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Understanding the genetic bases underlying climate adaptation is a key element to
predict the potential of species to face climate warming. Although substantial climate
variation is observed at a micro-geographic scale, most genomic maps of climate
adaptation have been established at broader geographical scales. Here, by using
a Pool-Seq approach combined with a Bayesian hierarchical model that control for
confounding by population structure, we performed a genome–environment association
(GEA) analysis to investigate the genetic basis of adaptation to six climate variables
in 168 natural populations of Arabidopsis thaliana distributed in south-west of France.
Climate variation among the 168 populations represented up to 24% of climate variation
among 521 European locations where A. thaliana inhabits. We identified neat and
strong peaks of association, with most of the associated SNPs being significantly
enriched in likely functional variants and/or in the extreme tail of genetic differentiation
among populations. Furthermore, genes involved in transcriptional mechanisms appear
predominant in plant functions associated with local climate adaptation. Globally, our
results suggest that climate adaptation is an important driver of genomic variation
in A. thaliana at a small spatial scale and mainly involves genome-wide changes in
fundamental mechanisms of gene regulation. The identification of climate-adaptive
genetic loci at a micro-geographic scale also highlights the importance to include within-
species genetic diversity in ecological niche models for projecting potential species
distributional shifts over short geographic distances.

Keywords: Arabidopsis thaliana, Bayesian hierarchical model, climate change, genome–environment association
analysis, local adaptation, Pool-Seq, spatial grain

INTRODUCTION

In the context of contemporary climate change, a major goal in evolutionary ecology is to
understand and predict the ability of a given species to persist in presence of novel climate
conditions (Bay et al., 2017). A lack of response of species to selection due to climate change
would cause an erosion of biodiversity by disrupting ecosystems sustainably (Pecl et al., 2017).
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Overall, species can adopt three non-exclusive responses to face
the altered and fluctuating climate conditions (Aitken et al., 2008;
Hansen et al., 2012; Pecl et al., 2017). Firstly, species can migrate
to track current climate spatial shifts. This response can, however,
be limited for (i) long-distance dispersal organisms because of the
presence of multiple anthropogenic barriers (Ewers and Didham,
2006), and (ii) organisms with restricted dispersal as for example
sessile plants lacking dispersal mechanism or disperser reward
(Wang et al., 2016).

Secondly, organisms can rapidly acclimate to novel climate
conditions via phenotypic plasticity, defined as the ability
of a given genotype to produce different phenotypes when
exposed to different environmental conditions (Fusco and
Minelli, 2010). Despite its theoretical benefits to help natural
populations to reach a new phenotypic optimum (Lande, 2009;
Chevin et al., 2010), adaptive phenotypic plasticity is not as
frequent as expected in nature because it can be constrained
by several costs and limits (initially reviewed in DeWitt et al.,
1998). For example, one of the main limits concerns the
unreliability of environmental cues, leading to non-adaptive
or mal-adaptive plastic responses (van Kleunen and Fischer,
2005). In the context of climate change, such unreliable cues
can correspond to extreme climate events that fall outside
the range of the climate conditions encountered by natural
populations over their history (Orlowsky and Seneviratne,
2012).

Thirdly, over a longer term, organisms can adapt to novel
climate conditions via genetic selection, provided that there is
sufficient standing genetic variation or new genetic variation
arising from either de novo mutations or immigration of climate-
adapted alleles from nearby populations (Hoffmann and Sgrò,
2011; Bay et al., 2017). Predicting the response of species to
climate change therefore requires the description of the genomic
architecture (i.e., number of genes, allelic effects, locations across
the genome) underlying climate adaptation. For this purpose, two
major approaches can be adopted, based on either phenotype–
genotype or ecology–genotype associations across the genome
(Bergelson and Roux, 2010; Bay et al., 2017). Few genome-
wide association mapping studies (GWAS) reported the genomic
architecture associated with phenotypic traits potentially related
to climate adaptation such as thermal sensitivity (Li et al.,
2014). On the other hand, based on the assumption that each
population is adapted to local environmental conditions, the
most exploited approach corresponds to genome–environment
association (GEA) analyses. In this case, a genome scan is
performed to identify significant associations between genetic
polymorphisms and environmental variables (Yoder et al., 2014;
Abebe et al., 2015; Lasky et al., 2015; Rellstab et al., 2015;
Hoban et al., 2016; Manel et al., 2016). Due to publicly
available gridded estimates of climate and the development of
next-generation sequencing (NGS) technologies, the number of
GEA analyses performed on climate variables rapidly increased
in the last few years (Bay et al., 2017). In most studies,
the genomic architecture of climate adaptation was found to
be highly polygenic, with hundreds to thousands of small-
effect genetic variants scattered across the genome (Bay et al.,
2017).

Most of the GEA analyses on climate were performed at large
spatial scales (i.e., from several hundred to several thousand
kilometers). However, substantial climate variation can also be
observed at smaller spatial scales (from several tens of meters
to several tens of kilometers), leading for example to sharp
climate gradients in mountains (Manel et al., 2010; Kubota et al.,
2015) or a mosaic of climatically optimal and suboptimal sites
within the reach of gene flow among populations (Pluess et al.,
2016). The complementarity of performing GEA analyses from
continental to local geographical scales should shed light on the
genetic bases underlying coarse-grained and fine-grained climate
variation (Manel et al., 2010), which in turn would increase
the reliability of predictions of response to climate change. In
addition, as previously advised for adaptive phenotypic traits
(Bergelson and Roux, 2010), working at a small geographical
scale should reduce the limitations of GEA analyses often
observed when working at larger geographical scales such as
the confounding background produced by population structure,
rare alleles and genetic/allelic heterogeneity. Finally, a fine-
grained spatial scale is much more coherent with the mean
distance of species migration (few km per decade; Chen et al.,
2011).

