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LIPSCHITZ-FREE SPACES AND SCHUR PROPERTIES

COLIN PETITJEAN

Abstract. In this paper we study ℓ1-like properties for some Lipschitz-free spaces. The main
result states that, under some natural conditions, the Lipschitz-free space over a proper metric
space linearly embeds into an ℓ1-sum of finite dimensional subspaces of itself. We also give a
sufficient condition for a Lipschitz-free space to have the Schur property, the 1-Schur property
and the 1-strong Schur property respectively. We finish by studying those properties on a
new family of examples, namely the Lipschitz-free spaces over metric spaces originating from
p-Banach spaces, for p in (0, 1).

1. Introduction

Let M be a pointed metric space and fix 0 ∈ M a distinguished origin of M . Let us denote
Lip0(M) the space of all real valued Lipschitz functions f defined on M and verifying f(0) = 0.
This space equipped with the Lipschitz norm ‖ · ‖L (best Lipschitz constant) is a Banach space.
For x ∈ M , define the evaluation functional δM(x) ∈ Lip0(M)∗ by 〈δM(x), f〉 = f(x) for every
f ∈ Lip0(M). And now we let the Lipschitz-free space over M, denoted F(M), be the norm
closed linear span in Lip0(M)∗ of {δM(x) : x ∈ M}. The map δM : x ∈ M 7→ δM(x) ∈ F(M) is
readily seen to be an isometry. Moreover the space F(M) enjoys a nice factorization property.
For any Banach space X , for any Lipschitz function f : M → X , there exists a unique linear
operator f : F(M) → X with ‖f‖ = ‖f‖L and such that the following diagram commutes

M
f

//
� _

δM
��

X

F(M)
f

<<
①
①
①
①
①
①
①
①
①

Thus the map f ∈ Lip0(M,X) 7→ f ∈ L(F(M), X) is an onto linear isometry. As a direct
consequence, F(M) is an isometric predual of Lip0(M).

After the seminal paper [9] of Godefroy and Kalton, Lispchitz free spaces have become
an object of interest for many authors (see for instance [3, 5, 7, 11, 13, 14, 20]). Indeed, the
fundamental factorization property cited above transforms in a particular way a nonlinear
problem into a linear one. This creates links between some old open problems in the geometry
of Banach spaces and some open problems about Lipschitz-free spaces (see the open problems
section in [8]).

In this note we focus mostly on ℓ1-like properties like the Schur property or some stronger
properties. In [20], Kalton proved that if (M, d) is a metric space and ω is a nontrivial gauge
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then the space F(M,ω ◦d) has the Schur property. In [13] Hájek, Lancien and Pernecká proved
that the Lipschitz-free space over a proper countable metric space has the Schur property.
Here we give a condition on M which ensures that F(M) has the Schur property, and unifies
the two above mentioned results. Furthermore, assuming that M is proper (every closed ball
is compact) and F(M) has the metric approximation property, we are able to provide more
information about the“ℓ1-structure” of F(M). More precisely, we have the following theorem
which is our first main result.

Theorem 1.1. Let M be a proper metric space such that S0(M) separates points uniformly (see
Definition 2.1) and such that F(M) has (MAP). Then for any ε > 0, there exists a sequence
(En)n of finite-dimensional subspaces of F(M) such that F(M) is (1 + ε)-isomorphic to a
subspace of (

∑

⊕nEn)ℓ1.

We now describe the content of this paper. In Section 2, we start by introducing some useful
tools such as the little Lipschitz space over a metric spaceM (denoted lip0(M)) and the uniform
separation of points. Next, generalizing the proof of Theorem 4.6 in [20], we show that F(M)
has the Schur property whenever lip0(M) is 1-norming. Next we move to the proof of Theorem
2.7 and we also show that it is optimal in some sense. Then we show that some quantitative
versions of the Schur property are inherited by Lipschitz-free spaces satisfying some of the
assumptions of Theorem 2.7.

In Section 3, we introduce a new family of metric spaces where some results of Section 2 apply.
This family consists of some metric spaces originating from p-Banach spaces (p ∈ (0, 1)). We
first focus on the metric space Mn

p originating from ℓnp for which we show that F(Mn
p ) satisfies

the hypothesis of Theorem 2.7. Then we extend this result for arbitrary finite dimensional
p-Banach spaces (Corollary 3.5). As a consequence we obtain our second main result.

Theorem 1.2. Let p be in (0, 1) and let (X, ‖ · ‖) be a p-Banach space which admits a finite
dimensional decomposition. Then F(X, ‖ · ‖p) has the Schur property.

Finally in Section 4 we give some open problems and make some related comments.

2. Schur properties and Lipschitz-free spaces

In this note, we only consider real Banach spaces and we write X ≡ Y to say that the Banach
spaces X and Y are linearly isometric.

2.1. The little Lipschitz space and the uniform separation of points.

Definition 2.1. Let M be a metric space. We define the two following closed subspaces of
Lip0(M) (the second one differs from the first one when M is unbounded).

lip0(M) :=

{

f ∈ Lip0(M) : lim
ε→0

sup
0<d(x,y)<ε

|f(x)− f(y)|

d(x, y)
= 0

}

,

S0(M) :=







f ∈ lip0(M) : lim
r→∞

sup
x or y/∈B(0,r)

x 6=y

|f(x)− f(y)|

d(x, y)
= 0







.
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The first space lip0(M) is called the little Lipschitz space over M . This terminology first
appeared in [27] where they were considered on compact metric spaces.

