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Abstract 1 

 2 

Follicle-stimulating hormone (FSH) is synthesized in the pituitary by gonadotrope 3 

cells. By binding to and interacting with its cognate receptor (FSHR) in the gonads, this 4 

gonadotropin plays a key role in the control of gonadal function and reproduction. Upon 5 

activation, the FSHR undergoes conformational changes leading to transduction of 6 

intracellular signals, including dissociation of G protein complexes into components and 7 

activation of several associated interacting partners, which concertedly regulate 8 

downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for 9 

a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of 10 

several mechanisms employed by this receptor to transduce intracellular signals in 11 

response to the FSH stimulus. This complex network of signaling pathways allows for a 12 

fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its 13 

multiple components vary depending on the cell context, cell developmental stage, and 14 

concentration of associated receptors and corresponding ligands. Activation of these 15 

multiple signaling modules eventually converge to the hormone-integrated biological 16 

response, including survival, proliferation and differentiation of target cells, synthesis and 17 

secretion of paracrine/autocrine regulators and, at the molecular level, functional 18 

selectivity and differential gene expression.  19 

 20 

In this minireview, we briefly discuss the complexity of FSHR-mediated intracellular 21 

signals activated in response to ligand stimulation. A better understanding of the signaling 22 

pathways involved in FSH action might potentially influence the development of new 23 
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therapeutic strategies for reproductive disorders. 24 

 25 

Words: 228 26 
 27 
Abbreviations:  28 
 29 
APPL, adaptor protein containing pleckstrin homology domain, phosphotyrosine binding 30 
domain, and leucine zipper motif; AREG, amphiregulin or aregulin;  CREB, cAMP-31 
response element binding protein; EGFR, epidermal growth factor receptor; EPAC, 32 
exchange protein directly activated by cAMP; FOXO1a, forkhead box transcription factor 33 
O or forkhead homologue in rhabdomyosarcoma; GPCR, G protein-coupled receptor; 34 
IGF-1R, insulin-like growth factor 1 receptor; IP3, inositol 1,4,5 triphosphate;  mTOR, 35 
mammalian target of rapamycin; LHCGR, luteinizing hormone-chorionic gonadotropic 36 
hormone receptor; P70S6K, P70 S6 kinase; PI3K, phosphatidylinositol-3-kinase; PTEN, 37 
phosphatase and tensin homolog deleted in chromosome 10; rpS6, ribosomal protein S6; 38 
SFK, Src family of protein tyrosine kinases; Sgk, serum- and glucocorticoid-induced 39 
kinase; Src, Rous sarcoma oncogene. 40 
 41 
 42 
 43 
 44 
 45 
  46 
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Introduction 47 
 48 

 49 

Follicle-stimulating hormone or follitropin is synthesized in the anterior pituitary 50 

gland by gonadotrope cells. By binding to its cognate receptor in the female and male 51 

gonads, this gonadotropin plays a central role in the control of gonadal function and 52 

reproduction (1,2). The follicle-stimulating hormone receptor (FSHR) belongs to the highly 53 

conserved subfamily of the GPCR superfamily, the so-called Rhodopsin family and, more 54 

specifically, to the d-group of this large class of GPCRs (3). As other structurally related 55 

glycoprotein hormone receptors [the LHCGR and the TSH receptor (TSHR)], the FSHR 56 

is composed of a large NH2-terminal extracellular domain (ECD), where recognition and 57 

binding of its cognate ligand occur. The ECD is structurally linked by the so-called hinge 58 

region to the transmembrane domain (TMD), which is composed of seven a-helices 59 

connected by alternating intracellular and extracellular loops, and that is involved in the 60 

activation and signaling functionality of the receptor. The FSHR ends with a COOH-61 

terminus (or C-tail) at the intracellular side, which contains important functional motifs of 62 

the receptor (Fig. 1).  63 

 64 

The FSHR is primarily expressed by the gonads (5). In the testis, this receptor is 65 

located at the basolateral Sertoli cell surface, where it supports cell growth and 66 

maturation, and thereby spermatogenesis (8); in the ovary, the FSHR is expressed in the 67 

granulosa cells where FSH stimulation regulates growth and maturation of ovarian 68 

follicles and estrogen production (1). For many years the FSHR was thought to be 69 

localized exclusively in the gonads; nevertheless, new evidence from studies in 70 
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experimental animals and in humans have suggested that this receptor may also be 71 

present in extragonadal tissues where FSH may have distinct physiological roles (9). 72 

Nonetheless, some of these extragonadal tissues as targets for FSH action have been 73 

recently questioned (10), indicating that further studies are still required to validate the 74 

existence of extragonadally-expressed FSHRs.  75 

 76 
Studies on other GPCRs as well as on the FSHR, have shed some light on the 77 

mechanisms that presumably lead to FSHR activation and signal transduction. It appears 78 

that FSH primarily binds to the large ECD and that extracellular loops 1 and 3, which are 79 

extracellular projections of the TMD, represent potential secondary gonadotropin binding 80 

sites (11). Upon FSH binding, the transmembrane helices (particularly the TMD helices 81 

5, 6, 3, and 7) present a series of conformational changes and rearrangements that are 82 

transmitted down the intracellular extensions of the a-helices and associated intracellular 83 

domains (loops and C-tail; Fig. 1). This reorganization in intracellular domains in turn 84 

allows accommodation and activation of a number of effectors, including several receptor-85 

coupled G proteins and other associated proteins and interacting partners, triggering the 86 

activation of a number of downstream signaling cascades that will eventually lead to a 87 

biological effect. An interesting nuance of this and other GPCRs is that the a-helices 88 

conforming the TMD may oscillate between multiple conformations, that will define 89 

activation of several or distinct signaling pathways and account for biased signaling (5,12-90 

