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EXTREMAL STRUCTURE AND DUALITY OF LIPSCHITZ
FREE SPACES

LUIS GARCÍA-LIROLA, COLIN PETITJEAN, ANTONÍN PROCHÁZKA,
AND ABRAHAM RUEDA ZOCA

Abstract. We analyse the relationship between different extremal notions
in Lipschitz free spaces (strongly exposed, exposed, preserved extreme and
extreme points). We prove in particular that every preserved extreme point
of the unit ball is also a denting point. We also show in some particular
cases that every extreme point is a molecule, and that a molecule is extreme
whenever the two points, say x and y, which define it satisfy that the metric
segment [x, y] only contains x and y. The most notable among them is the
case when the free space admits an isometric predual with some additional
properties. As an application, we get some new consequences about norm
attainment in spaces of vector-valued Lipschitz functions.

1. Introduction

The Lipschitz free space F(M) of a metric space M (also known as Arens-
Eells space) is a Banach space such that every Lipschitz function on M admits
a canonical linear extension defined on F(M) (see below for details). This
fundamental linearisation property makes of Lipschitz free spaces a precious
magnifying glass to study Lipschitz maps between metric spaces, and for example
it relates some well-known open problems in the Banach space theory to some
open problems about Lipschitz free spaces (see [15]). A considerable effort to
study the linear structure and geometry of these spaces has been undergone by
many researchers in the last two or three decades.
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2 L. GARCÍA-LIROLA, C. PETITJEAN, A. PROCHÁZKA, AND A. RUEDA ZOCA

In the present paper we focus on the extremal structure of F(M). The
study of extremal structure plays an important role in optimisation (indeed
we obtain some consequences in norm attainment of Lipschitz maps). It has
probably started in [26], where it is proved that preserved extreme points of
the unit ball BF(M) are always molecules (i.e. measures of the form mxy :=
(δ(x) − δ(y))/d(x, y)). Recently Aliaga and Guirao pushed further this work
(see [2]). In particular, answering a question of Weaver, they showed in the
compact case that the extreme points are in fact preserved, and are exactly
the molecules mxy for which there are no points except x and y in the metric
segment [x, y]. They also give a metric characterisation of preserved extreme
points in full generality, which we prove also here by a different argument. More
results in the same line appeared in [12], where a metric characterisation of the
strongly exposed points is given.

However, the two main questions in this domain remain open:
a) If µ ∈ ext(BF(M)), is µ necessarily of the form µ = mxy for some x 6= y ∈M?
b) If the metric segment [x, y] does not contain any other point of M than x
and y, is mxy an extreme point of BF(M) ?

The goal of the present article is to continue the effort in exploring the
extremal structure of F(M) and provide affirmative answers to both previous
questions a) and b) in some particular cases. For instance, we prove that for
the following chain of implications

strongly exposed
(1)

=⇒ denting
(2)

=⇒ preserved extreme
(3)

=⇒ extreme,

the converse of (2) holds true in general (Theorem 2.4) but the converse of
(1) and (3) are both false (Examples 6.4 and 5.4 respectively). However, some
of the previous implications are equivalences in some special classes of metric
spaces. The most notable among them is the case when F(M) admits an
isometric predual with some additional properties. We are thus led to the study
of preduals of free spaces which seems interesting on its own (see Section 3).

The paper is organised as follows. In Section 2 we prove that every preserved
extreme point of BF(M) is also a denting point in full generality (Theorem 2.4)
and we provide a different proof of the metric characterisation of preserved
extreme points given in [2]. We also show that the canonical image δ(M) of M
inside F(M) as well as the set of molecules joined with 0 are weakly closed in
F(M) (Proposition 2.9 and Proposition 2.13 respectively). Next in Section 3,
based on ([7, 20, 26]), we study under what circumstances F(M) is isometric
to a dual space. We also pin down a distinguished class of preduals, called
natural preduals (see Definition 3.1), which turns out to be of particular interest
in the later sections. In Section 4, we study the extremal structure of spaces
admitting such a natural predual. In particular, we show under an additional
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assumption that the set of extreme points coincides with the set of strongly
exposed points (Corollary 4.2). Then in Section 5 we focus on the case when
M is uniformly discrete and bounded. Under this assumption, the question
b) has an affirmative answer (Proposition 5.1), the implication (1) admits a
converse (Proposition 5.3) , and the question a) has also an affirmative answer
if moreover F(M) admits a natural predual (Proposition 5.5). In Section 6 we
show that the converse of (3) holds for certain compact spaces since the norm
of F(M) turns out to be weak* asymptotically uniformly convex. To finish,
in Section 7 we apply our work to deduce results about norm attainment of
Lipschitz functions.

Notation. Throughout the paper we will only consider real Banach spaces.
Given a Banach space X, we will denote by BX (respectively SX) the closed
unit ball (respectively the unit sphere) of X. We will also denote by X∗ the
topological dual of X. By a slice of the unit ball BX we will mean a set of the
following form

S(f, α) := {x ∈ BX : f(x) > 1− α}, f ∈ SX∗ , α > 0.

The notations ext(BX), exp(BX), and strexp(BX) stand for the set of extreme,
exposed, and strongly exposed points of BX , respectively (we refer to [5] for
formal definitions and background on this concepts). A point x ∈ BX is said
to be a denting point of BX if BX admits arbitrarily small slices containing x.
Given a norming subspace Y of X, we denote by σ(X, Y ) the topology on X of
pointwise convergence on elements of Y . Given a topological space (T, τ), we
denote Cτ (T ) the space of continuous functions on T .

Given a metric space M , B(x, r) denotes the closed ball in M centered at
x ∈ M with radius r. Given x, y ∈ M , we denote [x, y] the metric segment
between x and y, that is,

[x, y] = {z ∈M : d(x, z) + d(z, y) = d(x, y)}.

We will denote by Lip0(M,X) (or simply Lip0(M) if X = R) the space of
all X-valued Lipschitz functions on M which vanish at a designated origin
0 ∈M . We will consider the norm in Lip0(M,X) given by the best Lipschitz
constant, denoted ‖·‖L. Of particular interest to us is the space of little-Lipschitz
functions,

lip0(M) :=

{
f ∈ Lip0(M) : lim

ε→0
sup

0<d(x,y)<ε

|f(x)− f(y)|
d(x, y)

= 0

}
.

We denote δ the canonical isometric embedding of M into F(M), which is given
by 〈f, δ(x)〉 = f(x) for x ∈ M and f ∈ Lip0(M). By a molecule we mean an
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element of F(M) of the form

mxy :=
δ(x)− δ(y)

d(x, y)

for x, y ∈M , x 6= y. The set of all molecules in M will be denoted by V . Note
by passing that V is a norming set for Lip0(M) and so BF(M) = co(V ). We will
need for every x, y ∈M , x 6= y, the function

fxy(t) :=
d(x, y)

2

d(t, y)− d(t, x)

d(t, y) + d(t, x)
.

The properties collected in the next lemma have already been proved in [18].
They make of fxy a useful tool for studying the geometry of BF(M).

Lemma 1.1. Let x, y ∈M with x 6= y. We have

(a) fxy(u)−fxy(v)

d(u,v)
≤ d(x,y)

max{d(x,u)+d(u,y),d(x,v)+d(v,y)} for all u 6= v ∈M .

(b) fxy is Lipschitz and ‖fxy‖L ≤ 1.

(c) Let u 6= v ∈M and ε > 0 be such that fxy(u)−fxy(v)

d(u,v)
> 1− ε. Then

(1− ε) max{d(x, v) + d(y, v), d(x, u) + d(y, u)} < d(x, y).

(d) If u 6= v ∈M and fxy(u)−fxy(v)

d(u,v)
= 1, then u, v ∈ [x, y].

2. General results

Our first goal is to show that every preserved extreme point of BF(M) is
also a denting point. In order to prove that result we need the following
characterisation of preserved extreme points which appears in [16] and that we
state for future reference.

Proposition 2.1 (Proposition 9.1 in [16]). Let X be a Banach space, C be
a closed bounded convex subset of X and x ∈ C. Then, the following are
equivalent:

(i) x is an extreme point of C
ω∗

the weak*-closure of C in X∗∗.
(ii) The slices of C containing x are a neighbourhood basis of x for the weak

topology in C.

(iii) For every sequences {yn} and {zn} in C such that yn+zn
2

‖·‖→ x we have

that yn
w→ x.

It is easy to check that conditions above are also equivalent to the following:

(iii’) For every λ ∈ (0, 1) and sequences {yn} and {zn} in C such that

λyn + (1− λ)zn
‖·‖→ x we have that yn, zn

w→ x.
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Next lemma asserts that a net of molecules which converges to a molecule
in the weak topology in fact converges in the norm topology. This lemma will
be useful in the proof of Theorem 2.4 and also in order to show that the set of
molecules is not far from being weakly closed (Proposition 2.13).