Definition 2.2. We will say that a subspace S ⊂ Lip0(M) separates points uniformly if there
exists a constant c ≥ 1 such that for every x, y ∈ M there is f ∈ S satisfying ||f ||L ≤ c and
f(x) − f(y) = d(x, y). We then say that a subspace Z of X∗, where X is a Banach space, is
C-norming (with C ≥ 1) if for every x in X ,

‖x‖ ≤ C sup
z∗∈BZ

|z∗(x)|.

It is well known that lip0(M) or S0(M) are C-norming for some C ≥ 1 if and only if they
separate points uniformly (see Proposition 3.4 in [20]).

Weaver showed in [27] (Theorem 3.3.3) that if M is a compact metric space then lip0(M)
separates points uniformly if and only if it is an isometric predual of F(M). More generally,
Dalet showed in [4] that a similar result holds for proper metric spaces. We state here this
result for future reference.

Theorem 2.3 (Dalet). Let M be a proper metric space. Then S0(M) separates points uniformly
if and only if it is an isometric predual of F(M).

The following proposition will be useful in Section 3. It provides conditions on M to ensure
that lip0(M) 1-norming.

Proposition 2.4. Let M be a metric space. Assume that for every x 6= y ∈ M and ε > 0,
there exist N ⊆ M and a (1+ ε)-Lipschitz map T : M → N such that lip0(N) is 1-norming for
F(N), d(Tx, x) ≤ ε and d(Ty, y) ≤ ε. Then lip0(M) is 1-norming.

Proof. Let x 6= y ∈ M and ε > 0. By our assumptions there exist N ⊆ M and a (1+ε)-Lipschitz
map T : M → N such that lip0(N) is 1-norming, d(Tx, x) ≤ ε and d(Ty, y) ≤ ε. Since lip0(N)
is 1-norming there exists f ∈ lip0(N) verifying ‖f‖L ≤ 1+ ε and |f(Tx)− f(Ty)| = d(Tx, Ty).
Now we define g = f ◦ T on M . By composition g is (1 + ε)2-Lipschitz and g ∈ lip0(M). Then
a direct computation shows that g does the work.

|g(x)− g(y)| = |f(Tx)− f(Ty)| = d(Tx, Ty)

≥ d(x, y)− d(x, Tx)− d(y, Ty)

≥ d(x, y)− 2ε.

This ends the proof. �

2.2. The Schur property. We now turn to the study of the classical Schur property. We first
recall its definition.

Definition 2.5. Let X be a Banach space. We say that X has the Schur property if every
weakly null sequence (xn)n∈N in X is also ‖ · ‖-convergent to 0.

According to [20], by a gauge we mean a continuous, subadditive and increasing function
ω : [0,∞) −→ [0,∞) verifying ω(0) = 0 and ω(t) ≥ t for every t ∈ [0, 1]. We say that a gauge

ω is non-trivial whenever lim
t→0

ω(t)
t

= ∞. In [20] (Theorem 4.6), Kalton proved that if (M, d) is a

metric space and ω is a nontrivial gauge then the space F(M,ω ◦ d) has the Schur property. A
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careful reading of his proof reveals that the key ingredient is actually the fact that lip0(M,ω◦d)
is always 1-norming (Proposition 3.5 in [20]). This leads us to the following result. We include
it here for completeness even though the proof is very similar to Kalton’s original argument.

Proposition 2.6. Let M be a metric space such that lip0(M) is 1-norming. Then the space
F(M) has the Schur property.

Proof. According to Proposition 4.3 in [20], for every ε > 0, F(M) is (1 + ε)-isomorphic to
a subspace of (

∑

n∈Z F(Mk))ℓ1 where Mk denotes the ball B(0, 2k) ⊆ M centered at 0 and
of radius 2k. Moreover the Schur property is stable under ℓ1-sums, under isomorphism and
passing to subspaces. So it suffices to prove the result under the assumption that M has finite
radius.

Let us consider (γn)n a normalized weakly null sequence in F(M). We will show that

∀γ ∈ F(M), lim inf
n→+∞

‖γ + γn‖ ≥ ‖γ‖+
1

2
,(1)

from which it is easy to deduce that for every ε > 0, (γn)n admits a subsequence (2 + ε)-
equivalent to the ℓ1-basis (see the end of the proof of Proposition 4.6 in [20]). This contradicts
the fact that (γn)n is weakly null.

Fix ε > 0 and γ ∈ F(M). We can assume that γ is of finite support. Pick f ∈ lip0(M) with
‖f‖L = 1 and 〈f, γ〉 > ‖γ‖ − ε. Next pick Θ > 0 so that if d(x, y) ≤ Θ then |f(x) − f(y)| <
εd(x, y). Choose δ < εΘ

2(1+ε)
. Then by Lemma 4.5 in [20] we have

inf
|E|<∞

sup
n

dist(γn,F([E]δ)) = 0,

where [E]δ = {x ∈ M : d(x, E) ≤ δ}. Thus there exists a finite set E ⊂ M such that E contains
the support of γ and such that for each n we can find µn ∈ F([E]δ) with ‖γn−µn‖ < ε. Remark
that F(E) is a finite dimensional space. Thus lim infn→+∞ dist(γn,F(E)) ≥ 1

2
. Then by Hahn-

Banach theorem, for every n there exists fn ∈ Lip0(M) verifying ‖fn‖L ≤ 1 + ε, fn(E) = {0}
and lim infn→+∞〈fn, γn〉 ≥

1
2
. Now we define gn = (f + fn)|[E]δ , then gn ∈ Lip0([E]δ) and we

will show that ‖gn‖L < 1 + ε. We will distinguish two cases to show this last property. First
suppose that x and y are such that d(x, y) ≤ Θ, then

|gn(x)− gn(y)| ≤ |f(x)− f(y)|+ |fn(x)− fn(y)| ≤ εd(x, y) + d(x, y) = (1 + ε)d(x, y).