14). These multiple mechanisms explain the recruitment of manifold signaling molecules 91 

to the complex signaling network activated by the FSHR during follicular and Sertoli cell 92 

maturation. 93 

 94 
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In this review, we provide a brief overview of the multifaceted aspects of FSHR 95 

transduction, signaling and biological actions. 96 

 97 

Signal transduction at the FSHR: signaling pathways, interacting partners, and 98 

networks. 99 

  100 

Most investigators agree that the effects of gonadotropins on the differentiated 101 

function of their target cells are mainly mediated by the activation of the canonical 102 

Gs/adenylyl cyclase/cAMP/PKA pathway, which subsequently leads to CREB 103 

phosphorylation and modulation of gene transcription (5,15-20). Nevertheless, it is now 104 

clear that this particular signaling cascade is not the only one activated by the action of 105 

these hormones. As detailed below, gonadotropins activate additional pathways that are 106 

involved in several cellular processes as proliferation and/or differentiation and, at the 107 

molecular level, functional selectivity and differential gene expression (1,5,13,14,21-24). 108 

 109 
The FSHR is connected via conformational selectivity to a nonlinear and complex 110 

signaling network. This network can involve either several G protein subtypes, including 111 

the Gs, Gi, and Gq/11 proteins  (25-30), interaction with other receptors [e.g. the IGF-1R 112 

and the EGFR (24,31-33)] and proteins [e.g. b-arrestins, APPL1, FOXO1a, and 14-3-3t] 113 

(34-39), or heterodimerization with the LHCGR (26,40-42). These mechanisms have 114 

been reported to regulate a number of intertwined signaling pathways, including 115 

engagement of distinct kinases (such as PKA, PKC, PI3K, PKB/Akt, p70S6K and ERK1/2) 116 

(1,5,14,22,24,27,43,44) (Fig. 2). This complex signaling network allows for a fine-tuning 117 

regulation of the gonadotropic stimulus, where activation/inhibition of its multiple 118 
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components will vary depending on the cell context, developmental stage of the host cells, 119 

and concentration of receptors and ligands (1,9,24,43,46-48). Furthermore, preferential 120 

activation of distinct signaling modules by the FSHR occurring through stabilization of 121 

distinct FSHR conformations in response to binding of particular ligands or receptor 122 

mutations may also occur (Figs. 1 and 3) (14,49,50), paving the way for designing drug 123 

candidates that may elicit selective signaling at the gonadal level (51,52). Let us briefly 124 

dissect the complex signaling network turned on by the activated FSHR. 125 

 126 
Signaling through G proteins 127 

 128 
As mentioned previously, FSH binding triggers a sequence of conformational 129 

changes within the receptor, which promotes activation of intracellular signaling 130 

pathways.  The primary transduction effectors described for the FSHR are heterotrimeric 131 

G proteins (15,53,54). Upon Gs interaction with intracellular loops 2 and 3 of hormone-132 

bound FSHR on the ERW and BBXXB (B: basic residue and X: non-basic residue) motifs 133 

(Fig. 1) (19), adenylate cyclase is stimulated and cAMP-dependent intracellular targets 134 

are activated. One main target of cAMP is protein kinase A (PKA) that mediates FSH-135 

dependent signaling including the ERK MAPK cascade that controls Sertoli cell mitotic 136 

phase (43). In preantral granulosa cells, FSH-dependent activation of ERK is mediated 137 

through PKA-dependent destabilization of a constitutive 100 kDa MEK phospho-tyrosine 138 

phosphatase (55), identified recently as dual specificity phosphatase 6 or DUSP6 (56). In 139 

fact, activation of phosphatases by PKA appears to be a general mechanism whereby 140 

FSH stimulates components not only of MAPK cascades, but also of PI3K-dependent 141 

signaling, by indirectly enabling IGF-1R-transduced insulin receptor substrate 1 142 

phosphorylation in granulosa cells (57). In these cells, FSH-dependent PKA activation 143 
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also stimulates p38 MAPK, likely involved in Sgk activation (22) and in modeling 144 

granulosa cell shape (58). However, the relationship between FSH/PKA and p38 MAPK 145 

phosphorylation has been recently questioned by studies in which expression of a 146 

constitutively active form of PKA in granulosa cells was not sufficient alone to activate this 147 

particular pathway (59). 148 

  149 
 150 
 Protein kinase A is considered as the master regulator of transcription factors of 151 

the cAMP response element-binding protein (CREB)/activating transcription factors (ATF) 152 

family (60) (Fig. 2). Nonetheless, in FSH-stimulated Sertoli cells, PKA regulates the 153 

activity of other nuclear targets, such as the retinoic acid receptor α (61), an important 154 

modulator of male germ cell development. More generally, PKA activity could be involved 155 

in global chromatin remodeling, as illustrated by H3 histone phosphorylation in FSH-156 

stimulated granulosa cells (62). Noteworthy, the requirement of CREB itself on FSH-157 

dependent transcriptome also needs to be reconsidered because genome-wide 158 

sequencing technologies combined with bioinformatics analyses have recently underlined 159 

that FSH-responsive genes in human granulosa cells are notably enriched in binding 160 

motifs for GATA family of transcription factors, whereas the frequency of CREB-161 

dependent genes is much scarcer than initially anticipated (63). Scrutinizing FSH-162 

regulated promoter regions at the systems level will certainly bring to light the involvement 163 

of unexpected transcriptional regulators and upstream kinases in the future. 164 

 165 
 In addition to PKA, FSH-stimulated cAMP rise also activates the exchange proteins 166 

directly activated by cAMP or EPACs, that enhance small RAS-like GTPase Rap1 activity 167 