Lemma 2.2. Assume {mxαyα} is a net in V which converges weakly to mxy.
Then limα d(xα, x) = 0 and limα d(yα, y) = 0.

Proof. Assume that 0 < ε < min{d(x, y), lim supα d(xα, x)}. Consider the map
f given by f(t) = (ε − d(x, t))+ and let g = f − f(0) ∈ Lip0(M). Note that
〈g,mxy〉 = ε

d(x,y)
> 0. However,

lim inf
α
〈g,mxαyα〉 = lim inf

α

−f(yα)

d(xα, yα)
≤ 0,

a contradiction. Therefore, limα xα = x. Analogously we get that limα yα =
y. �

We need the following variation of Asplund–Bourgain–Namioka superlemma
[5, Theorem 3.4.1].

Lemma 2.3. Let A,B be bounded closed convex subsets of a Banach space X
and let ε > 0. Assume that diam(A) < ε and that there is x0 ∈ A \ B which
is a preserved extreme point of co(A ∪ B). Then there is a slice of co(A ∪ B)
containing x0 which is of diameter less than ε.

Proof. For each r ∈ [0, 1] let

Cr = {x ∈ X : x = (1− λ)y + λz, y ∈ A, z ∈ B, λ ∈ [r, 1]}.

The proof of the Superlemma says that there is r so that diam(co(A∪B)\Cr) < ε.
We will show that x0 /∈ Cr. Thus, any slice separating x0 from Cr will do the
work. To this end, assume that there exist sequences {yn} ⊂ A, {zn} ⊂ B and
λn ⊂ [r, 1] such that x0 = limn(1− λn)yn + λnzn. By extracting a subsequence,
we may assume that {λn} converges to some λ ∈ [r, 1]. Note that then x0 =
limn(1− λ)yn + λzn. Since x0 is a preserved extreme point, this implies that
{zn} converges weakly to x0 by Proposition 2.1. That is impossible since x0 /∈ B
and B is weakly closed as being convex and closed. �

Theorem 2.4. Let M be a pointed metric space. Then every preserved extreme
point of BF(M) is a denting point.

Proof. Let µ be a preserved extreme point of BF(M), which must be an element
of V . Denote by S the set of weak-open slices of BF(M) containing µ. Consider
the order S1 ≤ S2 if S2 ⊂ S1 for S1, S2 ∈ S. Using (ii) of Proposition 2.1, every
finite intersection of elements of S contains an element of S and so (S,≤) is a
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directed set. Assume that µ is not a denting point. Then, there is ε > 0 so that
diam(S) > 2ε for every S ∈ S.

We distinguish two cases. Assume first that for every slice S of BF(M) there
is µS ∈ (V ∩S) \B(µ, ε/4). Then {µS} is a net in V which converges weakly to
µ. By Lemma 2.2, it also converges in norm, which is impossible. Thus, there
is a slice S of BF(M) such that diam(V ∩ S) < ε/2. Note that

BF(M) = co(V ) = co(co(V ∩ S) ∪ co(V \ S))

and so the hypotheses of Lemma 2.3 are satisfied for A = co(V ∩ S), B =
co(V \ S), and µ ∈ A \ B (taking the closed convex hull does not change the
diameter). Then there is a slice of BF(M) containing µ of diameter less than ε,
a contradiction. �

Theorem 2.4 provides a new proof of the following result given in [12].

Corollary 2.5. Let M be a length space. Then BF(M) does not have any
preserved extreme point.

Proof. The space F(M) has the Daugavet property whenever M is a length
space [17]. In particular, every slice of BF(M) has diameter two. Thus, BF(M)

does not have any denting point. �

During the preparation of this paper we have learnt that Aliaga and Guirao [2]
characterised metrically the preserved extreme points of free spaces. In the
following pages we provide an alternative proof of their result which accidentally
reproves our Theorem 2.4.

Theorem 2.6. Let M be a pointed metric space and x, y ∈M . The following
are equivalent:

(i) The molecule mxy is a denting point of BF(M).
(ii) For every ε > 0 there exists δ > 0 such that every z ∈M satisfies

(1− δ)(d(x, z) + d(z, y)) < d(x, y) =⇒ min{d(x, z), d(y, z)} < ε.

Proof of (i)⇒(ii). In fact we are going to show that negation of (ii) implies
that mxy is not a preserved extreme point. Since denting points are trivially
preserved extreme points, this will show at once that mxy is not denting.

So let us fix ε > 0 such that for every n ∈ N there exists zn ∈M such that(
1− 1

n

)
(d(x, zn) + d(zn, y)) < d(x, y)

but min {d(x, zn), d(y, zn)} ≥ ε. Let µ be a w∗-cluster point of {zn} ({zn} is
clearly bounded). By lower semicontinuity of the norm we have

‖δ(x)− µ‖+ ‖µ− δ(y)‖ = d(x, y).
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If µ ∈ {δ(x), δ(y)}, say µ = δ(x) then by Lemma 2.2 we get that zn → x in
(M,d) which is a contradiction.

Thus µ /∈ {δ(x), δ(y)}. Then

δ(x)− δ(y)

‖δ(x)− δ(y)‖
=
‖δ(x)− µ‖
‖δ(x)− δ(y)‖

δ(x)− µ
‖δ(x)− µ‖

+
‖µ− δ(y)‖
‖δ(x)− δ(y)‖

µ− δ(y)

‖µ− δ(y)‖
.

Thus µ is a non-trivial convex combination and so it is not preserved extreme
which concludes the proof of (i)⇒(ii). �

For the proof of the other implication we need a couple of lemmata. The first
of them shows that the diameter of the slices of the unit ball can be controlled
by the diameter of the slices of a subset of the ball that is norming for the dual.

Lemma 2.7. Let X be a Banach space and let V ⊂ SX be such that BX = co(V ).
Let f ∈ BX∗ and 0 < α, ε < 1. Then

diam(S(f, εα)) ≤ 2 diam(S(f, α) ∩ V ) + 4ε.

Proof. Fix a point x0 ∈ S(f, α) ∩ V . It suffices to show that ‖x − x0‖ <
diam(S(f, α)∩ V ) + 2ε for every x ∈ S(f, εα)∩ co(V ). To this end, let x ∈ BX

be such that f(x) > 1− εα, and x =
∑n

i=1 λixi, with xi ∈ V ,
∑n

i=1 λi = 1 and
λi > 0 for all 1 ≤ i ≤ n. Define

G = {i ∈ {1, . . . , n} : f(xi) > 1− α}
and B = {1, . . . , n} \G. We have

1− εα < f(x) =
∑
i∈G

λif(xi) +
∑
i∈B

λif(xi)

≤
∑
i∈G

λi + (1− α)
∑
i∈B

λi = 1− α
∑
i∈B

λi,

which yields that
∑

i∈B λi < ε. Now,

‖x− x0‖ ≤
∑
i∈G

λi‖xi − x0‖+
∑
i∈B

λi‖xi − x0‖ ≤ diam(S(f, α) ∩ V ) + 2ε.

�

Lemma 2.8. Let x, y ∈M , x 6= y, such that d(x, y) = 1. For every 0 < ε < 1/4
and 0 < τ < 1 there is a function f ∈ Lip0(M) such that ‖f‖L = 1, 〈f,mxy〉 >
1 − 4ετ and satisfying that for every u, v ∈ M , u 6= v, if u, v ∈ B(x, ε) or
u, v ∈ B(y, ε), then 〈f,muv〉 ≤ 1− τ .

Proof. Define f : B(x, ε) ∪B(y, ε)→ R by

f(t) =

{
1

1+4ετ
(τ + (1− τ)d(y, t)) if t ∈ B(x, ε),

1
1+4ετ

(1− τ)d(y, t) if t ∈ B(y, ε).
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Note that

〈f,mxy〉 = f(x)− f(y) =
1

1 + 4ετ
> 1− 4ετ.

Moreover, note that if u, v ∈ B(x, ε) or u, v ∈ B(y, ε) then 〈f,muv〉 ≤ 1−τ
1+4ετ

≤
1− τ , so the last condition in the statement is satisfied. Now we compute the
Lipschitz norm of f . It remains to compute 〈f,muv〉 with u ∈ B(x, ε) and
v ∈ B(y, ε). In that case we have

|〈f,muv〉| =
|τ + (1− τ)(d(u, y)− d(v, y))|

(1 + 4ετ)d(u, v)
≤ τ + (1− τ)d(u, v)

(1 + 4ετ)d(u, v)

≤ 1

1 + 4ετ

(
τ

1− 2ε
+ 1− τ

)
≤ τ(1 + 4ε) + 1− τ

1 + 4ετ
= 1

where we are using that (1 − 2ε)−1 ≤ 1 + 4ε since ε < 1/4. This shows that
‖f‖L ≤ 1. Next, find an extension of f with the same norm. Finally, replace f
with the function t 7→ f(t)− f(0). �

Proof of (ii)⇒(i) of Theorem 2.6. Now, assume that (ii) holds. We can assume
that d(x, y) = 1. Fix 0 < ε < 1/4. We will find a slice of BF(M) containing
mxy of diameter smaller than 32ε. Let δ > 0 be given by property (ii), clearly
we may assume that δ < 1. Let f be the function given by Lemma 2.8 with
τ = δ/2. Define

h(t) :=
fxy(t) + f(t)

2
.