Arabidopsis thaliana is a widely distributed annual selfing
plant species found in a large range of climate environments
across its native range in Eurasia (Hoffmann, 2002). Given
the main barochorous mode of seed dispersal of A. thaliana,
seeds are dispersed over short distances (i.e., a few ten of
centimeters, Wender et al., 2005), thereby limiting the potential
to track current climate poleward shifts. Although adaptive
plastic responses to climate change (in particular seasonal climate
change) have been observed in A. thaliana (Fournier-Level
et al., 2016), a growing number of studies also reported the
importance of genetic selection underlying climate adaptation in
A. thaliana (Frachon et al., 2017). Notably, reciprocal transplants
performed at the European scale revealed that climate gradients
likely play a major role in local adaptation of A. thaliana
(Fournier-Level et al., 2011; Ågren and Schemske, 2012; Ågren
et al., 2013; Wilczek et al., 2014). Furthermore, amongst plant
species, A. thaliana pioneered the identification of climate-
adaptive genetic loci at the genome-wide scale. A GEA analysis
based on 948 Eurasian accessions succeeded to establish a
genomic map of local adaptation to climate variation, which
in turn successfully predicted the relative fitness of a subset
of accessions grown together in a common garden in the
north of France (Hancock et al., 2011). Local adaptation to
climate also explains a substantial portion of genomic variation
of A. thaliana at a regional scale (i.e., several hundred km;
Méndez-Vigo et al., 2011; Lasky et al., 2012; Vidigal et al.,
2016; Tabas-Madrid et al., 2018). However, studies reporting the
genomic architecture of adaptation to various climate variables
at a finer spatial grain (from several tens of meters to several
tens of kilometers) are still scarce in A. thaliana, despite the
identification of strong climate–phenotype associations either
along sharp altitudinal gradients (Montesinos-Navarro et al.,
2011; Luo et al., 2015; Günther et al., 2016; Tabas-Madrid et al.,
2018) or in a mosaic of climatically contrasted sites (Brachi et al.,
2013).
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In this study, we aimed to establish a genomic map of
climate adaptation in A. thaliana at a micro-geographic scale.
We focused on a new set of 168 natural populations distributed
homogeneously in the south-west of France (Bartoli et al.,
2018), a geographical region under the influence of three
contrasted climates (i.e., oceanic climate, Mediterranean climate
and mountain climate). By using a Bayesian hierarchical model
that control for confounding by population structure (Gautier,
2015), we conducted a GEA analysis between 1,638,649 SNPs
and six fine-grained climate variables. Because most A. thaliana
natural populations located in France are genetically diverse (Le
Corre, 2005; Platt et al., 2010; Brachi et al., 2013), we obtained
a representative picture of within-population genetic variation
across the genome by adopting a Pool-Seq approach. We then
searched for genome-wide signatures of selection on the SNPs the
most associated with climate variation. Following Hancock et al.
(2011) and Brachi et al. (2015), we therefore tested whether those
top SNPs were enriched either for non-synonymous variants or
in the extreme tail of a genome-wide spatial differentiation scan.
We finally discussed the function of the main candidate genes.

MATERIALS AND METHODS

Plant Material
A field prospection in May 2014 allowed the identification
of 233 A. thaliana natural populations in the Midi-Pyrénées
region (south-west of France). In agreement with an important
population turnover of natural populations observed in
A. thaliana (Picó, 2012), individuals were present in only 168
populations (∼72.1%) in late winter 2015 when the sampling
campaign was performed (Supplementary Table S1). The
average distance among the 168 populations was 100.6 km
(median = 93.4 km, max = 265.2 km, min = 0 km, first
quartile = 57.3 km, third quartile = 137.2 km). To our knowledge,
no natural populations of A. thaliana have been previously
sampled in this geographic region.

Climate Characterization
The 168 geo-localized populations were characterized for
20 biologically meaningful climate variables retrieved from
the ClimateEU database (Table 1). Climate data has been
generated with the ClimateEU v4.63 software package1 based
on methodology described by Hamann et al. (2013). The grid
resolution of the 20 climate variables (∼1.25 arcmin, ∼600 m)
was smaller than the average distance among populations.
Climate data were averaged across the 2003–2013 annual
data. In addition, altitude was obtained from http://www.gps-
coordinates.net. Following Hancock et al. (2011), the set of 21
climate variables was pruned based on the pairwise Spearman
correlations of the variables (Supplementary Figure S1), by taking
into account only variables that did not display a Spearman’s
rho greater than 0.8. This step was performed to avoid inter-
correlation between two variables. In cases where variables were
strongly inter-correlated, we selected the variable with the most

1http://tinyurl.com/ClimateEU

obvious link to the ecology of A. thaliana. The final set of six
non-correlated climate variables considered in this study was
composed by mean annual temperature, mean coldest month
temperature and precipitations in winter, spring, summer, and
autumn.

In order to compare the level of climate variation among
the 168 populations of the Midi-Pyrénées region with the
level of climate variation among natural populations of
A. thaliana located in Europe, we first extracted data for the six
climate variables (ClimateEU database) for 521 locations where
A. thaliana have been collected and geo-localized in Europe,
including 95 French locations (Hancock et al., 2011; Brachi
et al., 2013). To visualize the climatic space encountered by
A. thaliana at different geographical scales, we then performed
a principal component analysis (PCA) based on the 689 locations
by using the ade4 1.7-6 version package in the R environment
(Chessel et al., 2004; Dray et al., 2017). Finally, the percentage of
climatic variation in Europe observed among the 168 populations
was calculated by dividing the extent of variation observed on
the two first Principal Components (PCclimate) at the scale of the
Midi-Pyrénées region by the extent of variation observed at the
European scale.

Spatial Grains of Climatic Variation
To estimate the spatial grain of variation of each climate variable,
a spectral decomposition of the spatial relationships among the
168 populations was first modeled with Principal Coordinates
of Neighbor Matrices (PCNM), by running the pcnm() function
implemented in the vegan package (R package version 2.3-5;
Oksanen et al., 2016) using the Euclidean distance matrix based
on the GPS coordinates of the 168 populations. This analysis
allows decomposing the spatial structure among the sites under
study into orthogonal PCNM components corresponding to
successive spatial grains (Borcard and Legendre, 2002). The first
PCNM components define a large spatial grain, while the last
PCNM components correspond to finer grains (Borcard et al.,
2004; Ramette and Tiedje, 2007). All PCNM components were
then used as explanatory variables in a multiple linear regression
on each climate variable. To account for multiple testing, a
Benjamin–Hochberg procedure was performed for each climate
variable across all PCNM components to control for a false
discovery rate (FDR) at a nominal level of 5% (Benjamini and
Hochberg, 1995).