(24). EPAC is presumably involved in the activation of PKB/Akt (22), a PI3K target whose 168 



  Ulloa-Aguirre et al, minireview V2 revised 

 9 

activity is counteracted by PTEN to cease Sertoli cell proliferation (64). Likewise, in 169 

granulosa cells, Akt neutralizes the anti-proliferative effect of AMP-activated protein 170 

kinase (AMPK) (65,66) and promotes the phosphorylation and nuclear exclusion of 171 

FOXO1a, one of its prominent substrate that also hampers the G1/S phase transition. 172 

Interestingly, recent work has revealed that FOXO1a controls the expression of most 173 

FSH-responsive genes in these cells (67). Many of these genes correspond to those 174 

involved in autophagy (67,68), and recent studies suggest that FSH might protect 175 

granulosa cells from atresia in part by preventing mitophagy (69). The mechanisms 176 

involved encompass FOXO1a nuclear exclusion via PI3K/Akt/mTOR activation and 177 

inhibition of E3 Ubiquitin ligase Parkin recruitment in the outer membrane of damaged 178 

mithochondria by PTEN-induced putative kinase 1 (PINK1) (69). Not only Gs- but also β-179 

arrestin-dependent signaling might transduce the anti-atretic protective effect of FSH, as 180 

shown recently in granulosa cells (70). 181 

   182 

Both PKA and Akt-dependent pathways cooperatively interact to stimulate the 183 

mTOR and p70S6 kinase, ultimately leading to mRNA translation (48,71,72) (73)(Fig. 2). 184 

Translational regulation of mRNA in response to FSH has been proposed initially in 185 

granulosa cells (71,74). During granulosa cell proliferation, hormone-bound FSHR leads 186 

to Gs-dependent and ERK-mediated phosphorylation of TSC2 (tuberin), a mTOR effector 187 

that stimulates p70S6K activity, ultimately leading to enhanced cyclin D2 expression 188 

(74,75). Via the PI3K/Akt mTOR pathway, FSH stimulates the expression of hypoxia-189 

inducible factor-1 (HIF-1) mRNA, encoding a transcription factor that regulates the 190 

expression of vascular endothelial growth factor (VEGF) (71). Furthermore, activation of 191 
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FSH-mediated mTOR pathway also induces the expression of some follicular 192 

differentiation markers, such as the LHCGR, inhibin-α, P450AROM, or the βII-subunit of 193 

PKA. In the testis, cAMP- and PI3K/mTOR-dependent pathways also cooperate in the 194 

activation of p70S6K by inducing phosphorylation profiles that differ according to the 195 

development stage of Sertoli cells (48,72,73). This developmentally regulated 196 

phosphorylation profile of p70S6K is supported by the observation that during the Sertoli 197 

cell differentiation phase, Akt is phosphorylated directly by FSHR signaling and not via 198 

transactivation of the IGF-1R as shown in the mitotic phase (75,76), suggesting different 199 

properties of the PI3K-regulated network at both stages (48,72,73). By using these PI3K-200 

dependent signaling mechanisms, FSH may promote rearrangements and post-201 

translational modifications of initiation and elongation factors that form the translational 202 

machinery at the 5′ untranslated region (UTR) of mRNAs. For example, in Sertoli cells 203 

FSH stimulates the phosphorylation of eukaryotic translation initiation factor 4 (eIF4) G 204 

and eIF4B, a cofactor of the eIF4A RNA helicase, via mTOR and p70S6K respectively. 205 

In only a few minutes, all these molecular events induce cap-dependent translation of 206 

mRNAs such as VEGF and c-fos (72), as well as Internal Ribosome Entry Site (IRES)-207 

dependent mRNA translation (77). Cell responsiveness to FSH is not limited to the 208 

regulation of mRNA transcription and translation, and recent data have proposed that a 209 

complex miRNA network orchestrates the stability, and hence the dynamics, of various 210 

components of the FSH signaling network (78,79). For example, the stabilization of PTEN 211 

would occur through hormone-induced degradation of miRNAs complementary to the 212 

PTEN mRNA (80). PTEN is required for Sertoli cells to achieve terminal differentiation 213 
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(64) and its mRNA is spatially restricted at spermiation in the adluminal region of Sertoli 214 

cells (80).  215 

  216 

Like many other GPCRs, the FSHR receptor exhibits some tendency to 217 

promiscuity with other G proteins. For example, the FSHR has been reported to interact 218 

with Gi when activated by particular glycosylated variants of FSH (25,81,82). Likewise, in 219 

Sertoli cells at early stages of maturation, cyclin-D1 expression depends in part on Gi 220 

FSHR coupling (43). Further studies are needed to determine whether the FSHR variant 221 

expressed at this stage matches with the alternative splicing product of the FSHR 222 

identified previously in granulosa cells that stimulates Pertussis toxin-sensitive ERK 223 

phosphorylation but is unable to enhance cAMP levels (82). An analogous phenomenon 224 

of signaling dichotomy has been observed in cultured rat granulosa cells when the FSHR 225 

is occupied simultaneously by FSH and FSHR negative allosteric modulators, which 226 

promote persistent FSH-stimulated estradiol biosynthesis in the face of inhibited cAMP 227 

production (51). Besides, at supraphysiologic concentrations (>200 ng/ml), FSH also 228 

mediates FSHR coupling to Gq/11 (29,83) leading to increased IP3 levels.  229 

   230 

Role of FSHR associated partners, b-arrestins, Ca2+ mobilization, and cross-talk 231 

with other plasma membrane receptors in FSHR signaling 232 

 233 

APPL1, FOXO1a, and 14-3-3t. In addition to signaling through G proteins, the FSHR also 234 

directly interacts with a number of partners that elicit particular signaling mechanisms. 235 

