) Normalized rupture speed as a function of normalized distance,
compared with the theoretical estimation.

Figure 7. Rupture acceleration versus rupture speed (color curves) for the models with Gc/G0 abruptly changing among
0.9, 0.96, and 0.98. The yellow, blue, and green curves result from simulations with jumps from 0.98 to 0.96, from 0.96 to
0.98, and from 0.96 to 0.9, respectively. The three black curves are the theoretical estimations of models with uniform Gc/
G0 = 0.9, 0.96, and 0.98, respectively. The arrow shows the direction of the evolution during the acceleration phase.
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The results are similar for models with jumps in stress drop, especially at high rupture speeds. The steady
energy release rate is proportional to the square of the stress intensity factor KIII(vr), which in turn is related
to stress drop. A heterogeneous stress drop Δτ(x) contributes to KIII via a weighting function that decays
sharply over a distance ~W ′ αs to the rupture tip (equation (55) in Appendix). As the rupture speed increases,
αs decreases, the weighting function decay becomes sharper (its decay length scale becomes much shorter
than W′), and G0 is increasingly controlled by the local value of Δτ(x). Thus, fast ruptures react rapidly to
local changes in stress drop, over propagation distances shorter than W′.

3.4. Rupture Deceleration Phase in 2.5D

We now consider ruptures propagating into a region where Gc/G0 > 1, such as a fault barrier with high
fracture energy. When ruptures enter a barrier, they suffer a transient perturbation over a short
propagation distance, then decelerate continuously, and eventually stop (Figures 8a and 8b). The decel-
eration rate depends on the energy ratio Gc/G0 and on the rupture speed achieved before the rupture
encounters the barrier. For smaller Gc/G0 and higher starting speed, ruptures propagate a longer
distance. We normalize the rupture deceleration, _vr , by v2s 1−Gc=G0ð Þ=W ′ and find that all the rupture
deceleration versus speed curves collapse onto another universal function of the form given by
equation (14) (Figure 8c). We find that A ≈ 1.2 and P ≈ 2.6 are the best fitting values in the least squares
sense, discarding the data within a short distance of the barriers. The deceleration phase is thus well
described by the equation

_vrW ′

v2s 1−Gc=G0ð Þ ¼ 1:2α2:6s (20)

The normalized deceleration reaches a constant value 1.2 as the rupture speed drops to 0. This equation is
very similar to that of the acceleration phase (equation (15)), but note that in equation (20) the signs of both
_vr and 1 − Gc/G0 are negative.

3.5. Rupture Arrest Distance Inside a Uniform Barrier

As in section 3.2, we obtain the following relation between rupture speed and propagation distance during
deceleration, assuming constant Gc/G0 in the fault barrier:

0:72
Gc

G0
−1

� �
L2−L1ð Þ=W ′ ¼ α−0:6s1 −α−0:6s2 (21)

With a suitable choice of reference position L1, this equation matches well the numerical results (Figures 8a
and 8b). Setting L2 such that vr = 0, the length Ldece = L2 − L1 is the rupture arrest distance, that is, the max-
imum distance the rupture penetrates into the barrier. It is related to the peak rupture speed achieved before
hitting the barrier by

Ldece ¼ α−0:6s −1
0:72 Gcd=G0d−1ð ÞW ′ (22)

where Gcd/G0a is the energy ratio in the deceleration portion of the rupture. The value of αs corresponding to
the peak rupture speed is estimated from equation (18) as

αs ¼ 1−Gca=G0að Þ Lacce=W ′þ 1ð Þ−1 (23)

where Lacce and Gca/G0a are the rupture propagation distance and the energy ratio in the acceleration
portion of the rupture. Substituting equation (23) into equation (22), we obtain the theoretical deceleration
length Ldece and the total rupture length Lmax = Lacce+Ldece. The simulated rupture lengths are compared
with the theoretical estimations in Figure 9. Due to the oscillation of rupture speed immediately after the
rupture encounters the barrier, which is not accounted for in our estimate, the theoretical Lmax

(equation (22)) slightly underestimates the simulated rupture length. If we approximately use 1:2α3s instead
of 1:2α2:6s in the deceleration equation (20), we obtain a simpler relation that fits better the simulated
deceleration length (Figure 9):
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Ldece ≈ 0:83
1−Gca=G0að Þ
Gcd=G0d−1ð Þ Lacce (24)

3.6. Rupture Through an Alternation of Asperities and Barriers

We next consider an alternation of asperities and barriers along the fault, that is, regions with Gc/G0 < 1 and
Gc/G0 > 1, respectively (Figure 10a). The rupture speed accelerates inside the asperities and decelerates
inside the barriers, in a regular cyclic pattern. When the rupture propagates from an asperity to a barrier,
the rupture path in vr−_vr space jumps from the theoretical acceleration phase curve onto the deceleration
phase curve, and vice versa, forming a closed loop (Figure 10b). These results illustrate how well the
rupture‐tip‐equations‐of‐motion (equation (14)) describe the evolution of rupture speed for both acceleration
and deceleration phases.

3.7. Results of 3‐D Simulations Explained by 2.5‐D Theory

We conducted a set of 3‐D dynamic rupture simulations prescribing
various values of the energy ratio Gc/G0, uniformly along the fault. To
evaluate the along‐strike rupture speed, we first calculate the rupture
speed everywhere on the fault based on the gradient of rupture time,
and then average it along depth at each along‐strike position L. When
L/W > 2, the along‐dip component of the gradient of rupture time is
negligible. We calculate the rupture acceleration as the time derivative
of the depth‐averaged rupture speed.

We find that the relation between rupture speed and propagation distance
(Figure 11) in the 3‐D model is well fitted by the 2.5‐D equation
(equation (18)). The only adjustment we find necessary is that the steady
energy release rate in 3D is slightly smaller than in 2.5D:

G0 ¼ 0:96
π

Δτ2W
μ

(25)

which implies γ = 0.96/π. In our 2.5‐D numerical model γ = 1/π comes
from a half‐wavelength proxy for the depth profile of slip. Lehner et al.
(1981) chose a different value, γ = π/8, for a full‐space model (γ = π/
4 for a half‐spacemodel) based on the criterion that the slip of an infinitely
long crack with uniform stress drop should match in the 2.5‐D and 3‐D
models. Our results indicate that the 2.5‐D model with γ = 1/π is a very
good approximation of the 3‐D model.

To investigate the deceleration phase in the 3‐D model, we set Gc/G0 > 1
and a fast nucleation speed, 0.8 vs, inside the nucleation zone L/W < 2.

Figure 8. (a and b) Normalized rupture speed as a function of normalized distance from the 2.5‐D numerical simulations for the models with Gc/G0 = 0.9 in the
gray regions and Gc/G0 > 1 elsewhere. Models with different Gc/G0 (>1) are shown in different colors. (c) Normalized rupture deceleration as a function of nor-
malized rupture speed, compared with the theoretical estimation.

Figure 9. The normalized rupture length from 2.5‐D simulations are shown
as symbols for the model with Gc/G0 changing abruptly from 0.9 to values
larger than 1 at different transition distance Ltrans. The blue curves are the
theoretical estimations of rupture lengths based on equation (22) and the red
curve is based on equation (24).
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Outside the nucleation zone, the ruptures decelerate. The relation between rupture speed and propagation
distance in 3D (Figure 12) is fitted well by the 2.5‐D deceleration rupture‐tip‐equation‐of‐
motion (equation (21)).

4. Discussion
4.1. Scope of the LEFM Assumption

Our theoretical analysis is based on LEFM and should be adequate when the ratio Λ0/W′of static cohesive
zone size (defined in equation (13)) to reduced rupture width is small. The simulation results and theoretical
predictions agree well if Λ0/W ′ ≤ 1 (Figure 13). For smaller Λ0/W′, such as 0.314, 0.157, and 0.1, we run
models withGc/G0 = 0.9 and find the resulting rupture speed distributions converge to the LEFM prediction.
The condition of the rupture‐tip‐equation‐of‐motion for elongated ruptures is Λ0/W ′ ≤ 1.

4.2. Effects of Finite Seismogenic Depth

The approximate rupture‐tip‐equation‐of‐motion proposed here for
ruptures on bounded faults in 2.5D and 3D is the same as that of a crack
in a bounded strip in 2D (Goldman et al., 2010) after minor adjustments
(replacing the term v2sα

3
s by 2v

2
Pα

4
R). The definition of width W is different

in these two situations: in the strip configurationW is the thickness of the
elastic medium in the crack‐normal direction, whereas in the 2.5‐D and
3‐D models it is the width of the rupture area in the dimension perpendi-
cular to the rupture propagation direction. Despite this difference, the
steady energy release rate shares the same form, G0 = γΔτ2W/μ, where γ
is a different geometric factor for each configuration. The property of
constant energy release rate (independent of rupture length) is one feature
distinguishing elongated rupture models from other usual rupture models
such as the circular crack in 3D and the linear crack in 2D.