It is clear that ‖h‖L ≤ 1. Moreover, note that

〈h,mxy〉 =
〈fxy,mxy〉+ 〈f,mxy〉

2
> 1− 2ετ = 1− εδ.

Take α = δ/4 and consider the slice S = S(h, α). Note that mxy ∈ S(h, 4εα).
We will show that diam(S ∩ V ) ≤ 8ε and as a consequence of Lemma 2.7 we
will get that diamS(h, α) ≤ 32ε. So let u, v ∈M be such that muv ∈ S. First,
note that 〈fxy,muv〉 > 1− δ, since otherwise we would have

〈h,muv〉 =
1

2
(〈fxy,muv〉+ 〈f,muv〉) ≤

1

2
(1− δ) +

1

2
= 1− δ

2
< 1− α.

Thus, from the property (c) of the function fxy in Lemma 1.1 and the hypothesis
(ii) we have that

min{d(x, u), d(u, y)} < ε and min{d(x, v), d(y, v)} < ε.

On the other hand,

1− α < 〈h,muv〉 ≤
1

2
+

1

2
〈f,muv〉
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and so 〈f,muv〉 > 1 − 2α = 1 − δ
2

= 1 − τ . Thus, we have that u and v
do not belong simultaneously to neither B(x, ε) nor B(y, ε). If d(x, v) < ε
and d(y, u) < ε, then it is easy to check that 〈fxy,muv〉 ≤ 0. So necessarily
d(x, u) < ε and d(y, v) < ε. Now, use the estimate

‖mxy −muv‖ =
‖d(u, v)(δ(x)− δ(y))− d(x, y)(δ(u)− δ(v))‖

d(x, y)d(u, v)

≤ ‖(δ(x)− δ(y))− (δ(u)− δ(v))‖
d(x, y)

+
|d(u, v)− d(x, y)|‖δ(u)− δ(v)‖

d(x, y)d(u, v)

≤ 2
d(x, u) + d(y, v)

d(x, y)
≤ 4ε.

Therefore, diam(S ∩ V ) ≤ 8ε. �

2.1. Weak topology in free spaces. The results which follow are independent
of the rest of the article. The reader interested only in the extremal structure
of the free spaces can skip until Section 3.

Simple examples (Examples 5.6 and 5.7 ) show that δ(M) is not necessarily
weak∗ closed when F(M) is a dual space. The next proposition shows that the
situation is different for the weak topology.

Proposition 2.9. Let M be a complete pointed metric space. Then δ(M) ⊂
F(M) is weakly closed.

The proposition could be deduced more or less easily from Proposition 2.1.6
in [26] but we propose a self-contained proof. For the proof we will need the
next observation (essentially already present in [26]). The weak*-closures of
subsets of F(M) below are taken in the bidual F(M)∗∗ = Lip0(M)∗.

Lemma 2.10. Let M be a complete pointed metric space. Let µ ∈ δ(M)
w∗

\
δ(M). Then there exists ε > 0 such that for all q1, . . . , qn ∈M we have that

µ ∈ δ

(
M \

n⋃
i=

B(qi, ε)

)w∗

.

Proof. Indeed, otherwise we could find a sequence {qn} ⊂ M such that µ ∈
δ(B(qn, 2−n))

w∗

for every n ≥ 1. It follows that ‖µ− δ(qn)‖ ≤ 2−n for every n
and thus {qn} is Cauchy. By completeness of M it follows that µ = limn δ(qn) ∈
δ(M). This contradiction proves the claim. �

Proof of Proposition 2.9. It is enough to show that if µ ∈ δ(M)
w∗

\ δ(M),
then µ is not w∗-continuous. Indeed, this yields that µ /∈ F(M) and so

δ(M)
w

= δ(M)
w∗
∩ F(M) = δ(M).
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So let µ ∈ δ(M)
w∗
\ δ(M) and let ε > 0 be as in Lemma 2.10. Now

let U be an open neighbourhood of 0 in (BLip0(M), w
∗). Since the w∗ topol-

ogy and the topology of pointwise convergence coincide on the ball BLip0(M),
we may assume that there are x1, . . . , xn ∈ M and α > 0 such that U ={
f ∈ BLip0(M) : |f(xi)| < α for i = 1, . . . n

}
. We define f(x) := dist(x, {x1, . . . , xn}).

We clearly have f ∈ U . Moreover since

µ ∈ δ

(
M \

n⋃
i=1

B(xi, ε)

)w∗

,

we have that µ(f) ≥ ε. Thus µ is not weak*-continuous as U was arbitrary. �

We observe the following curious corollary (which also admits an independent
proof by combinatorial methods).

Corollary 2.11. Let M be a complete pointed metric space. If {xn} ⊂M is a
sequence such that δ(xn) converges weakly to some µ ∈ F(M), then there exists
x ∈M such that µ = δ(x) and d(xn, x)→ 0.

Proof. The fact that µ = δ(x) follows from Proposition 2.9. For the rest it is
enough to pose f(·) := d(·, x) − d(0, x) and use that d(xn, x) = 〈δ(xn), f〉 −
〈δ(x), f〉 → 0. �

Given a complete metric space M and µ ∈ F(M) \ δ(M) there is a weak
neighbourhood that separates µ from δ(M). The next example shows that
contrary to what one might expect, such a neighbourhood is not necessarily of
the form {γ ∈ F(M) : |〈f, γ − µ〉| < ε} for some f ∈ Lip0(M) and ε > 0.

Example 2.12. Let M = [0, 1] with the usual metric and let µ be the Lebesgue
measure on [0, 1]. It is well known and can be easily shown using the Riemann

sums that µ ∈ F(M). It acts on Lip0([0, 1]) as follows 〈µ, f〉 =
∫ 1

0
f(t)dt.

Now the mean value theorem implies that for every f ∈ Lip0(M) there exists
x ∈ [0, 1] such that 〈δ(x), f〉 = 〈µ, f〉.

In light of Proposition 2.9, it is also natural to wonder if the set V of molecules
is weakly closed. It is known that 0 is in the weak-closure of V whenever M
is not bi-Lipschitz embeddable in RN (see Lemma 4.2 in [13]). The following
proposition shows that 0 is the only point that we can reach taking the weak-
closure of V . On the other hand, 0 is never in the sequential closure of V which
we will show in a corollary below.

Proposition 2.13. Let (M,d) be a complete pointed metric space. Then V
w ⊂

V ∪ {0}.
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Proof. The proof is based on [26, Theorem 2.5.3]. Let us begin with an expla-
nation of this result. To this end, let M̃ := {(x, y) ∈M2 : x 6= y} and

Φ: Lip0(M)→ Cb(M̃)

f(x, y) 7→ f(x)− f(y)

d(x, y)

(here Cb(M̃) stands for the continuous and bounded functions on M̃). It is
easy to see that Φ is an isometry. Now let us denote βM̃ the Stone-Čech
compactification of M̃ . As usual, we can canonically identify Cb(M̃) with
C(βM̃) so that we now see Φ as a map from Lip0(M) to C(βM̃). Thus Φ∗

goes from C(βM̃)∗ = M(βM̃) to Lip0(M)∗. According to Weaver, we say
that µ ∈ Lip0(M)∗ is normal if {〈µ, fi〉} converges to 〈µ, f〉 whenever {fi} is a
bounded and decreasing (meaning that fi ≥ fj for i ≤ j) net in Lip0(M) which
w∗-converges to f ∈ Lip0(M). Clearly normality is implied by w∗-continuity.
Finally, [26, Theorem 2.5.3] asserts that if x ∈ βM̃ with Φ∗δ(x) 6= 0, then
Φ∗δ(x) is normal if and only if x ∈ M̃ .

Let us now prove the assertion of the proposition. Since

V
w

= V
w∗

∩ F(M) = {µ ∈ V w∗

: µ is w∗-continuous},

it is enough to show that if µ ∈ V w∗

\(V ∪ {0}) then µ is not w∗-continuous.
So let us fix such a µ. We identify, as we may, M̃ with δ(M̃) ⊂M(βM̃). We
claim that δ(M̃) is homeomorphic to (V,w∗). Indeed, it is clear that

Φ∗�δ(M̃) : δ(x, y) ∈ δ(M̃) 7→ mxy ∈ (V,w∗)

is continuous and bijective. The fact that the inverse mapping is also continuous

follows from Lemma 2.2. So the claim is proved. Now (V
w∗

, w∗) is clearly a
compactification of V . Thus the universal property of the Stone-Čech compacti-

fication provides a surjective extension of Φ∗�δ(M̃) that goes from δ(βM̃) to V
w∗

.

