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Abstrat This work onsiders the hallenging problem of identifying the sta-

tistial properties of random �elds from indiret observations. To this end,

a Bayesian approah is introdued, whose key step is the nonparametri ap-

proximation of the likelihood funtion from limited information. When the

likelihood funtion is based on the evaluation of an expensive omputer ode,

this work also proposes a method to selet iteratively new design points to re-

due the unertainties on the results that are due to the approximation of the

likelihood. Two appliations are �nally presented to illustrate the e�ieny of

the proposed proedure: a �rst one based on analyti data, and a seond one

dealing with the identi�ation of the random elastiity �eld of an heteroge-

neous mirostruture.

Keywords Bayesian framework · unertainty quanti�ation · statistial
inferene · stohasti proess · kernel density estimation

1 Introdution

Random �eld analysis has beome a major tool in many sienti� �elds, suh

as unertainty quanti�ation, material siene, biology, mediine, signal pro-

essing, quantitative �nane, et. However, in most of these appliations, the

knowledge of these random �elds, whih we write X, is limited. Numerial

methods are therefore needed to identify the probability distribution of X

from the available information.
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When the information is onstituted of diret measurements of the �eld

to model, several tehniques have been proposed to perform suh an identi-

�ation. For instane, the AutoRegressive-Moving-Average (ARMA) models

[Whittle, 1951,Whittle, 1983,Box and Jenkins, 1970℄, allow the desription of

Gaussian stationary random �elds as a parameterized integral of a Gaus-

sian white noise. When onsidering a priori non-Gaussian and nonstation-

ary random �elds, the identi�ation is generally based on a two-step proe-

dure. The �rst step is the approximation of the random �eld by its projetion

on a redued number of deterministi funtions [Ghanem and Spanos, 2003,

Le Maître and Knio, 2010℄, using for instane the proper orthogonal deompo-

sition [Atwell and King, 2001℄, the proper generalized deomposition [Nouy, 2010℄,

or the Karhunen-Loève expansion [Williams, 2011,Perrin et al., 2014,Perrin et al., 2013℄.

The seond step is the identi�ation of general stohasti representations of the

projetion oe�ients in high stohasti dimension [Soize, 2010,Soize, 2011,

Perrin et al., 2012,Nouy and Soize, 2014,Soize and Ghanem, 2016,Perrin et al., 2018℄.

The main spei�ity of this work omes from the fat that only indi-

ret observations are available for the identi�ation, in the sense that the

experimental data is made of the transformations of a limited number of

independent realizations of X through a blak-box time-onsuming nonlin-

ear mapping, denoted by g. To make this identi�ation tratable, we as-

sume that the random �eld to identify belongs to a known parametri lass.

Thus, identifying the distribution of X amounts to identifying the values of

these parameters, whih are gathered in the vetor z. A Bayesian framework

is then onsidered [Marzouk and Najm, 2009,Stuart, 2010,Arnst et al., 2010,

Matthies et al., 2016,Emery et al., 2016℄: parameter z is supposed to be ran-

dom, and we searh its posterior distribution given the available data.

Markov Chain Monte Carlo (MCMC) [Rubinstein and Kroese, 2008,Tian et al., 2016℄

is generally onsidered as a powerful tool to explore the posterior distribution

for these parameters. However it an be omputationally prohibitive when

eah posterior evaluation requires evaluations of a omputationally expensive

ode, as it the ase here. To irumvent this problem, a standard approah is to

replae the ode by a surrogate model, and to diretly sample from the approxi-

mated posterior distribution assoiated with the modi�ed likelihood using las-

sial MCMC proedures. The surrogate model an be based on polynomial rep-

resentations [Marzouk and Najm, 2009,Marzouk and Xiu, 2009,Wan and Zabaras, 2011,

Li and Marzouk, 2014,Tsili�s et al., 2017℄, Gaussian proess regression [Kennedy and O'Hagan, 2001,

Santner et al., 2003,Higdon et al., 2008,Bilionis and Zabaras, 2015,Sinsbek and Nowak, 2017,

Damblin et al., 2013℄, or runs of the ode at di�erent resolution levels [Higdon et al., 2003,

Chen and Shwab, 2015℄. Alternatively, the surrogate model an be used to

adapt the proposal distribution. In that ase, the number of expensive pos-

terior evaluations per MCMC step an be strongly redued, while sampling

asymptotially from the exat posterior distribution (see [Rasmussen, 2003,

Fielding et al., 2011,Conrad et al., 2016,Conrad et al., 2018℄ for further details

about this approah).