Second if x and y are such that d(x, y) > Θ, then there exist u, v ∈ E with d(x, u) ≤ δ and
d(y, v) ≤ δ, so that

|gn(x)− gn(y)| ≤ |f(x)− f(y)|+ |fn(x)|+ |fn(y)|

= |f(x)− f(y)|+ |fn(x)− fn(u)|+ |fn(y)− fn(v)|

≤ d(x, y) + 2(1 + ε)δ ≤ d(x, y) + εΘ ≤ (1 + ε)d(x, y).

We extend those functions gn to M with the same Lipschitz constant and we still denote those
extensions gn for convenience. We now estimate the desired quantities.

‖γ + µn‖ ≥
1

1 + ε
〈gn, γ + µn〉 =

1

1 + ε
(〈f, γ〉+ 〈f, µn〉+ 〈fn, γ〉+ 〈fn, µn〉),

where

(i) 〈f, γ〉 > ‖γ‖ − ε.
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(ii) lim sup
n→∞

|〈f, µn〉| ≤ ε, since (γn)n is weakly null and ‖γn − µn‖ < ε.

(iii) 〈fn, γ〉 = 0, since γ ∈ F(E).
(iv) lim inf

n→∞
〈fn, µn〉 ≥

1
2
− ε, since lim inf

n→∞
〈fn, γn〉 >

1
2
.

Thus,

lim inf
n→∞

‖γ + γn‖ ≥
1

1 + ε
(‖γ‖+

1

2
− 3ε)− ε.

Since ε is arbitrary, this proves (1). �

2.3. Embeddings into ℓ1-sums. Before stating the main result of this section we recall a few
classical definitions. We say that a Banach space X has the approximation property (AP) if for
every ε > 0, for every compact set K ⊂ X , there exists a finite rank operator T ∈ B(X) such
that ‖Tx−x‖ ≤ ε for every x ∈ K. Let λ ≥ 1, if in the above definition T can always be chosen
so that ‖T‖ ≤ λ, then we say that X has the λ-bounded approximation property (λ-(BAP)).
When X has the 1-(BAP) we say that X has the metric approximation property (MAP). We
can now state and prove our first main result.

Theorem 2.7. Let M be a proper metric space such that S0(M) separates points uniformly
and such that F(M) has (MAP). Then for any ε > 0, there exists a sequence (En)n of
finite-dimensional subspaces of F(M) such that F(M) is (1 + ε)-isomorphic to a subspace
of (
∑

⊕nEn)ℓ1.

Proof. The proof is based on three results. The first ingredient is the following lemma (Lemma
3.1 in [10]):

Lemma 2.8 (Godefroy, Kalton and Li). Let V be a subspace of c0(N) with (MAP). Then for
any ε > 0, there exists a sequence (En)n of finite-dimensional subspaces of V ∗ and a weak∗-to-
weak∗ continuous linear map T : V ∗ → (

∑

⊕nEn)ℓ1 such that for all x∗ ∈ V ∗

(1− ε)‖x∗‖ ≤ ‖Tx∗‖ ≤ (1 + ε)‖x∗‖.

Next, generalizing a proof of Kalton in the compact case (Theorem 6.6 in [20]), Dalet has
proved the following lemma (Lemma 3.9 in [4])

Lemma 2.9 (Dalet). Let M be a proper metric space. Then, for every ε > 0, the space S0(M)
is (1 + ε)-isomorphic to a subspace Z of c0(N).

Finally we need the following two results about (MAP) (see [12] and Theorem 1.e.15 in [25]).

Theorem 2.10 (Grothendieck). Let X be a Banach space.

(G1). If X∗ has (MAP) then X has (MAP).
(G2). If X∗ is separable and has (AP) then X∗ has (MAP).

We are ready to prove Theorem 2.7. Let us consider a metric space M satisfying the assump-
tions of Theorem 2.7 and let us take ε > 0 arbitrary. Fix ε′ such that (1+ε′)3 < 1+ε. According
to Lemma 2.9, there exists a subspace Z of c0(N) such that S0(M) is (1 + ε′)-isomorphic to Z.
Then note that Z also has the metric approximation property. Indeed Z∗ is (1+ ε′)-isomorphic
to F(M), so Z∗ has the (1+ε′)-bounded approximation property. Next, using (G2) of Theorem
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2.10 we get that Z∗ has MAP. Then using (G1) of Theorem 2.10 we get that Z also has MAP.
Thus we can apply Lemma 2.8 to Z so that there exists a sequence (Fn)n of finite-dimensional
subspaces of Z∗ such that Z∗ is (1+ε′)-isomorphic to a subspace F of (

∑

⊕nFn)ℓ1 . Now F(M)
is (1 + ε′)-isomorphic to Z∗ so there exists a sequence (En)n of finite-dimensional subspaces of
F(M) such that (

∑

⊕nEn)ℓ1 is (1 + ε′)-isomorphic to (
∑

⊕nFn)ℓ1. Then there exists a sub-
space E of (

∑

⊕nEn)ℓ1 which is (1 + ε′)-isomorphic to F . It is easy to check that F(M) is

(1 + ε′)3-isomorphic to E. This completes the proof. �

We now give some examples where Theorem 2.7 applies.

Examples 2.11. The space S0(M) separates points uniformly and F(M) has (MAP) in any
of the following cases.