Our theoretical developments highlight the essential role of the seismo-
genic width on rupture dynamics. The finiteness of the seismogenic width
has, in theory, important effects on numerous other aspects of earthquake
rupture. It affects earthquake moment versus area scaling relations by
limiting the elastic stiffness of a slip zone (Luo et al., 2017). Fracture
mechanics theory and dynamic rupture simulations indicate that the
seismogenic width controls the maximum fault‐step over distance that a
rupture can jump (Bai & Ampuero, 2017) and the maximum thickness
of fault damage zones (Ampuero & Mao, 2017). It has also been

Figure 10. (a) Rupture speed evolution for the model with Gc/G0 abruptly changing between 0.9 (yellow bars) and 1.02
(purple bars). The gray bar indicates the nucleation zone. (b) Rupture acceleration versus rupture speed for the same
model. The arrows show the direction of the evolution between acceleration and deceleration phases.

Figure 11. Normalized rupture speed (colored curves coded by Gc/G0 < 1)
as a function of normalized distance from the 3‐D numerical models ver-
sus theoretical estimation (black thin curves).
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proposed that continental strike‐slip earthquakes have a characteristic
length of segmentation related to the seismogenic width (Klinger, 2010),
a feature found in 3‐D earthquake models (Heimpel, 2003). Our results
can also help anticipate the range of rupture scenarios possible in faults
where the seismogenic width changes substantially along strike, that is,
the San Andreas Fault (Smith‐Konter et al., 2011) and the Alpine Fault
in New Zealand (Michailos et al., 2019).

The finiteness of the seismogenic width is an essential ingredient of nat-
ural faults that has been rarely accounted for in laboratory experiments
of dynamic rupture. A notable exception is the experimental work by
(Mello et al., 2014), who considered a frictional interface partitioned in
two elongated bands of different roughness, a rough (seismogenic)
portion obtained by bead blasting, and a smooth (aseismic) portion
obtained by polishing. Based on our theoretical results, new targets for
such laboratory experiments can be designed, for instance on surfaces
with controlled heterogeneities along strike, to probe 3‐D earthquake
mechanics at a fundamental level.

4.3. Stability of Steady State Ruptures
4.3.1. Constant Fracture Energy
If fracture energy Gc is constant, the rupture‐tip‐equation‐of‐motion
predicts rupture acceleration toward the S wave speed. However, the
equation also admits steady ruptures at speeds arbitrarily slower than vs

if Gc is exactly equal to the steady energy release rate G0. In numerical simulations, these slow steady
solutions can be approached by artificial initial conditions, but they are unstable. While the equation does
not constrain their speed, it provides insight on their stability to perturbations. To simplify the analysis,

Figure 12. Normalized rupture speed (colored curves coded by Gc/G0 > 1)
as a function of normalized distance from the 3‐D numerical models ver-
sus theoretical estimation (black thin curves).

Figure 13. (a–c) Normalized rupture acceleration as a function of normalized rupture speed for different ratioΛ0/W′, compared with the theoretical estimation. (d
and e) Normalized rupture speed as a function of normalized distance for different ratio Λ0/W′, compared with the theoretical estimation.
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we use a single equation for both the acceleration and deceleration
phases, obtained by fitting their data together (Figure 14):

_vrW ′

v2s 1−Gc=G0ð Þ ¼ α2:6s (26)

Normalizing the rupture speed and distance, that is, ev ¼ vr=vs and eL ¼ L
=W ′, equation (26) can be written as

devev ¼ α2:6sev2 1−Gc=G0ð ÞdeL (27)

If a steady state rupture with Gc/G0 = 1 encounters a perturbation of
fracture energy ΔGc, its rupture speed is perturbed according to

devev ¼ 1−ev2ð Þ1:3ev2 ΔGc

G0
deL (28)

The rupture speed diverges from its initial steady state value: it accelerates
(decelerates) if ΔGc is positive (negative). The maximum disturbance ΔGc

that causes a relative perturbation of rupture speed of less than 10 %,

that is, dev=ev<10%, at a propagation distance deL ¼ 10 is estimated from

equation (28) as
ΔGc

G0
¼ 0:01ev2= 1−ev2� �1:3

. The maximum allowed

disturbance increases with increasing rupture speed; thus, fast ruptures are more stable than slow
ruptures. For instance, for a rupture speed ev ¼ 0:9 the maximum allowed disturbance is about 7%, and
for ev ¼ 0:1 it is about 0.01%. This analysis, under the assumption of a constant Gc, implies that for a slow
steady rupture to be stable additional mechanisms are required. One such mechanism is conceptually
explored next.
4.3.2. Speed‐Dependent Fracture Energy
If fracture energy depends on rupture speed, the speed of steady ruptures is well determined by the condition
Gc(vr) =G0. This condition results in steady speeds that can be lower than the limiting speed (Swave speed in
mode III). The stability of such steady state ruptures depends on the sign of dGc/dvr. If the fracture energy
increases with increasing rupture speed (“speed strengthening”), then the steady state rupture speed is
stable: if a perturbation acting on a steady state rupture induces a small increase of rupture speed Δvr, the
energy ratio increases and becomes Gc(vr+Δvr)/G0 > 1. Then, according to equation (15) or equation (20),
rupture decelerates counteracting the perturbation. Thus, speed strengthening provides a negative feedback
that stabilizes steady state ruptures. In contrast, if the fracture energy decreases with increasing rupture
speed (“speed weakening”), ruptures rapidly accelerate to the S wave speed, as described by the rupture‐
tip‐equation‐of‐motion.

If speed‐strengthening effects operate on natural faults, stable steady state ruptures significantly slower than
the limiting speeds may exist once G0 is balanced by Gc(vr). A speed dependence of Gc can emerge indirectly
from an explicit dependence of friction on slip velocity, as in rate‐and‐state‐dependent friction (Ampuero &
Ben‐Zion, 2008; Ampuero & Rubin, 2008; Rubin & Ampuero, 2005), in combination with the systematic
relation between rupture speed and peak slip velocity (Gabriel et al., 2013). Laboratory experiments on ana-
log materials indeed show that fracture energy increases with rupture speed (Goldman et al., 2010). Off‐fault
inelasticity (plasticity or damage) can also increase the total dissipated energyGc by an amount that depends
on rupture speed due to the speed dependence of the thickness H of the inelastic zone (Gabriel et al., 2013).

The latter scales withK2
III (e.g., Ampuero &Mao, 2017) which, from equation (9) for large ruptures (L≫W),

is proportional to αSW. Because the function αS decreases with rupture speed, if the overallGc is proportional
to H (for instance, if the off‐fault dissipated energy per unit of volume is constant, rate‐independent), the
implied behavior is speed weakening, for which the only steady state speed predicted by the model is vS.
A rate‐dependent rheology (on‐ or off‐fault) seems necessary to produce the speed strengthening Gc(vr)
required for stable steady rupture at low speed.

Figure 14. Normalized rupture acceleration (red dots) and deceleration
(blue dots) as a function of normalized rupture speed compared with a
unique best fit curve.
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4.4. High‐Frequency Radiation

We rewrite the rupture‐tip‐equation‐of‐motion (equation (15)) as

dev
α3s

¼ det (29)

where ev is the normalized speed, ev ¼ vr=vs, andet is the normalized time,et ¼ vst 1−Gc=G0ð Þ=W ′. Integrating
equation (29) for ev from 0 to ev and for et from 0 to et , assuming constant Gc/G0, we obtain a simple relation
between rupture speed and time:

ev ¼ etffiffiffiffiffiffiffiffiffiffiffiffi
1þet2p (30)

Multiplying both sides by dt and integrating with respect to time, we get

1−Gc=G0ð ÞL=W ′þ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þet2p

(31)

At the beginning of rupture, whenet≪1, the rupture speed increases linearly with time,ev≈et. Note that this is a
rupture speed averaged across the seismogenic width, and the smaller‐scale nucleation process is ignored. As

time increases, such that et≫1, rupture speed asymptotically approaches 1. Equations (30) and (31) can be

applied to the rupture deceleration by replacing et with et total−et , where et total is the total rupture time. The
dimensionalized form for the beginning and stopping stages of rupture are, respectively,

vr ≈
v2s t
W 0 1−

Gc

G0

� �
and vr ≈

v2s ttotal−tð Þ
W 0 1−

Gc

G0

� �
(32)

Equation (32) features slope discontinuities at the onset and end of rupture, whose amplitude is
proportional to (1 − Gc/G0). Madariaga (1977) found that suddenly starting and stopping cracks create
discontinuities in the radiated wavefield that enhance its high‐frequency content. Although less abruptly,
the starting and stopping phases along elongated faults also contribute to the radiated high‐
frequency energy.

A fundamental feature of the 2.5‐D and 3‐D rupture‐tip‐equations‐of‐motion is the implication that
long ruptures have inertia, which introduces a memory effect. When the rupture encounters an abrupt
change of fracture energy, its speed does not change instantaneously, but reacts with a continuous
transient (Figures 8a, 8b, and 10). In contrast, in 2‐D crack models rupture speed reacts immediately
to abrupt changes of fracture energy (Madariaga, 1983). Thus, the relations between wave
radiation and fault heterogeneity are different in 2‐D and in elongated 3‐D ruptures. Another notable
difference is that G0 − Gc is a radiated energy density in 2D (e.g., Madariaga et al., 2006), but not in
3D. In fact, according to the 3‐D rupture‐tip‐equation‐of‐motion, G0 − Gc has the same sign as rupture
acceleration, _vr , but both acceleration and deceleration phases are expected to make positive contribu-
tions to radiated energy.