Genomic Characterization and Data
Filtering
For each population, a mean number of 16.5 plants (total
number = 2,776 plants, median = 17 plants, max = 17 plants,
min = 5 plants, Supplementary Table S1) were collected randomly
in late February – early March 2015 and brought back to a
cold frame greenhouse (no additional light or heating). In April
2015, leaf tissue was collected from approximately 16 plants per
population for a total of 2,574 plants (min = 5 plants, max = 16
plants, mean = 15.32 plants, median = 16 plants, Supplementary
Table S1). More precisely, a portion of a rosette leaf for each
plant was placed in 96-well Qiagen S-block plates containing a
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TABLE 1 | List of the 21 climate variables used in this study.

Variable Description Source Grid resolution∗

Altitude Altitude (m) www.coordonnees-gps.fr –

MAT Mean annual temperature (◦C) ClimateEU 1.25 arcmin

MWMT Mean warmest month temperature (◦C) ClimateEU 1.25 arcmin

MCMT Mean coldest month temperature (◦C) ClimateEU 1.25 arcmin

TD Temperature difference between MWMT and MCMT, or continentality (◦C) ClimateEU 1.25 arcmin

MAP Mean annual precipitation (mm) ClimateEU 1.25 arcmin

AHM Annual heat:moisture index (MAT + 10)/(MAP/1000) ClimateEU 1.25 arcmin

SHM Summer heat:moisture index [(MWMT)/(mean summer precipitation/1000)] ClimateEU 1.25 arcmin

DD < 0 Degree-days below 0◦C, chilling degree-days ClimateEU 1.25 arcmin

DD > 5 Degree-days above 5◦C, growing degree-days ClimateEU 1.25 arcmin

DD < 18 Degree-days below 18◦C, heating degree-days ClimateEU 1.25 arcmin

DD > 18 Degree-days above 18◦C, cooling degree-days ClimateEU 1.25 arcmin

NFFD The number of frost-free days ClimateEU 1.25 arcmin

Tave_wt Winter [December (previous year)–February] mean temperature (◦C) ClimateEU 1.25 arcmin

Tave_sp Spring (March–May) mean temperature (◦C) ClimateEU 1.25 arcmin

Tave_sm Summer (June–August) mean temperature (◦C) ClimateEU 1.25 arcmin

Tave_at Autumn (September–November) mean temperature (◦C) ClimateEU 1.25 arcmin

PPT_wt Winter precipitation (mm) ClimateEU 1.25 arcmin

PPT_sp Spring precipitation (mm) ClimateEU 1.25 arcmin

PPT_sm Summer precipitation (mm) ClimateEU 1.25 arcmin

PPT_at Autumn precipitation (mm) ClimateEU 1.25 arcmin

The final set of six non-correlated climate variables considered in this study are in bold. ∗1.25 arcmin ∼600 m.

3 mm bead in each well and samples were stored at −80◦C.
Prior to DNA extraction, plates were put 30 s in liquid nitrogen
and samples were then crushed by using Mixer Mill MM 300
Retsch R© with 1 min of vibration at a frequency of 30 vibrations/s.
Genomic DNA from the 2,574 plants was extracted as described
in Brachi et al. (2013) and total DNA for each individual
extraction was quantified by using a Quant-iTTM PicoGreen R©

dsDNA Assay Kit with a qPCR ABI7900 machine. Individuals
from each population were then used to constitute an equimolar
pool. From 50 to 500 bp fragments were produced for each pool
by using Covaris M220 Focused-ultrasonicatorTM and fragment
size selection was performed by using Sample Purification Beads.
Produced fragments were analyzed with Agilent 2100 Bioanalyzer
with a DNA 7500 chip and purified with Agencourt R© AMPure R©

XP paramagnetic beads by following manufacturer instructions
protocol. Illumina indexes were added by PCR amplification
with the following cycling program: 1 min at 94◦C, followed
by 12 cycles of 1 min at 94◦C, 1 min at 65◦C and 1 min
at 72◦C, followed by a final elongation of 10 min at 72◦C.
After this step, PCR products were purified with Agencourt R©

AMPure R© XP paramagnetic beads. The quality of the libraries
was assessed with the Advanced Analytical Fragment Analyzer
and libraries were then quantified by qPCR by using the Kapa
Library quantification Kit. Samples were sequenced at the Get-
PlaGe core facility (INRA of Toulouse) on an Illumina HiSeq
3000 sequencer by using a paired-end read length of 2 × 150 bp
with the Illumina HiSeq3000 Reagents Kits. In particular, each
Illumina lane was composed of a pool of 14 DNA samples.
Twelve lines were used in total to sequence the DNAs (i.e., 14
A. thaliana populations were sequenced on each Illumina lane).
Raw data for each population used in this study are available

at the NCBI Sequence Read Archive (SRA)2 through the study
accession SRP103198.

Raw reads were mapped on the reference genome Col-
0 with glint tool (version 1.0.rc8.779) (Faraut and Courcelle,
unpublished software) by using the following parameters: glint
mappe –no-lc-filtering –best-score –mmis 5 –lmin 80 –step 2.
The mapped reads were filtered for proper pairs with SAMtools
(v0.01.19; Li et al., 2009) (samtools view -f 0x02). A semi-
stringent SNPCalling across the genome was then performed for
each population with SAMtools mpileup (Li et al., 2009) and
VarScan mpileup2snp (Koboldt et al., 2012) software by using
as parameters a minimum coverage (minimum read depth at a
position to make a call) of five reads and a minimum variant
allele frequency threshold of 0.00001. SNP-Pooling was then
performed to obtain polymorphic sites across the pool of the
168 populations and SNP-Calling was inferred on the whole
polymorphic sites as described above (VarScan mpileup2cns;
min coverage = 1). The bi-allelic positions were then selected.
The mean and the median coverage to a unique position in
the reference genome was ∼26.3× and ∼24.5×, respectively
(min = 11.60×, max = 48.69×).

