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Abstract 

Subsidization of urban public transportation systems is often motivated by economies of scale and/or 

second-best considerations (underpriced road alternative). We model a public transportation system 

subject to frictions between users, users and vehicles, and vehicles. We derive the monopolistic and 

optimal provisions of supply. We show that if demand exceeds a first threshold, the system enters a 

congested regime and service frequency decreases. If demand exceeds a second threshold, the public 

transit system operates under diseconomies of scale, calling for a Pigovian tax instead of a subsidy. 

This finding, which goes against Mohring’s classical rule (1972), holds with an untolled road alternative. 

We estimate the model for the London Piccadilly lane and find evidence of substantial diseconomies 

of scale during the morning peak, questioning current subsidy policies for the busiest transit lines. 
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1. Introduction 

Urban public transportation systems are heavily subsidized in many cities across the world (Table 1). 

The economic literature advances two main rationales for doing so (Parry and Small, 2009). First, public 

transit systems operate under economies of scale. While economies of scale may arise from production 

costs (Farsi et al., 2007; Ripplinger and Bitzan, 2018; Viton, 1992), a primary source of economies of 

scales in public transit is related to user costs, as shown by Mohring (1972): if public transit supply 

increases with patronage, a rise in demand will cause the average waiting time of users to diminish 

through an increase in service frequency, a phenomenon commonly referred to as the Mohring effect. 

Second, because car travel is typically underpriced relatively to the external costs that it generates - 

partly due to the unpopularity of road pricing (see De Borger and Proost, 2012) - public transportation 

is subsidized in order to support mode switching and limit car use, as a second best solution (Adler and 

van Ommeren, 2016; Anderson, 2014; Glaister and Lewis, 1978; Nelson et al., 2007). Vickrey (1980) 

mentions a third rationale, which is addressing the special needs for transit by the underprivileged, 

such as people with disabilities or low-income individuals who are unable or cannot afford to drive or 

access other forms of transportation.  

Table 1: Farebox recovery ratio (ratio of fare revenue to operating costs for public transportation systems, in %) 

Country City Public Transport Authority Farebox ratio (%) Year 

Hong Kong Hong Kong MTR 172 2018 

Japan Tokyo Tokyo Metro 129 2018 

USA San Francisco BART 83 2017 

Singapore Singapore SMRT 75 2016 

UK London TfL 64 2018-2019 

Canada Toronto TTC 61 2018 

USA New York City MTA 52 2018 

France Paris IdF-M (formerly STIF) 48 2015 

Belgium Brussels MRBC 47 2018 

Australia Sidney TfNSW 22 2017-2018 

USA Los Angeles LACMTA 17 2018 

Note: Figures have been computed by the authors or retrieved from the following sources: MTR Annual report 2018, p.211 (Hong Kong), Tokyo 

Metro Corporate Profile 2019, p.33 (Tokyo), San Francisco Bay Area Rapid Transit District Budget Summary Fiscal year 2018, p.5 (San Francisco), 

SMRT Corporation Ltd Annual Report 2016, p.34 and 35 (Singapore), TfL Annual Report and  Statement of Accounts 2018/19, p.128 and 129 

(London), 2018 Annual Report Toronto Transit Commission, p.17 and 43 (Toronto), Metropolitan Transportation Authority Financial Statements 

for the Years Ended December 31, 2018 and 2017, p.12 (New-York City), Activity Report 2015 STIF, p.7 and 8 (Paris), Statistics 2018 STIB, p.3 

(Brussels), Transport 2018, p.10 (Sydney), and Comprehensive Annual Financial Report For the Fiscal Year Ended June 30, 2018, p.160 (Los Angeles). 

 While the relevance of each rationale may vary depending on the city characteristics (road 

transport and public transport supply, road pricing, socio-economic conditions...), empirical studies 

typically find substantial scale economies associated to the Mohring effect (Nash et al., 2001; Nelson 
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et al., 2007; Parry and Small, 2009; Savage, 2010), justifying its central role in the theoretical literature.1 

Yet, a key assumption underlying the Mohring effect is that service frequency increases with demand. 

As a matter of fact, the optimal frequency increases with the square root of demand – the so-called 

square root principle - in the simplest version of Mohring’s model, or following a modified square root 

formula when introducing additional features such as variable boarding/alighting time or crowding 

(Jara-Díaz and Gschwender, 2003a). However, in current urban context, public transit patronage has 

increased to such an extent that this assumption does not hold anymore: there are increasing cases of 

very congested lines for which the headway between two trains (or subways, buses, etc.) increases if 

demand is too strong, as a result of too many users seeking to board or to alight at each station. 

Moreover, most studies cited above largely ignore user crowding costs, which are yet a crucial 

consumption externality characterizing urban public transportation (de Palma et al., 2017). 

 This paper investigates the effect of congestion on economies of scale in public transportation, 

including implications in terms of pricing and subsidies. We develop an analytically tractable model 

that captures several key features of urban public transit congestion (in-vehicle crowding, effects on 

dwelling time and frequency). We then study the effect of increasing levels of demand on the provision 

of service quality (frequency, vehicle size/capacity) and on economies of scale for two provision 

regimes: monopolistic (profit-maximizing) and optimal (social welfare maximizing). Finally, we 

calibrate and apply the model to the London Piccadilly lane, and provide insights regarding the welfare 

effects of the New Tube for London (NTfL) scheme. 

 Our model builds on the theoretical microeconomic framework developed by Mohring (1972) and 

later extended by Jansson (1980, 1993), among others.2 This framework has been widely applied to 

investigate public transit operations, economies of scale, optimal pricing rules and associated subsidies 

(Basso and Silva, 2014; Jansson, 1980, 1993; Mohring, 1972). We extend this framework by explicitly 

including three types of frictions: between users, between users and vehicles, and between vehicles. 

Following Kraus (1991), we model frictions between users as crowding. The crowding cost increases 

linearly with the in-vehicle occupancy rate, as typical in the literature (see e.g. de Palma et al., 2017). 

Frictions between users and vehicles are represented by considering that the boarding and alighting 

time (i.e. the dwelling time) increases linearly with the number of users, as in Mohring (1972). Frictions 

between vehicles are considered through a minimum safe headway between two successive vehicles. 

This constraint imposes a hard physical limit on service frequency.  

 We find that urban public transportation operations are characterized by economies of scale only 

up to a certain level of demand. If demand is too strong, the severity of crowding causes the marginal 

social cost of an extra passenger to exceed the average social cost, implying diseconomies of scale. 

Scale diseconomies arise in both the short-run (frequency and vehicle size are kept fixed), medium-run 

(adjustable frequency only) and long-run (adjustable frequency and vehicle size). Inasmuch as they 

imply lower equilibrium demand levels than at optimum, scale diseconomies still occur but are reduced 

                                                           
1 While the theoretical validity of the Mohring effect was questioned at some point by van Reeven (2008), the 
controversy was short lived as two answers to his paper showed his results to be mostly spurious, definitely 
confirming if need be the Mohring effect  (Basso and Jara-Díaz, 2010; Savage and Small, 2010). 
2 See Jara-Díaz and Gschwender (2003a) for a thorough review of Mohring’s model and its various extensions.  
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under monopolistic provision or with a marginal cost of public funds, however. The direct corollary of 

these findings is that the optimal subsidy is negative when the system becomes too congested due to 

very strong demand (in relation to the transportation technology), which is a classical Pigovian result. 

Our findings are shown to be robust in presence of an unpriced substitute transportation mode, 

meaning that second-best pricing does not necessarily imply subsidies to public transportation users. 

The application to the Piccadilly line in London confirms empirically that not accounting for congestion 

leads to substantially overestimating the Mohring effect during the peak period, thus misestimating 

the sign of scale economies (from negative to positive). During the off-peak period the preponderance 

of the Mohring effect is reasserted, as the lower crowding level leads to normal operations and the 

usual economies of scale.  

 This paper contributes to the literature on public transportation congestion (recently reviewed in 

Zhang et al., 2019)  by showing how (severe) congestion can lead to diseconomies of scale, in contrast 

to previous works which find economies of scale to be reduced yet to subside when accounting for 

congestion. While all three frictions contribute to diseconomies of scale, we show that in the long run 

(under adjustable frequency and vehicle size) diseconomies of scale only arise in the presence of 

congestion between vehicles, underlining the importance of accounting for this specific mechanism.3 

Our model is also analytically tractable, allowing for clear-cut results as opposed to other works. 

Finally, we are - to the best of our knowledge - also the first to provide empirical evidence of 

diseconomies of scale regarding user costs and the social cost in urban public transportation. 

 The analysis focuses on the case of non-planning users.4 The phenomena addressed in this paper 

(severe crowding and between-vehicle congestion) mostly concern very busy transit lines with short 

headways. Users are therefore much more likely not to plan under such conditions (Fosgerau, 2009; 

Jansson, 1993). First considered by Oldfield and Bly (1988), the effect of congestion on waiting times 

(as in denied boarding because the vehicle is full)  is not considered here. This would involve moving 

from a steady-state to a dynamic model capturing queues on platforms, as in Kraus and Yoshida (2002) 

or Yoshida (2008) who use the bottleneck model, yet at the cost of much greater analytical complexity. 

Considering this effect would further increase diseconomies of scale as users would have to bear the 

additional cost of waiting for the next train as demand becomes too strong and frequency deteriorates. 

Conversely spatial effects linked to network design and line density (Jara-Díaz and Gschwender, 2003b) 

are expected to curb congestion and thus diseconomies of scale in the longer run, provided that the 

transit authority is able to meet additional demand with new transit infrastructures (which in many 

cities proves increasingly difficult due to the rising population and soar in land prices). 

 Our results call for a clear review of subsidies schemes in congested urban transportation systems. 

Considering that (dis)economies of scale are strongly related to the demand level, our findings also 

provide additional support for fare differentiation and peak pricing.  

                                                           
3 We thereby generalize previous findings from Hörcher (2017) and Tirachini et al. (2010), who also find scale 

diseconomies yet in more restrictive contexts (hard constraints on frequency and vehicle size for the former, 
fixed vehicle size for the latter).  
4 This case corresponds to the situation where service frequency is sufficiently high so that users find it less costly 
to just go to the station and wait, rather than accessing the exact timetable information and synchronizing 
departure from home with the schedule (Fosgerau, 2009). 
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2. A model of transit line with congestion 

 Consider a transit line, with stations evenly spaced and separated by an interstation distance 𝑑𝑀. 

Without loss of generality, we will refer to it as a railway line in the remainder of the paper.  

 Following Mohring (1972), we study the steady state of a one kilometer long route segment over 

a given time period - typically one hour during the morning peak period. Users are “non-planning”, i.e. 

they do not look at the schedule, so that in each station new users arrive at a constant rate over time. 

The user arrival rate per hour and per kilometer of railway line is denoted by N, which measures the 

level of demand. To simplify matters, trip length is assumed constant and equal to d.  

2.1. Transportation technology 

 Service frequency is noted F (trains/hour), while the headway is noted 𝐻 ≡ 𝐹−1. The service is 

assumed to be regular (constant headways) and reliable (the service always adheres to the schedule).5 

Vehicle size (capacity) is noted 𝑠 and is supposed to be the same for all vehicles. 

 From the model assumptions – constant trip distances, arrival rates, and headways – the number 

of users alighting (𝑛𝐴) and boarding (𝑛𝐵) is the same at each station and for each train. It is given by: 

𝑛𝐴 = 𝑛𝐵 = 𝑑𝑀 𝑁/𝐹.  As passengers stay onboard for 𝑑/𝑑𝑀 stations, the vehicle load is equal to 𝑑𝑁/𝐹. 

The level of crowding 𝑙𝐶  is measured by the load factor, defined as the vehicle load over capacity: 

 𝑙𝐶 =
𝑑𝑁

𝑠𝐹
. (1) 

 The total travel time is the sum of access time 𝑡𝐴, waiting time 𝑡𝑊 and in-vehicle travel time 𝑡𝑉. 

Interstation distance (and line density) remaining constant throughout the analysis, access time can 

be assumed to be 0 without loss of generality. For regular headways, the average waiting time is half 

the headway:  

 𝑡𝑊 =
1

2𝐹
. (2) 

 As in Mohring (1972), the commercial speed 𝑣 is given by: 𝑑𝑀/𝑣 = 𝑑𝑀/𝑣𝑉 + 𝛿0 + 𝛿𝐴 𝑛𝐴 + 𝛿𝐵 𝑛𝐵, 

where 𝑑𝑀 is the interstation distance, 𝑣𝑉 the cruising speed between stops, 𝛿0 a fixed additional time 

per stop, and 𝛿𝐴 and 𝛿𝐵 are the unit alighting and boarding time per passenger, respectively.  

Assumption 1  

The unit alighting and boarding times 𝛿𝐴 and 𝛿𝐵 are independent of vehicle size s. 

Assumption 1 corresponds to the situation where the number of cars per train is fixed, typically due to 

length constraints (as the train length may not exceed that of the platform). Capacity is adjusted either 

by rearranging the interior of the cars (by optimizing the seat configuration, making smaller seats…), 

or by expanding the size of each car (horizontally or vertically) while leaving the number of openings 

constant (such as in switching from single-decker to double-decker trains).  

                                                           
5 See Benezech and Coulombel (2013) for the case of unreliable transit services with non-planning users. 
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 Let 𝛿 = 𝛿𝐴 + 𝛿𝐵, and 𝑣𝐹 = (1/𝑣𝑉 + 𝛿0/𝑑𝑀)−1 be the free-flow speed, i.e. the commercial speed 

without users in the system. This leads to: 1/𝑣 = 1/𝑣𝐹 + 𝛿𝑁/𝐹. Finally, in-vehicle travel time is: 

 𝑡𝑉 = 𝑑 (
1

𝑣𝐹
+ 𝛿

𝑁

 𝐹
). (3) 

 In Mohring’s original model, service frequency is not upper bounded: as demand keeps increasing, 

optimal frequency tends toward infinity. Yet, train circulation is subject to operational constraints. 

First, the headway cannot physically be lower than the dwelling time. Moreover, regulators enforce an 

additional minimum safe headway 𝐻0 between trains to limit collisions. This implies the following 

condition on the headway: 𝐻 ≥ 𝐻0 + 𝛿𝐴 𝑛𝐴 + 𝛿𝐵 𝑛𝐵. Through substitutions, this rewrites as: 

 𝐹 ≤ 𝐹0(1 − 𝛿𝑑𝑀𝑁), (4) 

where 𝐹0 = 𝐻0
−1 is the free-flow maximum frequency (without users in the system). The technological 

constraint (4) sets the maximum feasible frequency. As demand increases, more time is required for 

allowing passengers to alight and to board, fewer trains can pass and the maximum frequency declines. 

