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Abstract

Pushable homomorphisms and the pushable chromatic number χp of oriented graphs were in-
troduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented

graph
−→
G , we have χp(

−→
G) ≤ χo(

−→
G) ≤ 2χp(

−→
G), where χo(

−→
G) denotes the oriented chromatic number

of
−→
G . This stands as the first general bounds on χp. This parameter was further studied in later

works.
This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular

degree conditions. For all ∆ ≥ 29, we first prove that the maximum value of the pushable chromatic

number of a connected oriented graph with maximum degree ∆ lies between 2
∆
2
−1 and (∆−3) · (∆−

1) · 2∆−1 + 2 which implies an improved bound on the oriented chromatic number of the same family
of graphs. For subcubic oriented graphs, that is, when ∆ ≤ 3, we then prove that the maximum value
of the pushable chromatic number is 6 or 7. We also prove that the maximum value of the pushable
chromatic number of oriented graphs with maximum average degree less than 3 lies between 5 and 6.
The former upper bound of 7 also holds as an upper bound on the pushable chromatic number of
planar oriented graphs with girth at least 6.

Keywords: oriented coloring, push operation, graph homomorphism, maximum degree, subcubic
graph.

1 Introduction and main results

An oriented graph is a loopless directed graph without opposite arcs. Equivalently, an oriented graph
−→
G

can be seen as an orientation of a simple undirected graph G. We always refer to an oriented graph
−→
G

using an arrow symbol, which makes apparent that
−→
G is an orientation of G. We denote by V (G) and

E(G) the sets of vertices and edges of G, respectively, while we denote by V (
−→
G) and A(

−→
G) the sets of

vertices and arcs of
−→
G , respectively. Also, when referring to a notation, notion or term for

−→
G that is

usually defined for undirected graphs, we implicitly refer to the corresponding notation, notion or term
regarding G.

∗The authors were partly supported by ANR project HOSIGRA (ANR-17-CE40-0022), by IFCAM project “Applications
of graph homomorphisms” (MA/IFCAM/18/39) and by the MUNI Award in Science and Humanities of the Grant Agency
of Masaryk university.
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The notions of oriented coloring and oriented chromatic number of oriented graphs were introduced
by Courcelle [2] in 1994, and have been intensively studied since then (see the recent survey [19] for
more details). One way of defining these notions is through the notion of graph homomorphisms. For

two oriented graphs
−→
G and

−→
H , a homomorphism from

−→
G to

−→
H is a mapping φ : V (

−→
G) → V (

−→
H ) such

that uv ∈ A(
−→
G) implies φ(u)φ(v) ∈ A(

−→
H ). We write

−→
G →

−→
H whenever a homomorphism from

−→
G to

−→
H exists. The oriented chromatic number χo(

−→
G) of

−→
G is the minimum order (number of vertices) of an

oriented graph
−→
H such that

−→
G →

−→
H .

In 2004, Klostermeyer and MacGillivray [9] introduced the pushable chromatic number of oriented

graphs. Pushing a vertex v of an oriented graph
−→
G means changing the orientation of all arcs incident

with v, i.e., replacing every arc vu by the arc uv, and vice versa. Two oriented graphs
−→
G and

−→
G ′ are in a

push relationship if
−→
G ′ can be obtained from

−→
G by pushing some vertices of

−→
G . Note that being in push

relationship is an equivalence relation. The class of the oriented graphs that are in a push relationship

with
−→
G is denoted by [

−→
G ]. Observe that any two oriented graphs from [

−→
G ] have the same underlying

graph, which is G.

For two oriented graphs
−→
G and

−→
H , a pushable homomorphism from

−→
G to

−→
H is a mapping φ : V (

−→
G)→

V (
−→
H ) such that there exists

−→
G ′ ∈ [

−→
G ] for which φ is a homomorphism from

−→
G ′ to

−→
H . We write

−→
G

push−−−→
−→
H

whenever there exists a pushable homomorphism from
−→
G to

−→
H . The pushable chromatic number χp(

−→
G)

of
−→
G is the minimum order of an oriented graph

−→
H such that

−→
G

push−−−→
−→
H .