1. M proper countable metric space (Theorem 2.1 and Theorem 2.6 in [4]).
2. M proper ultrametric metric space (Theorem 3.5 and Theorem 3.8 in [4]).
3. M compact metric space such that there exists a sequence (εn)n tending to 0, a real number

ρ < 1/2 and finite εn-separated subsets Nn of M which are ρεn-dense in M (Proposition 6
in [11]). For instance the middle-third Cantor set.

Before ending this section, we state a Proposition which says that Theorem 2.7 is optimal in
some sense. Indeed, in our following example the dimension of the finite dimensional space En

in Theorem 2.7 has to go to infinity when n goes to infinity.

Proposition 2.12. There exists a countable compact metric space K, made of a convergent
sequence and its limit, such that F(K) fails to have a cotype. In particular, K satisfies the
assumptions of Theorem 2.7 but does not embed isomorphically into ℓ1.

Proof. It is well known that c0 has no nontrivial cotype. Since c0 is separable, by Godefroy-
Kalton lifting theorem (Theorem 3.1 in [9]), there is a subspace of F(c0) which is linearly
isometric to c0. Thus F(c0) has no nontrivial cotype. So for every n ≥ 1, there exist
γn
1 , · · · , γ

n
kn

∈ F(c0) such that

(

kn
∑

i=1

‖γn
i ‖

n

)

1
n

> n

(

E‖
kn
∑

i=1

εiγ
n
i ‖

n

)

1
n

,

where (εi)
kn
i=1 is an independent sequence of Rademacher random variables. Next we approxi-

mate each γn
i by a finitely supported element µn

i ∈ F(c0) such that
(

kn
∑

i=1

‖µn
i ‖

n

)

1
n

>
n

2

(

E‖
kn
∑

i=1

εiµ
n
i ‖

n

)

1
n

.

Then we define Mn = (∪kn
i=1 supp(µ

n
i )) ∪ {0} ⊂ c0 which is a finite pointed metric space.

Since scaling a metric space does not affect the linear isometric structure of the corresponding
Lipschitz-free space, we may and do assume that the diameter of Mn is less than 1

2n+1 .
Now we construct the desired compact pointed metric space as follows. Let us define the

countable set K := (∪n≥2{n} ×Mn) ∪ {e}, e being the distinguished point of M . To simplify
the notation we write M ′

n for {n}×Mn. Then we define a metric d on K such that d(x, e) = 1
2n

if x ∈ M ′
n, d(x, y) = dMn(xn, yn) if x = (n, xn), y = (n, yn) ∈ M ′

n and d(x, y) = d(x, e)+d(y, e) if
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x ∈ M ′
n, y ∈ M ′

m with n 6= m. Of course, with this metric K is compact since it is a convergent
sequence. Moreover the fact that d(x, y) = d(x, e) + d(y, e) for x ∈ M ′

n, y ∈ M ′
m with n 6= m

readily implies that F(K) ≡ (
∑

F(Mn ∪ {e}))ℓ1 (see Proposition 5.1 in [22] for instance). By
construction of Mn, (

∑

F(Mn))ℓ1 has no nontrivial cotype. Thus F(K) also has no cotype.
Therefore, F(K) cannot embed into ℓ1. But since it is a compact countable metric space,
lip0(K) separates points uniformly and F(K) has (MAP) (Theorem 2.1 and 2.6 in [4]). �

2.4. Quantitative versions of the Schur property. It is well known that the Schur property
is equivalent to the following condition: for every δ > 0, every δ-separated sequence (xn)n∈N
in the unit ball of X contains a subsequence that is equivalent to the unit vector basis of ℓ1.
That is there exists a constant K > 0 (which may depend on the sequence considered) and a
subsequence (xnk

)k∈N such that

n
∑

i=1

|ai| ≥

∥

∥

∥

∥

∥

n
∑

i=1

aixni

∥

∥

∥

∥

∥

≥
1

K

n
∑

i=1

|ai| , for every (ai)
n
i=1 ∈ R

n.

In this case, we say that the sequence (xnk
)k∈N is K-equivalent to the unit vector basis of

ℓ1. This equivalence can be easily deduced using Rosenthal’s ℓ1 theorem (see [28]). This last
fact leads us to define the following quantitative version of the Schur property which has been
introduced for the first time by Johnson and Odell in [15]. We also refer to [10] for the 1-strong
Schur property.

Definition 2.13. Let X be a Banach space. We say that X has the strong Schur property if
there exists a constant K > 0 such that, for every δ > 0, any δ-separated sequence (xn)n∈N in
the unit ball of X contains a subsequence that is K

δ
-equivalent to the unit vector basis of ℓ1. If

in this definition, K can be chosen so that K = 2 + ε for every ε > 0, then we say that X has
the 1-strong Schur property.

It is clear with the above characterization of the Schur property that the strong Schur prop-
erty implies the Schur property. It is known that the Schur property is strictly weaker than the
strong Schur property (see [28] or [16] for example). We refer the reader to [18] (Proposition
2.1) for some equivalent formulations of the strong Schur property.
Examples 2.14.

1. In [23] (Proposition 4.1), Knaust and Odell proved that if X has the property (S) and does
not contain any isomorphic copy of ℓ1, then X∗ has the strong Schur property. In particular
ℓ1 and all its subspaces have the strong Schur property. A Banach space has the property
(S) if every normalized weakly null sequence contains a subsequence equivalent to the unit
vector basis of c0. This is known to be equivalent to the hereditary Dunford-Pettis property
(Proposition 2 in [2])

2. In [10] (Lemma 3.4), Godefroy, Kalton and Li proved that a subspace of L1 has the strong
Schur property if and only if its unit ball is relatively compact in the topology of convergence
in measure.