These partners include, among others, the APPL1 adapter, the above-mentioned 236 
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FOXO1a, and 14-3-3t (34,35,37,38,84-86). The APPL1 adapter is an important regulator 237 

of signaling and trafficking events within cells, and is expressed in many tissues, including 238 

the testis and the ovary (87). In fact, this adapter interacts with many signaling proteins 239 

in a cell type-dependent manner. APPL1 may govern signal specificity and trafficking by 240 

interacting with PI3K and Akt (88) that in turn phosphorylates FOXO1a, as well as with 241 

the small GTPase Rab5 (89), a mediator of fusion of clathrin-coated vesicles with early 242 

endosomes (90). Studies employing a yeast interaction trap, identified APPL1 as an 243 

important interacting protein with the FSHR (35,37,38); furthermore, it has been found 244 

that linking between this adapter and the FSHR occurs at the intracellular loop (IL) IL1, 245 

specifically at Lys393, Leu394 and Phe399 (39) (Fig. 1). In HEK293 cells stably 246 

expressing the FSHR, APPL1 and 2 appear to be associated with each other via the NH2-247 

terminus of APPL1 in a FSH-independent manner (35,37,38). Given that the FSHR 248 

associates with APPL1 and interacts with FOXO1a (which does not interact with APPL1 249 

or 2) (38,66) and that APPL1 interacts with Akt (37), it has been proposed that the 250 

interplay between a FSHR-FOXO1a complex with an activated FSHR-APPL1-Akt 251 

complex leads to FOXO1a phosphorylation and abrogation of apoptosis (23,35). In fact, 252 

as described above, FSH stimulation results in rapid FOXO1a phosphorylation and its 253 

exclusion from the nucleus in granulosa cells (66). In the same vein, association of the 254 

FSHR with 14-3-3t has been mapped to the IL2, overlapping with the canonical G protein 255 

binding sites, specifically the ERW motif (Fig. 1) (35). 14-3-3 proteins are involved in a 256 

number of biological processes and play an important role in regulating signaling 257 

pathways by interacting with phosphorylated signaling proteins (91). In HEK293 cells, 258 

overexpression of 14-3-3t led to decreased cAMP levels (34) suggesting a role of 14-3-259 
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3t in FSHR/Gs-mediated signal transduction. The association of APPL1, 14-3-3t, and 260 

FOXO1a with the FSHR suggests that FSH causes phosphorylated FOXO1a to be 261 

sequestered to the cytosol by 14-3-3t, with APPL1 facilitating this process.  262 

 263 
b-arrestins. Besides evoking ERK1/2 phosphorylation through the Gs pathway, FSHR 264 

activates this particular signaling cascade through b-arrestins (43,85), which in addition 265 

to their well-recognized role in GPCR desensitization, internalization, and recycling (see 266 

below), have also emerged as important players in the regulation of GPCR signaling 267 

(13,86). The FSHR has been reported to be phosphorylated by PKA and PKC second 268 

messenger-dependent kinases but also by G protein-coupled receptor kinases (GRK) 2, 269 

3, 5, and 6 in various cell culture models (36,85,92-95). β-arrestins recruited to GRK2- or 270 

GRK5/6-phosphorylated FSHR have been shown to exert distinct intracellular functions 271 

in time and space: β-arrestin 1 and 2 binding to GRK2-phosphorylated FSHR leads to the 272 

internalization and recycling of the receptor, whereas phosphorylation of the FSHR by 273 

GRK5 and 6 is required for β-arrestin-dependent, heterotrimeric G protein-independent 274 

ERK signaling, as shown by other GPCRs  (13,85,96-99). Concurrently, these findings 275 

are consistent with a model of phosphorylation bar code elicited by distinct GRKs that 276 

could control the conformation of β-arrestin recruited to the receptor and thereby its ability 277 

to interact with specific partners (12,96-100). A well-documented illustration is the 278 

temporal encoding of ERK activation: in contrast to G protein-mediated ERK activation, 279 

which is rapid and transient, ERK recruitment and signaling activated by β-arrestins is 280 

slower (~5-10 min to reach maximum), but protracted (t1/2 >1 hour) (85). It has recently 281 

been demonstrated that the 5-hydroxytryptamine 2 receptor, β2-adrenergic receptor, 282 

CXC-chemokine receptor 4, and the FSHR activate the ERK pathway via a mechanism 283 
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involving MEK-dependent β-arrestin 2 phosphorylation at Thr383. Importantly, this 284 

agonist-induced phosphorylation of b-arrestin 2 is a necessary step for ERK recruitment 285 

to β-arrestin complex and for ERK activation (101). More recently, Gs-dependent and β-286 

arrestin-dependent FSH signaling have been shown to cooperatively activate p70S6K, 287 

within a constitutively assembled β-arrestin/p70S6K/rpS6 module (72,102,103); this 288 

complex controls the translation of 5′ TOP mRNAs, a subset of mRNAs representing 289 

almost 20% of cellular mRNA abundance and that encode for ribosomal proteins, poly(A)-290 

binding protein, and factors of the translational machinery (102-104). The co-joined action 291 

of Gs- and β-arrestin-transduced signaling on p70S6K contrasts with the parallel action 292 

that both effectors have on the ERK MAPK, whose kinetics of phosphorylation differs 293 

depending on the transducer (Gs vs β-arrestins)(50,85,103). Finally, the β-arrestin-294 

dependent intracellular signaling may be preferentially activated when the FSHR is 295 

stabilized in distinct conformation(s) in response to particular ligands or receptor 296 

mutations, in a process known as biased agonism or functional selectivity (Fig. 3), which 297 

is discussed below.  298 

 299 
Ca2+ mobilization. FSH-stimulated Ca2+ mobilization in both granulosa and Sertoli cells 300 

has been well recognized for a long time and it has been attributed to both rapid influx of 301 