The seminal work of Klostermeyer and MacGillivray on these notions opened the way to more works
on the topic. For instance, results on the pushable chromatic number can be found in [1, 7, 18],
while the push operation was further studied in [6, 8, 10, 12, 14, 15, 16, 17]. Some complexity issues
related to pushable homomorphisms were studied in [7, 9]. Regarding our investigations in this paper,
an important result from the seminal work [9] of Klostermeyer and MacGillivray is the following general
relation between χo and χp.

Theorem 1.1 (Klostermeyer, MacGillivray [9]). For every oriented graph
−→
G , we have

χp(
−→
G) ≤ χo(

−→
G) ≤ 2χp(

−→
G).

Theorem 1.1 yields another point for studying the pushable chromatic number of oriented graphs,
as it is a way to get bounds on the oriented chromatic number. Sen, in [18], also established a strong
connection between pushable homomorphisms and oriented homomorphisms of oriented graphs.

The notions of oriented chromatic number and pushable chromatic number can also be extended to
undirected graphs G by setting

χo(G) = max{χo(
−→
G) :

−→
G is an orientation of G}

and
χp(G) = max{χp(

−→
G) :

−→
G is an orientation of G}.

A natural question is, given a family F of undirected graphs, how large can the oriented chromatic
number and the pushable chromatic number of its members be? In other words, we are interested in
the two parameters χo(F) = max{χo(G) : G ∈ F} and χp(F) = max{χp(G) : G ∈ F}. Regarding the
pushable chromatic number, partial results were obtained for the families of outerplanar graphs, 2-trees,
planar graphs, planar graphs with girth restrictions, and graphs with bounded acyclic chromatic number
(see [7, 9, 18]). However, to the best of our knowledge, nothing general is known regarding the family
G∆ of graphs with maximum degree ∆ and the family Gc

∆ of connected graphs with maximum degree
∆. Unlike the ordinary chromatic number, the oriented and pushable chromatic number for the families

G∆ and Gc
∆ can be different. A good illustration of this, is the fact that if two oriented graphs

−→
G1 and

−→
G2 individually admit a homomorphism to an oriented graph with order k, then it is not true that their

disjoint union
−→
G1 +

−→
G2 always does (consider, for instance,

−→
G1 and

−→
G2 being two tournaments on k

2



vertices that are not in push relashionship). Finding the oriented and pushable chromatic number of Gc
∆

is our main concern in this paper.

We thus initiate the study of the pushable chromatic number of Gc
∆. Adapting a probabilistic proof

used by Kostochka, Sopena and Zhu in [11], we first provide general bounds for large enough ∆.

Theorem 1.2. For all ∆ ≥ 29, we have

2
∆
2 −1 ≤ χp(Gc

∆) ≤ (∆− 3) · (∆− 1) · 2∆−1 + 2.

Note that the lower bound and the upper bound in Theorem 1.2 are both exponential in ∆. Also, it
is worth mentioning that the upper bound established in Theorem 1.2 is better than the upper bound
that one would directly get from Theorem 1.1 and the best upper bound on χo(G∆) to date, which is
that χo(G∆) ≤ 2∆2 · 2∆ (see [11]). Actually, employing another trick used by Duffy in [3], Theorem 1.2
also yields the following improved upper bound on χo(Gc∆) as a side result.

Theorem 1.3. For all ∆ ≥ 29, we have

2
∆
2 ≤ χo(Gc

∆) ≤ (∆− 3) · (∆− 1) · 2∆ + 2.

When it comes to coloring graphs with given maximum degree, a natural step to make is considering
graphs with low maximum degree. This concern is actually a major one regarding oriented coloring, as
it is still open what the value of χo(Gc

3) is. Sopena [19] conjectured that χo(Gc
3) = 7, and, to date, we

know that 7 ≤ χo(G3) ≤ 9 and 7 ≤ χo(Gc
3) ≤ 8 hold (see [5, 19] and [4], respectively).