2.2. Demand 

 Demand is characterized by a linear inverse demand function 𝐺(𝑁), where 𝐺(𝑁) denotes the 

reservation generalized price of the Nth user:6 

 𝐺(𝑁) = 𝐴 − 𝐵𝑁. (5) 

The standard reservation price is given by 𝑃(𝑁) = 𝐺(𝑁) − 𝐶𝑈, i.e. by subtracting from the reservation 

generalized price 𝐺(𝑁) the user travel cost 𝐶𝑈, which is here specified as follows:  

 𝐶𝑈(𝑡𝑊, 𝑡𝑉 , 𝑙𝐶) = 𝛼𝑊𝑡𝑊 + 𝛼𝑉𝑡𝑉 + 𝛼𝐶𝑙𝐶 . (6) 

𝛼𝑊 and 𝛼𝑉 are respectively the values of waiting time and in-vehicle travel time, both expressed in 

monetary terms, and 𝛼𝐶  is the crowding penalty factor. For model tractability, the crowding penalty is 

assumed to be independent of in-vehicle travel time 𝑡𝑉.7 

 Using (1), (2) and (3), the user travel cost can be rewritten as a function of frequency, vehicle size 

and demand: 

 𝐶𝑈(𝐹, 𝑠, 𝑁) =
𝛼𝑊

2𝐹
+ 𝛼𝑉𝑑 (

1

𝑣𝐹
+ 𝛿

𝑁

𝐹
) + 𝛼𝐶𝑑

𝑁

𝑠𝐹
. (7) 

There are two sources of externality regarding user costs: an additional user increases in-vehicle travel 

time (by increasing dwelling time), as well as in-vehicle crowding. 

                                                           
6 Linear demand functions can be supported by considering homogeneous users with a quadratic utility function 
(as in Silva and Verhoef, 2013), or heterogeneous users with a linear utility function but uniformly distributed 
reservation utility levels (as in Basso and Jara-Díaz, 2010).  
7 The assumption of a constant crowding penalty as opposed to one linear in in-vehicle travel time has been 
empirically supported by the study of De Lapparent and Koning (2016), among others. 
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2.3. Production costs  

 Transit operations imply production costs which are assumed to be ultimately supported by the 

transit agency.8 As the model represents a single line and does not account for variable line density, 

we overlook infrastructure costs and focus on operating costs instead (as in Parry and Small, 2009). 

Operating costs include vehicle capital costs and other operating costs, which depend on two primary 

inputs, vehicle-kilometers (noted 𝑋) and vehicle-hours (noted 𝑍), as well as on vehicle size 𝑠. We 

consider the following specification: 

 𝐶𝑇𝐴(𝑋, 𝑍, 𝑠) = 𝑐𝐾𝑠𝑋 + 𝑐𝑂𝑍. (8) 

The cost 𝐶𝑇𝐴(𝑋, 𝑍, 𝑠) per kilometer of route is the sum of capital costs 𝑐𝐾𝑠𝑋 and of operating costs 

𝑐𝑂𝑍. Capital cost capture the depreciation of vehicles, which is assumed proportional to the distance 

travelled and to the vehicle size. Operating costs are based on vehicle hours, and correspond to the 

cost of drivers and other time-based operating costs.9  

 At the steady state, vehicle-kilometers (per kilometer of steady state route) are given by 𝑋 = 𝐹. 

To operate one kilometer of railway line with frequency 𝐹, the required number of trains is the ratio 

between the train runtime and the headway (Kraus and Yoshida, 2002), hence: 𝑍 = 𝐹/𝑣𝐹 + 𝛿 𝑁. 

Productions costs can then be rewritten as a function of frequency, vehicle size, and demand: 

 𝐶𝑇𝐴(𝐹, 𝑠, 𝑁) = 𝑐𝐾𝑠𝐹 +
𝑐𝑂

𝑣𝐹
𝐹 + 𝑐𝑂𝛿𝑁. (9) 

3. Optimal service quality and pricing 

 Two provision regimes are considered in this section: optimal and monopolistic. Consider first the 

monopolistic case where the transit authority maximizes profit: Π(𝐹, 𝑠, 𝑁) = 𝑁𝑃(𝑁) − 𝐶𝑇𝐴(𝐹, 𝑠, 𝑁). 

Let 𝑆𝐶(𝐹, 𝑠, 𝑁) = 𝑁 𝐶𝑈(𝐹, 𝑠, 𝑁) + 𝐶𝑇𝐴(𝐹, 𝑠, 𝑁) denote the social cost of the system (per kilometer of 

steady state route and per hour). The profit function rewrites: 

 Π(𝐹, 𝑠, 𝑁) = 𝑁 𝐺(𝑁) − 𝑆𝐶(𝐹, 𝑠, 𝑁). (10) 

Because the first term 𝑁 𝐺(𝑁) - which corresponds to a gross generalized revenue - is independent of 

F and s, the profit maximization corresponds to a bi-level optimization problem: 1) for a given N, 

choosing F and s so as to minimize the social cost, and 2) optimal choice of N at the upper level.  

 Next, consider now that the transit authority supplies service quality (frequency, vehicle capacity) 

and sets the fare in order to maximize social welfare: 

 𝑆𝑊(𝐹, 𝑠, 𝑁) = ∫ 𝐺(𝑛)𝑑𝑛
𝑁

0

− 𝑆𝐶(𝐹, 𝑠, 𝑁). (11) 

                                                           
8 We ignore the potential contracts issues between the transit authority and the transport operator. These issues 
have been studied by Gagnepain and Ivaldi (2002), among others. 
9 The term 𝑐𝐾𝑠𝑋 may also account for distance-based operating costs (e.g. fuel consumption) but for simplicity 
we refer to this term as “capital costs”.  
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The social welfare maximization problem is similar to the profit maximization problem, except that the 

gross generalized revenue 𝑁 𝐺(𝑁) is replaced by the aggregate gross user benefit ∫ 𝐺(𝑛)𝑑𝑛
𝑁

0
. 

Consequently, both problems involve choosing F and s so as to minimize the social cost for a given N, 

and the provision rules for frequency and vehicle size are the same at equilibrium and at optimum: 

𝑠∗(𝑁) = 𝑠𝑒(𝑁) and 𝐹∗(𝑁) = 𝐹𝑒(𝑁).10 Service quality is yet not necessarily the same across regimes, 

inasmuch as the equilibrium and optimal levels of demand 𝑁𝑒 and 𝑁∗ may differ.  

 Accordingly, we first discuss the optimal provision of service quality (F and s) at the lower level, 

then the monopolistic and optimal pricing rules (associated to 𝑁𝑒 and 𝑁∗) at the upper level . 

3.1. Optimal service quality 

 For a given demand level 𝑁, the transit authority supplies service frequency 𝐹 and vehicle size 𝑠 

so as to minimize the social cost, subject to the frequency constraint: 

 
min

𝐹,𝑠
𝑆𝐶(𝐹, 𝑠, 𝑁)  

𝑠. 𝑡.  𝐹 ≤ 𝐹0(1 − 𝛿𝑑𝑀𝑁) 

(12) 

Regarding train frequency, two regimes arise depending on whether the frequency constraint (4) is 

inactive (normal regime) or binding (congested regime). 

Proposition 1 

In the normal regime, the transit authority supplies service frequency so as to equate production costs 

with the sum of waiting, dwelling and crowding costs. 

In the congested regime, the transit authority supplies the maximal feasible frequency. 

The choice of frequency involves the usual trade-off between production costs and variable user costs 

(excluding in-vehicle costs, here assumed constant). If demand is too strong, however, boardings and 

alightings take so much time that it induces congestion between vehicles (similarly to bus bunching). 

Frequency declines as a result, a phenomenon that we will refer to as “overcrowding”.  

 Regarding the choice of capacity, larger vehicles reduce crowding, but involve higher capital costs. 

The outcome of this trade-off is provided by Proposition 2. 

Proposition 2 

The transit authority supplies vehicle size so as to equate crowding costs with capital costs.  

From Proposition 2, the optimal load factor is constant and equal to: 

 𝑙𝐶
∗ = √

𝑐𝐾𝑑

𝛼𝐶
. (13) 

                                                           
10 This result actually corresponds to a well-known result in the industrial organization literature, which is that if 
the cross partial derivative of inverse demand is null (as it is the case here, with 𝜕2𝐺/𝜕𝑁𝜕𝐹 = 𝜕2𝐺/𝜕𝑁𝜕𝑠 = 0), 
then a monopolist supplies quality using the same rule as if maximizing social welfare (Spence, 1975). 
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Vehicle occupancy increases with the capital cost parameter 𝑐𝐾 and decreases with the crowding cost 

parameter 𝛼𝐶, as expected. 

 Combining Propositions 1 and 2 yields the optimal provision of service quality (Table 1, see Proof 

in Appendix). 

Table 1: Optimal provision of service frequency and vehicle size 

 
Normal regime 

(𝑁 ≤ �̂�) 

Congested regime 

(�̂� ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥) 

𝐹∗(𝑁) √
𝑣𝐹

𝑐𝑂

(
𝛼𝑊

2
𝑁 + 𝛼𝑉𝛿𝑑𝑁2) 𝐹0(1 − 𝛿𝑑𝑀𝑁) 

𝑠∗(𝑁) √
𝑐𝑂  

𝑣𝐹

𝛼𝐶𝑑𝑁/𝑐𝐾

𝛼𝑊

2
+ 𝛼𝑉𝛿𝑑𝑁

 √
𝛼𝐶𝑑 

𝑐𝐾

𝑁

𝐹0(1 − 𝛿𝑑𝑀𝑁)
 

The threshold 𝑁𝑚𝑎𝑥 denotes the maximum level of demand for which a steady state solution exists, 

with 𝑁𝑚𝑎𝑥 = 1/𝛿𝑑𝑀 (see Appendix). The threshold demand level �̂� marks the separation between 

the normal regime and the congested regime. It is the first positive solution to: 

 
𝛼𝑊

2
�̂� + 𝛼𝑉𝛿𝑑�̂�2 =

𝑐𝑂

𝑣𝐹
𝐹0

2(1 − 𝛿𝑑𝑀�̂�)
2

. (14) 

The RHS of (14) zeroes in 𝑁 = 𝑁𝑚𝑎𝑥, implying �̂� < 𝑁𝑚𝑎𝑥 (see Figure A.1 in Appendix). From (14), one 

can further show that (see also Figure A.1): 

 an increase in either of the two technological parameters 𝛿 (the unit boarding/alighting time) 

and 𝐻0 = 𝐹0
−1 (the minimum safe headway) increases the risk of overcrowding (lower �̂�); 

 increasing interstation distance 𝑑𝑀 also raises the risk of overcrowding; 

 other parameters influence positively (vehicle speed 𝑣𝐹, demand parameters 𝛼𝑊, 𝛼𝑉 and 𝑑) 

or negatively (operating cost parameter 𝑐𝑂) the risk of overcrowding inasmuch as they push 

the transit authority to raise frequency. 

 We now study the behavior of 𝐹∗ and 𝑠∗ with respect to 𝑁. Let  𝜂𝐹 and 𝜂𝑆 be the demand elasticity 

of service frequency and vehicle size, respectively. 

Proposition 3 

In the normal regime, an increase in demand leads to an increase in both frequency and vehicle size, 

with 0 ≤ 𝜂𝑆 ≤ 1/2 ≤ 𝜂𝐹 ≤ 1. 

In the congested regime, an increase in demand leads to an increase in vehicle size but to a decrease 

in frequency, with 𝜂𝑆 > 1 and 𝜂𝐹 < 0. 

In the normal regime (𝑁 ≤ �̂�), the optimal frequency and vehicle capacity both increase with demand, 

as expected (Figure 1). Frequency follows a modified square root formula (Table 1), which is actually 
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exactly the same as in Jansson (1980).11 For low levels of demand, frequency is low and the waiting 

time effect prevails. As demand increases so does frequency, waiting times dwindle and the 

boarding/alighting effect becomes increasingly important. Accordingly, the elasticity of frequency rises 

from 𝜂𝐹 = 1/2 (square root principle) for 𝑁 = 0 to 𝜂𝐹 = 1 (asymptotic linearity) for 𝑁 → +∞. 

Meanwhile, the elasticity of vehicle size decreases from 𝜂𝑆 = 1/2 to 𝜂𝑆 = 0 (asymptotic constancy). 

In the limiting case 𝛿 = 0 (fixed dwelling time), the elasticities are equal and constant: 𝜂𝐹 = 𝜂𝑆 = 1/2. 

We find again the result of Mohring (1972) that optimal frequency follows the square root principle. 

 As demand keeps increasing, the time required for boarding and alighting also increases, causing 

between-vehicle congestion in the congested regime and reducing the maximal feasible frequency. 

Frequency decreases as a result (Figure 1), with 𝜂𝐹 < 0. To compensate for the decrease in frequency, 

the transit authority strongly increases vehicle capacity, with 𝜂𝑆 > 1 (supralinearity).  

  

Figure 1: Optimal frequency and vehicle size 

3.2. Pricing 

 Consider the monopolistic case. The profit maximization problem writes: max
𝑁

𝑁 𝐺(𝑁) − 𝑆𝐶∗(𝑁), 

with 𝑆𝐶∗(𝑁) = 𝑆𝐶(𝐹∗(𝑁), 𝑠∗(𝑁), 𝑁). The first-order condition is: 𝐺(𝑁𝑒) = 𝑀𝑆𝐶∗(𝑁𝑒) − 𝑁𝑒𝐺′(𝑁𝑒). 

At equilibrium, the marginal user benefit 𝐺(𝑁𝑒) equals the marginal social cost 𝑀𝑆𝐶∗(𝑁𝑒) plus the 

usual mark-up term −𝑁𝑒𝐺′(𝑁𝑒). As 𝐺(𝑁) = 𝐴 − 𝐵𝑁, the FOC simplifies to: 𝐴 − 2𝐵𝑁𝑒 = 𝑀𝑆𝐶∗(𝑁𝑒). 

Solving this equation provides the equilibrium demand level 𝑁𝑒. Finally, the equilibrium fare is: 

 𝜏𝑒 = 𝑀𝑆𝐶∗(𝑁𝑒) − 𝑁𝑒𝐺′(𝑁𝑒) − 𝐶𝑈(𝐹∗(𝑁𝑒), 𝑠∗(𝑁𝑒), 𝑁𝑒). (15) 

                                                           
11 If vehicle size is exogenous, crowding also causes optimal frequency not to follow the square root principle 
(see Eq.(33) in the proof of Proposition 1). 
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 Consider now that the transit authority maximizes social welfare. The first-order condition 

becomes: 𝐺(𝑁∗) = 𝑀𝑆𝐶∗(𝑁∗).This is the standard result that the marginal user benefit equals the 

marginal social cost at optimum. We assume in the remainder of the section that this equation is a 

sufficient condition for optimality.12 The optimal fare is finally: 

 𝜏∗ = 𝑀𝑆𝐶∗(𝑁𝑒) − 𝐶𝑈(𝐹∗(𝑁∗), 𝑠∗(𝑁∗), 𝑁∗). (16) 

 The equilibrium and optimal solutions are characterized by the same service provision rules 

(provided in Table 1) yet different demand levels. The optimal demand solves 𝐴 − 𝐵𝑁∗ = 𝑀𝑆𝐶∗(𝑁∗), 

whereas the equilibrium demand solves 𝐴 − 2𝐵𝑁𝑒 = 𝑀𝑆𝐶∗(𝑁𝑒), hence Proposition 4. 