We now give the second quantitative version of the Schur property which has been introduced
more recently by Kalenda and Spurný in [16].
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Definition 2.15. Let X be a Banach space, and let (xn)n∈N be a bounded sequence in X . We
write clustX∗∗(xn) for the set of all weak

∗ cluster points of (xn)n∈N in X∗∗. Then we define the
two following moduli:

δ(xn) := diam{clustX∗∗(xn)}

ca(xn) := inf
n∈N

diam{xk ; k ≥ n}.

The first moduli measures how far is the sequence from being weakly Cauchy and the second
one measures how far is the sequence from being ‖ · ‖-Cauchy. We then say that X has the
C-Schur property if for every bounded sequence (xn)n∈N in X : ca(xn) ≤ C δ(xn)

In [16] the authors proved that the 1-Schur property implies the 1-strong Schur property, and
that the 1-strong Schur property implies the 5-Schur property. To the best of our knowledge,
the question whether the 1-strong Schur property implies the 1-Schur property is open.

In [17] it is proved (Theorem 1.1) that if X is a subspace of c0(Γ), then X∗ has the 1-Schur
property. So we easily deduce the following proposition.

Proposition 2.16. Let M be a proper metric space such that S0(M) separates points uniformly.
Then F(M) has the 1-Schur property.

Proof. Fix ε > 0. We use Lemma 2.9 to find a subspace Z of c0(N) which is (1+ ε)-isomorphic
to S0(M). Now, according to Theorem 1.1 in [17], Z∗ has the 1-Schur property. Since S0(M)
separates points uniformly, we have that S0(M)∗ ≡ F(M) (Theorem 2.3). Thus F(M) is
(1 + ε)-isomorphic to Z∗. Therefore F(M) has the (1 + ε)-Schur property. Since ε is arbitrary,
F(M) has the 1-Schur property. �

Examples 2.17. It is clear that metric spaces of the Examples 2.11 satisfy the assumptions of
Proposition 2.16. Moreover, the following family of examples also satisfies those last assump-
tions (see Proposition 2.5 in [6]). Let M be a proper metric space and ω be a nontrivial gauge.
Then (M,ω ◦ d) is a proper metric space such that S0(M,ω ◦ d) separates points uniformly.
Now this result leads us to wonder if F(M,ω ◦d) has MAP for M and ω as above (see Question
4.2).

3. Lipschitz-free spaces over metric spaces originating from p-Banach spaces

In this section we study Lipschitz-free spaces over a new family of metric spaces, namely
metric spaces originating from p-Banach spaces. We prove that results of the previous Section
2 can be applied to some spaces in this new family of examples.

Let X be a real vector space and p in (0, 1). We say that a map N : X → [0,∞) is p-
subadditive if N(x + y)p ≤ N(x)p + N(y)p for every x and y in X . Then a homogeneous and
p-subadditive map ‖·‖: X → [0,∞) is called a p-norm if ‖x‖ = 0 if and only if x = 0. Moreover
the map (x, y) ∈ X2 7→ ‖x − y‖p defines a metric on X . If X is complete for this metrizable
topology, we say that X is a p-Banach space. Note that a p-norm is actually a quasi-norm.
That is there is a constant C ≥ 1 such that for every x, y ∈ X : ‖x + y‖ ≤ C(‖x‖ + ‖y‖).
Moreover an important theorem of Aoki and Rolewicz implies that every quasi-normed space
can be renormed to be a p-normed space for some p in (0, 1). For background on quasi-Banach
spaces and p-Banach spaces we refer the reader to [19, 21].
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We fix p in (0, 1) and consider (X, ‖ · ‖) a p-Banach space. We denote Mp = (X, dp) the
metric space where the metric is the p-norm of X to the power p: dp(x, y) = ‖x − y‖p . Now
Mp being a metric space, we can study its Lipschitz-free space. At this point we would like to
mention the paper [1] of Albiac and Kalton in which they define and study Lipschitz-free spaces
over p-Banach spaces (and not over metric spaces originating from p-Banach spaces, as we do
here). They show among other things that the analogue of Godefroy-Kalton lifting theorem
(Theorem 3.1 in [9]) is false for p-Banach spaces.

As mentioned before, we know that lip0(M,ω ◦ d) is always 1-norming when ω is a nontrivial
gauge (Proposition 3.5 in [20]). But in our case we consider a quasi-norm composed with the
nontrivial gauge ω(t) = tp. Thus, we can expect to have the same result. We will see that we
need to use more arguments to overpass the difference between a norm and a p-norm, that is
the absence of the triangle inequality for the p-norm. However, techniques that are employed
here are inspired by Kalton’s ideas in [20].

As usual, ‖ · ‖1 denotes the ℓ1-norm on R
n. We also denote ‖ · ‖p the p-norm on R

n defined

by ‖x‖p = (
∑n

i=1 |xi|
p)

1
p for every x = (xi)

n
i=1 ∈ R

n. We begin with a very basic lemma.

Lemma 3.1. Let p ∈ (0, 1) and n ∈ N. Then we have the following inequalities

∀x ∈ R
n, ‖x‖1 ≤ ‖x‖p ≤ n

1−p
p ‖x‖1.

Proof. The inequality ‖x‖1 ≤ ‖x‖p is obvious and a simple application of Hölder’s inequality

gives ‖x‖p ≤ n
1−p
p ‖x‖1. �

From now on we write Mn
p for (Rn, dp) = (Rn, ‖ · ‖pp). In order to prove our first result about

the structure of F(Mn
p ), we need the following technical lemma.

Lemma 3.2. Let R ∈ (0,∞), p ∈ (0, 1) and n ∈ N. Then, there exists a Lipschitz function
ϕ: Mn

p → Mn
p such that ϕ is the identity map on B(0, R), is null on Mn

p \B(0, 2R) and ϕ is

n2−p-Lipschitz.