After bioinformatics analysis, the allele read count matrix
(for both the reference and alternate alleles) was composed by
4,781,661 SNPs across the 168 populations. This data set was
further filtered using custom scripts. First, SNPs without mapped
reads in at least eight populations were removed (number of
remaining SNPs = 3,798,406). Second, for each population,
we calculated the relative coverage of each SNP as the ratio
of its coverage to the median coverage (computed over all

2http://ncbi.nlm.nih.gov/sra
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the SNPs in the corresponding population). Because multiple
gene copies in the 168 populations can map to a unique gene
copy in the reference genome Col-0, we removed SNPs with
a mean relative coverage across the 168 populations above
1.5 (number of remaining SNPs = 3,260,041). In addition, we
removed SNPs with a standard deviation of allele frequency
across the 168 populations below 0.004 (number of remaining
SNPs = 3,248,168). Third, because genomic regions present in
Col-0 can be absent in most of the 168 populations or genomic
regions present in most of the 168 populations can be absent
in Col-0, we removed SNPs with a mean relative coverage
across the 168 populations below 0.5 (number of remaining
SNPs = 3,172,313). Fourth, because of bias in GWA/GEA analysis
due to rare alleles (Bergelson and Roux, 2010), we removed SNPs
that were monomorphic in more than 90% of the populations,
leading to a final data set consisting of read counts for 1,638,649
SNPs in the 168 populations.

Genome–Environment Association
Analysis
Based on the 1,638,649 SNPs, whole genome scans for adaptive
differentiation and association with climate variables were
performed with BayPass 2.1 (Gautier, 2015). Dealing with Pool-
Seq data, the underlying Bayesian hierarchical models explicitly
account for the scaled covariance matrix of population allele
frequencies (�) which make the analyses robust to complex
demographic histories.

Since the large number of SNPs analyzed here, we adopted a
sub-sampling procedure to estimate�. This procedure consisted
in dividing the full data set into 32 sub-data sets, each containing
3.125% of the 1,638,649 SNPs (51,207 SNPs taken every 32 SNPs
along the genome), that were further analyzed in parallel under
the core model using default options for the Markov Chain
Monte Carlo (MCMC) algorithm (except -npilot 15 -pilotlength
500 -burnin 2500). Pairwise comparisons of the 32 resulting
covariance matrices confirmed that all estimates were consistent
with highly correlated elements. In addition, the pairwise FMD
distances (Förstner and Moonen, 2003) had a narrow range of
variation (from 2.04 to 2.24) with a mean value equal to 2.15.

These analyses carried out under the core model also provided
the estimation of the XtX measure of differentiation for all
the SNPs (combined over sub-data sets). For a given SNP, the
XtX is defined as the variance of the standardized population
allele frequencies, i.e., rescaled using � and across population
allele frequencies (Günther and Coop, 2013; Gautier, 2015).
This allows for a robust identification of highly differentiated
SNPs by correcting for the genome-wide effects of confounding
demographic evolutionary forces such as genetic drift and gene
flow.

Given the close similarity of the � estimates obtained on
the 32 sub-data sets, we retained for further analyses the matrix
�̂1 (obtained on the first sub-data set) as an estimate of the
scaled covariance matrix of population allele frequencies. To
evaluate the spatial scale of genomic variation, we first performed
a singular value decomposition (SVD) of �̂1. The coordinates of
the two first resulting Principal Components (PCgenomic) were

then regressed against latitude and longitude of population i
according to the following formula (PROC GLM procedure in
SAS 9.3 SAS Institute Inc., Cary, NC, United States):

PCgenomic coordinatesi − latitudei + longitudei

+ latitude∗i longitudei + εi (1)

Finally, genome-wide analysis of association with climate
covariables were carried out under the AUX model (-auxmodel)
parameterized with�1. The underlying model consists in a linear
regression of the SNP population allele frequencies with the
population-specific covariates while accounting for the shared
covariance structure of allele frequencies as captured by the
matrix �. In the AUX model, a Bayesian (binary) auxiliary
variable δ is assigned to each SNP regression coefficient that
indicates whether a specific SNP can be regarded as associated
to the covariable (δ = 1) or not (δ = 0). By looking at the
posterior mean of each SNP auxiliary variables (known as
Posterior Inclusion Probability or PIP, in the model averaging
literature), it is then straightforward to derive a Bayes Factor
(BF) to compare models considering the SNP as associated or not
(Gautier, 2015). Hence, the support for association of each SNP
with each covariable k (i.e., a non-null regression coefficient β̂ik
between SNP i allele frequencies and a covariable k) was evaluated
by computing BF measured in deciban units (dB) (Gautier, 2015).
Note that the AUX model allows to explicitly accounting for
multiple testing issue by integrating over (and estimating) the
unknown proportion of SNPs actually associated with a given
covariable. Here, six climate variables were considered separately
and standardized prior to analyses using the scalecov option. In
practice, BF and the associated regression coefficients β̂i (mean
of the product δiβi over the corresponding posterior sampled
values) between SNP allele frequencies and climate variation were
estimated for each SNP by analyzing in parallel the 32 sub-data
sets described above (but with the same matrix �̂1) using default
options (except -npilot 15 -pilotlength 500 -burnin 2500) for
MCMC.