4.5. The Rupture Potential of Faults
4.5.1. Definition of Rupture Potential
We consider a fault with a spatially heterogeneous (along‐strike) distribution of energy ratio Gc/G0.
Unlike in section 3.6, where we considered piecewise constant heterogeneities, here we consider arbitrary
heterogeneities. Note that Gc and G0 are averaged along depth. Whether a rupture front stops is determined
by the rupture‐tip‐equation‐of‐motion. Using the same exponent P in both acceleration and deceleration
phases, as in section 4.3.1, we rewrite the rupture‐tip‐equation‐of‐motion as

vrdvr
v2sαPs

¼ A 1−Gc=G0ð Þdx=W ′ (33)

where dx= vrdt,A= 1 ifGc/G0 < 1, andA= 1.2 ifGc/G0 > 1. Integrating this equation along strike, we obtain
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1
P−2

α2−Ps −1
� �				vr2

vr1

¼ ∫
L2
L1
A 1−Gc=G0ð Þdx=W ′ (34)

whereα2−Ps −1(P≈ 2.6) increases from 0 to∞ as rupture speed increases from 0 to vs, vr1 and vr2 are the initial
and final rupture speeds, and L1 and L1 are the initial and final rupture locations along the fault. We define
the “rupture potential” φ(L) as

φ Lð Þ ¼ ∫
L

0A 1−Gc=G0ð Þdx=W ′ (35)

where 0 is an arbitrary reference location on the fault and L is the relative location (the positive and negative
directions along strike can be chosen arbitrarily). The right side of the equation (34) is the rupture potential
change over a specific portion of fault (L1, L2) and can be rewritten as

Φ L1; L2ð Þ ¼ φ L2ð Þ−φ L1ð Þ (36)

where rupture propagates from L1 to L2 (L1 < L2). For a rupture front propagating in the opposite direction,
from L2 to L1, the rupture potential change isΦ(L2,L1) = −Φ(L1,L2). Note that the rupture potential defined
here for long ruptures in 3D is fundamentally different than the one proposed by Kaneko et al. (2010) based
on a 2‐D problem and on 3‐D simulations of ruptures with small aspect ratio.

The rupture potential φ(x) is variable during interseismic periods. Tectonic loading increases shear stresses,
thus Δτ and G0, along the fault. Observations indicate that fracture energy is not constant, and theoretical
models of fault weakening imply a slip dependency in the form Gc ∝ Dn (e.g., Viesca & Garagash, 2015),
where D is the final slip. For very long ruptures D ∝WΔτ/μ, thus Gc ∝ Δτn and Gc/G0 ∝ Δτn − 2. For thermal
pressurization n= 2/3 (Viesca & Garagash, 2015) and for off‐fault inelastic dissipation n= 1 (Andrews, 2005;
Gabriel et al., 2013). In both cases, n − 2 < 0 and Gc/G0 decreases with increasing load (increasing Δτ). The
rupture potential of a fault is thus an increasing function of time φ(x,t). Since the stressing rate of barriers
(Gc/G0 > 1) and asperities (Gc/G0 < 1) may be different during interseismic periods (Kaneko et al., 2010),
we consider two end‐member cases: a “low‐stressing‐barrier model” in which barriers are creeping
and have zero stressing rate (Figure 15a) and a “high‐stressing‐barrier model” in which barriers have
the same stressing rate as asperities (Figure 15b). In the latter case, the barriers shrink and the asperities
expand as stress loading increases; thus, the rupture potential of asperities increases faster than in the
former case.

In addition to the rupture potential, we also define a “rupture kinetics” term E based on the left‐hand side of
equation (34) as

E vrð Þ ¼ 1
P−2

α2−Ps −1
� �

(37)

E increases from 0 to infinity as vr increases from 0 to the limiting speed vs. The left side of equation (34) is the
rupture kinetics change, ΔE = E(vr2) − E(vr1), over a specific portion of fault rupture (L1,L2). Conceptually,
equation (34) represents energy conversion between potential energy and kinetic energy, although both the
rupture potential and rupture kinetics are defined as nondimensional quantities.
4.5.2. Determining the Size of the Next Earthquake by the Rupture Potential
Assuming vr1 = 0 at the rupture onset and considering vr2 = 0 when the rupture stops, the left side of equa-
tion (34) becomes 0 at the end of a rupture. The condition for rupture arrest is thus φ(L2) = φ(L1). For a given
nucleation location L1, this condition may be satisfied at multiple locations L2. The one closest to L1 is the
final rupture arrest location: the rupture stops at the first opportunity. The same arrest criterion applies to
both rupture fronts of a bilateral rupture that starts at location L0: it stops at the nearest locations L− and
L+ such that φ(L0) = φ(L−) = φ(L+).

In theory, this arrest criterion can be used to determine the potential size of the next earthquake provided
that the spatial distribution of Gc/G0 is known. The graphical application of the arrest criterion is illu-
strated for the two end‐member barrier models in Figure 15. Note that the final rupture tip positions
depend on the nucleation location. The potential earthquake size increases with time continuously
(e.g., location A in Figure 15), except for abrupt jumps that occur when φ(L−) or φ(L+) reach maxima or
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minima of the rupture potential φ(x) (e.g., location B in Figure 15). Such abrupt jumps of earthquake sizemay
explain why some faults have hosted unexpectedly large earthquakes compared to their historic events
(Ammon et al., 2005; Wang et al., 2011).

The potential size of the next earthquake can also be evaluated probabilistically as follows. The probability
distribution ρ(x) of nucleation at along‐strike position x could be assumed uniformly random or informed by
analysis of background seismicity or tectonic stressing rate (e.g., concentrated near the edges of creeping
segments). For each possible hypocenter position x, one can deterministically evaluate the final rupture size
L(x) = L+ − L− by the above arrest conditions. Combining ρ(x) and L(x), the probability distribution of
rupture sizes can be constructed. Thus, the model developed here provides a framework for physics‐based
probabilistic hazard assessment.

The foregoing model assumes that the rupture is continuous, uninterrupted along the fault. In particular, it
does not consider ruptures that break fault segments that are separated by a finite distance. Recent advances
have been made in the theoretical understanding of factors controlling multisegment ruptures, including
rupture jumps across fault step overs (Bai & Ampuero, 2017). Integrating the present model with physics‐
based multisegment rupture criteria is an important objective for future work. In the next subsection we
examine the more tractable problem of contiguous fault segments.
4.5.3. Multiple Rupture Cycles
The rupture potential also helps conceptualize fault behavior during a sequence of multiple ruptures and
earthquake cycles. Here we consider a simple conceptual model of earthquake cycle, where a rectangular
seismogenic portion of a fault is loaded by steady creep on both the deeper portion of the fault and on one
side of the seismogenic segment (Figure 16). At the cycle onset, the stress along strike is at its residual
strength, τd. We assume that the stressing rate has the following distribution along strike:

_τ Lð Þ ¼ γl exp −L=Wð Þ þ γb (38)

where L is the distance to the lateral creeping boundary and the two terms are the contributions from the
lateral and bottom creeping portions, respectively. We assume that earthquakes start at the boundary
between the lateral creep portion and the seismogenic portion when the stress at L = 0 reaches the static
fault strength τs.

The key of this model is to determine the rupture size of each earthquake. As discussed in the previous
section, we can assume that Gc/G0 = BΔτn − 2, where B is a constant and Δτ = τ(L,t) − τd. For simplicity,
we assume that A = 1 for both acceleration and deceleration phases; thus, A(1 − Gc/G0) = 1 − BΔτn − 2.

Figure 15. A conceptual model for determining earthquake size by the rupture potential. (top) The curves (time increases
from light gray to black) show the along‐strike distribution of A(1 − Gc/G0)/W′. (bottom) The curves (time increases
from light gray to black) are the rupture potential φ(x,t). The bars are examples of earthquake rupture zones, nucleated on
the stars (locations A and B). For each rupture, the final rupture tips are determined as the nearest locations to the
hypocenter at which the value of the rupture potential φ(x) returns to the same value as at the hypocenter (nearest points
of intersection between the black curve and a horizontal line). The stressing rate in barriers is very low (a). The stress rate
in barriers is same as in asperities (b).
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As Δτ increases from 0 to τs − τd, A(1 − Gc/G0) increases from −∞ to 1 − B(τs − τd)
n − 2. We assume that

1 − B(τs − τd)
n − 2 > 0 and define a critical stress τc between τd and τs such that 1 − B(τc − τd)

n − 2 = 0.
The rupture size is determined as discussed in section 4.5.2. At the end of each earthquake, the stress
drops to τd in the rupture area (L < Lco) and increases in its neighboring area (L > Lco) as
Δτco exp (−(L − Lco)/W), where Δτco is the coseismic stress drop. Then the interseismic stressing rate
resumes according to equation (38) and the procedure is repeated until the next event.

Based on these assumptions, we can obtain the evolution of stress and earthquake sequences (Figure 16).
The model leads to cycles composed of small and large events. Early in a cycle, the ruptures propagate
short distances due to the low stress level of the entire fault. These small events occur regularly with
an interval Tsmall = (τs − τd)/γl. As the loading by earthquakes and the continuous bottom loading
accumulate, ruptures can propagate further and further. Eventually, once the average stress of the entire
fault becomes higher than the critical stress τc a rupture can break through neighboring barriers and
bridges multiple asperities along strike (gray curve in Figure 16). Such a runaway “superrupture” stops
only when it reaches a strong barrier segment. The interval between superruptures is on the order of
Tsuper = (τc − τd)/γb. This conceptual model helps rationalize one type of “supercycles” observed on
segmented faults, in which single‐segment ruptures occur in between large multisegment ruptures. We
note that if instead 1 − B(τs − τd)

n − 2 < 0, the seismogenic fault behaves as a barrier where all ruptures
stop spontaneously (no runaway rupture).