Ca2+ through T-type Ca2+ channels as well as release from intracellular stores (28,30,105-302 

109), where Gi/Gbg/PI3K or Gs- and/or Gq-mediated activation of phospholipase C 303 

(PLC)b or other PLC isoforms appear to play an important role. In fact, in rat Sertoli cells, 304 

FSHR can signal through the transglutaminase Gah to promote extracellular Ca2+ 305 

mobilization by interacting with PLCd-1 (28). Moreover, studies in human granulosa cells 306 

revealed that in addition to the regulatory roles of APPL1 described above, interaction of 307 
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this adapter with the FSHR also leads to IP3 production and release of Ca2+ from 308 

intracellular stores (39). On the other hand, it has been shown that exposure of swine 309 

granulosa cells or rat Sertoli cells to FSH leads to a rapid increase in intracellular Ca2+ 310 

accumulation, which may occur in a cAMP-dependent (e.g. via stimulation of PLCe) and 311 

-independent (e.g. via the Gq/11 bg complex) manner (26,30,106,107,110,111). 312 

Whatever the mechanism(s) involved in Ca2+ mobilization, it seems that Ca2+-mediated 313 

signaling is important for FSH-regulated functional differentiation of granulosa and Sertoli 314 

cells (112-114).  315 

 316 
 317 

Cross-talk with other plasma membrane receptors in FSHR signaling. Among the 318 

mechanisms contributing to GPCR signal pleiotropy is receptor cross-talk, which may 319 

occur either via intracellular effectors or through heterodimerization. In this regard, the 320 

tyrosine kinase receptors IGF-1R and EGFR have emerged as important functional 321 

partners of the FSHR. Regarding the former, it has been shown that ligand-activated IGF-322 

1R and FSHR act synergistically to enhance steroidogenesis, LHCGR and inhibin-a 323 

expression, and cell proliferation in different cell contexts and species, albeit with some 324 

differences (33,115,116). In addition, both FSH and locally produced IGF-1 are essential 325 

for granulosa cells differentiation, follicle survival and fertility (33,117). Signaling mediated 326 

by both receptors converge and overlap in activating distinct signaling cascades 327 

downstream of adenylyl cyclase, mainly the PI3K/Akt pathway (22,31). Furthermore, 328 

female mice with conditional knockdown of the IGF-1R in granulosa cells or exposed to 329 

IGF-1R inhibitor, exhibited defective FSH-stimulated Akt activation and steroidogenesis, 330 

indicating the key role played by the IGF-1R on FSHR-regulated cell proliferation and 331 
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differentiation (22,31). The molecular mechanism(s) proposed for the synergic effects of 332 

FSH and IGF-1 at the receptor level include the ability of activated FSHRs to inhibit 333 

dephosphorylation of the IGF-1R by protein kinase phosphatases, such as PTP-1B and 334 

Src homology 2 domain-containing phosphatase 2 (SHP-2), both expressed in granulosa 335 

cells (118-120). Alternatively, the interaction between molecular chaperones and IGF-1R 336 

may be enhanced, as suggested by the prevention of cyp19 and P450scc expression in 337 

response to FSH by HSP90 (heat-shock protein 90) inhibition (33).  338 

 339 
Another receptor modulating FSH-stimulated granulosa cell proliferation and 340 

differentiation in the developing follicle is the EGFR, which participates in phosphorylation 341 

of ERK1/2 and p38MAPK in granulosa and cumulus cells of preovulatory follicles (121-342 

123). Thus, in addition to EPAC and Rap1 in promoting p38MAPK phosphorylation (see 343 

above), FSH-stimulated induction of EGF-like factors, like AREG, appears as well to play 344 

an important role in the PKA-independent activation of MAPK signaling in developing 345 

granulosa cells (24,124,125). Additional studies have further indicated that besides 346 

promoting activation of the MAPK cascade,  AREG and FSH stimulate Akt and FOXO1a 347 

phosphorylation through activation of members of the Src family of tyrosine kinases or 348 

SFKs (24). As in the case of the IGF-1/IGF-1R pathway described above, it appears that 349 

the AREG/EGFR/RAS and FSH/FSHR signaling pathways converge on common 350 

downstream targets, mainly ERK1/2, p38MAPK and Akt phosphorylation, leading to up- 351 

and downregulation in the expression of different genes that impact on both follicle 352 

maturation and granulosa cell differentiation into granulosa-lutein cells exhibiting 353 

functional and steroidogenic profiles that differ from those exhibited by maturing 354 

granulosa cells (1,123,126-128). The importance of the EGF/EGFR pathway in follicular 355 
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maturation and ovulation is emphasized by studies in mice showing that the absence of 356 

Areg results in subfertility and decreased response to exogenous gonadotropin treatment 357 

(129).   358 

 359 

In addition to cross-talk with the IGF-1R and EGFR, the FSHR interacts with the 360 

structurally-related LHCGR. Although the functional relationship between these two 361 

gonadotropin receptors had been well recognized for a long time, it was only recently that 362 

functional cross-talk and physical interaction between gonadotropin receptors were 363 

reported (26,40,41). Hetero-oligomerization of the FSHR and LHCGR has been 364 

demonstrated using BRET, fluorescence correlation spectroscopy, and more recently, 365 

photoactivatable-localization microscopy (PALM) (<10 nm resolution) (26,130,131). 366 