 Proposition 4 

Demand is always lower at the monopoly equilibrium than at optimum.  

Vehicle size is also always lower at equilibrium as a result. If optimal demand is low (resp. high), 

frequency is lower (resp. greater) at equilibrium than at optimum.  

Monopolistic behavior involves raising the fare thus reducing demand relatively to the social optimum 

in order to maximize profit. Facing lower demand, the monopolist also opts for smaller vehicle sizes. 

In the normal regime, as optimal frequency increases with demand, the monopolist undersupplies 

frequency. In the congested regime, the opposite occurs, however, as excessive demand leads to 

congestion between vehicles and overcrowding. The monopolist is able to (and finds it profitable to) 

oversupply frequency relatively to the social optimum. 

4. Economies of scale 

4.1. Economies of scale: short run, medium run and long run 

 Let 𝐴𝑆𝐶 ≡ 𝑆𝐶/𝑁 denote the average social cost. We have:  

 𝐴𝑆𝐶 =
𝛼𝑊

2𝐹
+ 𝛼𝑉𝑑 (

1

𝑣𝐹
+ 𝛿

𝑁

𝐹
) + 𝛼𝐶𝑑

𝑁

𝑠𝐹
+ 𝑐𝐾

𝑠𝐹

𝑁
+

𝑐𝑂

𝑣𝐹

𝐹

𝑁
+ 𝑐𝑂𝛿. (17) 

 In the short run (fixed frequency and vehicle size), production costs are subject to scale economies 

(the average production cost 𝐶𝑇𝐴/𝑁 decreases with the number of trips produced N), while user costs 

are characterized by diseconomies of scale (due to the crowding and boarding/alighting externalities). 

In the medium run (fixed vehicle size), unit costs are homogeneous of degree 0 with respect to the 

couple (𝑁, 𝐹), except for the waiting cost which decreases with F, hence a source of scale economies. 

                                                           
12 The FOC 𝐺(𝑁∗) = 𝑀𝑆𝐶∗(𝑁∗) is not a sufficient condition for optimality. The marginal social cost 𝑀𝑆𝐶∗(𝑁) is 

a convex function of 𝑁, decreasing from +∞ to its minimum 𝑀𝑆𝐶∗(�̂�) > 0 on ]0, �̂�], then increasing back to +∞ 

on [�̂�, 𝑁𝑚𝑎𝑥[ (Lemma 1 in Appendix). As the inverse demand 𝐺𝐶(𝑁) = 𝐴 − 𝐵𝑁 is an affine, decreasing function 

of 𝑁, the FOC actually admits either zero, one or two solutions depending on the parameter values (Lemma 2 in 
Appendix). Moreover, even if 𝐺(𝑁) = 𝑀𝑆𝐶∗(𝑁) admits one (or two) solution, this solution may only be a local 
optimum, and the corner solution𝑁 = 0 may yield a better outcome. Using Lemma 3 (in Appendix), we show 
that there exists 𝐴0 > 0 so that ∀𝐴 ≥ 𝐴0, the equation 𝐺(𝑁) = 𝑀𝑆𝐶∗(𝑁) admits two solutions, the second one 
being the actual global optimum.  
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In the long run, the transit authority can choose to adjust both frequency and vehicle size. Again, user 

costs present economies of scale with respect to frequency (due to waiting), but diseconomies of scale 

with respect to vehicle size (as raising vehicle size fails to address the boarding/alighting externality). 

Conversely, production costs present economies of scale with respect to vehicle size as operating costs 

(e.g. driver costs) are not affected by it. In addition to raising frequency, expanding vehicle capacity 

therefore represents another possible source of economies of scale in the long run, up to the tradeoff 

between economies in operating costs on the one hand and losses in dwelling costs on the other hand. 

Finally, if demand is too strong, the technical constraint (4) causes frequency to decline, which likely 

represents a source of diseconomies of scale. Let 𝑖 ∈ {𝑠; 𝑚; 𝑙} characterize the horizon considered 

(short-run s, medium-run m, long-run l). The outcome of these various effects and tradeoffs is provided 

by Proposition 5.13 

Proposition 5 

In all three time horizons, the provision of the public transit service is subject to economies of scale if 

𝑁 < 𝑁𝑖, and to diseconomies of scale if 𝑁 > 𝑁𝑖, where the various 𝑁𝑖  solve: 

 (𝛼𝑉𝛿𝑑 + 𝛼𝐶

𝑑

s
) 𝑁𝑠

2 = (𝑐𝐾𝑠 +
𝑐𝑂

𝑣𝐹
) 𝐹2, (18) 

 (𝛼𝑉𝛿𝑑 + 𝛼𝐶

𝑑

s
+ 𝛼𝑊

𝛿𝑑𝑀

2
) 𝑁𝑚

2 = (𝑐𝐾𝑠 +
𝑐𝑂

𝑣𝐹
) 𝐹0

2(1 − 𝛿𝑑𝑀𝑁𝑚)2, (19) 

 (𝛼𝑉𝛿𝑑 + 𝛼𝑊

𝛿𝑑𝑀

2
) 𝑁𝑙

2 =
𝑐𝑂

𝑣𝐹
𝐹0

2(1 − 𝛿𝑑𝑀𝑁𝑙)2. (20) 

In the short run, the marginal user causes the average social cost to decrease at first by splitting fixed 

production costs between more users. As demand increases, the negative externality - imposing higher 

in-vehicle-travel time and greater crowding costs to other passengers – eventually prevails, however.  

 In Mohring’s model (1972) the system is always characterized by scale economies in the long run, 

which stem from the waiting time effect. Despite introducing variable boarding/alighting time and 

crowding in our model, we find the exact same result in the normal regime: economies of scale are 

always in order and entirely derive from the waiting time effect, with 𝑑𝐴𝑆𝐶∗/𝑑𝑁 = −𝛼𝑊/2𝐹∗𝑁 < 0. 

This is true both in the medium run (fixed vehicle size) and in the long run (adjustable frequency and 

vehicle size). As demand increases, the system eventually enters the congested regime (for 𝑁 > �̂�). 

While economies of scale do persist at first, beyond a second threshold (𝑁 > 𝑁𝑚 in the medium run 

and 𝑁 > 𝑁𝑙  in the long run), operations degrade to such an extent that diseconomies of scale occur 

(𝑑𝐴𝑆𝐶∗/𝑑𝑁 > 0). For convenience, we will refer to this situation characterized by scale diseconomies 

(𝑁 > 𝑁𝑚 in the medium run, 𝑁 > 𝑁𝑙  in the long run) as the “hypercongested regime”. 

                                                           
13 Because the equilibrium and optimal solutions are characterized by the same provision rules regarding 
frequency and vehicle size, the reduced social cost functions 𝑆𝐶𝑒(𝑁) = 𝑆𝐶(𝐹𝑒(𝑁), 𝑠𝑒(𝑁), 𝑁) and 𝑆𝐶∗(𝑁) =
𝑆𝐶(𝐹∗(𝑁), 𝑠∗(𝑁), 𝑁) are equal: 𝑆𝐶𝑒(𝑁) = 𝑆𝐶∗(𝑁). The discussion that follows therefore applies to both cases. 
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 In practice, the optimal (𝑁∗) and equilibrium (𝑁𝑒) demand levels can be in either regime - normal, 

congested, hypercongested - depending on the values of the demand parameters A and B (Figure 2). 

Here recall that 𝑀𝑆𝐶 = 𝐴𝑆𝐶 + 𝑁 𝑑𝐴𝑆𝐶/𝑑𝑁. The threshold between economies and diseconomies of 

scale, noted 𝑁𝑙  in the long run and defined by 𝑑𝐴𝑆𝐶∗/𝑑𝑁(𝑁𝑙) = 0, is therefore also the point where 

the marginal social cost and average social cost curves intersect, hence: 𝑀𝑆𝐶∗(𝑁𝑙) = 𝐴𝑆𝐶∗(𝑁𝑙). 

Similarly, the limit �̂� between the normal and the congested regime graphically corresponds to the 

kink in the curve 𝑀𝑆𝐶∗(𝑁), where its derivative is discontinuous and shifts from being negative to 

being positive – meaning that 𝑀𝑆𝐶∗(𝑁) is minimized at  𝑁 = �̂� (Lemma 1). 

 

     

Figure 2: Optimal and equilibrium demand levels 

Note: here the optimal demand level falls within the hypercongested regime (𝑁∗ > 𝑁𝑙), while the equilibrium demand level falls 

within the normal regime (𝑁𝑒 < �̂�). Changes in either A or B would lead to different situations, however. 

4.2. Sources of long-run economies of scale 

  In order to better understand the sources of economies of scale, we break down the long run 

average social cost by cost item, and study the effect of an increase in demand 𝑁. In the normal regime, 

operating and waiting time costs generate economies of scales, while travel time costs are subject to 

diseconomies of scale (Table 2). The former effects prevail at first, hence economies of scale overall. 

In the congested regime, a marginal increase in demand causes frequency to decrease. The waiting 

time cost per trip increases as a result, so that user costs are characterized by diseconomies of scale. 

Scale economies associated to operating costs keep prevailing at first, but eventually for 𝑁 > 𝑁𝑙  the 

negative externalities overweigh the positive ones and the system falls into diseconomies of scale. 
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Table 2: Sources of long-run economies/diseconomies of scale 

 𝑵 ≤ �̂� �̂� ≤ 𝑵 < 𝑵𝒍 𝑵𝒍 ≤ 𝑵 < 𝑵𝒎𝒂𝒙 

Regime Normal Congested Hypercongested 

Waiting time cost / trip - + + 

Travel time cost / trip + + + 

Crowding cost / trip = = = 

Capital cost / trip = = = 

Operating cost / trip - - - 

Social cost / trip (𝑨𝑺𝑪∗) - - + 

Note: a sign + (resp. -) indicates that the corresponding cost per trip increases (resp. decreases) with N, implying 

diseconomies (resp. economies) of scale. A sign = is used to indicate constancy (no scale economies/diseconomies). 

The threshold 𝑁𝑙  plays a key role by marking the frontier between congested versus hypercongested 

regime and economies versus diseconomies of scale. For reminder 𝑁𝑙  is defined by: 

(𝛼𝑉𝛿𝑑 + 𝛼𝑊

𝛿𝑑𝑀

2
) 𝑁𝑙

2 =
𝑐𝑂

𝑣𝐹
𝐹0

2(1 − 𝛿𝑑𝑀𝑁𝑙)2. 

Following the same reasoning as for �̂� (see 3.1 and Figure A.1), one can show that: 

 upgrading the transportation technology (decreasing the boarding-alighting time 𝛿  and/or the 

minimum safe headway 𝐻0) improves economies of scale (greater value of 𝑁𝑙); 

 increasing interstation distance 𝑑𝑀 increases the risk of diseconomies of scale (as it leads to 

more people at each station and thus longer boarding and alighting times); 

 being always characterized by economies of scale (fixed cost effect), greater operating costs 

(greater parameter 𝑐𝑂) imply greater economies of scale overall (greater value of 𝑁𝑙); 

 other parameters (vehicle speed 𝑣𝐹, demand parameters 𝛼𝑊, 𝛼𝑉 and 𝑑) increase the risk of 

diseconomies of scale inasmuch as they push the transit authority to raise frequency. 

4.3. Implications for funding 

 We study the impact of (dis) economies of scale on the self-financing of the rail service at the long-

run social optimum. From 𝑀𝑆𝐶 = 𝐴𝑆𝐶 + 𝑁 𝑑𝐴𝑆𝐶/𝑑𝑁 and 𝐴𝑆𝐶 = 𝐶𝑈 + 𝐶𝑇𝐴/𝑁, we can rewrite (16) 

as the standard first-best pricing rule (Small and Verhoef, 2007, eq (4.44)): 

 𝜏∗ =
𝐶𝑇𝐴(𝐹∗(𝑁∗), 𝑠∗(𝑁∗), 𝑁∗)

𝑁∗
+ 𝑁∗

𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁∗). (21) 

Corollary of Proposition 5 

At optimum, the transit service is subsidized if  𝑁∗ < 𝑁𝑙  , and self-financed if 𝑁∗ ≥ 𝑁𝑙. 
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Let 𝜋∗ = 𝐶𝑇𝐴/𝑁∗ − 𝜏∗ be the (long-run) optimal subsidy per trip. In the normal regime, the optimal 

subsidy equals the average waiting cost, as in Mohring (1972): 𝜋∗ = 𝛼𝑊/2𝐹∗. In the congested regime, 

the optimal subsidy is more complex, with: 𝜋∗ = (𝛼𝑊/2 + 𝛼𝑉𝑑/𝑑𝑀)𝛿𝑑𝑀𝐹0/𝐹∗2 − 𝑐𝑂/𝑣𝐹 × 𝐹0/𝑁∗2. 

If �̂� < 𝑁∗ < 𝑁𝑙 , 𝜋∗  is positive and the service is subsidized. If 𝑁∗ > 𝑁𝑙, 𝜋∗ becomes negative due to 

the Pigouvian principle, in which case the service is (more than) self-financed (Figure 3). 

  

Figure 3: Optimal (and equilibrium) fare and optimal subsidy 

Note: the threshold value �̂� between the normal and congested regimes corresponds to the kink in the various functions, while 

the threshold value 𝑁𝑙  between economies/diseconomies of scale corresponds to the point where 𝜏∗(𝑁) and 𝐶𝑇𝐴/𝑁 intersect. 

5. Market distortions 

5.1. Marginal cost of public funds 

 First-best pricing may involve subsidizing the service (Corollary of Proposition 5) and therefore 

levying taxes in order to cover the public deficit. Such taxes have distortionary effects on the economy, 

which are commonly captured in the literature by considering a marginal cost of public funds (MCPF), 

noted 𝜇 with 𝜇 > 0 (Small and Verhoef, 2007).  

 The transit authority now maximizes ∫ 𝐺(𝑛)𝑑𝑛
𝑁

0
− 𝑆𝐶(𝐹, 𝑠, 𝑁) − 𝜇(𝐶𝑇𝐴(𝐹, 𝑠, 𝑁) − 𝑁𝜏), which is 

the previous social welfare function minus the cost of funding the deficit of the transit service 

𝐶𝑇𝐴(𝐹, 𝑠, 𝑁) − 𝑁𝜏 through (distortionary) taxes. Using the equilibrium condition 𝐺(𝑁) =

𝐶𝑈(𝐹, 𝑠, 𝑁) + 𝜏, the maximization problem rewrites as: 

 max
𝐹,𝑠,𝑁

1

1 + 𝜇
∫ 𝐺(𝑛)𝑑𝑛

𝑁

0

+
𝜇

1 + 𝜇
𝑁 𝐺(𝑁) − 𝑆𝐶(𝐹, 𝑠, 𝑁). 