Figure 16. A conceptual model for earthquake supercycles. (top) A Rectangular seismogenic portion of a fault (pink areas)
is surrounded by the deeper creeping portion of the fault and one side of the creeping segment (gray areas). (middle)
The evolution of stress along strike, bounded between fault strength τs and residual stress τd, during one supercycle.
The gray dashed line indicates the critical stress τc, at which 1 − Gc/G0 = 0 as shown at the right vertical axis. The
colors of curves changing from purple to red denote the increasing loading time t (gray arrow). The thick gray curve
shows the stress distribution before the runaway earthquake. (bottom) The earthquake sequences versus time. The
colors of bars correspond to the colors in the middle figure. The gray bar marks the biggest earthquake (runaway) of
a supercycle.
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4.5.4. Dependency of Self‐Arrested Rupture Length on Seismogenic Width
In 3‐D dynamic rupture simulations initiated by an overstressed nucleation area, on faults with uniform
friction properties and initial stress, Weng and Yang (2017) found that ruptures with small enough width
W were self‐arrested (stopped spontaneously). Their final rupture length and aspect ratio increased as
W was increased, until a critical W was reached that led to runaway ruptures (unstoppable on a homo-
geneous fault). Their results can be understood in the framework of our conceptual model as follows.
The overstressed nucleation zone, of size Lnuc, constitutes an asperity with positive rupture potential
Φa = Φ(0, Lnuc). The fault area where the rupture stops spontaneously must be a barrier with negative
rupture potential Φb = Φ(Lnuc,L) . Considering the arrest condition Φa+Φb = 0, the final rupture length is
L= Lnuc+Lbwith Lb/W= γΦa/A(Gc/G0− 1), whereGc andG0 are constant. The coefficientAmay be different
than 1.2 for in‐plane rupture. Because G0 ∝W, asW increases, Lb/W increases. At a critical width such that
Gc/G0 = 1, Lb/W→∞ and the self‐arrested rupture length becomes infinite. The derived rupture aspect ratios
as a function of rupture width (blue curves in Figure 2b) are consistent with the results of 3‐D dynamic
rupture simulations by Weng and Yang (2017) (gray curves in Figure 2b). At larger widths, Φb is positive,
the barrier becomes an asperity, and the rupture is runaway. Interestingly, the largest self‐arrested rupture
length is infinite, which is in contrast with the finite maximum self‐arrested rupture size found in 3‐D
problems without confined seismogenic depth (Galis et al., 2017; Galis et al., 2018).
4.5.5. Constraints on Rupture Potential
In order to evaluate the rupture potential of natural fault segments, an estimate of the energy ratio Gc/
G0 =Gcμ/γΔτ

2W along the fault is needed. Some of the quantities involved currently have large uncertainties.
The shear modulus μ in the crust is well known at the large scales of interest. The seismogenic width W is
usually constrained by the geodetic locking depth, by the depth distribution of background seismicity, or
by thermalmodeling. Geodetic observations, including GPS, InSAR, and leveling data, can provide estimates
of long‐term slip deficit and its spatial distribution, from which tectonic stressing rates can be derived (e.g.
Ader et al., 2012, Karimzadeh et al., 2013, Metois et al., 2012). The stress dropΔτmay be constrained by such
stress modeling. To first order, it is related to the depth‐averaged slip deficit D by the following elasticity
relation on a seismogenic zone of finite width: Δτ = CμD/W, where C is a geometric factor of order 1
(Kanamori & Anderson, 1975). The fracture energy Gc may be constrained by scaling relations or physical
models (Rice, 2006; Viesca & Garagash, 2015), but remains the most uncertain parameter in the equation.
The present model thus sheds light on the challenges and opportunities in the development of physics‐based
earthquake hazard methods.
4.5.6. Rupture Through Creeping Fault Segments
An interesting question that can be addressed in the framework of this theory is as follows: can an earth-
quake rupture break through a creeping fault segment? Many large faults have segments that creep steadily
and are thought to behave as rupture barriers (Harris, 2017), for instance the San Andreas fault creeping
segment in central California, the Peruvian subduction zone on the Nazca ridge (Perfettini et al., 2010),
and the Arauco and Mejillones intersegments on the central Chile subduction zone (Metois et al., 2012).
Creep prevents stress build up, which tends to limit the potential stress drop, leading to low G0 and
low rupture potential of the creeping barrier. However, thermal weakening can occur in the creeping seg-
ment as the earthquake rupture penetrates and induces high slip rates (Noda & Lapusta, 2013). In an
extreme scenario, this results in total reduction of frictional strength. The resulting stress drop in the
creeping barrier is equal to the effective normal stress times the (low) friction coefficient at the back-
ground creep rate, and can be comparable to the typical stress drop of an earthquake (a few megapascals),
which increases the rupture potential of the barrier andmay even turn it into an asperity (positive potential).
Thus, earthquake rupture through a creeping fault segment cannot be ruled out on the physical grounds of
the present model.

4.6. Interpretation of Fluctuations of Rupture Speed

The rupture‐tip‐equation‐of‐motion provides a useful framework to interpret the fluctuations of rupture
speed and final slip observed along earthquake ruptures in terms of fluctuations of the energy ratio Gc/G0.
We take as an example the 2004 Sumatra‐Andaman earthquake. The propagation along strike of this
megathrust event can be described by three main segments (Ammon et al., 2005). In the initial segment,
the rupture speed was slow and slip was low, which corresponds to Gc/G0 slightly smaller than 1. In the
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middle segment, rupture speed was high and final slip was large, which implies that Gc/G0 is significantly
smaller than 1. In the last segment, the final slip decreased, which implies that Gc/G0 increases, but it is
not clear whether it exceeded 1. If Gc/G0 > 1, the rupture decelerated progressively and we could estimate
Gc/G0 based on the length of this segment. But ifGc/G0 < 1 the rupture in this segment may have accelerated
until it was finally stopped by a strong barrier.

4.7. Implications for Source Inversion

For very large earthquakes whose rupture length exceeds the rupture width, average rupture speeds can be
estimated from seismological data (Ammon et al., 2005; Ishii et al., 2005). However, lateral variations of
rupture speed are usually difficult to obtain due to the trade‐off with other parameters in the slip inversion
(Wei et al., 2013), although backprojection rupture imaging can provide further constraints (e.g., Bao et al.,
2019, Wang et al., 2016). The model developed here reveals relations between kinematic source properties
and dynamic fault properties: equation (27) shows that the rupture speed gradient, dvr/dL, is proportional
to the fault parameter (1 − Gc/G0). This suggests to use the rupture‐tip‐equation‐of‐motion derived here
as a physics‐based constraint in slip inversions in order to reduce trade‐offs. However, it is not obvious that
trade‐offs can be strongly reduced, because the new equation also involves an additional unknown, Gc.
Progress can be done by adopting as prior a theoretical or empirical relation between fracture energy Gc

and final slip, like those proposed by Viesca and Garagash (2015).

4.8. Implications for Source Time Functions

Source time functions (STF) can be obtained robustly from earthquake data (e.g., Vallée et al., 2011). The

moment function of a fault with constant seismogenic width W isM0 tð Þ ¼ μW∫
L tð Þ
0 D xð Þdx and static elasti-

city dictates D(x) =WΔτ(x)/Cμ, whereΔτ(x) andD(x) are the depth‐averaged stress drop and final slip and C
is a geometric factor of order 1. Then the STF has the form

_M0 tð Þ ¼ W2Δτvr=C (39)

Combining this moment‐rate equation with the rupture‐tip‐equation‐of‐motion, one can numerically solve
for the rupture speed and stress drop distributions along strike based on the STF if an additional assumption
is adopted, for instance, a relation between Gc and final slip. This approach could be used to infer statistical
properties of fault stress and strength from the statistical properties of large catalogs of STFs (Meier et al.,
2017). If the slip (and thus stress drop) distribution has been well constrained for an event, for instance
by geodetic or remote sensing data, the rupture speed distribution can be computed from equation (39)
and then the fracture energy distribution can be derived from the rupture‐tip‐equation‐of‐motion.