Due to the general connection between the oriented chromatic number and the pushable chromatic
number, it makes sense wondering about χp(Gc

3) as well. In this work, we provide the following result as
a first step towards this question.

Theorem 1.4. We have 6 ≤ χp(Gc
3) ≤ χp(G3) ≤ 7.

In graph coloring theory, another relevant aspect related to the vertex degrees is the maximum average
degree. Precisely, the maximum average degree mad(G) of a graph G is

mad(G) = max

{
2|E(H)|
|V (H)|

: H is a subgraph of G

}
.

In this work, we also study the pushable chromatic number of the family Gmad
3 = {G : mad(G) < 3} of

graphs with maximum average degree less than 3. Our main result reads as follows.

Theorem 1.5. We have 5 ≤ χp(Gmad
3 ) ≤ 7.

It was previously proved in [18] that for the family Gmad
8/3 = {G : mad(G) < 8

3} we have χp(Gmad
8/3 ) = 4.

More precisely, in that result the equality follows from the existence of planar graphs with girth 8 and
pushable chromatic number 4. This, and, because planar graphs with girth at least 6 have maximum
average degree strictly less than 3, Theorem 1.5 yields the following, where P6 denotes the family of
planar graphs with girth at least 6.

Theorem 1.6. We have 4 ≤ χp(P6) ≤ 7.

This paper is organized as follows. We start off by introducing, in Section 2, some notation, terminol-
ogy, and preliminary results. The next sections are devoted to proving Theorems 1.2 and 1.3 (Section 3),
Theorem 1.4 (Section 4), and Theorem 1.5 (Section 5). Open questions and perspectives for future work
are discussed in Section 6.
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2 Notation, terminology, and preliminary results

For an arc uv of an oriented graph
−→
G , we say that u is a −-neighbor of v while v is a +-neighbor of u.

The set of the −-neighbors (+-neighbors, respectively) of any vertex v of
−→
G is denoted by N−(v) (N+(v),

respectively). For a set S of vertices of
−→
G and some α ∈ {−,+}, we define Nα(S) =

⋃
v∈S N

α(v).

To prove that all oriented graphs from a given family admit homomorphisms to a given oriented graph−→
H , we generally need

−→
H to have very strong properties. In most of the proofs from the literature on

the topic, and in our proofs in the current paper as well, a strong property we consider is the possibility,

given a partial homomorphism from an oriented graph
−→
G to

−→
H , to extend the partial homomorphism to

another vertex v of
−→
G , assuming some of its neighbors (which can be in any of N−(v) and N+(v)) have

already been assigned an image. A way to define this intuition is through the notion of Property P̂ (j, k),
which we define formally in what follows.

A j-vector ~a = (a1, . . . , aj) is a vector where ai ∈ {−,+} for every i ∈ {1, . . . , j}. We denote by
~ac = (ac1, . . . , a

c
j) the j-vector where aci 6= ai for every i ∈ {1, . . . , j}. Let J = {v1, . . . , vj} be a set of j

vertices of V (
−→
G). Then we define the set

N~a(J) =
{
v ∈ V (

−→
G) : v ∈ Nai(vi) for all 1 ≤ i ≤ j

}
∪
{
v ∈ V (

−→
G) : v ∈ Naci (vi) for all 1 ≤ i ≤ j

}
.

Observe that N~a(J) = N~ac(J). We say that
−→
G has Property P̂ (j, k) if for every j-vector ~a and every

j-set J we have |N~a(J)| ≥ k.