This work an be seen as an extension of these methods to the ase of

stohasti odes. Indeed, for a given value of z, as X(z) is random, g(X(z))
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is also a random quantity. But if the distribution of X(z) is known one

z is �xed, the distribution of g(X(z)) is unknown, and its identi�ation is

omputationally demanding. Therefore, instead of onstruting a surrogate

model of the ode, we fous on the approximation of the probability density

funtion (PDF) of g(X(z)).
To run a MCMC proedure based on the assoiated approximated likeli-

hood in a reasonable omputational time, this approximation of the PDF of

g(X(z)) in any z has to be onstruted from a �xed number of already om-

puted ode evaluations. To this end, we �rst propose to diretly work on the

joint PDF of (g(X(z)), z). Then, we fous on the Gaussian kernel density esti-

mation (G-KDE) [Wand and Jones, 1995,Sott and Sain, 2004,Perrin et al., 2018℄

for the PDF approximation. Indeed, this method is partiularly interesting

for its ability to model non-Gaussian distributions with omplex dependene

strutures, but also beause it allows an expliit derivation of the PDF of

g(X(z))|z one the joint PDF is known. To onstrut relevant PDF ap-

proximations of this potentially high-dimensional random vetor from a re-

dued number of ode evaluations, we �nally introdue two adaptations of

the lassial G-KDE formalism. First, an optimal partitioning of the om-

ponents of g(X(z)) is introdued, whih onsists in deomposing the ran-

dom vetor to model in well-hosen groups of omponents that an reason-

ably be onsidered as independent. Seondly, a sequential strategy is proposed

to hoose the evaluations points on whih the G-KDE relies. Starting from

a spae-�lling design, the objetive is to sequentially add new ode evalu-

ations in the regions where the posterior distribution of the parameters is

high. We refer to [MKay et al., 1979,Fang and Lin, 2003,Fang et al., 2006,

Dragulji¢ et al., 2012,Joseph et al., 2015℄ for the onstrution of the initial

spae-�lling designs when the input spaes is an hyperretangle, and to [Stinstra et al., 2003,

Stinstra et al., 2010,Au�ray et al., 2012,Dragulji¢ et al., 2012,Lekivetz and Jones, 2015,

Mak and Joseph, 2016,Perrin and Cannamela, 2017℄ for the general ase.

The outline of this work is as follows. Setion 2 presents the theoretial

framework of the proposed method. Setion 3 �rst illustrates the e�ieny

of the method on an analytial example, and then shows its potential for

the identi�ation of the mehanial properties of an unknown heterogeneous

medium.

2 Indiret identi�ation of the statistial properties of random

�elds

The objetive of this setion is to desribe the adaptive proedure we propose

for the identi�ation of the statistial properties of random �elds when the

available information is a set of indiret observations.

2.1 De�nitions and notations

Let (Ω,A,P) be a probability spae. For dx, dy, dz ≥ 1,
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� P(X,Rdx) denotes the spae of all the seond-order random �elds de�ned

on (Ω,A,P), with values in R
dx
, indexed by a ompat and onneted spae

X;

� L2(X,Rdx) is the spae of all the square-integrable funtions de�ned on X

with values in R
dx
;

� g is a nonlinear measurable mapping whose omputational ost an be

high:

g :

{
L2(X,Rdx) → R

dy

h 7→ g(h)
; (1)

� X (Rdz ,Rdx) refers to a partiular lass of random �elds in P(X,Rdx), whose
statistial properties are parameterized by a deterministi vetor z ∈ R

dz
.

For instane, X (Rdz ,Rdx) an orrespond to the set of Gaussian random

�elds, whose mean and ovariane funtions are parameterized by the same

dz oe�ients.

� For all z in R
dz
, X(z) is an element of X (Rdz ,Rdx).

Let X⋆
be a partiular element of P(X,Rdx), whih an belong or not to

X (Rdz ,Rdx), and Y ⋆
be its transformation by g. By onstrution, Y ⋆

is a

dy-dimensional random vetor. For eah realization of X⋆
, whih we denote

by X⋆(θ) with θ ∈ Ω, Y ⋆(θ) := g(X⋆(θ)) de�nes a partiular realization of

Y ⋆
.

Given N independent realizations of Y ⋆
, gathered in the set

S(N) := {Y ⋆(θn)}1≤n≤N , θn ∈ Ω,

the purpose of this work is to propose a Bayesian formalism for the identi�-

ation of z⋆
, suh that the probability distribution of X(z⋆) is the losest to

the one of X⋆
.

Remarks

� As mentioned in Introdution, it is important to notie that for eah z ∈
R

dz
, g(X(z)) is random. This strongly limits the possibility of replaing

mapping z 7→ g(X(z)) by a surrogate model, as it is lassially done when

solving inverse problems that invoke omputationally expensive models.

� In the following, for the sake of simpliity, we assume thatX⋆ ∈ X (Rdz ,Rdx).
If it was not the ase, it ould be neessary to introdue an error term to

model the di�erene betweenX⋆
andX(z) [Kennedy and O'Hagan, 2001℄.

2.2 Bayesian formulation of the problem

In this work, z⋆
is modeled by the random vetor Z, to take into aount

the fat that its value is unknown. Let fZ be the probability density funtion
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(PDF) of Z, whih is supposed to be known as a prior model. Hene, identify-

ing z⋆
amounts to searhing the posterior PDF of Z | S(N), whih we denote

by fZ|S(N). Using the Bayes theorem, it omes:

fZ|S(N)(z) =
LS(N)(z)fZ(z)

E
[
LS(N)(Z)

] , z ∈ R
dz . (2)

There, E [·] is the mathematial expetation and LS(N) is the likelihood

funtion. The elements of S(N) being statistially independent, it follows:

LS(N)(z) =
N∏

n=1

fY (z)(Y
⋆(θn)), z ∈ R

dz , (3)

in whih fY (z) is the PDF of Y (z) := g(X(z)) for given z in R
dz
, and is un-

known. To approximate fY (z), a �rst possibility is to generateM independent

realizations of Y (z). Thus, based on this set, the value fY (z)(y) of fY (z) in

any point y in R
dy

an be approximated using any parametri or nonparamet-

ri statistial learning tehnique. However, this means that funtion g has to

be evaluated M ×Q times to evaluate funtion LS(N) in Q points for z. This

quikly beomes burdensome when the omputational ost for eah evaluation

of g is relatively high (between several minutes to several hours CPU for the

onsidered appliations). One possible approah to irumvent this problem is

to diretly approximate the joint PDF of the (dy + dz)-dimensional random

vetor (Y (Z),Z) [Soize and Ghanem, 2017℄. Indeed, M independent realiza-

tions of (Y (Z),Z) an be obtained from the following two-step proedure:

� we �rst draw at randomM independent realizations of Z aording to the

distribution fZ , whih we denote by Z(ω1), . . ., Z(ωM ), where ω1, . . . , ωM

are in Ω;

� for eah value of z in {Z(ω1), . . . ,Z(ωM )}, we draw, at random and inde-

pendently the ones from the others, a partiular realization of X(z), and
we dedue a realization of Y (z) by evaluating g in this realization of X(z).

For the sake of simpliity, we denote these realizations by Y (ωm), 1 ≤ m ≤
M . Based on these realizations, the kernel estimator of fY ,Z is:

f̂Y ,Z(y, z;H) :=
det(H)−1/2

M

M∑

m=1

K
(
H−1/2 ((y, z)− (Y (ωm),Z(ωm)))

)
.

(4)

Here, det(·) is the determinant operator, K is any positive funtion whose

integral over R
dy+dz

is one, and H is a ((dy + dz) × (dy + dz))-dimensional

positive-de�nite symmetri matrix, whih is generally referred as the "band-

width matrix". In the following, we fous on the ase where K is the Gaussian

multidimensional density, and where H is proportional to the empirial esti-

mation of the ovariane matrix of (Y (Z),Z), denoted by Ĉ:

H = h2Ĉ, h ∈ R. (5)
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The main interest of this hypothesis omes from the fat that it strongly

redues the number of parameters that need to be identi�ed for the onstru-

tion of H , while generally leading to very interesting results for the modeling

of multivariate PDFs (see [Perrin et al., 2018℄ for more details). Other parsi-

monious parameterizations ould be proposed for H, suh as diagonal repre-

sentations, but for su�iently high values ofM , the in�uene of this hoie on

the identi�ation results is expeted to be small.

Hene, the PDF of (Y (Z),Z) is approximated by a mixture ofM Gaussian

PDFs, for whih the means are the available realizations of (Y (Z),Z) and the

ovariane matries are all parameterized by a unique salar h:

f̂Y ,Z(y, z;h) =
1

M

M∑

m=1

φ
(
(y, z); (Y (ωm),Z(ωm)), h2Ĉ

)
. (6)

There, for any R
d
-dimensional vetor µ and for any (Rd×R

d)-dimensional

symmetri positive-de�nite matrixC, φ(·;µ,C) is the PDF of any R
d
-dimensional

Gaussian random vetor with mean µ and ovariane matrix C:

φ (x;µ,C) :=
exp

(
− 1

2 (x− µ)T C−1 (x− µ)
)

(2π)d/2
√
det(C)

, x ∈ R
d. (7)

In addition, the blok deomposition of Ĉ is written as:

Ĉ =

[
ĈY Y ĈY Z

Ĉ
T

Y Z ĈZZ

]
. (8)

For all (y, z) ∈ R
dy ×R

dz
, the kernel approximation of fY (z)(y), whih we

denote by f̂Y (z)(y;h), an therefore be written as follows (see Appendix for

more details about this expression):

f̂Y (z)(y;h) =
f̂Y ,Z(y, z;h)∫

R
dy f̂Y ,Z(v, z;h)dv

=

M∑

m=1

γm(z;h)
∑M

m′=1 γm′(z;h)
φ (y;µm(z),Cm(h)) ,

(9)

γm(z;h) := exp

(
−

1

2h2
(z −Z(ωm))

T
Ĉ

−1

ZZ (z −Z(ωm))

)
, (10)

µm(z) := Y (ωm) + ĈY ZĈ
−1

ZZ
(z −Z(ωm)), (11)

Cm(h) := h2
(
ĈY Y − ĈY ZĈ

−1

ZZĈ
T

Y Z

)
. (12)

It follows that the posterior PDF of Z is estimated for eah z in R
dz

by:



Adaptive method for indiret identi�ation 7

fZ|S(N)(z) ≈
L̂S(N)(z;h)fZ(z)

E

[
L̂S(N)(Z)

] , L̂S(N)(z;h) :=
N∏

n=1

f̂Y (z)(Y
⋆(θn);h). (13)

Remarks

� One key step of these methods is the exploration of the whole spae of the

input variables. To maximize this overing, it is generally worth hoosing

{Z(ω1), . . . ,Z(ωM )} as a spae �lling design of experiments that preserves

good projetion properties for eah salar input (see [Fang and Lin, 2003,

Fang et al., 2006,Perrin and Cannamela, 2017℄ for the onstrution of suh

designs when prior density fZ is uniform or not).