It is easy to check that the latter extension is in fact Φ∗�δ(βM̃) : δ(βM̃)→ V
w∗

.

Now consider x ∈ βM̃ such that Φ∗δ(x) = µ 6= 0. Since µ ∈ V w∗

\(V ∪ {0}),
we deduce that x 6∈ M̃ . Thus, according to [26, Theorem 2.5.3], Φ∗δ(x) = µ is
not normal and therefore not w∗-continuous. This ends the proof. �

From the previous proposition, we deduce a result similar to Corollary 2.11.

Corollary 2.14. Let M be a complete pointed metric space. If {µn} ⊂ F(M) is
a sequence of molecules (µn = mxnyn) which converges weakly to some µ ∈ F(M),
then there exist x 6= y ∈M such that µ = mxy and {µn} actually converges in
norm to mxy. In particular, a sequence of molecules cannot converge weakly
to 0 and so V is weakly sequentially closed.
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Proof. Proposition 2.13 shows that µ = mxy or µ = 0. In the first case the
sequence {µn} actually converges in norm by Lemma 2.2.

If µ = 0 then clearly {µn} does not admit any norm convergent subsequence.
Therefore it is not totally bounded and so there exist ε > 0 and a subsequence
(nk) ⊂ N such that ‖µnk − µnl‖ ≥ ε for all k 6= l.

Now {µnk} is a uniformly separated bounded sequence of measures such that
the cardinality of their supports is bounded. So the deep Theorem 5.2 in [1]
shows that {µnk} cannot converge weakly to 0 which is a contradiction. �

Now that we know that V
w ⊂ V ∪ {0} we get an easy proof of Weaver’s

theorem [26] which claims that the preserved extreme points are molecules. We
include it for completeness as it is directly related to the main subject of this
paper.

Corollary 2.15. Let M be a complete pointed metric space and let µ be a
preserved extreme point of BF(M). Then µ = mxy for some x 6= y ∈M .

Proof. Indeed, we have that co(V ) = BF(M) and BF(M)
w∗

= BLip0(M)∗ . Thus

cow
∗
(V ) = BLip0(M)∗ and so by Milman’s theorem ext(BLip0(M)∗) ⊂ V

w∗

. Finally

we get that F(M)∩ext(BLip0(M)∗) ⊂ V
w

and so Proposition 2.13 yields F(M)∩
ext(BLip0(M)∗) ⊂ V . �

3. Duality of some Lipschitz free spaces

Many of our results in Sections 4 and 5 use the hypothesis that F(M) admits
an isometric predual which makes δ(M) w∗-closed. Even though for some of
these results we do not know whether this hypothesis is superfluous, we take
the opportunity to study the Lipschitz free spaces which admit such a predual.

Definition 3.1. Let M be a bounded pointed metric space. We will say that
a Banach space X is a natural predual of F(M) if X∗ = F(M) isometrically
and δ(M) is σ(F(M), X)-closed.

It is obvious that when M is a compact metric space then every isometric
predual of F(M) is natural. We will show in Examples 5.6 and 5.7 that there
are isometric preduals to F(M) which are not natural.

Let us state for the future reference an almost obvious characterisation of
natural preduals.

Proposition 3.2. Let M be a bounded pointed metric space and let X be an
isometric predual of F(M). Then the following are equivalent:

(i) There is a compact Hausdorff topology τ on M such that X ⊂ Lip0(M)∩
Cτ (M).

(ii) δ(M) is σ(F(M), X)-closed.
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Proof. We only need to show (i)⇒(ii). To this end, note that the w∗-topology
of F(M) and the τ -topology coincide on δ(M). Indeed, every w∗-open set in
δ(M) is also τ -open since X is made up of τ -continuous functions, so that
the w∗-topology is weaker than τ on δ(M). By compactness of the Hausdorff
topology τ , we have that they agree on δ(M). �

The natural preduals are quite common. In fact, the known constructions of
isometric preduals to F(M) when M is bounded all produce natural preduals.
Indeed, this is the case for Theorem 3.3.3 in [26] as well as Theorem 2.1 in [7]
because of the compactness. In the next theorem we will show that it is also true
for Theorem 6.2 in [20]. We will say that a subspace X of Lip0(M) 1-separates
points uniformly (shortened 1-S.P.U.) if for every x, y ∈ M and every ε > 0
there is f ∈ X such that f(x)− f(y) = d(x, y) and ‖f‖L < 1 + ε.

Proposition 3.3 (Theorem 6.2 in [20]). Let M be a separable bounded pointed
metric space and let τ be a topology on M so that (M, τ) is compact. Assume
that X = lip0(M) ∩ Cτ (M) 1-S.P.U. Then X is a natural predual of F(M).

In what follows we provide a slightly different proof of Kalton’s result, based
now on Petun̄ın-Pl̄ıčko theorem (see [14, 23]). We recall that this last theorem
asserts that a closed subspace S ⊂ X∗ of the dual of a separable Banach space
X is an isometric predual of X (that is S∗ = X) if, and only if, S is composed
of norm-attaining functionals and S separates the points of X. The use of
this theorem to produce preduals to free spaces has become quite common
(see [6, 7, 8, 11] and also our Examples 5.6 and 5.7). The benefit of this proof is
that it avoids the metrizability assumption of the topology τ present in Kalton’s
original exposition of this result.

In the proof we will also need the following lemma which restates in a general
framework the first step of Kalton’s proof.

Lemma 3.4. Let (M,d) be a pointed metric space such that there is a topology τ
on M and a subset X ⊂ Lip0(M)∩Cτ (M) which 1-S.P.U. Then d : (M, τ)2 → R
is l.s.c.

Proof. Let {xα}, {yα} be τ -convergent nets in M with limits x and y, respec-
tively. Given ε > 0, find f ∈ X such that f(y) − f(x) ≥ d(x, y) − ε and
‖f‖L = 1. Then

d(x, y)− ε ≤ lim
α
f(yα)− f(xα) ≤ lim inf

α
d(xα, yα)

and the arbitrariness of ε yields the desired conclusion. �

Proof of Proposition 3.3. First of all, according to Lemma 3.4, note that d is
τ -l.s.c.
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Now, we need to verify the conditions of Petun̄ın and Pl̄ıčko’s theorem. First,
since M is bounded, we see that S is a closed subspace of Lip0(M). Second, S
is separating since it is a lattice and separates the points of M uniformly (see
[20, Proposition 3.4]).

Finally it remains to show that X is made of norm-attaining functionals.
To this end, let f ∈ SX and take sequences {xn}, {yn} in M such that

limn
f(xn)−f(yn)
d(xn,yn)

= 1. Note that infn d(xn, yn) =: θ > 0 since f ∈ lip0(M).

By the compactness of (M, τ) and the boundedness of d, we can find subnets

{xα} of {xn} and {yα} of {yn} such that xα
τ→ x, yα

τ→ y and d(xα, yα)→ C > 0.
Then,

1 = lim
α

f(xα)− f(xα)

d(xα, yα)
→ f(x)− f(y)

C
≤ f(x)− f(y)

d(x, y)
.

Thus X is made up of norm-attaining functionals.
To conclude, we get that S is a natural predual by just applying Proposi-

tion 3.2. �

The next proposition testifies that Kalton’s theorem is the only way to build
a natural predual if the predual is moreover required to be a subspace of little
Lipschitz functions.

Proposition 3.5. Let M be a bounded pointed metric space and let X∗ = F(M)
be a natural predual such that X ⊆ lip0(M). Then there exists a topology τ
on M such that (M, τ) is compact, the metric d : (M, τ)2 → R is l.s.c. and
X = lip0(M) ∩ Cτ (M).

Proof. We put τ := {δ−1(U) : U ∈ σ(F(M), X)}. Since δ(M) is σ(F(M), X)-
closed and bounded, (M, τ) is compact. Recall that d(x, y) = ‖δ(x)− δ(y)‖
and ‖·‖ is σ(F(M), X)-lsc, so the metric d is τ -lsc. Since

X = {x∗ ∈ F(M)∗ : x∗ is σ(F(M), X)− continuous}
and X ⊂ lip0(M), we get that X ⊆ lip0(M,d) ∩ Cτ (M) =: Y . This means
that σ(F(M), Y ) is stronger than σ(F(M), X). On the other hand, Propo-
sition 3.3 yields that Y ∗ = F(M). Therefore, by compactness, σ(F(M), X)
and σ(F(M), Y ) coincide on BF(M). As a consequence of Banach-Dieudonné
theorem, they coincide on F(M). This means that

X = {x∗ ∈ F(M)∗ : x∗ is σ(F(M), X)− continuous}
= {x∗ ∈ F(M)∗ : x∗ is σ(F(M), Y )− continuous} = Y.