𝑠. 𝑡.  𝐹 ≤ 𝐹0(1 − 𝛿𝑑𝑀𝑁) 

(22) 
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The social welfare maximization problem with a MCPF is analogous to the social welfare and profit 

maximization problems, the gross benefit term being a weighted average of the two previous ones. 

Consequently, the optimal provision rules for service frequency and vehicle capacity remain the same. 

Writing the optimal solution 𝑁∗(𝜇)  as a function of μ, the FOC with respect to demand becomes: 

𝐺(𝑁∗(𝜇)) + 𝜇/(1 + 𝜇 ) 𝑁∗(𝜇)𝐺′(𝑁∗(𝜇)) = 𝑀𝑆𝐶∗(𝑁∗(𝜇)).14 The optimal fare under MCPF is thus:  

𝜏∗(𝜇) =
𝐶𝑇𝐴

𝑁∗(𝜇)
+ 𝑁∗(𝜇)

𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁∗(𝜇)) −

𝜇

1 + 𝜇
𝑁∗(𝜇)𝐺′(𝑁∗(𝜇)) . (23) 

Compared to (16), the new fare includes an additional term −𝜇/(1 + 𝜇)𝑁∗(𝜇)𝐺′(𝑁∗(𝜇)) > 0 which 

represents the transit authority incentive to raise the fare in order to reduce the deficit.  

Proposition 6 

As the marginal cost of public funds μ increases, the optimal fare increases while demand decreases.  

As the cost of public money increases, the transit authority raises the fare in order to reduce the deficit 

(or increase the benefit), as expected. Regarding demand, using 𝐺(𝑁) = 𝐴 − 𝐵𝑁, the FOC can be 

rewritten as: 𝐴 − (1 + 𝜇/(1 + 𝜇))𝐵𝑁∗(𝜇) = 𝑀𝑆𝐶∗(𝑁∗(𝜇)). It is analogous to the FOC at optimum  

𝐴 − 𝐵𝑁∗ = 𝑀𝑆𝐶∗(𝑁∗) except that the demand parameter 𝐵 is replaced by (1 + 𝜇/(1 + 𝜇))𝐵, 

corresponding to a steeper inverse demand curve. From Figure 2, it is then clear that as μ increases, 

the optimal demand 𝑁∗(𝜇) decreases (until converging toward the monopolistic solution as μ → ∞). 

From Proposition 3, it follows that the optimal vehicle size decreases with μ. If  𝑁∗(0) is in the normal 

regime, the optimal frequency always decreases with μ. If 𝑁∗(0) is in the congested regime however, 

the optimal frequency increases with μ at first, then decreases. 

 Considering the marginal cost of public funds leads the transit authority to raise the fare – as a 

monopolist would do – resulting in a lower demand at optimum. The effect on the optimal provision 

of service quality is less trivial. The transit authority always reduces vehicle capacity, but may leverage 

the lower demand to increase frequency in the congested regime, as the cost of adding trains is then 

more than compensated by the consumer surplus due to the improvement in service quality. 

5.2. Car competition 

 A frequent second-best rationale for subsidizing public transit is that car travel is underpriced in 

many cities around the world. We examine this argument in presence of public transit congestion by 

considering that individuals can choose between two modes: private car (C) and public transit (PT). 

The number of users are noted 𝑁𝐶  and 𝑁𝑃𝑇, with 𝑁 = 𝑁𝐶 + 𝑁𝑃𝑇  the total volume of demand. 

 To simplify matters, we consider a linear specification for the cost function of car users: 

 𝐶𝑈
𝐶(𝑁𝐶) = 𝛽

𝑁𝐶

𝐾
, (24) 

                                                           
14 In the limiting case 𝜇 = 0, the FOC degenerates to the FOC obtained at optimum, meaning that 𝑁∗(0) = 𝑁∗ 
and that our notation is consistent. If 𝜇 → +∞, the FOC converges this time toward the monopolistic FOC, 
implying 𝑁∗(𝜇) → 𝑁𝑒.  
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where 𝛽 is the value of travel time by car, and road travel time equals the flow of users 𝑁𝐶  divided by 

(a normalized measure of) road capacity 𝐾.15 Road capacity is fixed, so that the social cost for the road 

system writes: 𝑆𝐶𝐶(𝑁𝐶) = 𝑁𝐶  𝐶𝑈
𝐶(𝑁𝐶) = 𝛽𝑁𝐶

2/𝐾. The marginal social cost is: 𝑀𝑆𝐶𝐶(𝑁𝐶) = 2𝛽𝑁𝐶/𝐾. 

It is linear, and strictly increases for 𝑁𝐶 ∈ [0, +∞[ from 0 to +∞. 

 Consider first the first-best social welfare maximization problem: 

 

max
𝑠,𝐹,𝑁𝑃𝑇,𝑁𝐶

∫ 𝐺(𝑛)𝑑𝑛
𝑁𝐶+𝑁𝑃𝑇

0

− 𝑆𝐶𝐶(𝑁𝐶) − 𝑆𝐶𝑃𝑇(𝐹, 𝑠, 𝑁𝑃𝑇). 

𝑠. 𝑡. {

𝑁𝐶 ≥ 0                     
𝑁𝑃𝑇 ≥ 0                   
𝐹 ≤ 𝐹0(1 − 𝛿𝑑𝑀𝑁𝑃𝑇)

 

(25) 

 

 

From (25), it is straightforward to show that car competition does not change the optimal provision 

rules for frequency and vehicle size, only the optimal level of demand as stated by Proposition 7. 

Proposition 7 

At the first-best optimum, the demand for car and for public transit are given by: 

 
𝐺(𝑁∗) = 𝑀𝑆𝐶𝐶(𝑁∗), 𝑁𝐶

∗ = 𝑁∗,  𝑁𝑃𝑇
∗ = 0                     if 𝑁∗ ≤ 𝑁𝑃𝑇>0 

𝐺(𝑁∗) = 𝑀𝑆𝐶𝐶(𝑁𝐶
∗) = 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ )                            if 𝑁∗ ≥ 𝑁𝑃𝑇>0 

(26) 

As the total demand 𝑁∗ increases, three different patterns successively occur: 

 at first, all individuals use the car, and only 𝑁𝐶
∗ increases; 

 then the number of public transit users increases, while the number of car users declines; 

 eventually car users and public transit users both increase in number. 

First-best optimality implies equating marginal social costs across all modes used.16 If total demand is 

too low, the curve 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) does not intersect 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇). The cost of providing public 

transit is too high for too low a demand, it is then more efficient to use only the car (see Figure A.2). 

As total demand 𝑁∗ increases, eventually 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) and 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇) intersect at two points, 

the second of which is a candidate for the optimal solution. It is only a candidate indeed, as a second 

condition for optimality is for the social cost of providing public transport to 𝑁𝑃𝑇
∗  users 𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ) 

(green area in Figure A.2) to be lower than the social cost of transporting the same users by car which, 

seeing that there are already 𝑁∗ − 𝑁𝑃𝑇
∗  car users, is 𝑆𝐶𝐶(𝑁∗) − 𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇

∗  ) (quadrilateral under 

the blue curve in Figure A.2). While this condition is not satisfied at first,17 eventually it becomes 

optimal to provide public transit. This causes the number of transit users to jump from 0 to 𝑁𝑃𝑇
∗ > 0, 

                                                           

15 This corresponds e.g. to the equilibrium user cost of a road bottleneck model (Arnott et al., 1993). 
16 Note that because 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) = 2𝛽(𝑁∗ − 𝑁𝑃𝑇)/𝐾 is an affine function of 𝑁𝑃𝑇, the problem of solving 
𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) = 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ) is equivalent to solving the optimal demand equation 𝐺(𝑁∗) = 𝑀𝑆𝐶∗(𝑁∗) in 

the standard optimal case without the road mode (see subsection 3.2). 
17 Consider the case where the curves 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) and 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇) are tangent and only intersect at 𝑁𝑂. 
At 𝑁𝑃𝑇 = 𝑁𝑂 the marginal social costs are equated across modes: 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑂) = 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑂). Yet, the green 
area 𝑆𝐶𝑃𝑇

∗ (𝑁𝑂) is strictly larger than the blue quadrilateral 𝑆𝐶𝐶(𝑁∗) − 𝑆𝐶𝐶(𝑁∗ − 𝑁𝑂  ), meaning that it is less 
costly to transport all 𝑁∗ users by car, rather than 𝑁∗ − 𝑁𝑂 users by car and 𝑁𝑂 users by public transit. 
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while the number of car users 𝑁𝐶
∗ drops from 𝑁∗ to 𝑁∗ − 𝑁𝑃𝑇

∗ . From there, as total demand increases, 

the volume of public transit users 𝑁𝑃𝑇
∗  increases. In the normal regime, this causes the marginal social 

cost 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) to decrease. From 𝑀𝑆𝐶𝐶(𝑁𝐶
∗) = 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ), this implies that 𝑁𝐶

∗ must decrease 

as 𝑀𝑆𝐶𝐶(. ) is a strictly increasing function. In the congested regime, 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) increases however, 

and thus so does 𝑁𝐶
∗. As the public transport system becomes congested, the road mode becomes 

again a relevant alternative to transport additional users. 

 Regarding pricing, the first-best solution is: 

 𝜏𝐶
∗ = 𝑁𝐶

∗
𝑑𝐴𝑆𝐶𝐶

𝑑𝑁
(𝑁𝐶

∗),                                                                 (27) 

 𝜏𝑃𝑇
∗ =

𝐶𝑇𝐴(𝐹∗(𝑁𝑃𝑇
∗ ), 𝑠∗(𝑁𝑃𝑇

∗ ), 𝑁𝑃𝑇
∗ )

𝑁𝑃𝑇
∗ + 𝑁𝑃𝑇

∗
𝑑𝐴𝑆𝐶𝑃𝑇

∗

𝑑𝑁
(𝑁𝑃𝑇

∗ ). (28) 

The optimal fare is the same as in the single-mode case, so that results regarding the self-financing of 

the system (Corollary of Proposition 5) still apply. Because it reduces public transportation demand,18 

car competition makes the transit service less likely to be congested, thus more likely to be subsidized. 

The optimal car tax is simply equal to the road externality 𝑁𝐶
∗ × 𝑑𝐴𝑆𝐶𝐶/ 𝑑𝑁 (operating costs are not 

considered for this mode). 

 Consider now the second-best case in which car travel is not taxed (𝜏𝐶 = 0), so that car users only 

incur the private cost 𝐶𝑈
𝐶(𝑁𝐶). The second-best solution is characterized by the following system: 

𝐺(𝑁∗∗) = 𝐶𝑈
𝐶(𝑁∗∗), 𝑁𝐶

∗∗ = 𝑁∗∗,  𝑁𝑃𝑇
∗∗ = 0                                                                  if 𝑁∗∗ ≤ 𝑁𝑃𝑇>0

′  

𝐺(𝑁∗∗) = 𝐶𝑈
𝐶(𝑁𝐶

∗∗) = 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗∗ ) −
−𝐺′(𝑁∗∗)

𝐶′𝑈
𝐶 (𝑁𝐶

∗∗) − 𝐺′(𝑁∗∗)
(𝑀𝑆𝐶𝐶(𝑁𝐶

∗∗) − 𝐶𝑈
𝐶(𝑁𝐶

∗∗)) if 𝑁∗∗ > 𝑁𝑃𝑇>0
′  

(29) 

𝜏𝐶
∗∗ = 0,                                                                 (30) 

𝜏𝑃𝑇
∗∗ =

𝐶𝑇𝐴

𝑁𝑃𝑇
∗∗ + 𝑁𝑃𝑇

∗∗
𝑑𝐴𝑆𝐶𝑃𝑇

∗

𝑑𝑁
(𝑁𝑃𝑇

∗∗ ) −
−𝐺′(𝑁∗∗)

𝐶′𝑈
𝐶 (𝑁𝐶

∗∗) − 𝐺′(𝑁∗∗)
(𝑀𝑆𝐶𝐶(𝑁𝐶

∗∗) − 𝐶𝑈
𝐶(𝑁𝐶

∗∗)). (31) 

Compared to the first-best optimum, the fare is reduced by −𝐺′/(𝐶′𝑈
𝐶 − 𝐺′)(𝑀𝑆𝐶𝐶 − 𝐶𝑈

𝐶) to increase 

the competitiveness of public transit and compensate for the fact that car travel is underpriced. The 

ratio −𝐺′/(𝐶′𝑈
𝐶 − 𝐺′) being equal to 𝐵/(𝐵 + 𝛽/𝐾) < 1, the transit fare reduction is less than the 

implicit car subsidy 𝑀𝑆𝐶𝐶 − 𝐶𝑈
𝐶  corresponding to the absence of road pricing.  If demand is too strong, 

diseconomies of scale in public transit (captured by the term 𝑁𝑃𝑇
∗∗  𝑑𝐴𝑆𝐶𝑃𝑇

∗ /𝑑𝑁) exceed this discount, 

however, resulting in a negative net subsidy: 𝜏𝑃𝑇
∗∗ > 𝐶𝑇𝐴/𝑁𝑃𝑇

∗∗ .  

 The above results are summarized in Figure 4. If total demand is low, the railway line is not 

economically sustainable; only the car mode is used. The latter being subject to diseconomies of scale, 

the average social cost steadily rises with demand. As demand further increases, public transit arises 

as a relevant alternative and the line is operated (with a subsidy). Economies of scale in public transit 

                                                           
18 From (26), if 𝑁𝑃𝑇

∗ > 0 then 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗  ) = 𝐺(𝑁𝑃𝑇
∗ + 𝑁𝐶

∗ ). Considering that 𝐺(𝑁) strictly decreases with 𝑁 
and 𝑁𝐶

∗ > 0, this implies 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) < 𝐺(𝑁𝑃𝑇
∗ ).  From Figure 2, it is then clear that the solution 𝑁𝑃𝑇

∗  is lower 
than the solution 𝑁∗ without the car mode. 
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mitigate the increase of the average social cost. As congestion builds up, the public transit system 

eventually falls into diseconomies of scale. Subsidies are no longer necessary, but car use and the 

average social cost both steadily rise again as a result. In the second-best case, not taxing car travel 

leads to a greater modal share of the car despite a substantially larger subsidy of the railway service. 

The impact on the average social cost remains very limited, however.19  

 

Figure 4: Influence of car competition on mode choice (A), the average social cost and subsidies (B) 

 

6. Data 

 In order to investigate empirically the existence of scale diseconomies in public transit networks, 

we consider the Piccadilly Line, the second-longest tube line of the London Underground network. The 

Piccadilly line serves many of London’s key tourist attractions as well as Heathrow airport (Figure A.3), 

making it the sixth busiest London tube line according to 2016/17 data from Transport for London (TfL). 

Due to an ageing rolling stock and insufficient frequency during peak times, the Piccadilly line faces 

recurrent overcrowding issues in its central section, which culminate at King’s Cross St Pancras station. 

A major capacity upgrade investment program is planned as part of the New Tube for London scheme 

in order to relieve congestion, making the Piccadilly line a prime candidate to illustrate the effects of 

overcrowding and possible ways to address them. 