� Another ruial aspet of these Bayesian approahes is the hoie of prior

distribution fZ . Indeed, the more informative it is, the less measurements

we need to get a useful posterior distribution for Z. But if it is overon�-

dent around values that are potentially biased, the unertainty arried by

the posterior distribution may not be large enough to adequately apture

the true value of Z (see [Marin and Robert, 2007℄ for more details on the

onstrution of this prior distribution).

� In the standard ase, the M ode evaluations are generally used to on-

strut a surrogate model of a omputationally expensive but determin-

isti ode. Hene, depending on the dimension of the input spae and

the regularity of the ode output with respet to the inputs, interest-

ing approximations an be obtained using relatively small values of M

[Perrin et al., 2017℄. On the ontrary, in our ase, as z 7→ g(X(z)) is a

stohasti simulator, the value of M is likely to be higher, as we want the

ode evaluations to allow a preise approximation of the dependene stru-

ture between Y (Z) and Z in the onstrution of their joint PDF. And the

higher dy + dz is, the higher value of M we may need. However, when on-

fronted to expensive simulators, the maximal number of ode evaluations

is generally limited (M must be less than 1000 for instane). In that ase,

it is partiularly important to work on methods that allow the most preise

identi�ation of the parameters at the minimal ost. This is the objetive of

the following setions. In Setion 2.3, we �rst propose to deompose Y (Z)
in several groups to improve the relevane of the nonparametri represen-

tation of PDF fY ,Z for a �xed value of M . Then, seletion riteria are

proposed in Setion 2.5 to sequentially onentrate the ode evaluations in

the most likely regions for Z, and therefore redue the unertainties on its

posterior PDF fZ|S(N).

2.3 Optimal partitioning

As it is explained in [Perrin et al., 2018℄, when dy beomes high, separating

in di�erent groups the omponents of Y (Z)|Z that ould reasonably be on-

sidered as independent an strongly improve the relevane of f̂Y (z) for a �xed
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number of ode evaluations. Let b = (b1, . . . , bdy
) be a partiular group de-

omposition of Y (Z)|Z in the sense that:

� if bi = bj , Yi(Z)|Z and Yj(Z)|Z are supposed to be dependent and there-

fore belong to the same blok,

� if bi 6= bj, Yi(Z)|Z and Yj(Z)|Z are supposed to be independent and they

an belong to two di�erent bloks.

To avoid redundanies in this blok by blok representation, vetor b an

be hosen in the set:

B(dy) :=

{
b ∈ {1, . . . , dy}

dy | b1 = 1, 1 ≤ bj ≤ 1 + max
1≤i≤j−1

bi, 2 ≤ j ≤ dy

}
.

(14)

Hene, for any b in B(dy), we an de�ne

� Max(b) as the maximal value of b,

� Y (ℓ)(z, b) as the random vetor that gathers all the omponents of Y (Z)|Z =
z with a blok index equal to ℓ,

� y(ℓ)(y, b) as the vetor that gathers all the omponents of y with a blok

index equal to ℓ.

For all b in B(dy), z in R
dz

and h := (h1, . . . , h
Max(b)) in R

Max(b)
, if

f̂
Y (ℓ)(z,b)(y

(ℓ)(y, b);hℓ) is the kernel estimator of the PDF of Y (ℓ)(z, b), it
omes:

fY (z)(y) ≈ f̃Y (z)(y;h, b) :=

Max(b)∏

ℓ=1

f̂
Y (ℓ)(z,b)(y

(ℓ)(y, b);hℓ), y ∈ R
dy , (15)

leading to another approximation of fZ|S(N)(z) for eah z in R
dz
:

fZ|S(N)(z) ≈ f̃Z|S(N)(z) :=
L̃S(N)(z;h, b)fZ(z)

E

[
L̃S(N)(Z)

] , (16)

L̃S(N)(z;h, b) :=
N∏

n=1

f̃Y (z)(Y
⋆(θn);h, b). (17)

2.4 Estimation of the kernel parameters

To evaluate L̃S(N), the values of h and b have to be identi�ed. This an be

done by solving the following optimization problem:

(hAIC, bAIC) ≈ arg min
h∈]0,+∞[Max(b), b∈B(dy)

AIC

LOO(h, b), (18)
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AIC

LOO(h, b) := 2Max(b)−2 log




M∏

m=1

Max(b)∏

ℓ=1

f̂
(−m)

Y (ℓ)(Z(ωm),b)
(Y (ℓ)(Y (ωm), b);hℓ)


 ,

(19)

where f̂
(−m)

Y (ℓ)(Z(ωm),b)
is the kernel estimator of the PDF of Y (ℓ)(Z(ωm), b) that

is based on all the evaluations of g but the mth

one. Indeed, given Eq. (9), this

amounts to minimizing a "Leave-One-Out" version of the Akaike information

riterion (AIC) [Akaike, 1974℄ assoiated with the PDF of Y (Z)|Z (very lose

results would be obtained by onsidering another information riterion suh

as the Bayesian information riterion (BIC)). We refer to [Perrin et al., 2018℄

for more details about the solving of this optimization problem.