�

But one should be aware that not all natural preduals are contained in the
space of little Lipschitz functions.
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Example 3.6. Let M =
{

1
n

: n ∈ N
}
∪ {0} with the distance comming from

the reals. Then it is well known that F(M) is isometrically isomorphic to `1.
Further we know (Theorem 2.1 in [7]) that lip0(M) is isometrically a predual.
Since M is compact, every predual is natural. So our Proposition 3.5 and the
fact that M is compact show that any isometric predual of `1 which is not
isometric to lip0(M) intersects the complement of lip0(M).

Note that Lip0(M) = lip0(M) when M is uniformly discrete. This observation
and the previous results yield the following corollary.

Corollary 3.7. Let (M,d) be a uniformly discrete bounded separable pointed
metric space with 0 ∈M . Let X be a Banach space. Then it is equivalent:

(i) X is a natural predual of F(M).
(ii) There is a Hausdorff topology τ on M such that (M, τ) is compact, d is

τ -l.s.c. and X = Lip0(M,d) ∩ Cτ (M) equipped with the norm ‖·‖L.

Proof. (ii)⇒(i) Given x, y ∈ M , x 6= y, define f : {x, y} → R by f(x) = 0

and f(y) = d(x, y). By Matouskova’s extension theorem [21], there is f̃ ∈
Lip0(M) ∩ Cτ (M) extending f such that

∥∥∥f̃∥∥∥
L

= 1. Thus, the hypotheses of

Proposition 3.3 are satisfied.
The implication (i)⇒(ii) is contained in Proposition 3.5. �

In what follows we are going to develop yet another sufficient condition for
an isometric predual to be natural with the goal to show that certain preduals
constructed by Weaver in [25] are natural.

Proposition 3.8. Let M be a uniformly discrete, bounded, separable, pointed
metric space and let X ⊂ Lip0(M) be a Banach space such that X∗ = F(M)
isometrically. If for every x ∈M \ {0} the indicator function 1{x} belongs to X,
then X is a natural predual of F(M). Moreover 0 is the unique accumulation
point of (δ(M), w∗) and X is isomorphic to c0.

The proof will be based on the following general fact.

Lemma 3.9. Let X, Y be Banach spaces such that X∗ = Y isometrically, Y
admits a bounded Schauder basis {un} and the biorthogonal functionals {u∗n}
belong to X. Then un → 0 weakly*.

Proof. We will show that every subsequence of {un} admits a further subse-
quence that converges weakly* to 0. So let us consider such subsequence. By the
weak* compactness and separability, it admits a weak* convergent subsequence,
let us call it {un} again. So we have un → u ∈ X weakly*. But this means that
for every m ∈ N we have

0 = lim
n→∞

〈u∗m, un〉 = 〈u∗m, u〉 .
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Thus u = 0. �

Proof of Proposition 3.8. Since M is bounded and uniformly discrete, the se-
quence {δ(x)}x∈M\{0} is a Schauder basis which is equivalent to the unit vector
basis of `1. The biorthogonal functionals are exactly the indicator functions 1{x}
for x 6= 0. Applying Lemma 3.9 we get that δ(M) is weak* closed and that 0 is
the unique w∗-accumulation point of δ(M). Let τ be the restriction of the w∗-
topology to M . Now Corollary 3.7 yields that X = Lip0(M)∩Cτ (M). But, since
M is bounded and uniformly discrete, we have that Lip0(M) is just all bounded
functions that vanish at 0. It follows immediately that X = c0(M \ {0}). �

Remark 3.10. In [25], Weaver proved a duality result for rigidly locally compact
metric spaces. We recall that a locally compact metric space is said to be rigidly
locally compact (see the paragraph before Proposition 3.3 in [25]) if for every

r > 1 and every x ∈ M , the closed ball B(x, d(0,x)
r

) is compact. The duality
result of Weaver in particular implies that for a separable uniformly discrete
bounded metric space M which is rigidly compact, the space

X =

{
f ∈ Lip0(M) :

f(·)
d(·, 0)

∈ C0(M)

}
is an isometric predual of F(M). Here C0(M) denotes the set of continuous
functions which are arbitrarily small out of compact sets. Since it is obvious
that the indicator functions 1{x} belong to X, Proposition 3.8 implies that X
is a natural predual of F(M) and that X is isomorphic to c0. This shows that
in the case of uniformly discrete bounded spaces, Corollary 3.7 covers the cases
in which Weaver’s result ensures the existence of a predual.

Moreover, there is a metric space which satisfies the hypotheses of Corollary 3.7
and which is not rigidly locally compact.

Example 3.11. Let us consider the metric space M = {0, 1} × N equipped
with the following distance: d((0, n), (1,m)) = 2 for n,m ∈ N, and if n 6= m
we have d((0, n), (0,m)) = 1 and d((1, n), (1,m)) = 1. Then M satisfies the
assumptions of Corollary 3.7. Indeed, declare (0, 1) to be the accumulation point
of the sequence {(0, n)}, (1, 1) to be the accumulation point of the sequence
{(1, n)}, and then declare all the other points isolated. Now independently
of the choice of the distinguished point 0M , M is not rigidly locally com-
pact. For instance, say that 0M = (0, n). Then for every r > 1, the ball
B((1, 1), d(0M , (1, 1))/r) = B((1, 1), 2/r) contains all the elements of the form
(1,m) with m ∈ N. Consequently the considered ball is not compact, which
proves that M is not rigidly locally compact.
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4. Extremal structure for spaces with natural preduals

We are going to focus now on the extreme points in the free spaces that admit
a natural predual. Assuming moreover that the predual is a subspace of little
Lipschitz functions we get an affirmative answer to one of our main problems.
Note that this is an extension of Corollary 3.3.6 in [26], where it is obtained
the same result under the assumption that M is compact.

Proposition 4.1. Let M be a bounded pointed metric space. Assume that there
is a subspace X of lip0(M) which is a natural predual of F(M). Then

ext(BF(M)) ⊂ V.

Proof. By the separation theorem we have that BF(M) = cow
∗
(V ). Thus,

according to Milman theorem (see [9, Theorem 3.41]), we have ext(BF(M)) ⊂
V
w∗

. So let us consider γ ∈ ext(BF(M)). Take a net {mxα,yα} in V which w∗-
converges to γ. By w∗-compactness of δ(M), we may assume (up to extracting
subnets) that {δ(xα)} and {δ(yα)} converge to some δ(x) and δ(y) respectively.

Next, we claim that we may also assume that {d(xα, yα)} converges to C > 0.
Indeed, since M is bounded, we may assume up to extract a further subnet
that {d(xα, yα)} converges to C ≥ 0. By assumption, there is f ∈ X such that
〈f, γ〉 > ‖γ‖/2 = 1/2. Since f ∈ lip0(M), there exists δ > 0 such that whenever
z1, z2 ∈M satisfy d(z1, z2) ≤ δ then we have |f(z1)− f(z2)| ≤ 1

2
d(z1, z2). Since

lim
α
〈f,mxα,yα〉 = 〈f, γ〉 > 1

2
,

there is α0 such that 〈f,mxα,yα〉 > 1/2 for every α > α0. Thus d(xα, yα) > δ for
α > α0, which implies that C ≥ δ > 0. Summarizing, we have a net {mxα,yα}
which w∗-converges to δ(x)−δ(y)

C
. So, by uniqueness of the limit, γ = δ(x)−δ(y)

C
.

Since γ ∈ ext(BF(M)) ⊂ SF(M), we get that C = d(x, y) and so γ = mxy. �

We have learned that a weaker version of the following proposition appears in
the preprint [2] for compact metric spaces. Our approach, which is independent
of [2], also yields a characterisation of exposed points of BF(M).

Corollary 4.2. Let M be a bounded separable pointed metric space. Assume
that there is a subspace X of lip0(M) which is a natural predual of F(M). Then
given µ ∈ BF(M) the following are equivalent:

(i) µ ∈ ext(BF(M)).
(ii) µ ∈ exp(BF(M)).

(iii) There are x, y ∈M , x 6= y, such that [x, y] = {x, y} and µ = mxy.

Proof. (i)⇒(iii) follows from Proposition 4.1. Moreover, (ii)⇒(i) is clear, so it
only remains to show (iii)⇒(ii). To this end, let x, y ∈ M , x 6= y, be so that
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[x, y] = {x, y}. Consider

A = {µ ∈ BF(M) : 〈fxy, µ〉 = 1}.