                                                           
19 Because second-best pricing leads to a greater total travel demand than under first-best pricing (𝑁∗∗ > 𝑁∗), 
the negative impact on social welfare (not illustrated here) is substantially more pronounced, meaning that car 
taxation does matter. 

(A) Number of users by mode (B) Average social cost and subsidy 
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 Table 3 reports key figures of the Piccadilly line for the morning peak (7am - 10am) and hyperpeak 

(8am - 9am) periods, and the corresponding peak direction (westbound).20 The central section 

corresponds to the busiest part of the line, which extends from Wood Green to Russell Square station. 

The Piccadilly line is characterized by an average service quality for a metro line, with a capacity of 684 

users per vehicle and an average frequency of 22 trains/h during the morning peak. The frequency is 

even slightly lower during the hyperpeak (21.7 trains/h), foreshadowing possible overcrowding issues. 

While the line is not very busy overall, it nears its maximum capacity in the central section, with an 

average load factor of 63% during the morning peak hour that rises to 82% during the hyperpeak.21 

This results from a substantially stronger demand in the central section - almost four times the average 

boarding rate (per km) of the whole line -, which is partly compensated for by the lower trip distances 

(6.07 km in the central section against 9.35 km for the whole line). 

Table 3 : Key figures of the Piccadilly line (2017) 
 

Central  section Whole line 

Length (km) 9.22 71.27 

Number of interstations 8 51 

Average interstation distance (km) 1.19 1.43 

Vehicle capacity (users) 684 684 

Frequency  (trains/h)       MPa 22.0 22.0 

                                            MHb 21.7 21.7 

Mean travel distance  (km) 6.07 9.35 

Boardings  (users/h.km)  MPa 1 560.1 425.1 

                                            MHb 1 999.6 540.6 

Average load factor        MPa 63% 27% 

                                           MHb 82% 34% 

 a MP: morning peak → 7am to 10am 

 b MH: morning hyperpeak → 8am to 9am 

 Source: Online Appendix A 

 Considering our objective to test for and investigate the effects of overcrowding, the application 

focuses on the central section of the Piccadilly line and on the morning hyperpeak period (8am – 9am). 

The parameter values are reported in Table 4 and grouped according to three parameter categories: 

technical, demand, and cost. The following paragraphs briefly discuss the parameter values and how 

they were computed, including data sources. More extensive information regarding data is available 

in Online Appendix A. 

                                                           
20 In 2017, trip direction on the Piccadilly line during the morning peak period (7am – 10am) was split as follows: 
56% westbound, 44% eastbound (RODS 2017). 
21 On the busiest interstation (Kings Cross – Russell square), the average load factor even exceeds 100% during 
the hyperpeak. 
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Table 4: Parameter values 

 Parameter Value Source 

Technical 
  

 

𝑑𝑚 Interstation distance (km) 1.19 TfL – Interstation database 
s Vehicle capacity (users) 684 TfL - Rolling Stock Information Sheets 

𝑣𝐹 Free-flow commercial speed (km/h) 40.89 TfL – Interstation database 

𝐻0 Minimum safe headway (s) 111.8 
Authors’ estimate from TfL validation and 
supply datasets 

δ Marginal dwelling time (s) 0.43 
Authors’ estimate from TfL validation and 
supply datasets 

Demand 
  

 

A Maximum WTP (£) 14.12 Authors’ estimate from RODS 2017 
B Slope of WTP (£/user.km-1.h-1 )  - 0.0040 Authors’ estimate from RODS 2017 
d Mean trip length (km) 6.07  Authors’ estimate from RODS 2017 

𝛼𝑊 Value of waiting time (£/h) 10.62  Abrantes & Wardman (2011) 
𝛼𝑉 Value of in-vehicle travel time (£/h) 7.33  Abrantes & Wardman (2011) 
𝛼𝐶 Maximum crowding penalty (£/trip) 1.65  Whelan & Crockett (2009) 

Cost 
  

 

𝑐𝐾 Capital cost parameter (£/seat.km) 0.0425  TfL + Parry & Small (2009) 
𝑐𝑂 Operating cost parameter (£/train.h) 1431.3  TfL + Parry & Small (2009) 
μ Marginal cost of public funds 0.3 Kleven & Kreiner (2006) 
    

 

 The technical parameters describe the main characteristics of the line transportation technology. 

This includes interstation distance, free-flow commercial speed and vehicle capacity, which are readily 

available from TfL data. The minimum safe headway and the marginal dwelling time are estimated by 

regressing real supply (measured by the largest observed frequency per every 100 tap-in in trains/h) 

against observed demand (measured by the per km validation rate), using 2013 and 2014 data 

collected for each day on a hourly basis. More specifically, we estimate the structural equation 𝐹 =

𝐹0(1 − 𝛿𝑑𝑀𝑁) for the congested regime (Figure 5), which allows us to retrieve 𝐻0 = 𝐹0
−1 and δ (as 

the value of 𝑑𝑀 is known). The minimum safe headway estimate is H0 = 111.8 s, which corresponds to 

a maximum frequency of 32 trains/h, while the marginal dwelling time estimate is 0.42 s per additional 

user.22 

                                                           
22 Lam et al. (1998) find a marginal dwelling time of δ = 0.037 s/user for the Hong-Kong mass rapid transit system, 
which converts here to δ = 0.082 s/user as metro carriages of the Piccadilly line consist of 18 double-doors 
(instead of 40 for Hong Kong). Puong (2000) finds in the case of the MBTA red line δ = 4.1 s/user/double-door, 
which again converts here to δ = 0.23 s/user. The greater marginal dwelling time estimate in this study is likely 
related to the high level of crowding. As a matter of fact, Puong (2000) empirically finds 𝛿 to significantly increase 
with the crowding level, as standees in the vehicle and/or on the platform hinder user transfer movements, 
causing each boarding and alighting to take more time. 



22 

 

 

Figure 5: Relationship between real supply and observed demand levels 

 Now moving to the demand parameters, the linear demand function is estimated by crossing the 

observed demand level with the generalized price, assuming a generalized price elasticity of -0.75.23 

The mean trip length is estimated from the Rolling Origin and Destination Survey (RODS) 2017. The 

values of in-vehicle travel time and waiting time are borrowed from Abrantes and Wardman (2011), 

while the maximum crowding penalty was estimated by adapting the results of Whelan and Crockett 

(2009) to the case study. 

 Last, the operating cost and capital cost parameters are estimated using TfL financial reports, 

completed by cost parameters retrieved from Parry and Small (2009). The marginal cost of public funds 

is set to 0.3 (Kleven and Kreiner, 2006). 

7. Empirical results 

7.1. Medium run 

 We first present the medium-run solution - keeping vehicle size fixed - for the three considered 

provision regimes: monopoly, optimum, and MCPF. The MCPF solution being an intermediate between 

the monopolistic and optimal solutions, the discussion focuses on the latter two cases.  

                                                           
23 The generalized price elasticity of -0.75 is chosen as a central value from the empirical literature (Paulley et al., 
2006). It is also very close to the value -0.8 reported by Parry and Small (2009) for peak rail travel in London. 
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 As expected, transit fares are greater under monopoly than at optimum (Table 5), while demand 

follows the opposite pattern. The ensuing high level of demand at optimum results in overcrowding, 

hence a lower frequency at optimum than under monopoly (22.7 against 25.4 trains/h, respectively). 

This contrasts with the standard result from the literature that frequency increases with demand and 

is thereby greater at optimum than under profit maximization.24 All three components of the user cost 

are greater at optimum than under monopoly: a lower frequency implies greater waiting costs and, 

combined with a stronger demand, longer boarding and alighting times and greater crowding levels. 

Conversely, the greater demand plus a lower frequency causes average operating costs to be lower at 

optimum than under monopoly. All in all, the fare is set above the average operating cost in all three 

provision regimes and in the observed situation, implying a negative subsidy regarding the first-best 

optimum. Incidentally, we find the observed transit fare (2.88£) to be close to the optimal one (2.58£), 

so that limited welfare gains are to be expected from pricing adjustments alone. 

 Moving to the crux of the paper, we find substantial diseconomies of scale for both the optimum 

and MCPF cases and the observed situation (as already implied by the large negative subsidy regarding 

the optimum). In all three cases, the strong level of demand causes overcrowding and congested train 

operations, which ultimately result in diseconomies of scale. Moderate scale economies persist under 

monopoly as the lower demand allows for normal train operations.  

 The breakdown of the optimal subsidy shows that strong scale diseconomies on the demand side 

are partly offset by supply-side scale economies (Table 6). The crowding effect is largely accountable 

for the negative subsidy, representing more than two thirds of the (negative) overall user externality.  

The Mohring effect (waiting time externality) is on the other hand negligible due to the high frequency, 

contrasting with its preponderance in the theoretical literature. To better understand how and to what 

extent the overcrowding effect underlies our results, we relax the maximum frequency constraint (4) 

and compute the optimal subsidy. Failing to account for overcrowding entails substantial errors. 

Qualitatively, it leads to erroneous signs regarding the optimal subsidy and the overall user externality. 

Quantitatively, the absolute and relative magnitudes of the various externalities are markedly different 

depending on whether one considers the maximum frequency constraint (4) or not. The crowding and 

travel time externalities in particular become preponderant as frequency declines due to a too strong 

demand and may no longer be neglected. Regarding supply-side externalities, while considering 

congestion between vehicles changes neither the sign nor the relative weight of each of the two 

elementary externalities, it does strongly affect their magnitude.  

                                                           
24 This is true for separable (in N, F and s) inverse demand functions. As discussed in Basso and Jara-Diaz (2010), 
a monopolist may oversupply frequency for more complex, non-separable inverse demand functions. 
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Table 5: Fare, scale economies and welfare estimates (medium run) 

 Monopoly Optimum MCPF Observed 

Patronage (users/km) 1 312 2 077 1 848 1 999 

Regime Normal Congested Congested Congested 

      

Frequency (trains/h) 25.4 22.7 23.7 21.7 

Vehicle capacity (users) 684 684 684 684 

      

User cost (£) 2.33 3.15 2.87 3.17 

waiting      0.21      0.23      0.22      0.25 

in-vehicle travel time      1.36      1.58      1.50      1.58 

crowding      0.76      1.34      1.14      1.35 

Operating cost (£/user) 1.41 0.87 0.99 0.87 

vehicle capital costs     0.56      0.32      0.37      0.55 

other operating costs     0.85      0.55      0.62      0.32 

      

Price (£) 6.50 2.58 3.79 2.88 

Markup/tax (+) or subsidy (-) 5.08 1.71 2.80 2.01 

      

Waiting time (min.) 1.18 1.32 1.27 1.38 

Travel time (min.) 11.16 12.92 12.31 11.04 

Load Factor 46% 81% 69% 82% 

      

Scale economies (£) 0.21 -1.71 -1.08 -1.49 

Social welfare  (£) 10 140 12 258 12 059 12 081 

Average social welfare (£/user) 7.73 5.90 6.53 6.04 

Table 6: Breakdown of the optimal subsidy (medium run) 

 Between-vehicle congestion 

 with without 

Optimal subsidy (£) -1.71 0.14 

         coming from   

       waiting externality  -0.10 0.13 

       travel time externality -0.70 -0.02 

       crowding externality -1.91 -0.04 

       capital cost externality 0.45 0.03 

       operating cost externality 0.54 0.04 

7.2. Long run 

 Through adjustments in vehicle size, the transit agency is able to accommodate more demand in 

the long run. This results in lower fares, larger vehicle capacities and greater demand levels than in the 

medium run (Table 7). The difference is especially salient at optimum, with an optimal vehicle size 

more than twice the current one. As a matter of fact, whatever the provision regime, the transit agency 

adjusts vehicle size in the long run in order to reach a same constant target load factor (Proposition 2), 

here 40%, causing vehicle capacity to be much larger at optimum in response to the stronger demand. 
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The increase in vehicle size comes at the cost of a decrease in frequency: the optimal frequency falls 

to 21.1 trains/h in the long run (against 22.7 trains/h in the medium run). Frequency is again slightly 

greater under monopoly as the lower demand level allows for normal operations, with 21.6 trains/h 

(against 25.4 trains/h in the medium run). By adjusting vehicle size, the transit agency is able to operate 

the line more efficiently. In the long run the service provision is therefore characterized by significantly 

lower scale diseconomies at optimum (with or without MCPF), and by slightly larger scale economies 

under monopoly, all contributing to the lower transit fares in the long run than in the medium run. 

Table 7: Fare, scale economies and welfare estimates (long run) 

 Monopoly Optimum MCPF Observed 

Patronage N  (users/km) 1 320  2 423  2 058  1 999 

Regime Normal Congested Congested Congested 

  
   

 

Frequency (trains/h) 21.6 21.1 22.7 21.7 

Vehicle capacity (users) 939 1767 1389 684 

  
   

 

User cost (£) 2.31 2.61 2.46 3.17 

waiting    0.25    0.25    0.23      0.25 

in-vehicle travel time    1.41    1.70    1.57      1.58 

crowding    0.65    0.65    0.65      1.35 

Operating cost (£/user) 1.40 1.13 1.21 0.87 

vehicle capital costs    0.65    0.65    0.65      0.55 

other operating costs    0.74    0.48    0.56      0.32 

  
   

 

Price (£) 6.48 1.74 3.36 2.88 

Markup/tax (+) or subsidy (-) 5.08 0.61 2.15 2.01 

  
   

 

Waiting time (min.) 1.39 1.42 1.32 1.38 

Travel time (min.) 11.58 13.94 12.86 11.04 

Load Factor 40% 40% 40% 82% 

  
   

 

Scale economies (£) 0.25 -0.61 -0.23 -1.49 

Social welfare  (£) 10 225 13 313 12 960 12 081 

Average social welfare (£/user) 7.74 5.49 6.30 6.04 

  

 Despite the long run optimal subsidy being of the same sign as in the medium run, i.e. negative, 

its decomposition is substantially different (Table 8). As the long-run optimal provision rule states that 

vehicle capacity must be set to reach a (constant) target load factor, the crowding cost and capital cost 

per capita are equal and constant (Proposition 2), so that the corresponding externalities are zeroed.  

The travel time externality becomes the larger one (with -0.94 £ per additional user), again partly 

compensated by the operating cost externality, while the (negative) Mohring effect is slightly greater 

than in the short run. Again, accounting for congestion between vehicles leads to results that are quite 

different both qualitatively and quantitatively from the baseline model, though a lower gap in optimal 

subsidies relatively to the short run. 
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Table 8: Breakdown of the optimal subsidy (long run) 

 Between-vehicle congestion 

 with without 

Optimal subsidy (£) -0.61 0.15 

         coming from     

       waiting externality  -0.13 0.13 

       travel time externality -0.94 -0.05 

       crowding externality 0 0 

       capital cost externality 0 0 

       operating cost externality 0.47 0.07 

 

7.3. Off-peak 

The midday off-peak period (10a.m - 4p.m) allows contrasting the previous results with a lower 

demand case. Parameter values are the same as previously, except vehicle capital costs which are 

entirely assigned to the peak period and thus assumed to be 0, and the demand function parameters 

that are updated to match the off-peak level. Results are presented for the medium run only. 