Testing the Power of GEA Analysis to
Identify True Positives
Because climate variation was significantly associated with the
first PCgenomic (Supplementary Table S2), we performed a
simulation study aiming at characterizing how the degree of
correlation between a given environmental covariable and the
major axis of population structure might affect the sensitivity
of BayPass to detect associated SNPs. For this purpose,
using the R function simulate.PCcorrelated.covariate that we
specifically developed in this study (Supporting Information
of Supplementary Material) and that will be integrated in a
future release of the BayPass software, we first simulated 10
environmental covariable vectors Zi (of length 168, the number of
populations) with a Spearman’s coefficient correlation ρi ranging
from 0 to 0.9 (ρi = 0.1(i−1) for i = 1,. . . , 10) with the first
PCgenomic. For each covariable vector, 25 data sets consisting
of read counts for 10,000 SNPs including 100 associated SNPs
(with a regression coefficient set at 0.1) were simulated under the
BayPass inference model using the function simulate.baypass()
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available from the BayPass software package (Gautier, 2015).
For all the simulated data sets, the simulation model was
specified with the estimated matrix �̂1 and the estimated
posterior means of the two shape parameters of the Beta-
distribution across population allele frequencies (\hat{a} = 2.78
and \hat{b} = 0.710 with option pi.maf = 0.01). In addition,
to preserve the characteristics of our design, we kept the same
population haploid pool sizes and sampled the vector of SNP read
coverages (across pool samples) from the observed data. The 250
resulting data sets were analyzed under the AUX model following
standard procedure.

To compare the performances of the AUX model for different
degrees of correlation of the underlying population-specific
environmental covariable with the first PCgenomic, the actual
(i) true positive rates (TPRs) or power (i.e., the proportion
of true positives among the truly associated SNPs); (ii) false
positive rates (FPRs) (i.e., the proportion of false positives
among the non-associated SNPs); and (iii) the false discovery
rates (FDRs) (i.e., the proportion of false positives among
the significantly associated SNPs) were computed for various
thresholds covering the range of BF values (after combining, for
each covariable vector, results on the 25 simulated data sets).
From these estimates, both standard receiver operating curves
(ROCs) plotting TPR against FPR and precision-recall (PR)
curves plotting (1-FDR) against TPR were drawn. PR and ROC
analyses were performed with the PRROC R package (Grau et al.,
2015).

Enrichment Across Annotation
Categories of Variants for Climatic
Associations
To test whether different categories of genetic variants were
enriched for the SNPs that were the most significantly associated
with climate variation (i.e., with the highest BF), we first
annotated and predict the effect of all SNPs (n = 1,638,649
SNPs) by using the SnpEff program (Cingolani et al., 2012)
in a Galaxy environment (Afgan et al., 2016). In this study,
we considered six categories of genic variants representing
98.5% of the SNPs tested genome-wide, i.e., replacement variant
(8.2%), synonymous variant (9.1%), intron variant (14.9%), UTR
variant (5.6%), intergenic variant (49.1%), and intragenic variant
(11.5%). For the intragenic variant category, 99.1% of the SNPs
fall within transposable elements. We then tested whether SNPs
in the 0.5% upper tail of the BF distribution of each climate
variable were over-represented or under-represented in each of
the six genetic variant categories. For each category of genetic
variant, we used the following equation:

FESNPeff =
sa/s
Sa/S

(2)

where s is the number of BF in the 0.5% upper tail of the BF
distribution, sa is the number of SNPs in the 0.5% upper tail of the
BF distribution that also belonged to the genetic variant category,
S is the total number of annotated SNPs tested genome-wide and
Sa is the number of annotated SNPs tested genome-wide that also
belonged to the genic variant category. Based on a methodology

previously described in Hancock et al. (2011) that takes into
account original Linkage Disequilibrium (LD) patterns among
SNPs in the 0.5% upper tail of the BF distribution, statistical
significance of enrichment for each category of genetic variants
was assessed by running 10,000 null circular permutations of
SNPs along the genome.

Enrichment in Signatures of Selection for
Climatic Associations
For each climate variable, we tested whether SNPs with the
highest BF were over-represented in the extreme tail of the XtX
distribution according to the methodology described in Brachi
et al. (2015):

FEXtX =
na/n
Na/N

(3)

where n is the number of XtX in the 0.5% upper tail of the XtX
distribution, na is the number of SNPs in the 0.5% upper tail of
the BF distribution that were also in the 0.5% upper tail of the XtX
distribution, N is the total number of SNPs tested genome-wide
and Na is the number of SNPs in the 0.5% upper tail of the BF
distribution. Statistical significance of enrichment was assessed
by running 10,000 null permutations based on the methodology
described in Hancock et al. (2011).

Identification of Candidate Genes
Associated With Climate Variation
A three-step procedure was adopted to identify candidate genes
associated with climate variation. Firstly, we selected the 50 SNPs
with the highest BF for each of the six climate variables, leading to
a total of 300 SNPs. Secondly, for each climate variable, candidate
regions were defined on the genomic regions supported by at least
three top SNPs successively separated by less than 10 kb. This
step led to the identification of 12 candidate regions, including
one region detected for both mean annual temperature and mean
coldest month temperature. The 12 candidate regions contain on
average 3.6 SNPs (median = 4 SNPs, min = 3 SNPs, max = 6 SNPs)
and have a mean length of 10.1 kb (median = 9.5 kb, min = 2.4 kb,
max = 16.9 kb). Finally, using the TAIR 10 database3 we retrieved
all the annotated genes located within or overlapping with the 13
candidate regions, leading to the identification of 34 annotated
genes.

RESULTS

Climate Variation and Associated Spatial
Grains
Here, we focused on 168 A. thaliana natural populations
distributed in the Midi-Pyrénées region located in the south-west
of France (Figure 1). We identified 82 Principal Coordinates of
Neighbor Matrices (PCNM) components, suggesting a relatively
homogeneous spatial distribution of the 168 populations across
the sampling area (Figure 1).

3https://www.arabidopsis.org/
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FIGURE 1 | Distribution of the 168 A. thaliana natural populations across the
Midi-Pyrénées region (south-west of France). Gray zone represents total area
of metropolitan France. Black dots represent locations inhabited by A. thaliana
in the Midi-Pyrénées region.

The 168 populations were characterized for six climate
variables with a grid resolution (∼600 m) smaller than the average
distance among populations (i.e., 100.6 km, SD = 56.0 km). The
six climate variables were associated with a large range of PCNM
components, (Supplementary Figure S2), indicating coarse-
grained to very fine-grained spatial variation for temperature-
and precipitation- related variables.