2.5 Adaptive strategy

By onstrution, the preision of the estimation of z⋆
depends on the num-

ber of experimental measurements, N , and the number of ode evaluations,

M . Classially, the value of N is �xed, whereas it should be possible to im-

prove the auray of f̃Y (z), whih is de�ned by Eq. (15), by adding new

ode evaluations in the learning set. For instane, Mnew

new points ould be

added to the learning set by evaluating the ode inMnew

independent realiza-

tions of Z|S(N) (we remind that no ode evaluations are required to hoose

these new points). However, as the kernel density estimator is based on the

post-proessing of independent and identially distributed realizations of the

random vetor to model, non onsistent results ould be obtained by mixing

realizations of Z|S(N) with realizations of Z. If suh a seletion riterion was

hosen, this would mean that theM ode evaluations at the initial step should

not be used for the re�ning.

As an alternative, we propose to evaluate the funtion

z 7→ f̃(z) := L̃S(N)(z;h
AIC, bAIC)fZ(z)

in eah value of {Z(ω1), . . . ,Z(ωM )}. For eah 1 ≤ m ≤ M , let πm be the

following weights:

0 ≤ πm :=
f̃(Z(ωm))

∑M
m′=1 f̃(Z(ωm′))

≤ 1. (20)

Without loss of generality, these weights are assumed to be sorted in de-

reasing order, π1 ≥ π2 ≥ . . . ≥ πM . Hene, for 0 < α < 1, if we denote by Qα

the smallest integer suh that:

Qα−1∑

m=1

πm ≥ α, (21)
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the domain Zα := {z ∈ R
dz | f̃(z) ≥ f̃(Z(ωQα

)} an be seen as a onservative

α-redible set for Z|S(N), in the sense that the probability for Z|S(N) to

be in Zα is likely to be higher than α. Therefore, adding new realizations of

Z|Z ∈ Zα seems a good mean to enrih the set of points on whih the kernel

density estimator is based. Indeed, the most likely values of z at the former

step are kept in the adaptive proedure, while a good exploration of the input

domain is expeted if the value of α is hosen su�iently high.

Finally, hoosing fZ|Z∈Zα
instead of fZ for the prior distribution of Z,

and repeating several times this proedure, it is possible to iteratively redue

the unertainties about z⋆
.

Remarks

� By adding new ode evaluations, the objetive is to make f̃Y (z) be as lose

to fY (z) as possible, suh that the approximate posterior f̃Z|S(N) is as lose

to the true (but unknown) posterior fZ|S(N) as possible. Choosing a value

of α that is stritly inferior to one only aims at limiting the number of new

ode evaluations that will be in the region where true posterior fZ|S(N) is

almost zero. However, this value has not to be hosen too small, as it would

arti�ially redue the unertainty assoiated with the estimation of z⋆
by

utting too muh the tails of the true posterior. Hene, in the appliations

that will be presented in Setion 3, α is hosen equal to 0.99.
� Aording to Eq. (21), we deliberately add one to the value of Qα to be

onservative for the estimation of the α-redible set. This is partiularly

important for ases when after the �rst iteration, π1 ≈ 1. Indeed, even if

one value of z appears to be muh more relevant than the others, we do

not want to fous too muh around a single mode.

3 Appliations

The purpose of this setion is to illustrate the method proposed in Setion 2

on two appliations.

3.1 Analytial appliation

In this �rst appliation, X(z) refers to the Gaussian random �elds whose

mean is equal to t 7→ sin(2πz3t + z4), and whose ovariane funtion is equal

to (t, t′) 7→ z21 exp
(
− (t−t′)2

2z2
2

)
.

This lass of random �elds is therefore parameterized by four quantities:

two parameters for the mean value, denoted by z3 and z4, and two parameters

for the ovariane funtion, denoted by z1 and z2. We then introdue U(X(z))
as the image of X(z) by the following nonlinear mapping:
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Fig. 1 Comparison of independent realizations U(X(Z)) and U(X(Z))|Z = z⋆.

U(X(z)) := {X(t; z) sin(X(t; z)), t ∈ [0, 1]} . (22)

The value of z⋆
is hosen equal to (0.3, 0.2, 2, 1), and it is a priori modeled

by a uniformly distributed over [0.1, 1]× [0.05, 1]× [1, 3]× [0, 2] random vetor,

denoted by Z. To identify z⋆
, the available information is made of N = 10

independent realizations of U(X(Z))|Z = z⋆
, denoted by U⋆(θ1), . . . , U

⋆(θN ).
To solve the inferene problem, M = 500 independent realizations of Z have

been drawn, whih we write {Z(ω1), . . . ,Z(ωM )}. For eah 1 ≤ m ≤ M , we

then draw at random one realization of U(X(Z(ωm))), and we denote it by

U(ωm) for the sake of simpliity. As an illustration, several realizations of

U(X(Z)) and U(X(Z))|Z = z⋆
are ompared in Figure 1.