4.9. Implications for Radiated Energy

Nonsteady ruptures radiate far‐field waves: both acceleration and deceleration phases make positive
contributions to radiated energy. To examine implications for the radiated energy, Er, of a depth‐bounded
rupture in 3D, we assume a special case with constant W and G0 and rewrite equation (34) as

∫
L2
L1
A G0−Gcð ÞWdx ¼ W ′WG0

P−2
α2−Ps −1
� �				vr2

vr1

(40)

Assuming a rupture with zero initial and final rupture speeds, the right side of this equation equals 0. The
left side can be decomposed as

G0−Gc
� �

WL−ΔA Gcd−G0d
� �

WLd ¼ 0 (41)

where L = L2 − L1, G0 and Gc are the averaged values of potential and fracture energies along the whole
rupture, Ld is the deceleration length, G0d and Gcd are their averaged values in the deceleration portion,
and ΔA = 1.2 − 1 = 0.2 is the difference between the coefficients A for deceleration and acceleration.
Since the energy release rate G0 is also the static energy release, G0−Gc

� �
WL is the net energy difference

between the total released and dissipated energies, which shall be equal to the total radiated energy
Er. This is also the first term on the left side of equation (41); thus, Er≈ΔA Gcd−G0d

� �
WLd .
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Combining this result with equation (24), we can also write the radiated energy as Er≈ΔA=Ad

G0a−Gca
� �

WLa, where G0a and Gca are the averaged values in the acceleration portion, La is the accel-
eration length, and ΔA/Ad = 0.17. Note that the radiated energy is proportional to ΔA: the difference of
the coefficients A involved in the equation‐of‐motion for rupture acceleration and deceleration is related
to seismic radiation.

5. Conclusions

Earthquake rupture propagation along elongated faults has been investigated by combining analytical
and numerical methods, based on 2.5‐D and 3‐D dynamic rupture models. We developed a rupture‐
tip‐equation‐of‐motion, a theoretical relation that links the evolution of rupture speed and the along‐strike

distribution of fault stress, fracture energy, and rupture width. The equation has the formW 0=vs2= 1−Gc=G0ð Þ
v ̇r ¼ AαPs , whereA= 1 and P= 3 for rupture acceleration andA= 1.2 and P= 2.6 for rupture deceleration. In
contrast to the classical crack‐tip‐equation‐of‐motion in 2D, the equation for 3‐D ruptures with bounded
width features an “inertial effect”; that is, it depends explicitly on the rupture acceleration. This makes long
ruptures in 3D less reactive to fault heterogeneities than in 2D.

The energy release rate of a long steady state rupture depends on rupture width, stress drop, and shear mod-
ulus, and is independent of propagation distance and rupture speed. If the energy release rate is exactly
balanced by the fracture energy, the rupture can in principle propagate in steady state at any speed. The sta-
bility of steady state ruptures depends on the rate dependency of fracture energy. If the fracture energy is
constant or speed weakening, steady state ruptures are destabilized by small perturbations. In contrast,
speed‐strengthening fracture energy can stabilize the steady state ruptures. Fast steady ruptures are more
stable than slow steady ruptures.

The fundamental rupture‐tip‐equation‐of‐motion provides a link between the kinematics and dynamics of
elongated ruptures: it leads to theoretical relations between earthquake source properties and the heteroge-
neities of stress and strength along the fault. Within this framework, we defined a nondimensional rupture
potential on a segmented fault system that quantifies the possibility of multisegment ruptures and thus may
contribute to physics‐based hazard assessment. The rupture‐tip‐equation‐of‐motion also provides simple
theoretical relations between earthquake source properties (time‐dependent features) and the heterogene-
ities of stress and strength along the fault, which could enable to extract statistical or scaling information
of fault properties from global past earthquakes and to provide physics‐based constraints on finite‐fault
source inversion.

Appendix A.

A.1. Governing Equations of the 2.5‐D Antiplane Model
A.1.1. Elsasser's model

The Elsasser's 2.5‐Dmodel accounts approximately for a finite seismogenic layerW by averaging stresses and
displacements across the entire seismogenic layer W:

σ ij x1; x2; tð Þ ¼ 1
W

∫
0

−Wσij x1; x2; x3; tð Þdx3 (42)

ui x1; x2; tð Þ ¼ 1
W

∫
0

−Wui x1; x2; x3; tð Þdx3 (43)

where i = 1,2,3 and j = 1,2. The depth‐averaged momentum equation is

σij;j−τi=W ¼ ρ€ui (44)

where ρ is the density of the material and τi = σ3i(x1,x2, − W,t) are the resistance of the media outside the
seismogenic layer to a sudden displacement ui on each horizontal location of the seismogenic layer
(Lehner et al., 1981; Rice, 1980). We assume that τi is also averaged uniformly across the entire seismogenic
layer, that is, τi/W. This model is the same as the elastic lithospheric and viscoelastic asthenosphere model
(Lehner et al., 1981; Rice, 1980), but only accounting for the coseismic deformation; that is, the viscosity of
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the asthenosphere layer does not play a role at short coseismic time scales. We consider pure dip‐slip faulting
and, for simplicity, we further assume that all displacements are vertical. This assumption reduces the sys-
tem of differential equations to a single differential equation (i = 3). Using the relation between shear stress
and displacement given by Hooke's law,

σ3j ¼ μ
∂u3
∂xj

(45)

where μ is the shear modulus, we get

μ
∂2u3
∂x21

þ ∂2u3
∂x22

� �
−
τ3
W

¼ ρ€u3 (46)

The relation between τ3 and u3 can be similarly given as (Lehner et al., 1981; Rice, 1980)

τ3 ¼ μu3
γ2W

(47)

where γ is a geometric factor. Replace u3 with u, then the governing equation is

∂2u
∂x21

þ ∂2u
∂x22

−
u

γWð Þ2 ¼
1
v2s

∂2u
∂t2

(48)

where vs ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
is the S wave speed. Lehner et al. (1981) proposed γ = π/4 such that on an infinitely long

rupture with uniform stress drop the depth‐averaged slip given by the 2.5‐D model agrees with the slip
obtained from known crack solutions on a vertical 2‐D cross‐section plane. Based on the comparison
between 2.5‐D and 3‐D dynamic simulations, we suggest that γ = 1/π for a deeply buried fault and γ = 2/
π for a shallow fault on a half‐space such that their definitions of energy release rate are the same,
G0 = γΔτ2W/μ.

A.1.2. Fourier Transform Analogy

Equation (48) can be derived by an alternative approach, leading to a different interpretation of the coeffi-
cient γ. The approach is similar to the 2.5‐D formulation of wave propagation in 3‐Dmedia with 2‐D varying
structure under obliquely incident plane waves based on Fourier transform along the invariant axis (e.g.,
Takenaka & Kennett, 1996). Consider, for the sake of simplicity, a scalar wave equation involving only
S waves:

∂2u
∂x21

þ ∂2u
∂x22

þ ∂2u
∂x23

¼ 1
v2s

∂2u
∂t2

(49)

The slip on a deeply buried fault with relatively uniform stress drop has a semielliptical depth profile,
which can be approximated as one half of a cosine of wavelength 2W. We crudely assume that the whole

displacement field can be represented by a sinusoidal depth profile of wavelength 2W, as u x1; x2; tð Þeik3x3
with k3 = π/W. Based on this ansatz, equation (49) leads to equation (48) with γ = 1/π. In a shallow
fault on a half‐space, the slip is maximal at the surface and zero at the bottom of the rupture and the
depth profile can be approximated as one quarter of a cosine of wavelength 4W, which leads to
γ = 2/π. Taking these two cases as end‐members, for a buried fault we expect γ to take values between
1/π and 2/π.

A.2. Derivation of the KIII(vr) Function

Referring to Freund (1998), we introduce a reference frame that propagates with the crack tip along the x1
axis at the velocity vr and assume u(x1, x2, t) = u(ξ, η), where ξ = x1 − vrt and η = x2. Then we have
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∂2u
∂x21

¼ ∂2u
∂ξ2

(50)

∂2u
∂t2

¼ vr
2 ∂

2u

∂ξ2
(51)

The governing equation can be written as

α2s
∂2u
∂ξ2

þ ∂2u
∂η2

−
u

γWð Þ2 ¼ 0 (52)

where αs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− vr=vsð Þ2

q
. The boundary condition of a semiinfinite crack is

u ξ; 0ð Þ ¼ 0 ξ>L
μ∂u
∂η

¼ −Δτ 0<ξ<L

μ∂u
∂η

¼ 0 ξ<0

∂u=∂ξ; ∂u=∂η→0 ξ2 þ η2→∞

(53)

where Δτ is the prescribed stress drop. The above equations are similar to equations (56) and (57) in Lehner
et al. (1981) (assuming the viscosity equals 0). By replacing (1+ν)2 with α2s , β

1/2 with γW, q with Δτ, and let-
ting α = 0 in those equations, we obtain the following stress intensity factor:

KIII vrð Þ ¼ Δτ 2γWαs½ �1=2· erf 1
αs

L
γW

� �1=2( )
(54)

where erf is the error function. Similarly, we can also obtain a general solution of steady stress intensity fac-
tor for a variable stress drop Δτ(x) along x < L:

KIII vrð Þ ¼
ffiffiffi
2
π

r
∫
L

−∞
Δτ ξð Þ
L−ξð Þ1=2

e
ξ−L
γWαs dξ (55)

where the weighting function decays sharply and KIII(vr) is mainly controlled by the value of Δτ(x) shortly
behind the rupture tip.