Biochemical studies in HEK293 cells, showed that when heterodimerized, FSH and 367 

LHCG receptors exhibited cross-inhibitory effects on Gs signaling: heterodimerization of 368 

LHCGR with FSHR led to attenuation of LH-stimulated cAMP production, whereas when 369 

FSHR heterodimerized with LHCGR, FSH-stimulated second messenger production was 370 

mitigated (40). More recently, Jonas and colleagues (26) employed PALM to detect 371 

physical and functional interaction between the FSH and LHCG receptors in human 372 

granulosa-lutein cells. They found that both receptors associate as functionally asymetric 373 

heteromers, and that this association leads to prolonged LH-stimulated Ca2+ signaling via 374 

influx of extracellular calcium in a Gaq/11- and Gbg-dependent manner (26). 375 

Concurrently, these data demonstrate that gonadotropin receptors, when 376 

heterodimerized, may undergo allosteric regulation, with one receptor impacting on cell 377 

signaling triggered by the other as previously suggested (42). Cross-talk between 378 
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gonadotropin receptors may be potentially important for reproductive function, given that 379 

in vivo both receptors coexist in granulosa cells, particularly during the last stages of 380 

follicle development prior to ovulation (1).  381 

 382 

Signal termination and biased agonism 383 

 384 

Signal termination at the FSHR is a tightly regulated multistep process known as 385 

homologous desensitization. First, GRKs rapidly phosphorylate serine/threonine residues 386 

of the FSHR COOH-terminus (5,36,85,93-95). Second, b-arrestins 1 and 2 are recruited 387 

and prevent Gs interaction with the core domain of the FSHR through steric hindrance 388 

(5,54,94,95,132). Third, the amount of intracellular cAMP decreases and the receptor 389 

becomes refractory to further FSH stimulation (13,85,86,133). Following desensitization, 390 

the FSHR is rapidly internalized and predominantly resensitized, with a minor fraction of 391 

the FSHR being degraded (54,85,134). Interestingly, the FSHR was recently reported to 392 

traffic to very early endosomes for its post-endocytic sorting rather than early endosomes 393 

like most GPCRs (135-137) (Fig. 2). In contrast with Gs, which leads to full cAMP 394 

response with less than 5% of FSHR occupancy, more than 90% of FSHR molecules 395 

need to be occupied to achieve maximal b-arrestin recruitment and internalization (54).  396 

 397 
Major advances in GPCR structural biology over the last decade have profoundly 398 

changed the conceptual basis of receptor activation and pharmacological efficacy. In 399 

particular, it is now appreciated that GPCRs adopt multiple inactive and active 400 

conformations that are connected to distinct transduction mechanisms (12,138-147). 401 

Accordingly, it has been shown that a given ligand or receptor mutation can modify the 402 

stabilized conformation of the receptor-ligand complex, as compared to the wild-type 403 
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receptor-reference-ligand complex (Fig. 3). This phenomenon is generally referred to as 404 

pharmacological bias (12,138,141,144). Practically, this conceptual framework delineates 405 

two levels of pharmacological bias. First, ligand bias that are elicited by certain ligands 406 

that stabilize a subset of the receptor conformations, leading to an imbalance between 407 

the signaling pathways activated when compared to the reference agonist. Second, 408 

receptor bias that can occur in the case of mutations [e.g. in the case of FSHR Met512Ile 409 

mutation at the second extracellular loop or Ala189Val mutation at the ECD] (7,148,149) 410 

or of single nucleotide polymorphisms (e.g. the Asn680Ser polymorphism, Fig. 1) 411 

(150,151) at the receptor level, leading to imbalanced or impaired signaling compared to 412 

the wild-type receptor (Fig. 3).  413 

 414 
Different classes of small molecules capable of modulating FSHR have been 415 

identified (152-157), including three negative allosteric modulators (NAMs) (51,52,158). 416 

ADX61623 increased the affinity of FSH binding, yet blocked FSHR-mediated cAMP and 417 

progesterone but not estradiol production in rat primary granulosa cells, whereas in vivo, 418 

it did not affect FSH-induced preovulatory follicle development (51). Two other NAMs, 419 

ADX68692 and ADX68693, with structural similarities to ADX61623, were subsequently 420 

shown to exhibit biased NAM activities on FSHR in rat primary granulosa cells (52,158): 421 

ADX68692 blocked FSHR-promoted cAMP, progesterone and estradiol production 422 

whereas ADX68693 inhibited cAMP and progesterone with the same efficacy as 423 

ADX68692 but did not block estradiol production. Importantly, ADX68692 but not 424 

ADX68693 decreased the number of oocytes recovered in the ampullae (52). A positive 425 

allosteric modulator (PAM), Org 214444-0, has also been described (159); this PAM 426 

exhibited nanomolar FSHR agonistic effects and selectivity over the structurally related 427 
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LHCGR and TSHR. When co-incubated with FSH, Org 214444-0 increased FSH binding 428 

and cAMP activation. Furthermore, in vivo, Org 214444-0 recapitulated the action of FSH 429 

in a model of fertility in rat. More recently, another series of small molecules acting as 430 

agonist-PAMs were reported (160-162). These thiazolidinone derivatives have been 431 

shown to activate FSHR signaling in CHO cells and to enhance estradiol production in 432 

cultured rat granulosa cells (161). In addition, optimization of substituted benzamides led 433 

to more FSHR-selective molecules (162). Small molecules have also been reported to 434 

behave as competitive antagonists. First, suramin has been shown to inhibit testosterone 435 

production and FSHR signaling (163,164). Another compound displaying similar 436 

antagonistic properties as suramin but with much better specificity for FSHR was later 437 

described (165). With the notable exception of the ADX series, whether these compounds 438 

lead to balanced or biased agonism/antagonism compared to FSH remains unknown and 439 

will need further investigation. 440 

 441 

In the same line, it has long been suggested that naturally occurring FSH 442 

glycoforms may also elicit distinct effects on target cells (166). The common α-subunit 443 

and FSHβ each contain two N-linked oligosaccharides (at positions Asn52 and Asn78 on 444 