In priniple, the Bayesian formulation an be applied to any multi-variate

output ode. But in pratie, it is generally very onvenient to ondense (if

it is possible) the statistial ontent of the ode output in a low-dimensional

vetor [Perrin, ress℄. In our ontext, it is even more important, as a key step of

the proposed method is the identi�ation of the joint distribution between the

parameters to be identi�ed and the assoiated ode output, whose omplexity

strongly inreases with the dimension of the ode output. In that prospet, we

introdue ψp, p ≥ 1 as the solutions of the following eigenvalue problem:

∫ 1

0

M∑

m=1

U(t, ωm)U(t′, ωm)ψp(t
′)dt′ = λpψp(t), (23)
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λ1 ≥ λ2 ≥ · · · → 0,

∫ 1

0

ψp(t
′)ψq(t

′)dt′ = δpq, (24)

where δpq is the Kroneker symbol that is equal to 1 if p = q and 0 otherwise. To

solve the inferene problem, we �nally introdue Y (z) as the vetor gathering
the projetion oe�ients of U(X(Z)) on the former eigenfuntions assoiated

with the dy highest eigenvalues:

Y (Z) :=

(∫ 1

0

U(t;X(Z))ψ1(t)dt, . . . ,

∫ 1

0

U(t;X(Z))ψdy
(t)dt

)
. (25)

The value of dy an then be hosen to guarantee a relevant representation

of the observations. To this end, we introdue ε2 as the following quantity:

ε2(dy) :=

∑N
n=1

∫ 1

0

(
U⋆(t, θn)− Û⋆(t, θn; dy)

)2
dt

∑N
n=1

∫ 1

0 (U⋆(t, θn))
2
dt

, (26)

Û⋆(t, θn; dy) :=

dy∑

p=1

ψp(t)

(∫ 1

0

U⋆(t′, θn)ψp(t
′)dt′

)
. (27)

As an illustration, Figure 2 shows the evolution of ε2(dy) with respet to

dy, as well as the di�erene between U
⋆(t, θ1) and Û

⋆(t, θ1; dy) for three values
of dy. For this appliation, dy was hosen equal to 12, whih orresponds to a

value of ε2 that is less than 1%.

Based on theseM realizations of (Y (Z),Z), and on these N realizations of

Y (z⋆) := Y (Z)|Z = z⋆
, the adaptive Bayesian formalism presented in Setion

2 is now applied. For this appliation, the parameter α, whih was introdued

in Setion 2.5, is hosen equal to 0.99. At eah iteration, new samples are

therefore added in the region where fZ|S(N) is not too small using a rejetion

approah until we get a total of M points (inluding the points omputed at

the former iterations) in the α-redible set Zα, whose de�nition is also given

in Setion 2.5. After 5 iterations, the total number of alls to the ode is

equal to 2300, whih means that around 450 new points have been added at

eah iteration. The results are summarized in Table 3.1 and Figures 3 and

4. As a �rst omment, we verify that the identi�ation of z⋆
after only one

iteration is not very preise, in the sense that the predition unertainties are

very high. This is not surprising, as we are trying to approximate the PDF

of a 16-dimensional random vetor (dy = 12, dz = 4) on its whole de�nition

domain from only 500 realizations. Moving from M = 500 to M = 2300,
that is to say spending the total budget at the �rst iteration, does not really

help. Indeed, the results we get in terms of mean and variane of Z|S(N)
are approximatively the same. This is explained by the fat that even if the

number of points is almost multiplied by �ve, the overage of the de�nition
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Fig. 2 Evolution of the projetion error with respet to dy .

Z1 Z2 Z3 Z4

Referene 0.3 0.2 2 1

E [Z|S(N)], M = 2300, i = 1 0.25 0.57 2.00 1.02

E [Z|S(N)], M = 500, i = 1 0.24 0.59 2.00 1.02

E [Z|S(N)], M = 500, i = 2 0.35 0.31 2.00 1.04

E [Z|S(N)], M = 500, i = 3 0.34 0.23 2.00 1.04

E [Z|S(N)], M = 500, i = 4 0.34 0.24 2.00 1.04

E [Z|S(N)], M = 500, i = 5 0.29 0.19 2.00 1.04

Table 1 Evolution of the posterior mean with respet to the iteration number.

domain stays very sparse. On the ontrary, adding iteratively around 450 new
ode evaluations in the most likely region, whose volume is muh smaller than

the initial volume, allows E [Z|S(N)] to tend to z⋆
, and strongly redues the

redible intervals. This onvergene is quiker for the mean parameters than

for the ovariane parameters, whih was also expeted, as the mean funtion

is generally easier to identify than the ovariane. Fousing on Figure 4, it is

also interesting to notie that the referene value does not need to be in the

99%-redible ellipse assoiated with Z|S(N) at the �rst iteration to be in the

99%-redible ellipses at the next iterations.
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3.2 Appliation to the identi�ation of the mehanial properties of an

unknown anisotropi material

The seond appliation deals with the identi�ation of the mehanial proper-

ties of an heterogeneous miro-struture, whih is modeled by a random elasti

medium. To this end, several experimental tests are performed on a series of

speimens made of the same material. To be oherent with the notations in-

trodued in Setion 2, we denote by X the elastiity �eld haraterizing the
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Fig. 6 Representation of the studied mehanial phenomenon.
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mehanial properties of the material that onstitutes the speimens. Several

stohasti models have been proposed in the framework of the heterogeneous

anisotropi linear elastiity [Soize, 2006,Soize, 2008,Clouteau et al., 2013,Guilleminot and Soize, 2013℄.

It should be noted that the elastiity �eld is not a real-valued random �eld, but

a tensor-valued random �eld, and that the di�erent omponents of this ran-

dom �eld annot be identi�ed separately due to algebrai onstraints. For this

appliation, the stohasti model for the elastiity �eld is based on the model

proposed in [Soize, 2006℄ and [Guilleminot and Soize, 2013℄ in 2D plan stresses

for the sake of simpliity. Hene, the distribution of X is non-Gaussian, and

it is parameterized by a 5-dimensional deterministi vetor z = (z1, . . . , z5),
where:

� z1 is a positive dispersion oe�ient that ontrols the level of �utuations,

� z2, z3 are two spatial orrelation lengths,

� z4 is the mean value of the Young Modulus (×109 Pa);
� z5 is the mean value of the Poisson ratio.