Despite the restricted size of our sampling area (∼8.2% of
total area of metropolitan France, Figure 1), climate variation
among the 168 populations represented 24.0% and 14% of climate
variation observed among 521 European locations for the first
and second PCclimate, respectively (Figure 2). In addition, the
climate space of the Midi-Pyrénées region largely differed from
the climate space of the other French regions inhabited by
A. thaliana (Figure 2C).

Altogether, these results suggest the presence of contrasted
climates, even at a short geographical distance, among the
locations inhabited by A. thaliana in the Midi-Pyrénées region.

Genome–Climate Associations
Using Pool-Seq data, we estimated within-population allele
frequencies across the genome for a final number of 1,638,649

SNPs (i.e., one SNP every 72 bp). Based on SVD of the population
covariance-variance matrix �̂1 , we found that 96.4% of the
genomic variation observed in the Midi-Pyrénées region was
explained by the first PCgenomic (Supplementary Figure S3),
reinforcing the pattern of strong population subdivision already
observed in other French regions (Le Corre, 2005; Brachi
et al., 2013). In addition, a weak geographic pattern along a
south-west/north-east axis was observed for genomic variation
(latitude: t value = 4.734, P = 4.73 × 10−6, longitude:
t value = 4.417, P = 1.81 × 10−5, latitude × longitude:
t value = −4.428, P = 1.73 × 10−5, adjusted R2 = 10.5%;
Supplementary Figure S3).

To identify the genomic regions associated with climate
variation, we then performed a genome-wide scan for association
with the six climate variables, using a Bayesian hierarchical model
that includes a population covariance matrix accounting for the
neutral covariance structure across population allele frequencies.
For each climate variable, we estimated the regression coefficients
between SNP allele frequencies and climate variation (βi) and
evaluated the support for association (non-null βi) of the
association between a given SNP and a climate variable with
a Bayes factor (BF). By applying this method, we identified
neat and strong peaks of association for most of the climate
variables (Figure 3 and Supplementary Figure S4). Accordingly,
as illustrated for the mean annual temperature and the winter
precipitations, standardized allele frequencies variation of the
most significant SNPs strongly overlapped with climate variation
(Figure 4).

Because climate variation was significantly associated with
the first PCgenomic (absolute Spearman’s correlation coefficients
ranging from 0.148 to 0.316; Supplementary Table S2), we
evaluated to which extent the level of correlation of the analyzed
covariables with this axis can have affected the performance
of GEA analyses. We analyzed 250 data sets simulated under
the inference model and each data set consisted of 10,000
SNPs including 100 SNPs associated with a given environmental
covariable out of 10 simulated ones (25 data sets per covariable)
that displayed different levels of correlation with the first
PCgenomic (ranging from 0 to 0.9 with an increasing step
of 0.1). The simulation model was calibrated to obtain data
sets closely mimicking our observed climate data, both in
terms of the sample design (number of populations, haploid
sample size of the pools, read coverage, across population
allele frequencies) and population structure (summarized by
the matrix �). As expected, performances of the model
for detecting environmental covariable – SNPs associations
decreased (i.e., for a given power both the false discovery
and false positive rates increased) when the correlation of the
considered environmental covariable with the first PCgenomic
increased (Figure 5). For instance, ROC and PR AUC were
minimal for Spearman’s rho = 0.9 (ROCauc = 0.813 and
PRauc = 0.236) (Figure 5). Interestingly, up to correlation values
equal to 0.5 (i.e., beyond the range of our climate variables
of interest), performances of the model remained similar, with
ROC AUC ranging from 0.936 (Spearman’s rho = 0.4) to
0.953 (Spearman’s rho = 0.1) and PR AUC ranging from 0.629
(Spearman’s rho = 0.2) to 0.701 (Spearman’s rho = 0.1) (Figure 5).
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FIGURE 2 | Climate variation among natural populations of A. thaliana collected at different geographical scales. (A) Factor loading plot resulting from a principal
component analysis. Factor 1 and factor 2 explained 52.57% and 32.99% of total climate variation. See Table 1 for a description of the climate variables.
(B) Distribution of eigenvalues. (C) Position of the 168 populations of the Midi-Pyrénées region in the European and French climatic space of A. thaliana. Blue dots
represent European locations without considering locations in France (n = 426), green dots represent French locations without considering locations in the
Midi-Pyrénées region (n = 95), red dots represent locations in the Midi-Pyrénées region (n = 168).

Altogether, these results suggest that a large fraction of the SNPs
the most associated with climate variation correspond to true
positives.

Signatures of Selection
To test whether our results detect true signals of adaptation,
we first tested whether the top SNPs (i.e., the 0.5% upper
tail of the BF distribution) were differentially enriched for
six categories of genetic variants (intragenic, intergenic, UTR,
intron, synonymous and replacement). For the variables mean
annual temperature, mean coldest month temperature and
winter precipitations, the highest significant fold enrichment
was observed for replacement SNPs (Figure 6). For the
variable summer precipitations, the highest significant fold
enrichment was detected for SNPs located in UTR regions
(Figure 6). No significant enrichment was detected for spring and
autumn precipitations variables after a correction for multiple
comparisons (Figure 6).

We then tested whether the top SNPs (i.e., the 0.5% upper
tail of the BF distribution) significantly overlapped with the 0.5%
upper tail of the XtX distribution (i.e., the 0.5% most overly
differentiated SNPs among populations). For all climate variables
with the exception of winter precipitations, climate-related SNPs
were significantly enriched in the 0.5% upper tail of the XtX
distribution (P < 0.001), with a fold-enrichment ranging from
1.70 for mean coldest month temperature to 3.14 for spring
precipitations.