Table 9: Fare, scale economies and welfare estimates (off-peak, medium run) 

 Monopoly Optimum MCPF Observed 

Patronage N  (users/km) 430  866  703  669  

Regime Normal Normal Normal Normal 

  
    

Frequency (trains/h) 13.4 23.7 19.8 20.5 

Vehicle capacity (users) 684 684 684 684 

  
    

User cost (£) 1.67 1.57 1.59 1.54 

waiting    0.40    0.22    0.27    0.26 

in-vehicle travel time    0.93    0.95    0.94    0.93 

crowding    0.35    0.40    0.38    0.35 

TA cost (£/user) 1.01 0.90 0.93 0.99 

vehicle capital costs    0    0    0    0 

operating costs    1.01    0.90    0.93    0.99 

  
    

Price (£) 3.78 0.68 1.85 2.28 

Markup/tax (+) or subsidy (-) 2.77 -0.22 0.93 1.29 

  
    

Waiting time (min.) 2.24 1.27 1.51 1.46 

Travel time (min.) 7.61 7.76 7.72 11.04 

Load Factor 21% 24% 23% 21% 

  
    

Scale economies (£) 0.40 0.22 0.27 0.28 

Social welfare  (£) 1 874 2 567 2 469 2 422 

Average social welfare (£/user) 4.35 2.96 3.51 3.62 
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As demand is lower during the off-peak period, trains operate normally in all cases considered 

(Table 9). This leads to standard results from the literature, such as a greater frequency and lower user 

costs at optimum than under monopoly, and to (moderate) scale economies for all provision regimes, 

implying a positive subsidy at optimum. 

The analysis of the optimal subsidy falls likewise in line with the literature, with a dominating 

Mohring effect, followed by the operating cost externality (Table 10). Due to the lower demand levels, 

the crowding and travel time externalities are significantly lower than during the morning hyperpeak. 

Vehicle capital costs being entirely assigned to the morning peak period, there is no related externality. 

Here failing to account for overcrowding has obviously no effect as the line is not overcrowded during 

the off-peak period in the first place. 

Table 10: Breakdown of the optimal subsidy (off-peak, medium run) 

 Between-vehicle congestion 

 with without 

Optimal subsidy (£) 0.22 0.22 

         coming from 
  

       waiting externality  0.19 0.19 

       travel time externality -0.02 -0.02 

       crowding externality -0.06 -0.06 

       capital cost externality 0 0 

       operating cost externality 0.11 0.11 

 

7.4. New Tube for London 

 Considering its strong usage and recurrent overcrowding issues during the morning peak period, 

the Piccadilly line is planned for an upgrade as part of a broader investment program called New Tube 

for London (NTfL). The investment objective regarding the Piccadilly line is to raise the total line 

capacity as well as to improve service quality through an increase in both vehicle size and frequency. 

The former will be achieved through the purchase of 94 new vehicles with enhanced carriage capacity. 

The wider doors of the new vehicles will additionally allow to decrease boarding and alighting times. 

The NTfL program also includes upgrading the signaling system of the Piccadilly line in order to reduce 

the minimum safe headway, which combined to the improved boarding/alighting times will allow for 

higher frequencies during peak times. These investment decisions are in perfect line with our findings, 

that increasing vehicle capacity is welfare improving, but that with the current transport technology 

(in terms of minimum safe headway and boarding/alighting time) the line frequency would still be 

limited by the overcrowding, hence subject to diseconomies of scale. 

 Aiming to provide a first insight into the welfare effects of the NTfL program, we consider that it 

translates into the following changes for the Piccadilly line: 1) vehicle capacity s is expanded by 30%, 

2) the unit boarding/alighting δ is decreased by 20%, and 3) the minimum safe headway is decreased 

to H0 = 100 s (corresponding to a maximum frequency F0 of 36 trains/h). We also consider a 20% 

demand increase at the corresponding time horizon (2025) for both the baseline and NTfL scenarios.  
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 The results show that the increase in demand leads to a substantial degradation of service quality 

in the baseline scenario. Frequency decreases from 22.7 trains/h (Table 5) to 21.8 trains/h (Table 11), 

while the load factor increases from 81% to 92%. The line is subject to even greater scale diseconomies 

as a result, as a marginal user bears on other users an additional cost of -2.29£, against -1.71£ formerly.  

Compared to this do-nothing scenario, the NTfL program would as intended significantly improve both 

service frequency (from 21.8 to 25.1 trains/h) and comfort (the load factor falling from 92% to 72%). 

While it would still fall short from solving the overcrowding issue as it would attract yet more users, 

the NTfL program would limit diseconomies of scales (-32%) through greater operational efficiency, 

hence a substantial social welfare gain (+15%). 

Table 11: Fare, scale economies and welfare estimates of the NTfL program 

 Baseline NTfL 

Patronage N  (users/km) 2 269  2 642  

Regime Congested Congested 

  
  

Frequency (trains/h) 21.8 25.1 

Vehicle capacity (users) 684 889 

  
  

User cost (£) 3.41 2.93 

waiting    0.24    0.21 

in-vehicle travel time    1.64    1.54 

crowding    1.53    1.18 

TA cost (£/user) 0.79 0.75 

vehicle capital costs    0.28    0.28 

operating costs    0.51    0.47 

  
  

Price (£) 3.08 2.30 

Markup/tax (+) or subsidy (-) 2.29 1.56 

  
  

Waiting time (min.) 1.38 1.19 

Travel time (min.) 13.46 12.58 

Load Factor 92% 72% 

  
  

Scale economies (£) -2.29 -1.56 

Social welfare  (£) 13 844 15 842 

Average social welfare (£/user) 6.10 6.00 

8. Conclusion 

Our analysis suggests that very crowded lines face operational constraints regarding service frequency 

that lead to diseconomies of scale, as illustrated here for the Piccadilly subway line in London. When 

so, the fare should be set above the average operating cost, implying a negative subsidy (i.e. a tax). 

The key mechanism underpinning our findings is the presence of congestion between transit vehicles: 

beyond a certain level of demand, boarding and alighting takes so much time that frequency decreases 

because of trains sharing the same platform and of the minimum headway between successive trains. 

Adjusting vehicle capacity allows to accommodate more demand in the long run and thus to delay the 

occurrence of overcrowding, though only up to a certain extent.  



29 

 Without between-vehicle congestion, our model would always predict economies of scale in the 

medium run and long run, whatever the level of demand. This contrasts with Tirachini et al. (2010) 

who find that crowding eventually results in scale diseconomies in the medium run (fixed vehicle size). 

The difference in our results - linked to the use of a quadratic function of the vehicle load factor for 

the crowding cost as opposed to a linear function in our case - underlines the significant influence of 

model specification in determining the final balance between economies and diseconomies of scale. 

Assuming stronger negative externalities - as in Tirachini et al. (2010) regarding crowding - would 

increase diseconomies of scale, whereas assuming greater supply-side economies of scale or stronger 

positive user externalities – e.g. with regard to the Mohring effect - would yield the opposite. Similarly, 

the choice of a simple linear inverse demand function in our model implies that the provision rules are 

the same for all three provision regimes (optimal, monopolistic, MCPF), so that ultimately differences 

in service quality are entirely driven by differences in the levels of demand. Opting for more complex, 

non-separable inverse demand functions could yield different results as established by Spence (1975). 

In light of the above, this work intends to show that congestion between vehicles is a major source of 

diseconomies of scale for heavily used transit lines – as shown theoretically using an analytical model 

that is otherwise always characterized by economies of scale, and empirically through the substantial 

corrections to the externalities estimates for the peak periods - that may not be neglected and should 

be addressed by appropriate policies (such as pricing or technological upgrades). 

 The analysis focuses on the case of a single line over a single time period (either peak or off-peak). 

Within a public transit network, the use of transit lines varies both in space (between lines) and in time 

(between peak and off-peak). Thus our results suggest to enforce fare differentiation in order to shift 

demand away from the busiest lines toward less crowded time periods/transit lines. By doing so, 

diseconomies of scale on the congested lines would be partly if not fully compensated for by greater 

economies of scale on the less busy lines/time periods due to the increase in demand (Mohring effect). 

Network adjustments could alleviate congestion in the very long run by designing alternate lines for 

the most popular OD pairs, again mitigating diseconomies of scale (Jara-Díaz and Gschwender, 2003b). 

Because very busy lines often come with intensive land use along the line, land availability and land 

prices are often a significant hurdle to such new infrastructure solutions, however. 

  Among the other caveats, the vehicle technology is deliberately represented in a simple fashion 

to keep the model tractable: a constant unit boarding/alighting time (implying that the number of 

openings remains constant and independent from vehicle capacity), yet no limit on vehicle capacity. 

Preliminary computations show that making boarding/alighting time a function of vehicle size delays 

the occurrence of overcrowding (as bigger vehicles handle boardings and alightings more efficiently), 

but does not change our main results, yet at the cost of much greater analytical complexity. Conversely, 

capping vehicle size (as train platforms cannot expand indefinitely) would strengthen diseconomies of 

scale by limiting the transit authority options to meet stronger demand - as shown by Hörcher (2017) 

- thus strengthening our main results. Finally, environmental externalities were not factored in the 

analysis. Again, these would lead to greater diseconomies of scale and social welfare losses if the 

transit line is congested, especially in presence of an unpriced road alternative. 

 To conclude, to reply to the question raised by Parry and Small (2009), “Should urban transit 

subsidies be reduced?”, our model suggests that in some non-so uncommon cases, the answer should 

be “yes”, and if heavily crowded urban transit system remain subsided, it should not be motivated by 

the usual rationales (economies of scale and underpricing of car travel).  
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Appendix A – Additional figures 

 

Figure A.1: Limit �̂� between the normal and congested regimes 
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Figure A.2: Optimal demand levels for car and for public transit 

Note: because 𝑀𝑆𝐶𝐶(0) = 0, the curve 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇) always intersects the abscissae axis at 𝑁𝑃𝑇 = 𝑁∗.   

(a) Low total 

demand  

(b) Medium total 

demand  

(c) High total 

demand  
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Figure A.3: Map of the Piccadilly line 
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Appendix B - Proofs 

Proposition 1 (optimal frequency) 

The Lagrangian corresponding to the constrained minimization problem writes: 

ℒ = 𝑆𝐶(𝐹, 𝑠, 𝑁) + 𝜆(𝐹 − 𝐹0(1 − 𝛿𝑑𝑀𝑁)). 

The first-order condition (FOC) relative to service frequency is: 

𝜕ℒ

𝜕𝐹
=

𝜕𝑆𝐶

𝜕𝐹
+ 𝜆 = −

𝑁

𝐹∗2 (
𝛼𝑊

2
+ 𝛼𝑉𝑑𝛿𝑁 + 𝛼𝐶𝑑

𝑁

𝑠∗
) + 𝑐𝐾𝑠∗ +

𝑐𝑂

𝑣𝐹
+ 𝜆 = 0. 

Assume first that the constraint (4) is not binding: 𝜆 = 0. Raising frequency decreases waiting costs, 

in-vehicle costs (through shorter boarding-alighting times) and crowding costs (through lower vehicle 

loads). On the other hand, it raises operating costs and capital costs as it involves an increase in both 

vehicle-hours and vehicle-kilometers. The FOC can be rewritten as: 

 𝑐𝑂 (
𝐹∗

𝑣𝐹
+ 𝛿𝑁) + 𝑐𝐾𝑠∗𝐹 = 𝑁 (

𝛼𝑊

2𝐹∗
+ 𝛼𝑉

𝛿𝑑𝑁

𝐹∗
+ 𝛼𝐶

𝑑𝑁

𝑠∗𝐹∗
) + 𝑐𝑂𝛿𝑁 , (32) 

which is Proposition 1. Rearranging the above equality yields: 

 𝐹∗ = √
1/2 𝛼𝑊𝑁 + 𝑑𝑁²(𝛼𝑉𝛿 + 𝛼𝐶/𝑠∗)

𝑐𝐾𝑠∗ + 𝑐𝑂/𝑣𝐹
. (33) 

If vehicle size is exogenous (medium-run adjustment), the optimal frequency 𝐹∗ does not follow the 

square root principle because of: 1) variable alighting-boarding times and 2) in-vehicle crowding.  

Next assume that the constraint (4) is binding. The optimal frequency equals the maximal feasible one: 

𝐹∗ = 𝐹0(1 − 𝛿𝑑𝑀𝑁).              

Proposition 2 (vehicle size) 

The FOC relative to vehicle size s is: 

𝜕ℒ

𝜕𝑠
=

𝜕𝑆𝐶

𝜕𝑠
= −𝛼𝐶𝑑

𝑁2

𝑠∗2𝐹∗
+ 𝑐𝐾𝐹∗ = 0, 

 ⟺                           𝑁𝛼𝐶

𝑑𝑁

𝑠∗𝐹∗
= 𝑐𝐾𝑠∗𝐹∗.                           (34) 

Increasing vehicle size reduces crowding costs, but increases capital costs. At optimum, the two are 

equal, hence Proposition 2.  

We can then rewrite (34) as 𝑠∗𝐹∗ = √𝛼𝐶𝑑 /𝑐𝐾𝑁, so that the optimal load factor is: 

𝑙𝐶
∗ =

𝑑𝑁

𝑠∗𝐹∗
= √

𝑐𝐾𝑑

𝛼𝐶
. 

It is constant and independent from N and F.                
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Table 1 (optimal frequency and vehicle size) 

Consider first the normal regime. Combining the two FOC yields: 

𝛼𝐶𝑑𝑁2

𝑐𝐾𝑠∗2 =
1/2 𝛼𝑊𝑁 + 𝑑𝑁²(𝛼𝑉𝛿 + 𝛼𝐶/𝑠∗)

𝑐𝐾𝑠∗ + 𝑐𝑂/𝑣𝐹
, 

⇔   𝛼𝐶𝑑𝑠∗𝑁 + 𝛼𝐶𝑑
1

𝑐𝐾

𝑐𝑂  

𝑣𝐹
𝑁 = 𝑠∗2(𝛼𝑊/2 + 𝛼𝑉𝛿𝑑𝑁) + 𝛼𝐶𝑑𝑠∗𝑁. 

The last equation simplifies to: 

𝑠∗ = √
𝑐𝑂/𝑣𝐹 

𝑐𝐾

𝛼𝐶𝑑𝑁
𝛼𝑊
2 + 𝛼𝑉𝛿𝑑𝑁

. 

Using the FOC relative to vehicle size, we also get: 

𝐹∗ = √
𝑣𝐹

𝑐𝑂
(

𝛼𝑊

2
𝑁 + 𝛼𝑉𝛿𝑑𝑁2). 

We now compute the optimal solution in the congested regime. The optimal frequency is dictated by 

technological constraints: 

𝐹∗ = 𝐹0(1 − 𝛿𝑑𝑀𝑁). 