We then assume that N = 100 ubi speimens are available, whose re-

spetive mehanial properties are haraterized by one partiular realization

of X(z⋆), with z⋆ = (2000, 0.1, 0.15, 210, 0.3). As an illustration, Figure 5

shows, for one partiular speimen, the evolution of the Young modulus and

the Poisson ratio in eah point of [0, 1]2. The same pressure �eld fS = −fSe2
is then imposed on the top of eah speimen, and we only have aess to the

indued displaement �eld on the boundaries of these speimens (see Figure

6 for an illustration of the experimental protool). Let U⋆(θ1), . . . ,U
⋆(θN ) be

these measured displaements.

Based on this set of measurements, the method desribed in Setion 2 ould

diretly be applied to the identi�ation of z⋆
. To speed up this identi�ation,

following the works ahieved in [Nguyen et al., 2015℄, we propose an alterna-

tive method, whih is based on a two-step proedure. First, z⋆4 and z⋆5 will

be identi�ed by onfronting the measured displaements to the homogeneous

ase. One z⋆4 and z⋆5 have been found, a Bayesian formalism will be proposed

for the identi�ation of the three remaining omponents of z⋆
.

Indeed, if the speimens were made of a homogeneous material, hara-

terized by its young modulus E and its Poisson ratio ν, it is well known

[Lai et al., 2010℄ that the indued displaement in eah point s ∈ [0, 1]2 would
be equal to uhomo(s) = (as1, bs2), with

(
a

b

)
=

[
λ λ+ 2µ

λ+ 2µ λ

]−1(
0

−fS

)
, µ =

E

2(1 + ν)
, λ =

2µν

(1 − 2ν)
. (28)

Hene, as we are onsidering a lass of stationary random proesses, the

values of z⋆4 and z⋆5 an be identi�ed as the arguments that minimize the L2

distane between the N measured displaements and the assoiated homoge-

neous displaements. In this two-step approah, the Bayesian identi�ation is
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no longer arried out in dimension 5, but in dimension 3. This strongly redues

the number of ode evaluations that will be needed for a orret identi�ation

of (z⋆1 , z
⋆
2 , z

⋆
3).

Thus, in the following, only z⋆1 , z
⋆
2 and z⋆3 are modeled by random quan-

tities. They are gathered in the vetor Z, whose omponents are assumed

independent and distributed aording to the following distributions:

log(Z1) ∼ U(4.6, 11.5), Z2 ∼ U(0.01, 0.3), Z3 ∼ U(0.01, 0.3), (29)

where for all a < b, U(a, b) is the uniform distribution over [a, b]. For a given

value of Z, it is possible to simulate independent realizations of X(Z), and
to approximate (using the Finite Element Method) the displaements indued

by the experimental fore �eld, whih we write U(X(Z)). Thus, for this se-
ond appliation, we �rst hose at random M = 1000 values of Z aording to

its prior distribution. For eah of these values, a partiular realization of the

elastiity tensor was then generated over [0, 1]2, and the mehanial problem

that orresponds to the experimental protool was solved (using the software

Cast3M) to get the displaements at the boundary of the ube. In the same

manner than in Setion 3.1, we �nally introdue Y (Z) as the projetion of

U(X(Z)) on the dy �rst eigenfuntions assoiated with the empirial estima-

tion of the ovariane of U(X(Z)) based on the M ode evaluations. In the

same manner, we gather in S(N) the projetion oe�ients of eah measured

displaement U⋆(θn) on this redued basis. To hoose the value of dy, the

normalized error de�ned by Eq. (26) is one again onsidered. For this appli-

ation, dy is hosen equal to 23 in order to orretly represent most of the loal

osillations of the displaements. Aording to Figure 7, this orresponds to a

projetion error that is less than 0.1%.

Following the framework proposed in Setion 2, the PDF of Z|S(N) is

dedued from the kernel estimator of the PDF of (Y (Z),Z). An adaptive

proedure (with α = 0.99) is moreover introdued to better onentrate the

distribution of Z|S(N) on the true value of z⋆
. To be more preise, 900 new

ode evaluations were added between the two �rst iterations, and 620 between
the two last iterations, leading to a total budget of 2520 ode evaluations. The
relevane of this approah is shown in Figure 8, where the blue ontinuous

lines orrespond to the 95%-redible ellipses assoiated with the distribution

of Z|S(N). After three iterations, the values of z⋆1 , z
⋆
2 and z⋆3 are indeed iden-

ti�ed with a high preision. To emphasize the interest of the partitioning pre-

sented in Setion 3.2, these results are ompared to the ase where there is no

optimization of the blok struture (the ellipses in red dotted lines). Although

these two approahes are based on the same information, there is no denying

that searhing groups of independent omponents of Y (Z)|Z is really helpful.