A bijective homomorphism whose inverse is also a homomorphism is an isomorphism. Recall that an

automorphism is an isomorphism of an object to itself. An oriented graph
−→
G is vertex-transitive if for

every two vertices u, v ∈ V (
−→
G) there is an automorphism f of

−→
G such that f(u) = v. We also say that

−→
G is arc-transitive if given any two arcs uv, xy ∈ A(

−→
G) it is possible to find an automorphism f of

−→
G

such that f(u) = x and f(v) = y.
In the context of oriented homomorphisms and pushable homomorphisms, Paley tournaments stand,

due to their very regular structure, as good candidates to map families of oriented graphs to. In this work,

our upper bounds in Theorems 1.4 and 1.5 are actually obtained via pushable homomorphisms to
−−→
Pal7,

the Paley tournament on seven vertices.
−−→
Pal7 (depicted in Figure 1) is the oriented graph (tournament)

with vertex set Z/7Z = {0, 1, . . . , 6} in which ij is an arc if and only if j − i is a nonzero square in Z/7Z
(where, here and further, all operations involving vertices of

−−→
Pal7 are understood modulo 7). In other

words, ij is an arc if and only if j − i ∈ {1, 2, 4}.

0

1
2

3

4

5
6

Figure 1: The Paley tournament
−−→
Pal7 on seven vertices.

In this work, we will make use of the following properties of interest of
−−→
Pal7.

Lemma 2.1 (Marshall [13]).
−−→
Pal7 is vertex-transitive and arc-transitive.

Lemma 2.2 (Marshall [13]).
−−→
Pal7 has Properties P̂ (1, 6) and P̂ (2, 2).
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We also note the following other interesting properties of
−−→
Pal7, which, in brief words, mean that if we

start from any vertex u of
−−→
Pal7 and look at all the vertices v we can reach through a 2-path or 3-path

with some given orientation, then v can essentially be any vertex, except in one peculiar case.

Observation 2.3. For every i ∈ V (
−−→
Pal7) and α, β, γ ∈ {+,−}, we have

Nα(Nβ(i)) =

{
V (
−−→
Pal7) \ {i} if α = β

V (
−−→
Pal7) if α 6= β

(1)

and
Nα(Nβ(Nγ(i))) = V (

−−→
Pal7). (2)

Proof. As
−−→
Pal7 is vertex-transitive, it is enough to verify Equations (1) and (2) for i = 0, which can easily

be done by hand.

3 Proofs of Theorems 1.2 and 1.3

Let t be a fixed integer. For a given integer j, we set ft(j) = (t − j)(t − 2) + 1. In the next result, we

show that if an oriented graph
−→
G has Property P̂ (t − 1, ft(t − 1)) for some t, then it also has Property

P̂ (j, ft(j)) for all j ∈ {0, 1, . . . , t− 1}.

Lemma 3.1. If an oriented graph
−→
G has Property P̂ (t−1, ft(t−1)) for some t, then it also has Property

P̂ (j, ft(j)) for all j ∈ {0, 1, . . . , t− 1}.

Proof. Suppose
−→
G has Property P̂ (j, k). Now consider any (j−1)-vector ~a′ = (a1, . . . , aj−1), any (j−1)-

set J ′ = {v1, . . . , vj−1}, and a vertex vj of
−→
G not in J ′. Let ~a+ = (a1, . . . , aj−1,+), ~a− = (a1, . . . , aj−1,−)

and J = {v1, . . . , vj−1, vj}. Since
−→
G has Property P̂ (j, k), we must have |N~a+(J)| ≥ k and |N~a−(J)| ≥ k.

Observe that N~a+(J) ∩ N~a−(J) = ∅ and that N~a+(J), N~a−(J) ⊆ N~a′(J ′). Thus
−→
G has Property

P̂ (j − 1, 2k). We are now done by induction since ft(j − 1) ≤ 2ft(j) for all j ∈ {0, 1, . . . , t− 1}.

We now prove the existence of tournaments having Property P̂ (j, k) for particular values of j and k.

Lemma 3.2. For all t ≥ 29, there exist tournaments with Property P̂ (t− 1, t− 1) and order

c = (t− 3) · (t− 1) · 2t−1.

Proof. Let
−→
C be a random tournament in which every arc is oriented in one way or the other with equal

probability 1
2 . We show below that the probability that

−→
C does not have Property P̂ (t − 1, t − 1) is

strictly less than 1 when |
−→
C | = c = (t− 3) · (t− 1) · 2t−1. Let P(J,~a) denote the probability that the bad

event |N~a(J)| < ft(t − 1) = (t − 2) + 1 occurs, where J is a (t − 1)-set of
−→
C and ~a is a (t − 1)-vector.