A.3. Derivation of the g(vr) Function

We rewrite equation (52) as

α2s
∂2u
∂x2

þ ∂2u
∂y2

−
u

γWð Þ2 ¼ 0 (56)

We rescale the coordinate system by assuming that ξ = x and η = αsy, then

∂2u
∂ξ2

þ ∂2u
∂η2

−
u

αsγWð Þ2 ¼ 0 (57)

Switching equation (57) to polar coordinates (rs,θs)

∂2u
∂r2s

þ 1
rs

∂u
∂rs

þ 1
r2s

∂2u
∂θ2s

¼ u

αsγWð Þ2 (58)

where rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ αs2y2

p
and tanθs = αsy/x. Assuming that the function u(rs, θs) has the form
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u rs; θsð Þ ¼ Σ θsð Þ ffiffiffiffi
rs

p
(59)

we convert equation (58) to

Σ′′ θsð Þ þ 1
4
Σ θsð Þ ¼ rs

3
2·

u

αsγWð Þ2 (60)

To derive the asymptotics of stress near the crack tip, we let rs → 0, and the right side of equation (60)
vanishes. Considering the boundary condition Σ(0) = 0, the approximated displacement field near the
tip is

u rs; θsð Þ ≈ 2Q
ffiffiffiffi
rs

p
sin

1
2
θs (61)

where Q is an undetermined parameter. According to the stress‐strain relation of elastic materials and half‐
angle formulas we have

Δσ13 ¼ μ
∂u
∂x

¼ −
Qμffiffiffiffi
rs

p sin
1
2
θs (62)

Δσ23 ¼ μ
∂u
∂y

¼ Qμαsffiffiffiffi
rs

p cos
1
2
θs (63)

The stress intensity factor for mode III is defined by taking the limit of the function for y = 0 (or θs = 0)

KIII vrð Þ ¼ lim
x→0þ

ffiffiffiffiffiffiffiffi
2πx

p
·Δσ23 (64)

then

Q ¼ KIII vrð Þ= μαs
ffiffiffiffiffiffi
2π

p
 �
(65)

Referring to the definition of the functions ΣIII
ij θ; vrð Þ for the 2.5‐D mode III model (equation (6)) are

ΣIII
13 θ; vrð Þ ¼ −

sin 1
2 θs

αs
ffiffiffiffi
γs

p (66)

ΣIII
23 θ; vrð Þ ¼ cos 12 θsffiffiffiffi

γs
p (67)

where γs ¼ rs=r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− vr sinθ=vsð Þ2

q
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and tanθ= y/x. TheΣIII

ij θ; vrð Þ of 2.5‐Dmodel are exactly
the same as those of the 2‐D model (Freund, 1998).

Equation (52) can be written as conservation of momentum

σij;j−
μui
γWð Þ2 ¼ ρ

∂2ui
∂t2

(68)

In order to obtain the g(vr) function, we write the inner product of equation (68) with the particle velocity
∂ui/∂t as

∂
∂xj

σij
∂ui
∂t

� �
−

∂
∂t

U þ T þ Fð Þ ¼ 0 (69)

where U is the stress work density, T is the kinetic energy density, and F is the work acted by the bottom of
the seismogenic layer, that is
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U ¼ ∫
t

−∞
σij

∂2ui
∂t0∂xj

dt0

T ¼ ρ
2
½∂uit�2

F ¼ μu2i
2ðγWÞ2

(70)

where the term μui/(γW)2 acts as a body force. The dynamic energy release rate G, the rate of mechanical
energy flow into the crack tip per unit crack advance, can be written as

G ¼ lim
Γ→0

1
vr
∫Γ σijnj

∂ui
∂t

þ U þ T þ Fð Þvrn1

� �
dΓ

� 
(71)

where the contour Γ is a closed curve shrinking onto the crack tip and ni is the unit normal vector to Γ.
The difference between this equation and that of the 2‐D model in Freund (1998) is the term F. Choosing
the contour Γ to be a rectangle, with length 2δ1 parallel to the x axis and width 2δ2 parallel to the y axis,
and letting δ2 → 0 first and then δ1 → 0, the second term in the right side of equation (71) vanishes. Thus,
the evaluation of G for the 2.5‐D model is the same as that of the 2‐D model and g(vr) has the form

g vrð Þ ¼ 1
αs

(72)

References
Ader, T., Avouac, J. P., Liu‐Zeng, J., Lyon‐Caen, H., Bollinger, L., Galetzka, J., et al. (2012). Convergence rate across the Nepal Himalaya

and interseismic coupling on theMain Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research, 117, B04403.
https://doi.org/10.1029/2011JB009071

Aki, K., & Richards, P. G. (2002). Quantitative seismology. Sausalito, CA: University Science Books.
Ammon, C. J., Ji, C., Thio, H.‐K., Robinson, D., Ni, S., Hjorleifsdottir, V., et al. (2005). Rupture process of the 2004 Sumatra‐Andaman

earthquake. Science, 308(5725), 1133–1139. https://doi.org/10.1126/science.1112260
Ampuero, J. (2002). Etude physique et numérique de la nucléation des séismes, PhD Thesis, University of Paris VII, France.
Ampuero, J., & Ben‐Zion, Y. (2008). Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity‐

weakening friction. Geophysical Journal International, 173(2), 674–692. https://doi.org/10.1111/j.1365‐246X.2008.03736.x
Ampuero, J., & Mao, X. (2017). Upper limit on damage zone thickness controlled by seismogenic depth. In Fault zone dynamic processes:

Evolution of fault properties during seismic rupture, (Vol. 227, Chap. 13, pp. 243–253).Washington, DC: American Geophysical Union.
Ampuero, J., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults: Aging and slip laws. Journal of Geophysical Research,

113, B01302. https://doi.org/10.1029/2007JB005082
Andrews, D. J. (1976a). Rupture propagation with finite stress in antiplane strain. Journal of Geophysical Research, 81(20), 3575–3582.

https://doi.org/10.1029/JB081i020p03575
Andrews, D. J. (1976b). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. https://doi.org/

10.1029/JB081i032p05679
Andrews, D. J. (1985). Dynamic plane‐strain shear rupture with a slip‐weakening friction law calculated by a boundary integral method.

Bulletin of the Seismological Society of America, 75(1), 1–21.
Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research, 110, B01307. https://doi.

org/10.1029/2004JB003191
Avouac, J.‐P., Meng, L., Wei, S., Wang, T., & Ampuero, J.‐P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015

Gorkha earthquake. Nature Geoscience, 8(9), 708–711. https://doi.org/10.1038/ngeo2518
Bai, K., & Ampuero, J. P. (2017). Effect of seismogenic depth and background stress on physical limits of earthquake rupture across fault

step overs. Journal of Geophysical Research: Solid Earth, 122, 10,280–10,298. https://doi.org/10.1002/2017JB014848|
Bao, H., Ampuero, J.‐P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., et al. (2019). Early and persistent supershear rupture of the

2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(3), 200–205. https://doi.org/10.1038/s41561‐018‐0297‐z
Buijze, L., van den Bogert, P., Wassing, B. B. T., & Orlic, B. (2019). Nucleation and arrest of dynamic rupture induced by reservoir depletion.

Journal of Geophysical Research: Solid Earth, 124, 3620–3645. https://doi.org/10.1029/2018JB016941
Burridge, R. (1973). Admissible speeds for plane‐strain self‐similar shear cracks with friction but lacking cohesion. Geophysical Journal

International, 35(4), 439–455. https://doi.org/10.1111/j.1365‐246X.1973.tb00608.x
Carlson, J. M., Langer, J. S., & Shaw, B. E. (1994). Dynamics of earthquake faults. Reviews of Modern Physics, 66(2), 657–670. https://doi.org/

10.1103/RevModPhys.66.657
Custódio, S., Liu, P., & Archuleta, R. J. (2005). The 2004Mw6. 0 Parkfield, California, earthquake: Inversion of near‐source ground motion

using multiple data sets. Geophysical Research Letters, 32, L23312. https://doi.org/10.1029/2005GL024417
Dalguer, L. A., & Day, S. M. (2009). Asymmetric rupture of large aspect‐ratio faults at bimaterial interface in 3D. Geophysical Research

Letters, 36, L23307. https://doi.org/10.1029/2009GL040303
Day, S. M. (1982). Three‐dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity. Bulletin

of the Seismological Society of America, 72(3), 705–727.
Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three‐

dimensional spontaneous rupture. Journal of Geophysical Research, 110, B12307. https://doi.org/10.1029/2005JB003813

10.1029/2019JB017684Journal of Geophysical Research: Solid Earth

WENG AND AMPUERO 8608

Acknowledgments
The open‐source software SPECFEM3D
used in our 3‐D dynamic rupture
simulations is available from the
Computational Infrastructure for
Geodynamics at https://geodynamics.
org/cig/software/specfem3d/. We
express our deepest gratitude in
memory of Dimitri Komatitsch, whose
pioneering work on the spectral
element method in seismology and
generous development of SPECFEM3D
enabled a whole generation of
computational seismology studies,
including ours. The open‐source
software SEMLAB for 2.5‐D dynamic
rupture simulations based on the
spectral element method is available at
https://github.com/jpampuero/semlab.
The SPECFEM3D simulations were
conducted in the Cluster THERA in
Géoazur. This work was supported by
the French government through the
Investments in the Future project
UCAJEDI (ANR‐15‐IDEX‐01) managed
by the French National Research
Agency (ANR). J.P.A. acknowledges
partial funding from NAM
(Nederlandse Aardolie Maatschappij).
All data of dynamic models are
generated from numerical simulations.
All figures are produced by using
Generic Mapping Tools (GMT). We
benefited from discussions with Robert
Viesca, M.P.A. van den Ende, and
Hongfeng Yang. We thank Eric
Dunham and Raul Madariaga for their
informative reviews.