Proof. Let us define A = B(0, R) ∪ (Mn
p \B(0, 2R)) ⊂ Mn

p (balls are considered for dp) and

φ: (A, dp) → Mn
p such that φ is the identity on B(0, R) and is null on Mn

p \B(0, 2R). It
is easy to check that φ is 1-Lipschitz. We now write φ = (φ1, · · · , φn). Then for every k
φk: (A, dp) → (R, | · |p) is 1-Lipschitz. Thus φk: (A, ‖ · ‖p) → (R, | · |) is also 1-Lipschitz (with
the obvious extension of the notion of Lipschitz maps). Now the right hand side of the inequality

in Lemma 3.1 implies that φk: (A, ‖ · ‖1) → (R, | · |) is n
1−p
p -Lipschitz. So we can extend each

φk without increasing the Lipschitz constant and we denote ϕk those corresponding extensions.

Summarizing we have ϕk: (R
n, ‖ · ‖1) → (R, | · |) which is n

1−p
p Lipschitz and ϕk|A = φk. Now

the left hand side of the inequality in Lemma 3.1 implies that ϕk: (ℓ
n
p , ‖ · ‖p) → (R, | · |) is n

1−p
p -

Lipschitz. So ϕk: Mn
p → (R, | · |p) is n1−p Lipschitz. It follows easily that ϕ = (ϕ1, · · · , ϕn):

Mn
p → Mn

p is n2−p-Lipschitz and verifies the desired properties.
�

We are now able to prove the following result.

Proposition 3.3. Let p ∈ (0, 1) and n ∈ N. We recall our notation (Mn
p , dp) = (Rn, ‖ · ‖pp).

Then, the space F(Mn
p ) is isometric to S0(M

n
p )

∗. In particular S0(M
n
p ) is 1-norming.
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Proof. In order to prove this result, we will first prove that S0(M
n
p ) is Cn-norming for some

Cn > 0. And then we will deduce the desired result using Theorem 2.3.
For every m ∈ N and t ≥ 0, we define the following function ωm(t) = min{tp, mt} which is

continuous, non-decreasing and subadditive. Note that lim
m→+∞

ωm(t) = tp.

Let x 6= y ∈ Mn
p . Since (ℓn1 )

∗ ≡ ℓn∞, by Hahn-Banach theorem there exists x∗ ∈ ℓn∞ such
that ‖x∗‖∞ = 1 and 〈x∗, x− y〉 = ‖x − y‖1. According to Lemma 3.1 this gives 〈x∗, x− y〉 ≥

n
p−1
p ‖x− y‖p. From now on we denote F := n

1−p
p x∗ and we see F as an element of (lnp )

∗ ≡ ln∞

of norm ‖F‖(lnp )∗ ≤ n
1−p
p which satisfies

(2) |F (x)− F (y)| ≥ ‖x− y‖p

Let us consider R > 2max(‖x‖pp, ‖y‖
p
p) and ϕ : Mn

p → Mn
p given by Lemma 3.2 (we denote C

its Lipschitz constant). Of course we can see ϕ as a C
1
p -Lipschitz function from ℓnp to ℓnp . We

then consider fm defined on Mn
p by

fm(z) = ωm(|F (ϕ(z))− F (y)|)− ωm(|F (y)|).

Let us prove that those functions fm belong to S0(M
n
p ) and do the job. For z 6= z′ ∈ Mn

p we
compute

|fm(z)− fm(z
′)| = |ωm(|F (ϕ(z))− F (y)|)− ωm(|F (ϕ(z′))− F (y)|) |

≤ ωm(|F (ϕ(z))− F (ϕ(z′))|)

= ωm(|F (ϕ(z)− ϕ(z′))|).

By its definition ωm(t) ≤ tp. So we have

|fm(z)− fm(z
′)| ≤ |F (ϕ(z)− ϕ(z′))|p ≤ n1−pdp(ϕ(z), ϕ(z

′)) ≤ Cn1−p dp(z, z
′).

Thus, fm is dp-Lipschitz with ‖fm‖L ≤ Cn1−p. Now since ωm(t) ≤ mt we get

|fm(z)− fm(z
′)| ≤ m|F (ϕ(z)− ϕ(z′))| ≤ mn

1−p
p ‖ϕ(z)− ϕ(z′)‖p ≤ C

1
pmn

1−p
p ‖z − z′‖p

≤ (C
1
pmn

1−p
p ‖z − z′‖1−p

p ) dp(z, z
′).

Since 1− p > 0, ‖z − z′‖1−p
p and thus the Lipschitz constant of fm can be as small as we want

for small distances. This provides the fact that fm ∈ lip0(M
n
p ). It remains to prove that fm

satisfies the flatness condition at infinity to get fm ∈ S0(M
n
p ). To this end, fix ε > 0 and pick

k > 2 such that
2Cn1−p

(k − 2)
≤ ε. Now let z and z′ be in M , and let us discuss by cases:

(i) If z 6∈ B(0, kR) and z′ 6∈ B(0, 2R), then |fm(z)− fm(z
′)| = 0 < ε.
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(ii) If z 6∈ B(0, kR) and z′ ∈ B(0, 2R), then

|fm(z)− fm(z
′)|

dp(z, z′)
≤

|F (ϕ(z′))|p

(k − 2)R

≤
n1−p‖ϕ(z′)‖pp
(k − 2)R

≤
Cn1−p(2R)

(k − 2)R
≤ ε.