Identification of Candidate Genes
To identify candidate genes associated with climate variation, we
retrieved all the annotated genes located within or overlapping
with 12 candidate regions (each supported by at least three top
SNPs), including one region at the beginning of chromosome 5
detected for both mean annual temperature and mean coldest
month temperature (Supplementary Table S3). By considering a
list of 34 candidate genes, a literature survey identified different
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FIGURE 3 | Manhattan plots of the genome–environment association results for mean annual temperature (MAT) and winter precipitations (PPT_wt). (A) The x-axis
indicates the position along each chromosome of the 1,638,649 SNPs. The five chromosomes are presented in a row along the x-axis in different shades of blue.
The y-axis indicates either the posterior mean of the absolute regression coefficient βi (M_Beta value) or the Bayes factor (BFmc expressed in deciban units),
estimated by the AUX model. Colored circles highlight the SNP with the highest absolute regression coefficient βi within the most significant association peak.
(B) Zooms spanning the genomic regions in which the SNP with the highest BFmc value is located. Colored circles highlight the SNP with the highest absolute
regression coefficient βi within the most significant association peak. (C) Estimates of the Bayes factor as a function of the absolute regression coefficients (βi).

functions encoded by these genes that can be classified in two
main categories : (i) a large number of proteins (n = 16)
involved in the regulation of gene expression, including RNA
binding proteins and transcriptional factors, but also miRNAs
or transposable elements; (ii) genes involved in abiotic (or
biotic) stress response (n = 6), including genes involved in the
regulation of salt stress, cold/high temperature stress, light/dark
treatment, or pathogen attack such as ACR8, RZ-1C, AN1
like zing finger protein, MAF1/FLM or extensin-like protein
(ELP). Other candidate genes correspond to diverse general
functions, including developmental regulators, or to unknown
functions.

DISCUSSION

Climate Adaptation in a Patchy Climate
Environment
In agreement with the influence of three contrasted climates (i.e.,
oceanic climate, mountain climate, and Mediterranean climate)
in the south-west of France, up to 24% of climate variation across
European locations inhabited by A. thaliana was observed in
the Midi-Pyrénées region. The presence of mountains in the
south and north-east in our sampling area likely explained the
steep temperature gradients observed in this study. On the other
hand, we observed a mosaic of contrasted precipitation regimes.
Therefore, the different spatial grains between temperature and
precipitations lead to rugged climate landscapes over very short
geographical scales, which in turn better match with the small
distance of seed and pollen dispersal expected for a barochorous
and selfing plant species such as A. thaliana.

In comparison with studies performed at larger geographical
scales (Hancock et al., 2011; Lasky et al., 2012), we identified very
neat and strong peaks of association with climate variation. Such
a pattern is similar to a previous GWAS in A. thaliana reporting
that the significance level of association peaks for phenological
traits potentially related to climate adaptation (such as flowering
time) was stronger based on regional or local accessions than
worldwide or European accessions (Brachi et al., 2013). Two
non-exclusive hypotheses can be suggested to explain the strong
SNP-climate associations detected in our study. First, because
the genetic variability of most natural populations of A. thaliana
has long been considered to be low (likely due to its selfing rate
close to 98%; Platt et al., 2010), most genome–climate association
studies performed at the European or regional scale have been
based on very few accessions per population, i.e., ∼1.7 accession
per population (Hancock et al., 2011; Lasky et al., 2012). However,
recent studies challenged this view, and many natural populations
have been described to be highly genetically variable at both
neutral SNPs and polymorphisms associated within natural
phenotypic variation (Le Corre, 2005; Picó et al., 2008; Lundemo
et al., 2009; Montesinos et al., 2009; Bomblies et al., 2010; Platt
et al., 2010; Kronholm et al., 2012; Samis et al., 2012; Brachi
et al., 2013; Huard-Chauveau et al., 2013; Karasov et al., 2014;
Luo et al., 2015; Debieu et al., 2016; Frachon et al., 2017). Since
pool sequencing has been demonstrated a cost-effective method
to infer demography and to identify genetic markers underlying
local adaptation in several plant and animal species (Schlötterer
et al., 2014), we obtained a representative picture of within-
population genetic variation across the genome by sequencing
pools of ∼16 individuals from each population. Second, in
agreement with previous studies reporting that global effects of
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FIGURE 4 | Relationships between climate variation and allele frequency variation at candidate SNPs for mean annual temperature (MAT) and winter precipitations
(PPT_wt). (A) Map illustrating the geographic variation of MAT and PPT_wt. (B) Map illustrating the geographic variation of the standardized allele frequencies of one
of the SNPs the most associated with these climate variables (see Figure 3B). (C) Bi-plots illustrating the relationships between standardized allele frequency
variation (SNP_5_1193613 for MAT and SNP 3_9135206 for PPT_wt) and climate variation. The blue line and its associated gray area correspond to the
standardized allele frequency variation – climate variation linear fit and its associated 95% confidence intervals, respectively.

the demographic evolutionary forces in A. thaliana should be
limited at a small geographical scale (Nordborg et al., 2005; Platt
et al., 2010), we observed that genomic variation among the 168
natural populations is weakly correlated to geographic variation.
Such a pattern likely alleviated the limitations of GEA analyses
often observed at larger geographical scales such as confounding
background produced by population structure, rare alleles and
genetic/allelic heterogeneity.

Importantly, following methodologies previously developed
in A. thaliana to identify environment-adaptive genetic loci at the
European scale (i.e., climate and herbivore resistance; Hancock
et al., 2011; Lasky et al., 2012, 2018; Brachi et al., 2015), we found
that the SNPs the most associated with climate were significantly
enriched in likely functional variants (i.e., non-synonymous
variants) and/or in the extreme tail of spatial differentiation
among populations. These clear signatures of selection suggest
that climate is an important driver of adaptive genomic variation
in A. thaliana at a micro-geographic scale. Although studies
reporting the identification of climate adaptive genetic loci at
a small geographical scales are still scarce (Manel et al., 2010;
Kubota et al., 2015; Günther et al., 2016; Pluess et al., 2016), there

is mounting genomic evidence that micro-geographic adaptation
to climate is more widespread than is commonly assumed.