https://doi.org/10.1029/2011JB009071
https://doi.org/10.1126/science.1112260
https://doi.org/10.1111/j.1365-246X.2008.03736.x
https://doi.org/10.1029/2007JB005082
https://doi.org/10.1029/JB081i020p03575
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/2004JB003191
https://doi.org/10.1029/2004JB003191
https://doi.org/10.1038/ngeo2518
https://doi.org/10.1002/2017JB014848|
https://doi.org/10.1038/s41561-018-0297-z
https://doi.org/10.1029/2018JB016941
https://doi.org/10.1111/j.1365-246X.1973.tb00608.x
https://doi.org/10.1103/RevModPhys.66.657
https://doi.org/10.1103/RevModPhys.66.657
https://doi.org/10.1029/2005GL024417
https://doi.org/10.1029/2009GL040303
https://doi.org/10.1029/2005JB003813
https://geodynamics.org/cig/software/specfem3d/
https://geodynamics.org/cig/software/specfem3d/
https://github.com/jpampuero/semlab


Denolle, M. A., & Shearer, P. M. (2016). New perspectives on self‐similarity for shallow thrust earthquakes. Journal of Geophysical Research:
Solid Earth, 121, 6533–6565. https://doi.org/10.1002/2016JB013105|

Freund, L. (1979). The mechanics of dynamic shear crack propagation. Journal of Geophysical Research, 84(B5), 2199–2209. https://doi.org/
10.1029/JB084iB05p02199

Freund, L. (1998). Dynamic fracture mechanics. Cambridge: Cambridge University Press.
Gabriel, A. A., Ampuero, J. P., Dalguer, L., &Mai, P. M. (2013). Source properties of dynamic rupture pulses with off‐fault plasticity. Journal

of Geophysical Research: Solid Earth, 118, 4117–4126. https://doi.org/10.1002/jgrb.50213
Galis, M., Ampuero, J. P., Mai, P. M., & Cappa, F. (2017). Induced seismicity provides insight into why earthquake ruptures stop. Science

Advances, 3(12), eaap7528. https://doi.org/10.1126/sciadv.aap7528
Galis, M., Ampuero, J.‐P., Mai, P. M., & Kristek, J. (2018). Initiation and arrest of earthquake ruptures due to elongated overstressed

regions. Geophysical Journal International, 217(3), 1783–1797. https://doi.org/10.1093/gji/ggz086/5322168
Galvez, P., Ampuero, J.‐P., Dalguer, L. A., Somala, S. N., & Nissen‐Meyer, T. (2014). Dynamic earthquake rupture modelled with an

unstructured 3‐D spectral element method applied to the 2011 M 9 Tohoku earthquake. Geophysical Journal International, 198(2),
1222–1240. https://doi.org/10.1093/gji/ggu203

Goldman, T., Livne, A., & Fineberg, J. (2010). Acquisition of inertia by a moving crack. Physical Review Letters, 104(11), 114301. https://doi.
org/10.1103/PhysRevLett.104.114301

Gomberg, J., Wech, A., Creager, K., Obara, K., & Agnew, D. (2016). Reconsidering earthquake scaling. Geophysical Research Letters, 43,
6243–6251. https://doi.org/10.1002/2016GL069967

Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55, 169–198. https://doi.org/10.1002/
2016RG000539

Haskell, N. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological
Society of America, 54(6A), 1811–1841.

Heimpel, M. (2003). Characteristic scales of earthquake rupture from numerical models. Nonlinear Processes in Geophysics, 10(6), 573–584.
https://doi.org/10.5194/npg‐10‐573‐2003

Henry, C., & Das, S. (2001). Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion and scaling
relations. Geophysical Journal International, 147(2), 272–293. https://doi.org/10.1046/j.1365‐246X.2001.00522.x

Ida, Y. (1972). Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy. Journal of Geophysical
Research, 77(20), 3796–3805. https://doi.org/10.1029/JB077i020p03796

Imanishi, K., & Ellsworth, W. L. (2006). Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD
pilot hole seismic array. In Earthquakes: Radiated Energy and the Physics of Faulting,Geophysical Monograph Series (Vol. 170, pp. 81–90).
Washington, DC: American Geophysical Union.

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged
by the Hi‐Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675

Johnson, E. (1992). The influence of the lithospheric thickness on bilateral slip. Geophysical Journal International, 108(1), 151–160. https://
doi.org/10.1111/j.1365‐246X.1992.tb00846.x

Kammer, D. S., Svetlizky, I., Cohen, G., & Fineberg, J. (2018). The equation of motion for supershear frictional rupture fronts. Science
Advances, 4(7), eaat5622. https://doi.org/10.1126/sciadv.aat5622

Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of
America, 65(5), 1073–1095.

Kaneko, Y., Avouac, J.‐P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic cou-
pling. Nature Geoscience, 3(5), 363–369. https://doi.org/10.1038/ngeo843

Kaneko, Y., & Lapusta, N. (2008). Variability of earthquake nucleation in continuum models of rate‐and‐state faults and implications for
aftershock rates. Journal of Geophysical Research, 113, B12312. https://doi.org/10.1029/2007JB005154

Kaneko, Y., Lapusta, N., & Ampuero, J. P. (2008). Spectral element modeling of spontaneous earthquake rupture on rate and state faults:
Effect of velocity‐strengthening friction at shallow depths. Journal of Geophysical Research, 113, B09317. https://doi.org/10.1029/
2007JB005553

Karimzadeh, S., Cakir, Z., Osmanoğlu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R., & Djamour, Y. (2013). Interseismic strain
accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series. Journal of Geodynamics, 66(0), 53–58. https://
doi.org/10.1016/j.jog.2013.02.003

Klinger, Y. (2010). Relation between continental strike‐slip earthquake segmentation and thickness of the crust. Journal of Geophysical
Research, 115, B07306. https://doi.org/10.1029/2009JB006550

Komatitsch, D., & Vilotte, J.‐P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D
geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392.

Kostrov, B. (1964). Self‐similar problems of propagation of shear cracks. Journal of Applied Mathematics and Mechanics, 28(5), 1077–1087.
https://doi.org/10.1016/0021‐8928(64)90010‐3

Langer, J., Carlson, J., Myers, C. R., & Shaw, B. E. (1996). Slip complexity in dynamic models of earthquake faults. Proceedings of the
National Academy of Sciences, 93(9), 3825–3829. https://doi.org/10.1073/pnas.93.9.3825

Lapusta, N. (2001). Elastodynamic analyses of sliding with rate and state friction. (PhD thesis). Harvard University.
Lehner, F. K., Li, V. C., & Rice, J. (1981). Stress diffusion along rupturing plate boundaries. Journal of Geophysical Research, 86(B7),

6155–6169. https://doi.org/10.1029/JB086iB07p06155
Luo, Y., J.‐P. Ampuero, K. Miyakoshi, & K. Irikura (2017), Surface rupture effects on earthquake moment‐area scaling relations. Pure and

Applied Geophysics, 174(9), 3331–3342. https://doi.org/10.1007/s00024‐017‐1467‐4
Madariaga, R. (1977). High‐frequency radiation from crack (stress drop) models of earthquake faulting. Geophysical Journal International,

51(3), 625–651. https://doi.org/10.1111/j.1365‐246X.1977.tb04211.x
Madariaga, R. (1983). High frequency radiation from dynamic earthquake fault models. Annales Geophysicae, 1(1), 17–23.
Madariaga, R., Ampuero, J., & Adda‐Bedia, M. (2006). Seismic radiation from simple models of earthquakes. In Earthquakes: Radiated

energy and the physics of faulting,Geophysical Monograph Series (Vol. 170, pp. 223–236). Washington, DC: American Geophysical Union.
Madariaga, R., & Olsen, K. B. (2000). Criticality of rupture dynamics in 3‐D. Pure and Applied Geophysics, 157(11), 1981–2001. https://doi.

org/10.1007/PL00001071
Mai, P. M., & Thingbaijam, K. (2014). SRCMOD: An online database of finite‐fault rupture models. Seismological Research Letters, 85(6),

1348–1357. https://doi.org/10.1785/0220140077
Marder, M. (1998). Adiabatic equation for cracks. Philosophical Magazine B, 78(2), 203–214. https://doi.org/10.1080/13642819808202942

10.1029/2019JB017684Journal of Geophysical Research: Solid Earth

WENG AND AMPUERO 8609

https://doi.org/10.1002/2016JB013105|
https://doi.org/10.1029/JB084iB05p02199
https://doi.org/10.1029/JB084iB05p02199
https://doi.org/10.1002/jgrb.50213
https://doi.org/10.1126/sciadv.aap7528
https://doi.org/10.1093/gji/ggz086/5322168
https://doi.org/10.1093/gji/ggu203
https://doi.org/10.1103/PhysRevLett.104.114301
https://doi.org/10.1103/PhysRevLett.104.114301
https://doi.org/10.1002/2016GL069967
https://doi.org/10.1002/2016RG000539
https://doi.org/10.1002/2016RG000539
https://doi.org/10.5194/npg-10-573-2003
https://doi.org/10.1046/j.1365-246X.2001.00522.x
https://doi.org/10.1029/JB077i020p03796
https://doi.org/10.1038/nature03675
https://doi.org/10.1111/j.1365-246X.1992.tb00846.x
https://doi.org/10.1111/j.1365-246X.1992.tb00846.x
https://doi.org/10.1126/sciadv.aat5622
https://doi.org/10.1038/ngeo843
https://doi.org/10.1029/2007JB005154
https://doi.org/10.1029/2007JB005553
https://doi.org/10.1029/2007JB005553
https://doi.org/10.1016/j.jog.2013.02.003
https://doi.org/10.1016/j.jog.2013.02.003
https://doi.org/10.1029/2009JB006550
https://doi.org/10.1016/0021-8928(64)90010-3
https://doi.org/10.1073/pnas.93.9.3825
https://doi.org/10.1029/JB086iB07p06155
https://doi.org/10.1007/s00024-017-1467-4
https://doi.org/10.1111/j.1365-246X.1977.tb04211.x
https://doi.org/10.1007/PL00001071
https://doi.org/10.1007/PL00001071
https://doi.org/10.1785/0220140077
https://doi.org/10.1080/13642819808202942