FSHα and at Asn7 and Asn24 in FSHβ) that play a pivotal role in the functional properties 445 

of the hormone (167-170). Removal of the carbohydrate residue at position 78 on the α-446 

subunit significantly increases receptor binding affinity of human FSH. Likewise, 447 

carbohydrate at position 52 on the α-subunit was found to play an essential role in signal 448 

transduction since its removal resulted in a significantly decreased potency. A 449 

hypoglycosylated FSH (FSH21/18) was 9- to 26-fold more active than fully-glycosylated 450 
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FSH (tetra-glycosylated FSH24) in binding and functional assays (171,172). Another 451 

human FSH deglycosylated variant, which possesses only α-subunit oligosaccharides, 452 

was significantly more bioactive in vitro than the tetra-glycosylated form of the hormone 453 

(173,174). In contrast, hyperglycosylated FSH enhanced the number of ovulated eggs 454 

and subsequent in vitro embryo development (175). Interestingly, partially deglycosylated 455 

eLH (eLHdg) behaved as a biased agonist at the FSHR, eliciting β-arrestin recruitment to 456 

FSHR as well as ERK and rpS6 phosphorylation in a β-arrestin-dependent and Gs/cAMP-457 

independent manner (50). 458 

 459 

 The effects of FSH21/18 and FSH24 has further been studied in vivo (176). 460 

Administration of these FSH glycoforms to Fshb null female mice induced expression of 461 

several FSHR downstream signaling pathway components, including phosphorylated 462 

forms of CREB, PKA, Akt, p38, and p42/44 ERK, and FSH-regulated genes (e.g. Cy19a, 463 

inha, and inhbb) in a similar manner, albeit with some differences in the kinetics of 464 

response between the two glycoforms. In contrast, when FSH21/18 or FSH24 was 465 

injected to Fshb null males, differential up- and down-regulation in expression of the nine 466 

FSH-responsive genes analyzed (e.g. in cdo1, Clu, Tbx22, Zic3, Car13, Amh and FSHr) 467 

was observed, suggesting biased agonism of the FSH glycoforms at the Sertoli cell level 468 

in vivo (176). Whether the functional selectivity shown by hypo- and fully-glycosylated 469 

FSH is only due to differences in binding affinity or to stability of interaction with the FSHR 470 

(171,177), or actually to induction of distinctly different receptor conformations leading to 471 

selective activation of downstream signaling pathways, still remains to be analyzed in 472 

more detail.  473 
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 474 
Another class of potential ligand bias comes from cases where structural 475 

constraints are conveyed on the hormone by an antibody, leading to the modification of 476 

its pharmacological properties (14). Polyclonal anti-peptide antibodies against ovine 477 

FSHβ subunit led to a significant enhancement of biological activity in vivo in mice (178). 478 

Likewise, the use of a monoclonal antibody against bovine FSH in snell dwarf mice 479 

showed an increase in uterine weight (179). Studies also evaluated the impact of equine 480 

chorionic gonadotropin (eCG)/anti-eCG complexes on gonadotropin bioactivities. They 481 

showed that anti-eCG IgGs were either inhibitory or hyper-stimulatory on LH and FSH 482 

bioactivity (180). Furthermore, Wehbi and colleagues (49) discriminated the nature of 483 

these complexes on FSH signaling and revealed their biased properties. 484 

 485 

Conclusions 486 
 487 

From the above discussion, it is clear that FSH-stimulated intracellular signaling is 488 

mediated through an intricate network whose dynamic properties depends on the stage 489 

of target cell development and cell context, which may in turn be regulated by numerous 490 

factors intrinsic to the cell and by the ligand. These factors include changing ligand pulse 491 

frequency and local concentrations, particular structure (166,172,176,181-183), and 492 

interaction dynamics with the FSHR (177).   493 

   494 

Since the multiple components of the FSHR-regulated signaling network (Fig. 2) 495 

are activated neither with the same amplitude nor at the same time, the temporal and 496 

dynamical aspects that govern the kinetics of the biochemical reactions involved has to 497 

be considered. These complex dynamics can be approached with computational 498 
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modeling using ordinary differential equations, as proposed previously for the FSHR 499 

(78,184). For example, in granulosa cells, FSH-induced cAMP pathway dynamics has 500 

been modelled with careful examination of steady-states and parameter sensibility (184). 501 

Dynamic interactions between cAMP and mTOR pathways, that converge onto p70S6 502 

kinase activation by FSH or insulin was modelled using experimental data from primary 503 

Sertoli cells (48). This model provided clues on p70S6 kinase phosphorylation rates and 504 

was experimentally validated using pharmacologically perturbed conditions. Further 505 

developments of FSHR network modeling will help to fill the gap between detailed 506 

knowledge on molecular interactions and comprehensive understanding of hormonal 507 

dynamics. Functional interactions of the FSHR with several tyrosine kinase receptors 508 

other than the IGF-1R and EGFR described above, may further increase the landscape 509 

complexity. These include the neurotropic factors GDNF (glial cell line-derived 510 

neurotropic factor) (185) and BDNF (brain-derived neurotrophic factor) (186) receptors, 511 

as well as receptors of the TGFβ family members (187), known to potentiate the mitogenic 512 

action of FSH in Sertoli cells and/or granulosa cells. These aspects will require further 513 

investigation. 514 

 515 

Since the first pioneering evidence that the gonads exhibit binding sites specific for the 516 