This is espeially true for the �rst iteration, where 23 groups of independent

omponents were hosen, and for the seond iteration, where 8 groups of in-

dependent omponents were hosen. For the third iteration, as only 4 groups
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Fig. 8 Evolution of the 95%-redible ellipses with respet to the iteration number. Blue

ontinuous line: dy = 23 with optimization of the blok struture. Red dotted line: dy = 23
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were hosen, introduing the partitioning does not make a big di�erene for

the PDF identi�ation, whih explains the similarities between the blue and

the red urves.

This set of �gures also emphasizes the importane of onsidering a high

value of dy , even if it ompliates the PDF identi�ation. For instane, hoosing

dy = 5 leads to the results in green dashed lines, whih are learly less relevant

than the results in blue that orrespond to dy = 23. Intermediate results were

obtained for values of dy between 5 and 23, whereas still inreasing dy did not

really hange the results.

In order to emphasize the e�ieny of the proposed method to reover

the true underlying stohastiity, three additional bathes of Q = 104 sim-

ulations are launhed. These simulations are assoiated with the same ubi

system than in Figure 6, but with di�erent boundary onditions (by hang-

ing the boundary onditions, we want to verify that the identi�ed values of

Z are not dependent of a �xed on�guration). While the boundary ondi-

tions on the inferior side of the ube do not hange, the left and right sides

are now free of onstraints, and the displaements on the superior side are

hosen equal to 0.002e1 − 0.01e2. We then denote by

{
X(1,q), 1 ≤ q ≤ Q

}
,

{
X(2,q), 1 ≤ q ≤ Q

}
and

{
X(3,q), 1 ≤ q ≤ Q

}
the elastiity �elds harateriz-

ing the material properties of the di�erent ubes of the three sets respetively.

For all 1 ≤ q ≤ Q,

� X(1,q)
is an independent realization of the true elastiity �eld, X(z⋆);

� X(2,q)
is an independent realization of X((zq,prior, z⋆4 , z

⋆
5)), where zq,prior

is a realization of Z, whose distribution is given by Eq. (29),

� X(3,q)
is an independent realization of X((zq,post, z⋆4 , z

⋆
5)), where z

q,post
is

a realization of Z|S(N) after the three formerly presented iterations.

For eah simulation, we denote by U(X(i,q)), 1 ≤ i ≤ 3, the onatena-

tion of the vertial and horizontal displaements that are indued on the left

and right sides of the ube. To ompare the statistial information gathered

in these displaements, we then ompute, for eah 1 ≤ i ≤ 3, the eigenval-

ues

{
v
(i)
j , j ≥ 0

}
assoiated with the empirial estimate of their ovariane

matries. In addition, we denote by σVM(X(i,q)) the maximum value over the

ubi domain of the Von Mises stress. This Von Mises riterion is ommonly

used to haraterize the resistane of the system (see [Lai et al., 2010℄ for more

details). The derease of these eigenvalues and the PDF of these Von Mises

riteria are �nally ompared in Figure 9. Looking at these �gures, we see that

the results assoiated with the posterior distribution of Z are very lose to the

ones assoiated with the true elastiity �eld, whih is not true for the results

assoiated with the prior distribution of Z. This underlines the apaity of the

proposed method to take into aount indiret observations for the identi�a-



Adaptive method for indiret identi�ation 21

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

 

 

PSfrag replaements

j

v
(1)
j

v
(2)
j

v
(3)
j

(a) Eigenvalues

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 

PSfrag replaements

σ

V

M

PDF

σVM(X(1,q))

σVM(X(2,q))

σVM(X(3,q))

(b) Von Mises riterion
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tion of the parameters haraterizing the distribution of an unknown random

proess of interest.
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4 Conlusion

The inreasing of the omputational resoures and the generalization of the

monitoring of mehanial systems have enouraged many sienti� �elds to

take into aount random �elds in their modeling. In that prospet, this work

proposes an adaptive Bayesian framework to e�iently identify the statistial

properties of these random �elds when the available information is a redued

set of indiret observations. Two examples based on simulated data are �nally

presented to show the potential of this approah.

Extending this approah to the ases where the number of parameters to

identify and the number of observations are very high would be interesting for

future work.

Appendix

A.1. Proof of the equality of Eq. 9

Let A,B,D be the blok deomposition matries of Ĉ
−1
:

Ĉ
−1

=

[
A B

BT D

]
. (30)

Using the Shur omplement, if follows that:





Ĉ
−1

ZZ = D −BTA−1B,

(ĈY Y − ĈY ZĈ
−1

ZZ
Ĉ

T

Y Z
)−1 = A,

− ĈY ZĈ
−1

ZZ
= A−1B.

(31)

It omes

((y, z)− (Y (ωm),Z(ωm)))
T
(h2Ĉ)−1 ((y, z)− (Y (ωm),Z(ωm)))

=
1

h2

(
(y − Y (ωm))TA(y − Y (ωm)) + 2(y − Y (ωm))TAA−1B (z −Z(ωm))

+ (z −Z(ωm))TD(z −Z(ωm))

)

=
1

h2



(y − Y (ωm) +A−1B (z −Z(ωm)))TA(y − Y (ωm) +A−1B (z −Z(ωm)))

+ (z −Z(ωm))T
(
D −BTA−1B

)
(z −Z(ωm))




= (y − µn(z))
TC−1

n (y − µn(z)) +
1

h2
(z −Z(ωm))

T
C−1

ZZ
(z −Z(ωm))

(32)

This leads to the searhed result.
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