Meier, M.‐A., Ampuero, J., & Heaton, T. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357),
1277–1281. https://doi.org/10.1126/science.aan5643

Mello, M., Bhat, H., Rosakis, A., & Kanamori, H. (2014). Reproducing the supershear portion of the 2002 Denali earthquake rupture in
laboratory. Earth and Planetary Science Letters, 387, 89–96. https://doi.org/10.1016/j.epsl.2013.11.030

Metois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction
zone. Journal of Geophysical Research, 117, B03406. https://doi.org/10.1029/2011JB008736

Michailos, K., Smith, E. G., Chamberlain, C. J., Savage, M. K., & Townend, J. (2019). Variations in seismogenic thickness along the Central
Alpine Fault, New Zealand, revealed by a decade's relocatedmicroseismicity. Geochemistry, Geophysics, Geosystems, 20, 470–486. https://
doi.org/10.1029/2018GC007743

Michel, S., Avouac, J. P., Lapusta, N., & Jiang, J. (2017). Pulse‐like partial ruptures and high‐frequency radiation at creeping‐locked tran-
sition during megathrust earthquakes. Geophysical Research Letters, 44, 8345–8351. https://doi.org/10.1002/2017GL074725

Myers, C. R., Shaw, B. E., & Langer, J. S. (1996). Slip complexity in a crustal‐plane model of an earthquake fault. Physical Review Letters,
77(5), 972–975. https://doi.org/10.1103/PhysRevLett.77.972

Nielsen, S., & Madariaga, R. (2003). On the self‐healing fracture mode. Bulletin of the Seismological Society of America, 93(6), 2375–2388.
https://doi.org/10.1785/0120020090

Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening.Nature, 493(7433),
518–521. https://doi.org/10.1038/nature11703

Okuda, T., & Ide, S. (2018). Streak and hierarchical structures of the Tohoku–Hokkaido subduction zone plate boundary. Earth, Planets and
Space, 70(1), 132. https://doi.org/10.1186/s40623‐018‐0903‐8

Perfettini, H., Avouac, J.‐P., Tavera, H., Kositsky, A., Nocquet, J.‐M., Bondoux, F., et al. (2010). Seismic and aseismic slip on the central Peru
megathrust. Nature, 465(7294), 78–81. https://doi.org/10.1038/nature09062

Rice, J. (1980). The mechanics of earthquake rupture. In A. M. Dziewonski, & E. Boschi (Eds.), Physics of the Earth's interior, Proc. Intnatl.
School of Physics Soc. Enrico Fermi, Course 78, 1979, (pp. 555–649). North Holland, Amsterdam: Italian Physical Society.

Rice, J. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111, B05311. https://doi.org/
10.1029/2005JB004006

Rice, J., Sammis, C. G., & Parsons, R. (2005). Off‐fault secondary failure induced by a dynamic slip pulse. Bulletin of the Seismological Society
of America, 95(1), 109–134. https://doi.org/10.1785/0120030166

Rubin, A., & Ampuero, J. P. (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research, 110, B11312.
https://doi.org/10.1029/2005JB003686

Savage, J. (1972). Relation of corner frequency to fault dimensions. Journal of Geophysical Research, 77(20), 3788–3795. https://doi.org/
10.1029/JB077i020p03788

Shaw, B. E. (2004). Self‐organizing fault systems and self‐organizing elastodynamic events on them: Geometry and the distribution of sizes
of events. Geophysical Research Letters, 31, L17603. https://doi.org/10.1029/2004GL019726

Smith‐Konter, B. R., Sandwell, D. T., & Shearer, P. (2011). Locking depths estimated from geodesy and seismology along the San Andreas
Fault system: Implications for seismic moment release. Journal of Geophysical Research, 116, B06401. https://doi.org/10.1029/
2010JB008117

Spyropoulos, C., Scholz, C. H., & Shaw, B. E. (2002). Transition regimes for growing crack populations. Physical Review E, 65(5), 056105.
https://doi.org/10.1103/PhysRevE.65.056105

Svetlizky, I., & Fineberg, J. (2014). Classical shear cracks drive the onset of dry frictional motion. Nature, 509(7499), 205–208. https://doi.
org/10.1038/nature13202

Svetlizky, I., Kammer, D. S., Bayart, E., Cohen, G., & Fineberg, J. (2017). Brittle fracture theory predicts the equation of motion of frictional
rupture fronts. Physical Review Letters, 118(12), 125501. https://doi.org/10.1103/PhysRevLett.118.125501

Takenaka, H., & Kennett, B. L. (1996). A 2.5‐D time‐domain elastodynamic equation for plane‐wave incidence. Geophysical Journal
International, 125(2), 5–9. https://doi.org/10.1111/j.1365‐246X.1996.tb00001.x

Uchide, T., & Ide, S. (2010). Scaling of earthquake rupture growth in the Parkfield area: Self‐similar growth and suppression by the finite
seismogenic layer. Journal of Geophysical Research, 115, B11302. https://doi.org/10.1029/2009JB007122

Uchide, T., & Imanishi, K. (2016). Small earthquakes deviate from the omega‐square model as revealed by multiple spectral ratio analysis.
Bulletin of the Seismological Society of America, 106(3), 1357–1363. https://doi.org/10.1785/0120150322

Vallée, M., Charléty, J., Ferreira, A. M., Delouis, B., & Vergoz, J. (2011). SCARDEC: A new technique for the rapid determination of seismic
moment magnitude, focal mechanism and source time functions for large earthquakes using body‐wave deconvolution. Geophysical
Journal International, 184(1), 338–358. https://doi.org/10.1111/j.1365‐246X.2010.04836.x

Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875–879.
https://doi.org/10.1038/ngeo2554

Wang, D., Mori, J., & Koketsu, K. (2016). Fast rupture propagation for large strike‐slip earthquakes. Earth and Planetary Science Letters,
440, 115–126. https://doi.org/10.1016/j.epsl.2016.02.022

Wang, Q., Xuejun, Q., Qigui, L., Freymueller, J., Shaomin, Y., Caijun, X., et al. (2011). Rupture of deep faults in the 2008 Wenchuan
earthquake and uplift of the Longmen Shan. Nature Geoscience, 4(9), 634–640. https://doi.org/10.1038/ngeo1210

Wei, S., Helmberger, D., Zhan, Z., & Graves, R. (2013). Rupture complexity of the Mw 8.3 sea of okhotsk earthquake: Rapid triggering of
complementary earthquakes? Geophysical Research Letters, 40, 5034–5039. https://doi.org/10.1002/grl.50977

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and
surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

Weng, H., & Yang, H. (2017). Seismogenic width controls aspect ratios of earthquake ruptures. Geophysical Research Letters, 44, 2725–2732.
https://doi.org/10.1002/2016GL072168

10.1029/2019JB017684Journal of Geophysical Research: Solid Earth

WENG AND AMPUERO 8610

https://doi.org/10.1126/science.aan5643
https://doi.org/10.1016/j.epsl.2013.11.030
https://doi.org/10.1029/2011JB008736
https://doi.org/10.1029/2018GC007743
https://doi.org/10.1029/2018GC007743
https://doi.org/10.1002/2017GL074725
https://doi.org/10.1103/PhysRevLett.77.972
https://doi.org/10.1785/0120020090
https://doi.org/10.1038/nature11703
https://doi.org/10.1186/s40623-018-0903-8
https://doi.org/10.1038/nature09062
https://doi.org/10.1029/2005JB004006
https://doi.org/10.1029/2005JB004006
https://doi.org/10.1785/0120030166
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/JB077i020p03788
https://doi.org/10.1029/JB077i020p03788
https://doi.org/10.1029/2004GL019726
https://doi.org/10.1029/2010JB008117
https://doi.org/10.1029/2010JB008117
https://doi.org/10.1103/PhysRevE.65.056105
https://doi.org/10.1038/nature13202
https://doi.org/10.1038/nature13202
https://doi.org/10.1103/PhysRevLett.118.125501
https://doi.org/10.1111/j.1365-246X.1996.tb00001.x
https://doi.org/10.1029/2009JB007122
https://doi.org/10.1785/0120150322
https://doi.org/10.1111/j.1365-246X.2010.04836.x
https://doi.org/10.1038/ngeo2554
https://doi.org/10.1016/j.epsl.2016.02.022
https://doi.org/10.1038/ngeo1210
https://doi.org/10.1002/grl.50977
https://doi.org/10.1002/2016GL072168