FSHR and respond to FSH by increasing intracellular cAMP levels (16,188-191), 517 

significant advances in our understanding of the structure and function of the FSH/FSHR 518 

system has been achieved. Nonetheless, there are still important issues that remain to 519 

be elucidated and that will require the application of new experimental paradigms, “omic” 520 

technologies (genomic, transcriptomic, and proteomic techniques), and systems biology 521 
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tools to facilitate this challenging task. These issues include, for example, a more detailed 522 

elucidation of the mechanisms underlying differential gene expression and protein 523 

phosphorylation during granulosa cell differentiation and follicle maturation under the 524 

influence of FSH variants, FSH analog compounds, and FSHR allosteric modulators, 525 

which may convey important therapeutic benefits to the clinical arena. To this end, in vitro 526 

experimental models such as intact follicle culture or three-dimensional bioprosthetic 527 

ovary models that may better reproduce the physiological environment of the developing 528 

follicle may be applied; these systems might allow to explore more deeply the signaling 529 

pathways and gene expression profile induced by FSH both in target cells in their in-situ 530 

arrangements and within different granulosa cell compartments throughout follicle 531 

maturation (192-194). As noted above, further studies are also needed not only to validate 532 

the existence of extragonadally-expressed FSHRs but also to dissect in more detail their 533 

corresponding signaling networks and pathways as well as gene expression profiles, 534 

which might eventually allow to assign them physiological roles according to their 535 

particular location. Integration of large-scale information obtained from these techniques 536 

will undoubtedly facilitate the building up of more integrative signaling framework models 537 

that may be applied to simulate in silico the biological consequences of intermittent FSH 538 

stimuli on its target cell in multiple-way combinations. Beyond any doubt, past and present 539 

studies may just represent the prologue to what remains to be unveiled.   540 
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Figure legends  1210 

 1211 

Figure 1. Schematic representation of the human FSHR with the cytoplasmic face 1212 

of the TMD and the C-tail magnified and the extracellular domain removed at 1213 

residue 352. The schematics show the locations of sequences, motifs, and residues 1214 

involved in internal agonist (FNPCEDIMGY sequence shaded in dark red); G protein 1215 

coupling and receptor activation (ERW motif, NPXXY motif, and BXXBB motif reversed 1216 

at the IL3); interaction with APPL1 (residues 393, 394, and 399 at the IL1), 14-3-3t (IL2), 1217 

ubiquitin, and PKC2 binding (IL3); receptor trafficking [F(X6)LL and BXXBB motif reversed 1218 

at the NH2-terminal end of the C-tail]; phosphorylation of the receptor by GRK (putative 1219 

class B cluster); palmitoylation (Cys644, 646, and 672) and postendocytic fate (residues 1220 

684 and 688-690). Also indicated is the location of the most common FSHR 1221 

polymorphism (Asn680, light yellow circle) as well as of inactivating (red circles) and 1222 

activating (green squares) FSHR mutations involving the TMD and IL3, which may impact 1223 

receptor trafficking and/or activation and signaling [reviewed in refs. (4-6)]; the mutation 1224 

at position M512 (magenta circle in the EL2), has been associated with biased signaling 1225 

(7). Numbering of the amino acid residues includes the leader sequence. EL, extracellular 1226 

loop; IL, intracellular loop; TMD, transmembrane domain, C-tail, intracellular COOH-1227 

terminus. 1228 

 1229 

Figure 2. A simplified overview of the FSHR signaling network. The color code, 1230 

depending on the arbitrarily main effector, is as follows: green for PI3K-dependent 1231 

signaling, orange for cAMP-dependent signaling, red for β-arrestin-dependent signaling, 1232 
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regardless that some signaling effectors (e.g. ERK or p70S6K) are commonly activated 1233 

by these three pathways. Mechanistic details have been omitted for the sake of clarity. Of 1234 

note, the phosphorylation state of the FSHR conveyed by GIPC is not known. This 1235 

network has been established by using the Cell Designer algorithm (45) and the meaning 1236 

of symbols is shown in the rectangle at the bottom. AC, adenylyl cyclase; AMPK, AMP-1237 

activated protein kinase; DAG, diacylglycerol; DUSP, dual specificity phosphatase 6; 1238 

eIF4, eukaryotic translation initiation factor 4; GIPC, Gai-interacting protein C terminus; 1239 

PARK, E3 ubiquitin protein ligase Parkin; PINK, PTEN-induced putative kinase; PIP3, 1240 

phosphatidylinositol (3,4,5) triphosphate; VEE, very early endosome. 1241 

 1242 

Figure 3. Principle of biased agonism triggered at the FSHR by allosteric ligands. 1243 

(a) Upon agonist binding, FSHR (yellow) recruits Gs (red), leading to cAMP production 1244 

and ERK phosphorylation. Agonist binding also triggers b-arrestins (light green) 1245 

recruitment and cAMP-independent ERK phosphorylation. (b) Balanced allosteric ligand 1246 

(inverted green triangle) can activate FSHR in the absence of FSH and recruits similar 1247 

proportion of Gs and b-arrestin as FSH. (c) Gs-biased allosteric modulator (inverted 1248 

orange triangle) preferentially induces Gs-dependent signaling. (d) b-arrestin-biased 1249 

allosteric modulator (inverted blue triangle) preferentially elicits b-arrestin-dependent 1250 

signaling. Other possible combinations are not represented. FSHR ECD: Follicle-1251 

stimulating hormone receptor extracellular domain. 1252 

 1253 
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