From the FOC relative to vehicle size, the optimal vehicle size is thus: 

𝑠∗ = √
𝛼𝐶𝑑 

𝑐𝐾

𝑁

𝐹0(1 − 𝛿𝑑𝑀𝑁)
. 

Before determining the boundary between the normal regime and the congested regime, let us first 

note that given the maximum frequency condition (4), we must have 𝛿𝑑𝑀𝑁 < 1; otherwise there are 

so much users that people do not have the time board, resulting in a negative maximum frequency. 

We note 𝑁𝑚𝑎𝑥 = 1/𝛿𝑑𝑀 this upper limit for 𝑁. 

The normal regime corresponds to the case 𝐹∗ <  𝐹0(1 − 𝛿𝑑𝑀𝑁). In light of the above, this is 

equivalent to 𝑁 < �̂�, where �̂� is the first positive solution of: 

𝛼𝑊

2
�̂� + 𝛼𝑉𝛿𝑑�̂�2 =

𝑐𝑂

𝑣𝐹
𝐹0

2(1 − 𝛿𝑑𝑀�̂�)
2

. 

Because the RHS zeroes in 𝑁 = 𝑁𝑚𝑎𝑥, the above equation has two positive solutions, a first one lower 

than 𝑁𝑚𝑎𝑥, then a second one greater than 𝑁𝑚𝑎𝑥. As the second one leads to a negative frequency 

(𝑁 > 𝑁𝑚𝑎𝑥 ⇒ 𝐹0(1 − 𝛿𝑑𝑀𝑁) < 0), �̂� is the first positive (and only acceptable) solution.          

Proposition 3 (elasticities) 

The elasticities in the normal regime are given by: 

𝜂𝑆 =
𝜕𝑠∗/𝜕𝑁 

𝑠∗/𝑁
=

1

2
−

𝛼𝑉𝛿𝑁

2 (
𝛼𝑊
2𝑑

+ 𝛼𝑉𝛿𝑁)
=

1

2
(1 −

𝛼𝑉𝛿𝑑𝑁
𝛼𝑊
2 + 𝛼𝑉𝛿𝑑𝑁

) ⇒ 0 ≤ 𝜂𝑆 ≤ 1/2, 
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𝜂𝐹 =
𝜕𝐹∗/𝜕𝑁 

𝐹∗/𝑁
=

1

2

𝛼𝑊
2

𝑁 + 2𝛼𝑉𝛿𝑑𝑁²

𝛼𝑊
2

𝑁 + 𝛼𝑉𝛿𝑑𝑁2
=

1

2
(1 +

𝛼𝑉𝛿𝑑𝑁

𝛼𝑊/2 + 𝛼𝑉𝛿𝑑𝑁
) ⇒ 1/2 ≤ 𝜂𝐹 ≤ 1. 

As demand increases, the public transport authority increases frequency more and more, because the 

extra boarding time effect plays a more important role (by comparison with the waiting time effect). 

In the limiting case 𝑁 → +∞, we have: 

lim 𝑠∗ = √
𝑐𝑂/𝑣𝐹

𝑐𝐾

𝛼𝐶

𝛼𝑉𝛿
  and  𝐹∗ ∼ √

𝛼𝑉𝛿𝑑

𝑐𝑂/𝑣𝐹
𝑁. 

Vehicle size converges toward a constant (the elasticity converges toward 0) and frequency increases 

linearly in N (the elasticity converges toward 1). These limits should be interpreted as asymptotic 

behaviors for large values of N, as for 𝑁 > �̂� the system switches to the congested regime. 

In the congested regime, the optimal frequency 𝐹∗ = 𝐹0(1 − 𝛿𝑑𝑀𝑁) decreases with N, hence 𝜂𝐹 < 0. 

The demand elasticity of vehicle size is:  

𝜂𝑆 = 1 +
𝐹0𝛿𝑑𝑀𝑁

𝐹0(1 − 𝛿𝑑𝑀𝑁)
=

1

1 − 𝑁/𝑁𝑚𝑎𝑥
> 1 𝑓𝑜𝑟 𝑁 ∈ [�̂�, 𝑁𝑚𝑎𝑥]. 

Vehicle size increases supra-linearly with N.                 

Proposition 4 

The optimal demand solves: 

𝐺(𝑁∗) = 𝐴 − 𝐵𝑁∗ = 𝑀𝑆𝐶∗(𝑁∗). 

As discussed in Footnote 12, this equation admits solutions (either one or two) only if A is large enough. 

As we assume throughout this paper that this is indeed the case, Lemma 3 states that 𝑁∗ is the second 

(positive) solution to 𝐴 − 𝐵𝑁 = 𝑀𝑆𝐶∗(𝑁). Noting 𝑁0 the first solution, we have 𝐴 − 𝐵𝑁 > 𝑀𝑆𝐶∗(𝑁) 

if 𝑁 ∈ ]𝑁0, 𝑁∗[ and 𝐴 − 𝐵𝑁 < 𝑀𝑆𝐶∗(𝑁) if 𝑁 ∈ [0, 𝑁0[ ∪ ]𝑁∗, +∞[. 

The (monopoly) equilibrium demand solves:   

𝐺(𝑁𝑒) + 𝑁𝑒𝐺′(𝑁𝑒) = 𝐴 − 2𝐵𝑁𝑒 = 𝑀𝑆𝐶∗(𝑁𝑒). 

This implies 𝐴 − 𝐵𝑁𝑒 = 𝑀𝑆𝐶∗(𝑁𝑒) + 𝐵𝑁𝑒 > 𝑀𝑆𝐶∗(𝑁𝑒). Based on the above, 𝑁𝑒 ∈ ]𝑁0, 𝑁∗[, 

meaning that 𝑁𝑒 < 𝑁∗, which is the first part of Proposition 4. 

From Proposition 3, it follows that 𝑠𝑒 < 𝑠∗. In the normal regime 𝐹𝑒 < 𝐹∗, while in the congested 

regime 𝐹𝑒 > 𝐹∗, which is the second part of Proposition 4. 

Proposition 5 

Consider first the short-run optimum. The derivative of the average social cost is:  

𝑑𝐴𝑆𝐶

𝑑𝑁
(𝑁) = (𝛼𝑉𝛿 +

𝛼𝐶

𝑠
)

𝑑

𝐹
− (𝑐𝐾𝑠 +

𝑐𝑂

𝑣𝐹
)

𝐹

𝑁2
. 
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The system is characterized by economies of scale (𝑑𝐴𝑆𝐶/𝑑𝑁 > 0) if demand is lower than 𝑁𝑠, and 

diseconomies of scale (𝑑𝐴𝑆𝐶/𝑑𝑁 < 0) if it is greater than 𝑁𝑠, where 𝑁𝑠 zeroes the above equation. 

Consider next the medium-run optimum. In the normal regime the constraint is inactive. We can use 

the envelope theorem to derive the medium-run optimal average social cost, which yields:  

𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁) = (𝛼𝑉𝛿 +

𝛼𝐶

𝑠
)

𝑑

𝐹∗
− (𝑐𝐾𝑠 +

𝑐𝑂

𝑣𝐹
)

𝐹∗

𝑁2
. 

Using the FOC relative to frequency, the formula simplifies to: 

𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁) = −

𝛼𝑊

2𝐹∗𝑁  
< 0. 

There are always economies of scale in the normal regime. 

In the congested regime, the constraint is active so that we can no longer use the envelope theorem. 

Instead, we directly compute the long-run average social cost, which is: 

𝐴𝑆𝐶∗(𝑁) =
𝛼𝑉𝑑

𝑣𝐹
+

αW/2 + (𝛼𝑉𝑑𝛿 + 𝛼𝐶𝑑/𝑠)𝑁

𝐹0(1 − 𝛿𝑑𝑀𝑁)
+ (𝑐𝐾𝑠 +

𝑐𝑂

𝑣𝐹
)

𝐹0(1 − 𝛿𝑑𝑀𝑁)

𝑁
+ 𝑐𝑂𝛿. 

Differentiating the previous expression with respect to N yields: 

𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁) =

𝛼𝑉𝑑𝛿 + 𝛼𝐶𝑑/𝑠 + 𝛿𝑑𝑀𝛼𝑊/2

𝐹0(1 − 𝛿𝑑𝑀𝑁)2
− 𝐹0

𝑐𝐾𝑠 + 𝑐𝑂/𝑣𝐹

𝑁2
. 

In the congested regime, the system is therefore characterized by economies of scale if 𝑁 < 𝑁𝑚, and 

diseconomies of scale if 𝑁 > 𝑁𝑚, where  𝑁𝑚is the (first) positive solution of: 

 (𝛼𝑉𝑑𝛿 + 𝛼𝐶𝑑/s + 𝛼𝑊𝛿𝑑𝑀/2)𝑁2 = 𝐹0
2(𝑐𝐾𝑠 + 𝑐𝑂/𝑣𝐹)(1 − 𝛿𝑑𝑀𝑁)2. (35) 

Consider finally the long-run optimum. In the normal regime, using the same method as previously, 

we again find that 𝑑𝐴𝑆𝐶∗/𝑑𝑁 = −𝛼𝑊/2𝐹∗𝑁  < 0 and that there are always economies of the scale.  

In the congested regime, the long-run average social cost is now given by: 

𝐴𝑆𝐶∗(𝑁) = 𝛼𝑉

𝑑

𝑣𝐹
(1 −

𝑣𝐹

𝑑𝑀𝐹0
) + 2√𝑑𝛼𝐶𝑐𝐾 +  𝑐𝑂𝛿 (1 −

𝑑𝑀𝐹0

𝑣𝐹
) +

𝑐𝑂

𝑣𝐹

𝐹0

𝑁
+

𝛼𝑊
2 + 𝛼𝑉

𝑑
𝑑𝑀

𝐹0(1 − 𝛿𝑑𝑀𝑁)
. 

The derivative of the average social cost is: 

 
𝑑𝐴𝑆𝐶∗

𝑑𝑁
(𝑁) = (

𝛼𝑊

2
+ 𝛼𝑉

𝑑

𝑑𝑀
)

𝛿𝑑𝑀

𝐹0(1 − 𝛿𝑑𝑀𝑁)²
−

𝑐𝑂

𝑣𝐹

𝐹0

𝑁2
. (36) 

(36) is negative for 𝑁 < 𝑁𝑙, and positive for 𝑁 > 𝑁𝑙, where 𝑁𝑙  is the (first) positive solution of: 

 
𝛼𝑊

2
𝛿𝑑𝑀�̅�2 + 𝛼𝑉𝛿𝑑�̅�2 =

𝑐𝑂

𝑣𝐹
𝐹0

2(1 − 𝛿𝑑𝑀�̅�)2. (37) 
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Proposition 6 

We first show that optimal demand decreases with μ. The FOC with respect to demand writes: 

𝐴 − (1 +
𝜇

1 + 𝜇
) 𝐵𝑁∗(𝜇) = 𝑀𝑆𝐶∗(𝑁∗(𝜇)). 

The RHS 𝑀𝑆𝐶∗(𝑁) is a convex function strictly decreasing then strictly increasing with N (Lemma 1). 

Conversely, the LHS is an affine, strictly decreasing function of N. Because its slope decreases with μ, 

it is straightforward to show by adapting Lemma 2 that 𝑁(𝜇) also decreases with μ. 

Next to show that the optimal fare 𝜏(𝜇) increases with μ, we use the user equilibrium condition 

𝐺𝐶(𝑁) =  𝐶𝑈(𝐹∗(𝑁), 𝑠∗(𝑁), 𝑁) + 𝜏. The curves 𝐺𝐶(𝑁) and 𝐶𝑈(𝐹∗(𝑁), 𝑠∗(𝑁), 𝑁) are given. Because 

𝐺𝐶(𝑁) decreases with N, if 𝑁∗(𝜇) decreases with μ¸ it follows that  𝜏∗(𝜇) must increase with μ. 

Proposition 7 

As in Section 3, we first solve for the optimal frequency and vehicle size as functions of 𝑁𝑃𝑇. We can 

therefore rewrite the maximization problem (25) 

 as: 

 

max
𝑠,𝐹,𝑁𝑃𝑇 ,𝑁𝐶

∫ 𝐺𝐶(𝑛)𝑑𝑛
𝑁𝐶+𝑁𝑃𝑇

0

− 𝑆𝐶𝐶(𝑁𝐶) − 𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇). 

𝑠. 𝑡. {
𝑁𝐶 ≥ 0  
𝑁𝑃𝑇 ≥ 0

 

(38) 

 

 

There are three possible cases: 1) 𝑁𝐶
∗ = 0, 2) 𝑁𝑃𝑇

∗ = 0, and 3) 𝑁𝐶
∗ > 0 and 𝑁𝑃𝑇

∗ > 0. 

In case 1, there are no car users, 𝑁𝑃𝑇
∗ = 𝑁∗and the marginal social cost is 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁∗) > 0. Considering 

that 𝑀𝑆𝐶𝐶(0) = 0 < 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁∗), keeping the total number of users 𝑁∗ constant, the social welfare 

can be increased by switching an infinitesimal quantity 𝜀>0 users from public transport to the road. 

This means that case 1 is absurd, and that we always have 𝑁𝐶
∗ > 0. 

In case 2, the public transport mode is not used (𝑁𝑃𝑇
∗ = 0), hence 𝑁𝐶

∗ = 𝑁∗. The maximization problem 

involves only one variable, with the first-order condition: 𝐺𝐶(𝑁𝐶
∗) = 𝑀𝑆𝐶𝐶(𝑁𝐶

∗).  

In case 3, the two modes are used: 𝑁𝐶
∗ > 0 and 𝑁𝑃𝑇

∗ > 0.  By combining the two first-order conditions 

we get: 𝐺𝐶(𝑁∗) = 𝑀𝑆𝐶𝐶(𝑁𝐶
∗) = 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ). Using 𝑀𝑆𝐶𝐶(𝑁𝐶) = 2𝛽𝑁𝐶/𝐾 and 𝑁𝐶

∗ + 𝑁𝑃𝑇
∗ = 𝑁∗, 

this implies that 𝑁𝑃𝑇
∗  satisfies: 

 2𝛽(𝑁∗ − 𝑁𝑃𝑇
∗ )

𝐾
= 𝑀𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ). (39) 

The LHS is an affine, strictly decreasing function of 𝑁𝑃𝑇. 𝑀𝑆𝐶𝑃𝑇
∗  is a strictly convex function of  𝑁𝑃𝑇, 

decreasing from +∞ to a minimum 𝑀𝑆𝐶𝑃𝑇
∗ (�̂�) > 0 on [0, �̂�], then increasing again to +∞ on [�̂�, 𝑁𝑚𝑎𝑥]. 

Using Lemma 2, there exists 𝑁0 > 0 so that (39) admits no solution if 𝑁∗ < 𝑁0, exactly one solution if 

𝑁∗ = 𝑁0 (when the two curves become tangent), then exactly two solutions if 𝑁∗ > 𝑁0 (cf. Figure A.2 

for a graphical intuition).  
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If 𝑁∗ ≤ 𝑁0 we are therefore always in case 2, meaning it is more efficient to transport all users by car. 