We will show that A = {mxy} and so mxy is exposed by fxy in BF(M). Let
µ ∈ ext(A). Since A is an extremal subset of BF(M), µ is also an extreme point
of BF(M) and so µ ∈ V ∩ A. Recall that if 〈fxy,mu,v〉 = 1 then u, v ∈ [x, y],
therefore V ∩ A = {mxy}. Thus ext(A) ⊂ {mxy}. Finally note that A is a
closed convex subset of BF(M) and so A = co(ext(A)) = {mxy} since the space
F(M) has (RNP) as being a separable dual. �

It is proved in Aliaga and Guirao’s paper [2] that if (M,d) is compact, then
a molecule mxy is extreme in BF(M) if and only if it is preserved extreme if and
only if [x, y] = {x, y}. Thus, if lip0(M) 1-S.P.U. (and thus F(M) = lip0(M)∗),
Proposition 4.1 and Aliaga and Guirao’s result provide a complete description
of the extreme points: they are the molecules mxy such that [x, y] = {x, y}. It
is possible to obtain the same kind of complete descriptions in some different
settings as it is proved in the following result (see also Section 5).

Proposition 4.3. Let (M,d) be a bounded pointed metric space for which there
is a Hausdorff topology τ such that (M, τ) is compact and d : (M, τ)2 → R is
l.s.c. Let 0 < p < 1 and let (M,dp) be the p-snowflake of M . Then given
µ ∈ BF(M) the following are equivalent:

(i) µ ∈ ext(BF(M,dp)).
(ii) µ ∈ strexp(BF(M,dp)).

(iii) There are x, y ∈M , x 6= y, such that µ = mxy.

Observe that under the hypotheses above it is not necessarily true that F(M)
is a dual space, but F(M,dp) already is.

Proof. (iii) =⇒ (ii). Let us fix x 6= y ∈ M . Since 0 < p < 1, it is readily
seen that [x, y] = {x, y}. Moreover it is proved in [26, Proposition 2.4.5] that
there is a peaking function at (x, y). Thus mxy is a strongly exposed point
([12, Theorem 4.4]). The implication (ii) =⇒ (i) is obvious. To finish, the
implication (i) =⇒ (iii) follows directly from Proposition 4.1 and the fact that
[x, y] = {x, y} for every x 6= y ∈M . �

Next we will show that the extremal structure of a free space has impact
on its isometric preduals. If a metric space M is countable and satisfies the
assumptions of Proposition 4.1, then ext(BF(M)) is also countable. Therefore,
any isometric predual of F(M) is isomorphic to a polyhedral space by a theorem
of Fonf [10], and so it is saturated with subspaces isomorphic to c0. This applies
for instance in the following cases.
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Corollary 4.4. Let M be a countable compact pointed metric space. Then any
isometric predual of F(M) (in particular lip0(M)) is isomorphic to a polyhedral
space.

Corollary 4.5. Let (M,d) be a uniformly discrete bounded separable pointed
metric space such that F(M) admits a natural predual. Then any isometric
predual of F(M) is isomorphic to a polyhedral space.

5. The uniformly discrete case

We have already witnessed that in the class of uniformly discrete and bounded
metric spaces, many results about F(M) become simpler. Yet another example
of this principle is the following main result of this section.

Proposition 5.1. Let (M,d) be a bounded uniformly discrete pointed metric
space. Then a molecule mxy is an extreme point of BF(M) if and only if
[x, y] = {x, y}.

Also we will need the following observation, perhaps of independent interest:
Since a point x ∈ BX is extreme if and only if x ∈ ext(BY ) for every 2-
dimensional subspace Y of X, the extreme points of BF(M) are separably
determined. Let us be more precise.

Lemma 5.2. Assume that µ0 ∈ BF(M) is not an extreme point of BF(M). Then
there is a separable subset N ⊂M such that µ0 ∈ F(N) and µ0 /∈ ext(BF(N)).

Proof. Write µ0 = 1
2
(µ1 +µ2), with µ1, µ2 ∈ BF(M). We can find sequences {νin}

of finitely supported measures such that µi = limn→∞ ν
i
n for i = 0, 1, 2. Let

N = {0} ∪ (∪i,n supp{νin}). Note that the canonical inclusion F(N) ↪→ F(M)
is an isometry and νin ∈ F(N) for each n, i. Since F(N) is complete, it is a
closed subspace of F(M). Thus µ0, µ1, µ2 ∈ F(N) and so µ0 /∈ ext(BF(N)). �

Proof of Proposition 5.1. Let mxy be a molecule in M such that [x, y] = {x, y}
and assume that mxy /∈ ext(BF(M)). By Lemma 5.2, we may assume that M
is countable. Write M = {xn : n ≥ 0}. Let {en : n ≥ 1} be the unit vector
basis of `1. It is well known that the map δ(xn) 7→ en for n ≥ 1 defines an
isomorphism from F(M) onto `1. Thus {δ(xn) : n ≥ 1} is a Schauder basis for
F(M).

Assume that mxy = 1
2
(µ+ ν) for µ, ν ∈ BF(M) and write µ =

∑∞
n=1 anδ(xn).

Fix n ∈ N such that xn /∈ {x, y}. Then, there is εn > 0 such that

(1− εn) (d(x, xn) + d(xn, y)) ≥ d(x, y).

Let gn = fxy + εn1{xn}, which is an element of Lip0(M) since M is uniformly
discrete. We will show that ‖gn‖L ≤ 1. To this end, take u, v ∈ M , u 6= v.
Since ‖fxy‖L ≤ 1, it is clear that |〈gn,muv〉| ≤ 1 if u, v 6= xn. Thus we may
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assume v = xn. Therefore (c) in Lemma 1.1 yields that 〈fxy,muv〉 ≤ 1 − εn
and so 〈gn,muv〉 ≤ 1. Exchanging the roles of u and v, we get that ‖gn‖L ≤ 1.
Moreover, note that

1 = 〈gn,mxy〉 =
1

2
(〈gn, µ〉+ 〈gn, ν〉) ≤ 1

and so 〈gn, µ〉 = 1. Analogously we show that 〈fxy, µ〉 = 1. Thus an =
〈1{xn}, µ〉 = 0. Therefore µ = aδ(x) + bδ(y) for some a, b ∈ R. Finally, let
f1(t) := d(t, x) − d(0, x) and f2(t) := d(t, y) − d(0, x). Then ‖fi‖L = 1 and
〈fi,mxy〉 = 1, so we also have 〈fi, µ〉 = 1 for i = 1, 2. It follows from this that
a = −b = 1

d(x,y)
, that is, µ = mxy. This implies that mxy is an extreme point of

BF(M). �

Next we show that preserved extreme points are automatically strongly
exposed for uniformly discrete metric spaces. Notice that, contrary to other
results in this section, no boundedness assumption is needed.

Proposition 5.3. Let M be a uniformly discrete pointed metric space. Then
every preserved extreme point of BF(M) is also a strongly exposed point.

Proof. Let x, y ∈ M such that mxy is a preserved extreme point of BF(M).
Assume that mxy is not strongly exposed. By Theorem 4.4 in [12], the pair
(x, y) enjoys property (Z). That is, for each n ∈ N we can find zn ∈M \ {x, y}
such that

d(x, zn) + d(y, zn) ≤ d(x, y) +
1

n
min{d(x, zn), d(y, zn)}.

Thus,
(1− 1/n)(d(x, zn) + d(y, zn)) ≤ d(x, y)

so it follows from condition (ii) in Theorem 2.6 that min{d(x, zn), d(y, zn)} → 0.
Since M is uniformly discrete, this means that {zn} is eventually equal to either
x or y, a contradiction. �

Aliaga and Guirao proved in [2] that, in the case of compact metric spaces,
every molecule which is an extreme point of BF(M) is also a preserved extreme
point. However, that result is no longer true for general metric spaces, as the
following example shows.

Example 5.4. Consider the sequence in c0 given by x1 = 2e1, and xn = e1+(1+
1/n)en for n ≥ 2, where {en} is the canonical basis. Let M = {0}∪{xn : n ∈ N}.
This metric space is considered in [2, Example 4.2], where it is proved that the
molecule m0x1 is not a preserved extreme point of BF(M). Let us note that this
fact also follows easily from Theorem 2.6. Moreover, by Proposition 5.1 we have
that m0x1 ∈ ext(BF(M)).



EXTREMAL STRUCTURE AND DUALITY OF LIPSCHITZ FREE SPACES 21

On the other hand, if we restrict our attention to uniformly discrete bounded
metric spaces satisfying the hypotheses of the duality result, then all the families
of distinguished points of BF(M) that we have considered coincide.

Proposition 5.5. Let (M,d) be a uniformly discrete bounded pointed metric
space such that F(M) admits a natural predual. Then for µ ∈ BF(M) it is
equivalent:

(i) µ ∈ ext(BF(M)).
(ii) µ ∈ strexp(BF(M)).

(iii) There are x, y ∈M , x 6= y, such that µ = mxy and [x, y] = {x, y}.