Then

P(J,~a) ≤
∑
|S|≤t−2
S∩J=∅

P(S = N~a(J)) =
∑
|S|≤t−2
S∩J=∅

∏
x∈S

P(x ∈ N~a(J)) ·
∏

x/∈J∪S

P(x /∈ N~a(J))

=
∑
|S|≤t−2
S∩J=∅

2 · 2−|S||J| · (1− 2 · 2−|J|)c−|J|−|S|

=

t−2∑
i=0

(
c− (t− 1)

i

)
· 2−i(t−2) ·

(
1− 2−(t−2)

)c−i−(t−1)

=
(

1− 2−(t−2)
)c
·
t−2∑
i=0

ci

i!
· 2−i(t−2) ·

(
2t−2

2t−2 − 1

)i+t−1

< e−c2
−(t−2)

·
t−2∑
i=0

ci
2(t−2)(t−1)

(2t−2 − 1)i+t−1
≤ e−c2

−(t−2)

· 2(t−2)(t−1)

(2t−2 − 1)t−1
·
t−2∑
i=0

ci

< 2e−c2
−(t−2)

· c
t−1 − 1

c− 1
≤ e−c2

−(t−2)

· ct−1.
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Let P(B) denote the probability that at least one bad event occurs. To prove the statement it is then

enough to show that P(B) < 1. Let T denote the set of all (t−1)-sets of vertices of
−→
C , and W denote the

set of all (t − 1)-vectors having + in the first coordinate. Note that given any (t − 1)-vector ~a, exactly
one of ~a and ~ac must belong to W . Then

P(B) ≤
∑
J∈T

∑
~a∈W

P(J,~a) <

(
c

t− 1

)
· 2t−2 · e−c2

−(t−2)

· ct−1

<
ct−1

(t− 1)!
· 2t−2 · e−c2

−(t−2)

· ct−1 <
2t−2

(t− 1)!
· e−c2

−(t−2)

· c2(t−1)

< e−c2
−(t−2)

· c2(t−1) <

(
(t− 3)2 · (t− 1)2 · 22(t−1)

e2(t−3)

)t−1

< 1.

In particular, the last inequality follows because t ≥ 29. This completes the proof.

We now show that if a tournament
−→
C has Property P̂ (j, ft(j)) for all j ∈ {1, . . . ,∆− 1} where t = ∆,

then any connected oriented graph with maximum degree ∆ and degeneracy ∆ − 1 admits a pushable

homomorphism to
−→
C (recall, as mentioned in the introduction, that the notion of degeneracy we refer to

here is actually that of the underlying graph).

Lemma 3.3. Let
−→
C be an oriented graph having Property P̂ (j, ft(j)) for all j ∈ {1, . . . ,∆ − 1} where

t = ∆, and
−→
G be a connected oriented graph with maximum degree ∆ and degeneracy ∆ − 1. Then

−→
G

push−−−→
−→
C .

Proof. Let us assume the vertices of
−→
G are labeled v1, . . . , vk so that each vertex has at most ∆ − 1

neighbors with smaller index. For every l ∈ {1, . . . , k}, we denote by
−→
G l the oriented graph induced

by the vertices in {v1, . . . , vl}. We now inductively construct a homomorphism g :
−→
G →

−→
C with the

following properties:

• For every l ∈ {1, . . . , k}, the partial mapping g(v1), . . . , g(vl) is a homomorphism from
−→
G l to

−→
C .

• For every i > l, all neighbors of vi with index at most l have different images by the mapping g.

For l = 1, consider any partial mapping g(v1). Suppose now that the function g satisfies the above
two properties for all i ≤ l for some fixed l ∈ {1, . . . , k − 1}. Let A be the set of neighbors of vl+1 with
index greater than l+ 1, and B be the set of vertices with index at most l and with at least one neighbor
in A. Note that |B| ≤ (∆− 2)|A|.