Since ε is arbitrary, this proves that fm ∈ S0(M). To finish the first part of the proof just
notice now that using the inequality (2) and the fact that lim

m→+∞
ωm(t) = tp, we get

|fm(x)− fm(y)| = ωm(|F (x)− F (y)|) ≥ ωm(‖x− y‖p) −→
m→+∞

dp(x, y).

Thus S0(M
n
p ) is Cn1−p-norming.

We are now moving to the duality argument. Remark that Mn
p is a proper metric space, so

using Theorem 2.3, we have that S0(M
n
p )

∗ ≡ F(Mn
p ). Thus, obviously S0(M

n
p ) is 1-norming. �

Of course this last result still holds for every metric space originating from a p-Banach space
Xp of finite dimension.

Corollary 3.4. Let p ∈ (0, 1), n ∈ N. Consider (Mp, dp) = (X, ‖ · ‖p) where (X, ‖ · ‖) is
a p-Banach space of finite dimension. Then, the space F(Mp) is isometric to S0(Mp)

∗. In
particular S0(Mp) is 1-norming.

Proof. Note that since Xp is of finite dimension, it is isomorphic to ℓnp for some n ∈ N. Thus
there is a bi-Lipschitz map between Mp and Mn

p , let us say L: Mp → Mn
p is bi-Lipschitz

with C1dMp(x, y) ≤ dMn
p
(L(x), L(y)) ≤ C2dMp(x, y). Now S0(Mp) is C2

C1
-norming. Indeed pick

x 6= y ∈ Mp and ε > 0. Since S0(M
n
p ) is 1-norming there exists f ∈ S0(M

n
p ) with Lipschitz

constant less than 1 + ε such that

|f(L(x))− f(L(y))| = dMn
p
(L(x), L(y)) ≥ C1dMp(x, y).

Now f ◦ L: Mp → R is Lipschitz with Lipschitz constant less than C2(1 + ε). Moreover as the
composition of a bi-Lipschitz map with an element of S0(M

n
p ) we know that f ◦ L ∈ S0(Mp).

Thus S0(Mp) is
C2

C1
-norming. Since Mp is proper, it follows again from Theorem 2.3 that F(Mp)

is isometric to S0(Mp)
∗ and thus S0(Mp) is 1-norming. �

As announced, the assumptions of Theorem 2.7 are satisfied for a metric space originating
from a p-Banach space of finite dimension.

Corollary 3.5. Let p ∈ (0, 1). Consider (Mp, dp) = (X, ‖ · ‖p) where (X, ‖ · ‖) is a p-Banach
space of finite dimension. Then, there exists a sequence (En)n of finite-dimensional subspaces
of F(Mp) such that F(Mp) is (1 + ε)-isomorphic to a subspace of (

∑

⊕nEn)ℓ1.

Proof. The aim is to show that all assumptions of Theorem 2.7 are satisfied for F(Mp). Ac-
cording to Corollary 3.4, S0(Mp) is 1-norming. Now it is proved in [24] (Corollary 2.2) that if
M is a doubling metric space (that is there exists D(M) ≥ 1 such that any ball B(x,R) can
be covered by D(M) open balls of radius R/2) then F(M) has the BAP. Since Mp ⊂ R

n, we
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get that Mp is doubling. Thus in our case F(Mp) has the BAP. Since it is a dual space, we get
from Theorem 2.10 that F(Mp) actually has the (MAP). Thus all the assumptions of Theorem
2.7 are satisfied. �

We now turn to the study of the structure of F(Mp) with more general assumptions on
Mp. In particular we now pass to infinite dimensional spaces and the aim is to explore the
behavior of F(Mp) regarding properties such as the (MAP) and the Schur property. To do so,
we will assume that X is a p-Banach space which admits a Finite Dimensional Decomposition
(shortened in FDD). In particular a space which admits a Schauder basis such as ℓp satisfies
this assumption. We start with the study of the Schur property. Using our Proposition 2.4 we
manage to prove the following result.

Theorem 3.6. Let p in (0, 1) and let (X, ‖ · ‖) be a p-Banach space which admits an FDD.
Then F(X, ‖ · ‖p) has the Schur property.

Proof. First of all, note that we can assume that X admits a monotone FDD. Indeed, it is
classical that we can define an equivalent p-norm |||·||| on X such that the finite dimensional
decomposition is monotone for (X, |||·|||) (see Theorem 1.8 in [21] for instance). Now from
the fact that (X, |||·|||) and (X, ‖ · ‖) are isomorphic we deduce that (X, |||·|||p) and (X, ‖ · ‖p)
are Lipschitz equivalent. Thus, by a routine argument for Lipschitz-free spaces, this implies
that F(X, |||·|||p) and F(X, ‖ · ‖p) are isomorphic. Since the Schur property is stable under
isomorphism, F(X, |||·|||p) has the Schur property if and only if F(X, ‖ · ‖p) has the Schur
property. So from now on we assume that the FDD is monotone.

The aim is to apply Proposition 2.4. We denote again (Mp, dp) = (X, ‖ · ‖p). Since X admits
a monotone FDD, there exists a sequence (Xk)k∈N of finite dimensional subspaces of X such
that every x ∈ X admits a unique representation of the form x =

∑∞
k=1 xk with xk ∈ Xk. If

we denote Pn the projections from X to Xn defined by Pn(x) =
∑n

k=1 xk then supn ‖Pn‖ = 1.
Notice that those projections are actually 1-Lipschitz from Mp to Mp,n where Mp,n = (Xn, dp).