Proof. (i) ⇒ (iii) follows from Proposition 4.1. Moreover, (ii)⇒(i) trivially.
Now, assume that µ = mxy with [x, y] = {x, y}. We will show that the pair
(x, y) fails property (Z) and thus µ is a strongly exposed point. Assume, by
contradiction, that there is a sequence {zn} in M such that

d(x, zn) + d(y, zn) ≤ d(x, y) +
1

n
min{d(x, zn), d(y, zn)}.

and so
(1− 1/n)(d(x, zn) + d(y, zn)) ≤ d(x, y).

The compactness with respect to the w∗-topology ensures the existence of a
w∗-cluster point z of {zn} (M and δ(M) ⊂ F(M) being naturally identified).
Now, by the lower semicontinuity of the distance, we have

d(x, z) + d(y, z) ≤ lim inf
n→∞

(1− 1/n)(d(x, zn) + d(y, zn)) ≤ d(x, y).

Therefore, z ∈ [x, y] = {x, y}. Suppose z = x. Denote θ = inf{d(u, v) : u 6=
v} > 0. The lower semicontinuity of d yields

θ + d(x, y) ≤ lim inf
n→∞

(1− 1/n)(θ + d(y, zn))

≤ lim inf
n→∞

(1− 1/n)(d(x, zn) + d(y, zn)) ≤ d(x, y),

which is impossible. The case z = y yields a similar contradiction. Thus the
pair (x, y) does not have property (Z). �

We now give some examples in which the preduals of F(M) have interesting
properties. The first one is a uniformly discrete and bounded metric space
M such that F(M) is isometric to a dual Banach space but cannot admit a
natural predual. This example comes from [2, Example 4.2] and has already
been introduced in Example 5.4.

Example 5.6. Consider the sequence in c0 given by x0 = 0, x1 = 2e1, and
xn = e1 + (1 + 1/n)en for n ≥ 2, where {en} is the canonical basis. Let
M = {0} ∪ {xn : n ∈ N}. Then
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a) F(M) does not admit any natural predual.
b) The space X = {f ∈ Lip0(M) : lim f(xn) = f(x1)/2} satisfies X∗ = F(M).

Our Corollary 3.7 guarantees that in order to prove a) it is enough to show
that there is no compact topology τ on M such that d is τ -l.s.c. Assume that
τ is such a topology. Then the sequence {xn} admits a τ -accumulation point
x ∈ M . Since d is τ -l.s.c. we get that x ∈ B(0, 1) ∩ B(x1, 1). But this is a
contradiction as the latter set is clearly empty.

For the proof of b) we will employ the theorem of Petun̄ın and Pl̄ıčhko. The
space X is clearly a separable closed subspace of F(M)∗. Further, a simple case
check shows that for any x 6= y ∈M , y 6= 0, the function f(x) = 0, f(y) = d(x, y)
can be extended as an element of X without increasing the Lipschitz norm. Thus
since X is clearly a lattice, Proposition 3.4 of [20] shows that X is separating.
Finally, if f ∈ X and

f(xnk)− f(xmk)

d(xnk , xmk)
→ ‖f‖L

then without loss of generality the sequence {mk} does not tend to infinity.
Passing to a subsequence, we may assume that it is constant, say mk = m for

all k ∈ N. If {nk} does not tend to infinity, then f(xi)−f(xm)
d(xi,xm)

= ‖f‖L for some

i 6= m. Otherwise, since f ∈ X, we have

f(xnk)− f(xm)

d(xnk , xm)
→

f(x1)
2
− f(m)

d(x1, xm)
.

So in this case the norm is attained at 1
d(x1,xm)

(δ(x1)/2− δ(xm)) ∈ BF(M). It

follows that every f ∈ X attains its norm. Thus by the theorem of Petun̄ın and
Pl̄ıčhko, X∗ = F(M).

Next we show that F(M) can actually have both natural and non-natural
preduals.

Example 5.7. Let M = {0} ∪ {1, 2, 3, . . .} be a graph such that the edges are
couples of the form (0, n) with n ≥ 1. Let d be the shortest path distance
on M . Then it is obvious and well known that F(M) is isometric to `1.
Moreover F(M) admits both natural and non-natural preduals. Indeed, an
example of a natural predual is X = {f ∈ Lip0(M) : lim f(n) = f(1)} (this
is immediate using Corollary 3.7). An example of a non-natural predual is
Y = {f ∈ Lip0(M) : lim f(n) = −f(1)}. We leave to the reader the verification
of the hypotheses of the theorem of Petunin and Plichko.

Our last example shows that there are uniformly discrete bounded metric
spaces such that their free space does not admit any isometric predual at all.
Such observation is relevant to the open problem whether F(M) has (MAP)
for every uniformly discrete and bounded metric space M (see also Problem 6.2
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in [15]). Using a well-known theorem of Grothendieck (see [24, Theorem 5.50]),
in order to get an affirmative answer it would be enough to show that F(M) is
isometrically a dual space (or is at least 1-complemented in its bidual). Our
example shows that such a proof cannot work in general. Nevertheless, for M
in this example, F(M) enjoys the (MAP).

Example 5.8. Let M = {0}∪{1, 2, 3, . . .}∪{a, b} with the following distances:

d(0, n) = d(a, n) = d(b, n) = 1 + 1/n,

d(a, b) = d(0, a) = d(0, b) = 2, and

d(n,m) = 1

for n,m ∈ {1, 2, 3, . . .}. Then there is no 1-Lipschitz retraction r : F(M)∗∗ →
F(M). In particular F(M) is not 1-complemented in its bidual and therefore
is not isometrically a dual space.

Indeed, let us assume that there is some r : F(M)∗∗ → F(M) such that
‖r‖L ≤ 1 and r(µ) = µ for all µ ∈ F(M). Let us consider the sets

An = BF(M)∗∗

(
0, 1 +

1

n

)
∩BF(M)∗∗

(
δ(a), 1 +

1

n

)
∩BF(M)∗∗

(
δ(b), 1 +

1

n

)
.

Then An+1 ⊂ An and δ(n) ∈ An for every n ∈ N. It follows by the w∗-
compactness that there exists ϕ ∈

⋂∞
n=1An. Clearly we have ‖ϕ‖ = ‖δ(a)− ϕ‖ =

‖δ(b)− ϕ‖ = 1. It follows that ‖r(ϕ)‖ = ‖r(ϕ)− δ(a)‖ = ‖r(ϕ)− δ(b)‖ = 1.
But Proposition 5.1 implies that δ(a)/2 is an extreme point of BF(M). This
means that BF(M)(0, 1) ∩ BF(M)(δ(a), 1) = {δ(a)/2} and thus r(ϕ) = δ(a)/2.
Similarly for δ(b)/2. Hence δ(a)/2 = r(ϕ) = δ(b)/2. Contradiction.

Let us now prove that F(M) has the (MAP). Let Mn := {0, a, b, 1, . . . , n}
and define fn : M → Mn by fn(x) = x if x ∈ Mn and f(x) = n otherwise.
The function fn is obviously a retraction from M to Mn. Moreover a simple
computation leads to ‖fn‖L ≤ 1 + 1/n. Let us denote f̃n : F(M)→ F(Mn) the

linearisation of fn which is in fact a projection of the same norm: ‖f̃n‖ ≤ 1+1/n.

Then define Pn := (1 + 1/n)−1f̃n. Obviously, ‖Pn‖ ≤ 1, Pn is of finite rank and
‖Pnγ − γ‖ → 0 for every γ ∈ F(M). Thus F(M) has the (MAP).

6. Compact metric spaces

In this section we focus on the case in which M is a compact metric space
and F(M) is the dual of lip0(M). Recall that in this case all extreme points of
BF(M) are molecules by Corollary 3.3.6 in [26]. We will show that indeed F(M)
satisfies a geometrical property, namely being weak* asymptotically uniformly
convex, which implies in particular that the norm and the weak* topologies
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agree in SF(M) and so every extreme point of the closed ball is also a denting
point.

If X is a separable Banach space then the modulus of weak*-asymptotic
uniform convexity of X∗ can be computed as follows ([3]):

δ
∗
X∗(t) = inf

x∗∈BX∗
inf
x∗n

w∗
→0

‖x∗n‖≥t

lim inf
n→∞

‖x∗ + x∗n‖ − 1.

Recall that X∗ is said to be weak*-asymptotically uniformly convex (weak*-

AUC for short) if δ
∗
X∗(t) > 0 for each t > 0.

Proposition 6.1. Let M be a compact pointed metric space. Assume that
lip0(M) 1-S.P.U. Then F(M) is weak*-AUC.

For the proof we need the following easy lemma.

Lemma 6.2. Let {x∗n} ⊂ X∗ be a weak*-null sequence such that ‖x∗n‖ ≥ 1 and
F ⊂ X∗ be a finite dimensional subspace. Then lim infn→∞ d(x∗n, F ) ≥ 1

2
.