Let D be the set of possible options for g(vl+1) leading to the partial mapping being a homomorphism

from
−→
G l+1 to

−→
C . Let A′ be the set of neighbors of vl+1 with index less than l + 1. Therefore, due to

Property P̂ (|A′|, ft(|A′|)) of
−→
C , we have

|D| ≥ ft(|A′|) = (∆− |A′|)(∆− 2) + 1 > (∆− 2)|A| ≥ |B|,

which implies |D| > |B|. Thus choose any vertex from D\B as the image g(vl+1). Note that the resulting
partial mapping satisfies the two required conditions as well. This concludes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The lower bound follows from Theorem 1.1 and the bound 2∆/2 ≤ χo(G∆) estab-
lished by Kostochka, Sopena and Zhu in [11]. We now focus on proving the upper bound.

Let
−→
G be a connected oriented graph with maximum degree ∆ ≥ 29. Note that if

−→
G is not ∆-regular

then
−→
G is (∆ − 1)-degenerate. Observe that Lemma 3.2 ensures the existence of an oriented graph

−→
C

on c = (∆ − 3) · (∆ − 1) · 2∆−1 vertices having Property P̂ (∆ − 1,∆ − 1). As f∆(∆ − 1) = (∆ − 1),

Lemma 3.1 implies that
−→
C has Property P̂ (j, f∆(j)) for all j ∈ {1, . . . ,∆ − 1}. After that, Lemma 3.3

implies
−→
G

push−−−→
−→
C . Thus we are done in this case.
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So assume
−→
G is ∆-regular. Delete one arc uv from

−→
G to obtain a connected oriented graph with

maximum degree ∆ and degeneracy ∆− 1. This new oriented graph admits a pushable homomorphism

g to an oriented graph
−→
C with Property P̂ (j, ft(j)) for all j ∈ {1, . . . ,∆− 1}. Now add two new vertices

x and y to
−→
C to obtain a new oriented graph

−→
Ĉ . Modify the pushable homomorphism g to ĝ by setting

ĝ(u) = x, ĝ(v) = y and ĝ(w) = g(w) for all w 6= u, v. Moreover, choose the direction of the arcs incident

with x and y in such a way that ĝ is a pushable homomorphism from
−→
G to

−→
Ĉ .

The proof of Theorem 1.2 above can also be employed to prove Theorem 1.3.

Proof of Theorem 1.3. The lower bound is due to a result of Kostochka, Sopena and Zhu in [11]. Let us

now focus on the upper bound. From Lemmas 3.2 and 3.3, we know that if
−→
G has maximum degree ∆

and is (∆ − 1)-degenerate, then χo(
−→
G) ≤ 2χp(

−→
G) ≤ 2(∆ − 3) · (∆ − 1) · 2∆. Thus we are done for all

oriented graphs of G∆ but the ones that are ∆-regular. For these oriented graphs, the upper bound can
be proved similarly as in the proof of Theorem 1.2.

4 Proof of Theorem 1.4

The lower bound follows from the existence of subcubic oriented graphs with pushable chromatic num-
ber 6, such as the one depicted in Figure 2(i).

(i) (ii)

Figure 2: A cubic oriented graph with pushable chromatic number 6 (i), and an oriented graph with
maximum average degree strictly less than 3 and pushable chromatic number 5 (ii).

To prove the upper bound of Theorem 1.4 we show that any subcubic oriented graph
−→
G admits a

pushable homomorphism to the Paley tournament
−−→
Pal7 on seven vertices. We prove this in the rest of

this section.
Assume that this does not hold for all subcubic oriented graphs, and consider

−→
H a minimum (with

respect to its number of vertices) subcubic oriented graph that does not admit a pushable homomorphism

to
−−→
Pal7. We prove that

−→
H cannot contain certain configurations until we finally reach a contradiction to

its existence. Note that
−→
H must be connected due to the minimality condition.

We first show that
−→
H must be cubic and large enough.

Lemma 4.1.
−→
H is cubic.