Fix x 6= y ∈ Mp and ε > 0. We can write x =
∑∞

k=1 xk, y =
∑∞

k=1 yk with xk, yk ∈ Xk for
every k. Now fix N ∈ N such that dp(x, PN(x)) < ε and dp(y, PN(y)) < ε. Since each Xk is

of finite dimension, the space (
∑N

k=1Xk, ‖ · ‖) is of finite dimension and thus by Corollary 3.4,

S0(A) is 1 norming where A = (
∑N

k=1Mp,k, dp). So in particular lip0(A) is 1-norming. Thus,
according to Proposition 2.4, lip0(Mp) is 1-norming and so F(Mp) has the Schur property by
Proposition 2.6. �

Remark 3.7. Notice that our Theorem 3.6 is not a special case of Theorem 4.6 in [20]. Indeed,
in general we cannot write the distance ‖ · ‖p originating from a p-norm as the composition of
a gauge and another distance. Let us prove this for instance in M2

p = (R2, ‖ · ‖pp). We argue by
contradiction and so we assume that there exists ω a nontrivial gauge and d a distance on R

2

such that ‖x−y‖pp = ω(d(x, y)) for every x and y in R
2. Now we consider the points x = (tx, 0),

y = (0, ty). Straightforward computations shows that ‖x − y‖pp = |tx|
p + |ty|

p = ‖x‖pp + ‖y‖pp.
Since d is a distance and ω is a gauge we have

|tx|
p + |ty|

p = ω(d(x, y)) ≤ ω(d(x, 0) + d(y, 0))

≤ ω(d(x, 0)) + ω(d(y, 0)) = |tx|
p + |ty|

p.
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Thus ω(d(x, 0) + d(y, 0)) = ω(d(x, 0)) + ω(d(y, 0)). From where we deduce that ω is additive,
and so is such that ω(t) = tω(1) = t. This contradicts the fact that ω is a nontrivial gauge.

We finish here by proving our last result about the (MAP). We keep the same notation as in
Theorem 3.6.

Proposition 3.8. Let p ∈ (0, 1) and X be a p-Banach space which admits an FDD with
decomposition constant K. Then F(X, ‖ · ‖p) has the K-(BAP). In particular, if X admits a
monotne FDD then F(X, ‖ · ‖p) has the (MAP).

Proof. We still denote (Mp, dp) = (X, ‖·‖p). Let µ1, ..., µn ∈ F(Mp) and ε > 0. Then there exists

N ∈ N and ν1, ..., νn ∈ F(A) (where A = (
∑N

k=1Mp,k, dp)) such that ‖µk − νk‖ ≤ ε
K
. We have

seen in the proof of Corollary 3.5 that F(A) has (MAP). Thus, there exists T : F(A) → F(A) a
finite rank operator such that ‖T‖ ≤ 1 and ‖Tνk−νk‖ ≤ ε for every k. Since PN : Mp → A is a

K-Lipschitz retraction, the linearization P̂N : F(Mp) → F(A) is projection of norm at most K.

This leads us to consider the operator P̂n ◦ T : F(Mp) → F(Mp) for which direct computations

show that it does the work. Indeed P̂n ◦ T is of finite rank, ‖P̂n ◦ T‖ ≤ K and for every k:

‖P̂n ◦ Tµk − µk‖ ≤ ‖P̂n ◦ Tµk − P̂n ◦ Tνk‖+ ‖P̂n ◦ Tνk − νk‖+ ‖µk − νk‖

≤ ‖P̂n ◦ T‖‖µk − νk‖+ ‖Tνk − νk‖+ ε

≤ 3ε.

�

4. Final comments and open questions

In Proposition 2.6 we stated that if lip0(M) is 1-norming then the space F(M) has the Schur
property. It is then natural to try to relax the assumption. For instance, we ask the following
question

Question 4.1. Let M be metric space such that lip0(M) is C-norming for some C > 1 ? Does
F(M) has the Schur property ?

Now remark that we can deduce Proposition 2.16 as a direct consequence of Theorem 2.7
under the additional assumption that F(M) has MAP. However, it seems that most of the
examples of proper (in particular compact) metric spaces that we can find in the literature are
as follows. Either S0(M) separates points uniformly and F(M) has (MAP), or S0(M) does not
separate points uniformly and F(M) does not have (MAP). So we wonder:

Question 4.2. Let M be proper metric space such that S0(M) separates points uniformly.
Then does F(M) have (MAP) ? In particular, if M is proper and if ω is a nontrivial gauge,
does F(M,ω ◦ d) have (MAP) ?

In Section 4, we proved (Proposition 3.6) that Lipschitz-free spaces, over some metric spaces
originating from p-Banach spaces, have the Schur property. It is then natural to wonder if we
can extend this result to a larger class of metric spaces. Surprisingly, it is really easy to see
that we cannot extend this result to every metric space originating from a p-Banach space.
Indeed, consider the metric space M originating from Lp[0, 1]. Then the map ϕ : t ∈ [0, 1] 7→
1[0,t] ∈ M is a nonlinear isometry. Therefore there is a linear and isometric embedding of
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F([0, 1]) = L1([0, 1]) into F(M). Consequently, since the Schur property is stable under passing
to subspaces and L1 does not have it, F(M) does not have the Schur property. Furthermore,
using the same ideas one can show that F([0, 1]2) linearly embeds into F(M). Thus, using the
fact that F(R2) does not embed into L1 (see [26]), we get that F(M) does not embed into L1.
A major difference between Lp and the p-Banach spaces studied in Section 3 is that Lp has
trivial dual. In particular, the dual does not separate points of Lp. This suggests the following
question.

Question 4.3. Consider (X, ‖ · ‖) a p-Banach space whose dual X∗ separates points. Then
does F(X, ‖ · ‖p) have the Schur property ?

Acknowledgments. The author is grateful to G. Lancien and A. Procházka for useful
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