Overrepresentation of Genes Involved in
Regulatory Mechanisms in the Plant
Functions Involved in Local Adaptation
to Climate
The identification of candidate genes associated with climate
variation suggests that regulation of gene expression is a
key factor of climate adaptation. Transcription factors (TFs),
RNA binding proteins and epigenetic mechanisms were the
major functions uncovered by our study. These findings are in
agreement with global gene expression studies demonstrating
that plant response to environmental constraints relies on a
number of distinct transcriptional responses operating spatially,
temporally and in combination with other signals like hormones
(Coolen et al., 2016). The RZ-1C protein identified here in
association with the mean annual temperature and the mean
coldest month temperature, was shown to belong to a unique
group of GRPs (Glycine-rich RNA binding Proteins) with
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FIGURE 5 | Comparison of the performances of BayPass for the identification of SNPs associated with population-specific covariable with varying correlation
coefficients with the first axis of genetic variation PCgenomic. For each of the 10 covariable considered with correlation coefficients ranging from Spearman’s rho = 0
to Spearman’s rho = 0.9 (with an increasing step of 0.1) with the first PCgenomic, the plotted average ROC (Upper) and PR (Lower) curves result from the analyses
of the 25 simulated data sets consisting of 10,000 SNPs including 100 associated SNPs (β = 0.1). The simulation model was calibrated to obtain data sets closely
mimicking our observed data both in terms of the sample design (number of populations, haploid sample size of the pools, read coverage, across population allele
frequencies) and population structure (summarized by the matrix �). The corresponding area under the curve (AUC) are reported in the box legend of each plot (r,
Spearman’s rho).

potential roles in increasing cold tolerance in Arabidopsis (Kim
et al., 2010). These proteins have been recently shown to
control gene splicing via interaction with SR (Serine/arginine-
Rich) proteins, and consequently expression of many genes,
including developmental regulators. Among them, the MADS-
box transcription factor FLOWERING LOCUS C (FLC) is a
direct target of RZ-1C that both promotes its splicing and

represses its transcription (Wu et al., 2016). In the same vein,
the MADS box transcription factor gene FLOWERING LOCUS M
(FLM/MAF1) is involved in temperature dependent regulation of
flowering through FLM splicing changes and nonsense-mediated
mRNA decay in response to elevated temperature (Posé et al.,
2013; Sureshkumar et al., 2016). miR172b, also found here in
relation with the mean annual temperature and the mean coldest
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FIGURE 6 | Enrichment analysis of different classes of sites in the 0.5% upper tail of the BFmc distribution of six climate variables (A: mean annual temperature,
B: mean coldest month temperature, C: spring precipitation, D: summer precipitation, E: autumn precipitation, and F: winter precipitation). Enrichments shown are
relative to the proportion of each class of SNPs in the genome overall. Large dots represent the enrichment values for each class of sites. Gray dots represent
10,000 null permutations of site categories. The horizontal dashed line shows the expected enrichment under the null hypothesis of no enrichment. Enrichments that
are significant relative to permutations are denoted by asterisks. nsnon-significant, ∗0.05 > P > 0.01, ∗∗0.01 > P > 0.001, ∗∗∗P < 0.001. Red asterisks indicate
significant enrichments after a false discovery rate (FRD) correction at the nominal level of 5%. intra, intragenic SNPs (i.e., SNPs in transposable element gene); inter,
intergenic SNPs; UTR, SNPs in 5′ and 3′ untranslated transcribed regions; intron, intronic SNPs; synon, synonymous SNPs; replac, replacement SNPs (amino-acid
changing SNPs and stop codon gained SNPs).

month temperature, is a particularly interesting candidate as it
controls transition of germinating seedlings from heterotrophic
to autotrophic growth, and consequently the post-germination
developmental arrest checkpoint under diverse stress (Zou
et al., 2013). Found in relation to spring precipitations, ACT
domain repeat 8 (ACR8) belongs to the ACR gene family which
is differentially regulated by diverse abiotic stress (salt, cold,
light/dark) and plant hormones. Interestingly, ACR proteins
bind to specific ligands (amino acids or small ligands) and
are thought to exert their regulatory functions through this
binding and/or by sensing environmental conditions (Hsieh and
Goodman, 2002). These examples illustrate the importance of
diverse regulatory processes (metabolic and hormonal signals,
RNA splicing, gene expression, protein-protein interactions, . . .)
in adaptation to climate variables. Interestingly, we also identified
some transposable elements (known to be related with gene
regulation) as candidate genes. This is in agreement with a recent
work demonstrating that the composition and the activity of the
Arabidopsis mobilome vary greatly among accessions (Quadrana
et al., 2016) and that loci controlling adaptive responses to
the environment are the most frequent transposition targets
observed.

CONCLUSION

In agreement with the increasing number of phenotypic studies
reporting micro-geographic adaptation (Richardson et al., 2014),
climate variation appears as an important driver of adaptive
genomic variation in A. thaliana at a fine spatial grain. This
result reinforces the need to choose mapping populations
according to the spatial scale of ecological variation at which
species are adapted (Bergelson and Roux, 2010). In addition,
the identification of climate-adaptive genetic loci at a micro-
geographic scale highlights the importance to include within-
species genetic diversity in ecological niche models for projecting
potential species distributional shifts over short geographic
distances (Valladares et al., 2014). The over-representation of
genes involved in regulatory mechanisms in the plant functions
associated with climate variation is a common pattern at different
geographical scales in A. thaliana. The candidate genes identified
in this study undoubtedly constitute key candidate genes for
functional analysis, thereby providing an exciting opportunity
to dissect the molecular bases of climate adaptation at a
short geographic scale. The most significant associated SNP
identified here for the mean cold month temperature in the

Frontiers in Plant Science | www.frontiersin.org 12 July 2018 | Volume 9 | Article 967

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00967 July 6, 2018 Time: 17:35 # 13

Frachon et al. Climate Adaptation in Arabidopsis thaliana

RZ-1C gene is of particular interest because it leads to an
amino acid change (Tyr→ Phe) in a highly conserved domain
of 25 amino acids in the Brassicaceae family (Supplementary
Figure S5).
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