If 𝑁∗ > 𝑁0, whether one is in case 2 or in case 3 depends on whether the social cost of providing public 

transport to 𝑁𝑃𝑇
∗  users 𝑆𝐶𝑃𝑇

∗ (𝑁𝑃𝑇
∗ ) is lower than that of transporting the same amount of users by car, 

which is 𝑆𝐶𝐶(𝑁∗) − 𝑆𝐶𝐶(𝑁∗ − 𝑁𝑃𝑇
∗  ). Using Lemma 3 with 𝑓(𝑥) = 𝑀𝑆𝐶𝐶(𝑁∗ − 𝑥 ) and 𝑔(𝑥) = 𝑀𝑆𝐶𝑃𝑇

∗ (𝑥), 

there exists 𝑁𝑃𝑇>0 > 𝑁0 so that if 𝑁∗ ≤ 𝑁𝑃𝑇>0 then the corner solution 𝑁𝑃𝑇
∗ = 0 and 𝑁𝐶

∗ = 𝑁∗is the 

global optimum, while if  𝑁∗ ≥ 𝑁𝑃𝑇>0, then the interior solution 𝑁𝑃𝑇
∗  and  𝑁𝐶

∗ = 𝑁∗ − 𝑁𝑃𝑇
∗ , where 𝑁𝑃𝑇

∗  

is the second solution to Equation (39), is the global optimum. 

We now show the second part of Proposition 6. Consider an increase in 𝑁∗. If 𝑁∗ < 𝑁𝑃𝑇>0, we are in 

case 2, 𝑁𝑃𝑇
∗ = 0 and 𝑁𝐶

∗ = 𝑁∗, meaning that 𝑁𝐶
∗ increases with 𝑁∗. If 𝑁∗ > 𝑁𝑃𝑇>0, then 𝑁𝑃𝑇

∗ > 0. 

Because 𝑁𝑃𝑇
∗  is the second solution to Equation (39), using Lemma 2 we know that  𝑁𝑃𝑇

∗  increases with 

𝑁∗ and converges toward 𝑁𝑚𝑎𝑥 as 𝑁∗ → +∞. Accordingly, as long as 𝑁𝑃𝑇
∗ ≤ �̂� the marginal social cost 

𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) decreases as 𝑁∗ and 𝑁𝑃𝑇
∗  increase, meaning that 𝑀𝑆𝐶𝐶(𝑁𝐶

∗) = 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) also 

decreases. Because 𝑀𝑆𝐶𝐶 is a strictly decreasing function, it follows that 𝑁𝐶
∗ decreases with 𝑁∗ as long 

as 𝑁𝑃𝑇
∗ ≤ �̂�. If 𝑁𝑃𝑇

∗ ≥ �̂� however, then 𝑀𝑆𝐶𝑃𝑇
∗ (𝑁𝑃𝑇

∗ ) increases this time as 𝑁∗ and 𝑁𝑃𝑇
∗  increase, 

implying that 𝑁𝐶
∗ increases again. 

Appendix C - Lemmas 

Lemma 1 

The marginal social cost is a convex function of 𝑁, decreasing from +∞ to its minimum 𝑀𝑆𝐶∗(�̂�) > 0 

on ]0, �̂�], then increasing back to +∞ on [�̂�, 𝑁𝑚𝑎𝑥[. 

Proof 

In the normal regime (𝑁 ∈  ]0, �̂�]), the frequency constraint (4) is inactive. Consequently, we can apply 

the envelope theorem to compute the marginal social cost, which yields: 

𝑀𝑆𝐶∗(𝑁) =
𝜕𝑆𝐶

𝜕𝑁
(𝐹∗(𝑁), 𝑠∗(𝑁), 𝑁). 

For reminder, the social cost is:  

𝑆𝐶(𝐹, 𝑠, 𝑁) =
𝛼𝑊

2

𝑁

𝐹
+ 𝛼𝑉𝑑 (

𝑁

𝑣𝐹
+ 𝛿

𝑁2

𝐹
) + 𝛼𝐶𝑑

𝑁2

𝑠𝐹
+ 𝑐𝐾𝑠𝐹 +

𝑐𝑂

𝑣𝐹
𝐹 + 𝑐𝑂𝛿𝑁. 

The marginal social cost therefore reads: 

𝑀𝑆𝐶∗(𝑁) =
𝛼𝑊

2𝐹∗(𝑁)
+ 𝛼𝑉𝑑 (

1

𝑣𝐹
+ 𝛿

𝑁

𝐹∗(𝑁)
) + 𝛼𝐶𝑑

𝑁

𝑠∗(𝑁)𝐹∗(𝑁)
+ 𝑐𝑂𝛿. 

Using Proposition 1 and Table 1, this simplifies to: 

𝑀𝑆𝐶∗(𝑁) =
𝛼𝑉𝑑

𝑣𝐹
+ √𝛼𝐶𝑐𝐾𝑑 + 𝑐𝑂𝛿 + √

𝑐𝑂

𝑣𝐹
(

𝛼𝑊

2

1

𝑁
+ 𝛼𝑉𝛿𝑑). 
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From the above expression, it is clear that 𝑀𝑆𝐶∗(𝑁) strictly decreases on  ]0, �̂�], and that its limit in 

𝑁 = 0+ is +∞. By differentiating 𝑀𝑆𝐶∗(𝑁) twice, the convexity is also straightforward to show. 

In the congested regime (𝑁 ∈ [�̂�, 𝑁𝑚𝑎𝑥[), the minimum social cost is given by: 

𝑆𝐶∗(𝑁) = 𝛼𝑉

𝑑

𝑣𝐹
(1 −

𝑣𝐹

𝑑𝑀𝐹0
) 𝑁 + 2√𝑑𝛼𝐶𝑐𝐾𝑁 +  𝑐𝑂𝛿 (1 −

𝑑𝑀𝐹0

𝑣𝐹
) 𝑁 +

𝑐𝑂

𝑣𝐹
𝐹0 +

(
𝛼𝑊
2 + 𝛼𝑉

𝑑
𝑑𝑀

) 𝑁

𝐹0(1 − 𝛿𝑑𝑀𝑁)
. 

The marginal social cost is thus: 

𝑀𝑆𝐶∗(𝑁) = 𝛼𝑉

𝑑

𝑣𝐹
(1 −

𝑣𝐹

𝑑𝑀𝐹0
) + 2√𝑑𝛼𝐶𝑐𝐾 + 𝑐𝑂𝛿 (1 −

𝑑𝑀𝐹0

𝑣𝐹
) +

𝛼𝑊
2

+ 𝛼𝑉
𝑑

𝑑𝑀

𝐹0(1 − 𝛿𝑑𝑀𝑁)2
. 

Again, from the above expression it is straightforward to show that 𝑀𝑆𝐶∗(𝑁) is also convex on 

[�̂�, 𝑁𝑚𝑎𝑥[, strictly increases on this interval and tends toward +∞ as 𝑁 → 𝑁𝑚𝑎𝑥
−. 

All in all, this shows that 𝑀𝑆𝐶∗(𝑁) is convex on ]0, 𝑁𝑚𝑎𝑥[, strictly decreases from +∞ to its minimum  

𝑀𝑆𝐶∗(�̂�) > 0 on ]0, �̂�], then strictly increases from 𝑀𝑆𝐶∗(�̂�) to +∞ on [�̂�, 𝑁𝑚𝑎𝑥[. 

Lemma 2 

Let 𝑓(𝑥) = 𝑎 − 𝑏𝑥, with 𝑎 ≥ 0 and 𝑏 ≥ 0 be an affine, decreasing function of x. 

Let 𝑔(𝑥) be a positive, strictly convex function defined on an open interval ]0, 𝑥𝑚𝑎𝑥[, with the following 

limits: lim
𝑥→0+

𝑔 (𝑥) = lim
𝑥→𝑥𝑚𝑎𝑥

−
𝑔 (𝑥) = +∞. 

There exists 𝑎0 > 0 so that the equation 𝑓(𝑥) = 𝑔(𝑥) admits (exactly) zero solution if 𝑎 < 𝑎0, one 

solution if 𝑎 = 𝑎0, and two solutions if 𝑎 > 𝑎0. Let 𝑥1(𝑎, 𝑏) and 𝑥2(𝑎, 𝑏), with 𝑥1(𝑎, 𝑏) < 𝑥2(𝑎, 𝑏), 

denote the two solutions in the latter case. Then 𝑥1(𝑎, 𝑏) and 𝑥2(𝑎, 𝑏) decrease and increase with a, 

respectively, with lim
𝑎→+∞

𝑥1(𝑎, 𝑏) = 0 and lim
𝑎→+∞

𝑥2(𝑎, 𝑏) = 𝑥𝑚𝑎𝑥. 

Proof 

For the sake of concision, we only provide a graphical intuition of the first part of the proof. Based on 

Figure 3, it is clear that as a increases: 

 at first the curve 𝑓(𝑥) = 𝑎 − 𝑏𝑥 remains below 𝑔(𝑥) so that the curves never intersect; 

 at some value of 𝑎 = 𝑎0, 𝑓(𝑥) is tangent to 𝑔(𝑥): the curves only intersect in one point; 

 then 𝑓(𝑥) intersects 𝑔(𝑥) in exactly two points due to the strict convexity of g. 

We note 𝑥1(𝑎, 𝑏) and 𝑥2(𝑎, 𝑏), with 𝑥1(𝑎, 𝑏) < 𝑥2(𝑎, 𝑏), the two solutions if 𝑎 > 𝑎0. Considering that 

lim
𝑥→0+

𝑔 (𝑥) = lim
𝑥→𝑥𝑚𝑎𝑥

−
𝑔 (𝑥) = +∞, and that f is bounded on [0, 𝑥𝑚𝑎𝑥], then 𝑓(𝑥) < 𝑔(𝑥) if 

𝑥𝜖]0, 𝑥1(𝑎, 𝑏)[ ∪ ]𝑥2(𝑎, 𝑏), +∞[ and 𝑓(𝑥) > 𝑔(𝑥) if 𝑥𝜖]𝑥1(𝑎, 𝑏), 𝑥2(𝑎, 𝑏)[. 
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Next consider 𝑎2 > 𝑎1 > 𝑎0. We have 𝑎2 + 𝑏𝑥1(𝑎1, 𝑏) > 𝑎1 + 𝑏𝑥1(𝑎1, 𝑏) = 𝑔(𝑥1(𝑎1, 𝑏)), meaning 

that 𝑥1(𝑎1, 𝑏) > 𝑥1(𝑎2, 𝑏) (since 𝑓(𝑥) > 𝑔(𝑥) ⟹ 𝑥𝜖]𝑥1(𝑎, 𝑏), 𝑥2(𝑎, 𝑏)[). Similarly we have 

𝑥2(𝑎1, 𝑏) < 𝑥2(𝑎2, 𝑏). 

Regarding the limits, 𝑓(𝑥) ≥ 𝑎 − 𝑏𝑥𝑚𝑎𝑥∀𝑥 ∈ [0, 𝑥𝑚𝑎𝑥]. As 𝑎 → +∞, 𝑎 − 𝑏𝑥𝑚𝑎𝑥 also tends toward 

+∞, meaning that lim
𝑎→+∞

𝑔 (𝑥1(𝑎, 𝑏)) = lim
𝑎→+∞

𝑔 (𝑥2(𝑎, 𝑏)) = +∞. Because 𝑥1(𝑎, 𝑏) < 𝑥1(𝑎0, 𝑏) and 

𝑥2(𝑎, 𝑏) > 𝑥2(𝑎0, 𝑏) ∀𝑎 > 𝑎0 it follows that lim
𝑎→+∞

𝑥1(𝑎, 𝑏) = 0 and lim
𝑎→+∞

𝑥2(𝑎, 𝑏) = 𝑥𝑚𝑎𝑥. 

Lemma 3 

Let 𝑓(𝑥) = 𝑎 − 𝑏𝑥, with 𝑎 ≥ 0 and 𝑏 ≥ 0 be an affine, decreasing function of x. 

Let 𝑔(𝑥) be a positive, strictly convex function defined on an open interval ]0, 𝑥𝑚𝑎𝑥[, and integrable 

over the same interval, with the following limits: lim
𝑥→0+

𝑔 (𝑥) = lim
𝑥→𝑥𝑚𝑎𝑥

−
𝑔 (𝑥) = +∞. 

Consider the maximization problem: max
𝑥≥0

∫ (𝑓(𝑢) − 𝑔(𝑢))𝑑𝑢
𝑥

0
.  

There exists 𝑎1 > 𝑎0 so that if 𝑎 < 𝑎1, the maximum is reached at 𝑥 = 0 while if 𝑎 > 𝑎1 the maximum 

is reached at 𝑥 = 𝑥2(𝑎, 𝑏), where 𝑎0 and  𝑥2(𝑎, 𝑏) are defined in Lemma 2.  

Proof 

Let 𝐻(𝑥) = ∫ (𝑓(𝑢) − 𝑔(𝑢))𝑑𝑢
𝑥

0
 defined for 𝑥 ∈ [0, 𝑥𝑚𝑎𝑥]. Its derivative is 𝐻′(𝑥) = 𝑓(𝑥) − 𝑔(𝑥). 

 If 𝑎 ≤ 𝑎0, from Lemma 2 𝑓(𝑥) ≤ 𝑔(𝑥) ∀𝑥 ∈ ]0, 𝑥𝑚𝑎𝑥[ and 𝐻(𝑥) decreases on [0, 𝑥𝑚𝑎𝑥]. In this case, 

it always reaches its maximum for x=0. 

Next consider 𝑎 > 𝑎0. In this case the function 𝐻(𝑥) decreases on [0, 𝑥1(𝑎, 𝑏)], then increases on 

[𝑥1(𝑎, 𝑏), 𝑥2(𝑎, 𝑏)], and finally decreases on [𝑥2(𝑎, 𝑏), 𝑥𝑚𝑎𝑥]. There are two possibilities: 𝐻(𝑥) is 

maximized either at x=0 or at x=𝑥2(𝑎, 𝑏). The question is then whether 𝐻(0) ⋚ 𝐻(𝑥2(𝑎, 𝑏)).  We 

have:𝐻(𝑥2(𝑎, 𝑏)) = ∫ (𝑓(𝑢) − 𝑔(𝑢))𝑑𝑢
𝑥2(𝑎,𝑏)

0
. The derivative of 𝐻(𝑥2(𝑎, 𝑏)) with respect to a is 

𝑥2(𝑎, 𝑏) −
𝜕𝑥2(𝑎,𝑏)

𝜕𝑎
(𝑓(𝑥2(𝑎, 𝑏)) − 𝑔(𝑥2(𝑎, 𝑏))) = 𝑥2(𝑎, 𝑏) > 0. It follows that 𝐻(𝑥2(𝑎, 𝑏)) strictly 

increases with a. Because 𝐻(𝑥2(𝑎0, 𝑏)) < 0, Lemma 3 straightforwardly follows. 

 

 