Proof of Proposition 6.1. We will use the same arguments as in the proof of
Proposition 8 in [22]. Fix t > 0 and take γ ∈ SF(M) and a weak*-null sequence
{γn} such that ‖γn‖ ≥ t for every n ∈ N. We will prove that

(6.1) lim inf
n→∞

‖γ + γn‖ ≥ 1 +
t

2
.

We may assume that γ is finitely supported. Pick f ∈ lip0(M) with ‖f‖L =
1 and 〈f, γ〉 > 1 − ε. Take θ > 0 such that supd(x,y)≤θ |f(x) − f(y)| ≤
εd(x, y). Pick δ < εθ

2(1+ε)
. By compactness, there exists a finite subset E ⊂M

containing the support of γ and such that supy∈M d(y, E) < δ. We have

lim infn→∞ d(γn/t,F(E)) ≥ 1
2

by Lemma 6.2. Now, by Hahn-Banach theo-
rem, there exists a sequence {fn} ⊂ (1 + ε)BLip0(M) such that fn|E = 0 and
lim infn→∞〈fn, γn〉 ≥ t

2
. Consider gn = f + fn. By distinguishing the cases

d(x, y) < θ and d(x, y) > θ, one can show that ‖gn‖L ≤ 1 + ε. Now we have

lim inf
n→∞

‖γ + γn‖ ≥ lim inf
n→∞

1

1 + ε
〈gn, γ + γn〉

=
1

1 + ε
lim inf
n→∞

(〈f, γ〉+ 〈f, γn〉+ 〈fn, γ〉+ 〈fn, γn〉)

≥ 1

1 + ε
(1− ε+

t

2
− ε)

since γn
w∗
→ 0 and f ∈ lip0(M). Letting ε → 0 proves (6.1). It follows that

δ
∗
F(M)(t) ≥ 1

2
t and so F(M) is weak*-AUC. �
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It is well known and easy to show that if X∗ is weak*-AUC then every point
of the unit sphere has weak*-neighbourhoods of arbitrarily small diameter.
This fact and the Choquet’s lemma yield that if x∗ ∈ ext(BX∗) then there are
weak*-slices of BX∗ containing x∗ of arbitrarily small diameter. That is, every
extreme point of BX∗ is also a weak*-denting point.

Corollary 6.3. Let M be a compact pointed metric space. Assume that lip0(M)
1-S.P.U. Then every extreme point of BF(M) is also a denting point.

At this point one could be inclined to believe that the denting points and the
strongly exposed points of BF(M) coincide, at least when M is compact. We
are going to give an example of a compact metric space for which the inclusion
strexp(BF(M)) ⊂ ext(BF(M)∗∗) ∩ F(M) is strict.

Example 6.4. Let (T, d) be the following set with its real-tree distance

[0, 1]× {0} ∪
∞⋃
n=2

{
1− 1

n

}
×
[
0,

1

n2

]
.

We will consider (Ω, d) as the set

{(0, 0), (1, 0)} ∪
{(

1− 1

n
,

1

n2

)
: n ≥ 2

}
together with the distance inherited from (T, d). Let us call for simplicity
0 := x1 := (0, 0), x∞ := (1, 0) and xn := (1− 1

n
, 1
n2 ) if n ≥ 2.

Since the couple (x∞, 0) has property (Z), the characterisation of the points in
strexp(BF(M)) given in [12] yields that δ(x∞) is not a strongly exposed point of
BF(Ω). Aliaga and Guirao [2] have proved that for a compact M , the condition

[x, y] = {x, y} implies that δ(x)−δ(y)
d(x,y)

is a preserved extreme point of BF(M). In

particular δ(x∞) is a preserved extreme point of BF(Ω).

7. Application to norm attainment

Given a metric spaceM and a Banach spaceX, we have the following isometric
identification Lip0(M,X) = L(F(M), X). Considering f ∈ Lip0(M,X), we
say that f strongly attains its norm if there are two different points x, y ∈M
such that ‖f(x)− f(y)‖ = ‖f‖d(x, y). In view of the results of [12, 15, 19], we
wonder when the classical notion of norm attainment coincides with the one
defined just above. In light of Bishop-Phelps theorem, we are also interested
in the denseness of the class of Lipschitz functions which strongly attain their
norm in Lip0(M,X).

We will mean by LipSNA(M,X) (respectively NA(F(M), X)) to the class of
all functions in Lip0(M,X) which strongly attain its norm (respectively which
attain its norm as a linear and continuous operator from F(M) to X). Let us
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recall that a Banach space is said to have the Krein-Milman property (KMP)
if every non-empty closed convex bounded subset has an extreme point. It is
well known that (RNP) implies (KMP), although the converse is still an open
question (there are important classes of spaces for which the answer is yes).

We shall begin by stating the scalar case of previous result.

Proposition 7.1. Let (M,d) be a pointed metric space such that F(M) has
(KMP) and such that ext(BF(M)) ⊆ V . Then every f ∈ Lip0(M) which attains
its norm on F(M) also strongly attains it. In other words, the following equality
holds:

NA(F(M),R) = LipSNA(M,R).

Therefore, LipSNA(M,R)
‖ · ‖

= Lip0(M).

Proof. Notice that the inclusion LipSNA(M,R) ⊆ NA(F(M),R) always holds.
Thus we just have to prove the reverse one. Let f be a function in Lip0(M)
which attains its norm on BF(M). Since F(M) has (KMP), f also attains its
norm on an extreme point. Indeed, the set

C = {µ ∈ BF(M) : 〈f, µ〉 = 1}

is a non-empty closed convex bounded subset of F(M), so there is µ ∈ ext(C).
Then it is easy to check that µ is also an extreme point of BF(M). Since

ext(BF(M)) ⊆ V , f attains its norm on a molecule δ(x)−δ(y)
d(x,y)

with x 6= y.

The last part follows from Bishop-Phelps theorem. �

As a consequence of Proposition 4.1, we get the following.

Corollary 7.2. Let M be a separable bounded pointed metric space such that
F(M) admits a natural predual X ⊂ lip0(M). Then

NA(F(M),R) = LipSNA(M,R) and LipSNA(M,R)
‖ · ‖

= Lip0(M).

We give some examples where the previous corollary applies.
Example 7.3.

(1) M compact metric space such that lip0(M) separates points uniformly
(note that this result was first proved by Godefroy using M-ideal theory,
see [15]). For instance M being compact and countable (see [6]), being
the middle third Cantor set (see [26]), or being any compact metric
space where the distance is composed with a nontrivial gauge (see [20]).

(2) M uniformly discrete metric space satisfying the assumptions of Propo-
sition 5.5.

(3) (BX∗ , ‖·‖p) unit ball of a separable dual Banach space where the distance
is the norm to the power p ∈ (0, 1) (see Proposition 6.3 in [20]).
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Our last goal is to extend this kind of density result in the vector-valued
case. To this aim, we will need a result of Bourgain. We say that an operator
T : X → Y is strongly exposing if there exists x ∈ SX such that for every
sequence {xn} ⊂ BX such that limn ‖Txn‖Y = ‖T‖, there is a subsequence
{xnk} which converges to either x or −x. Clearly every strongly exposing
operator is norm attaining. Bourgain proved that if X has the (RNP) then for
every Banach space Y the set of strongly exposing operators from X to Y is
dense in L(X, Y ) (see [4, Theorem 5]). This leads us to the following result.

Proposition 7.4. Let M be a complete pointed metric space and X be a Banach
space. Assume that F(M) has the (RNP). Then LipSNA(M,X) is norm dense
in Lip0(M,X).

Proof. By Bourgain’s theorem, it suffices to show that every strongly exposing
operator T ∈ L(F(M), X) attains its norm at a molecule, and so T ◦ δ ∈
LipSNA(M,X). Let T : F(M) → X and µ ∈ F(M) witnessing the definition
of strongly exposing operator. Take a sequence {x∗n}∞n=1 ⊂ SX∗ such that
‖T ∗x∗n‖X∗ > ‖T‖ − 1/n for every n ∈ N. Since V is 1-norming, there is a
sequence {mxn,yn} ⊂ V such that 〈T ∗x∗n,mxn,yn〉 = ‖T‖− 1/n for every n. Note
that 〈T ∗x∗nmxn,yn〉 = 〈x∗n, Tmxn,yn〉 ≤ ‖Tmxn,yn‖X . So limn ‖Tmxn,yn‖X = ‖T‖.
Thus there is a subsequence {mxn,yn} which converges to either µ or −µ. Since
V is norm-closed we get that µ ∈ V as desired. �
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[20] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect.
Math., 55 (2004), pp. 171–217.
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(L. Garćıa-Lirola) Universidad de Murcia, Facultad de Matemáticas, Departa-
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