Proof. Assume
−→
H has a degree-1 vertex u. By minimality, there exists a pushable homomorphism f from−→

H −{u} to
−−→
Pal7. It is possible to extend f to a pushable homomorphism from

−→
H to

−−→
Pal7 due to Property

P̂ (1, 6), a contradiction. Now assume
−→
H has a degree-2 vertex u with neighbors v and w. Consider the

oriented graph
−→
H1 obtained from

−→
H by deleting u and adding the arc wv if v and w are not already

adjacent. By minimality, there exists a pushable homomorphism f from
−→
H1 to

−−→
Pal7. It is possible to

extend f to a pushable homomorphism from
−→
H to

−−→
Pal7 due to Property P̂ (2, 2), a contradiction.

Lemma 4.2.
−→
H is not a tournament.
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Proof. Any tournament on four vertices is in a push relationship with one of the following two tournaments

(both contained in
−−→
Pal7): (i) the induced tournament

−−→
Pal7[{0, 1, 2, 4}] and (ii) the induced tournament

−−→
Pal7[{1, 2, 3, 4}]. Indeed, consider

−→
T a tournament different from these two subtournaments of

−−→
Pal7. Let

a, b, c, d denote the four vertices of
−→
T . Start by pushing some vertices of

−→
T so that all arcs incident to a

are out-going from a. If
−→
T [{b, c, d}] is a directed triangle, then we get

−−→
Pal7[{0, 1, 2, 4}] (where a, b, c, d play

the role of 0, 1, 2, 3, respectively). Assume thus that
−→
T [{b, c, d}] is acyclic. Without loss of generality, we

can assume the arcs are bc, bd and cd. In that case, let us further push b and c. The orientation we get is

then
−−→
Pal7[{1, 2, 3, 4}] (where a, b, c, d play the role of 4, 2, 3, 1, respectively). Thus, if

−→
H is an orientation

of K4 then it must admit a pushable homomorphism to
−−→
Pal7, a contradiction.

Observe that a connected cubic oriented graph
−→
G that is not a tournament (i.e., not an orientation

of K4), must have its underlying graph having one of the configurations depicted in Figure 3. Indeed,
if G has a triangle abca, then either none of ab, bc and ca is shared by another triangle (and we get
the configuration in Figure 3(ii)), or abc′a is another triangle, in which case cc′ /∈ E(G) since G is not
K4 (and we get the configuration in Figure 3(i)). If G has no triangle but has a square abcda, then
note that we must have ac /∈ E(G) and bd /∈ E(G) as otherwise we would get a triangle; then we get
the configuration in Figure 3(iii). Lastly, if G has neither triangles nor squares, then consider any two
adjacent vertices u and v, where the other two other two neighbours of u are u1, u2 and the other two
neighbours of v are v1, v2. Now, if any two vertices in {u, v, u1, u2, v1, v2} are the same, then either G has
loops, multiple edges, triangles or squares. So all these vertices must be different; we get the configuration
in Figure 3(iv).

u1 v1

v2

v4

v3 u2

(i)

u1 v1 v2 u2

v3

u3

(ii)

u1 v1 v2 u2

u4 v4 v3 u3

(iii)

u11 a11 u12

x1

u21 a12 u22

a21 x2 a22

b0

a31 x3 a32

(iv)

Figure 3: Configurations needed for proving Theorem 1.4. Black square vertices are distinct vertices
whose full neighborhood is part of the configuration. White circle vertices are (not necessarily distinct)
vertices that might have other neighbors outside the configuration.

In what follows, we prove that none of these configurations can be present in
−→
H , and thus that

−→
H

cannot exist. We first introduce some notation and raise some remarks. We below deal with partial

matrices, i.e., matrices whose entries are either empty or contain an element of V (
−−→
Pal7). The ijth entry

of a matrix X is denoted by X(i, j). Given two matrices X1 and X2 of the same dimension, the matrices
X1 ± X2 are well defined by setting (X1 ± X2)(i, j) = X1(i, j) ± X2(i, j), with the convention that
∅ ± x = x± ∅ = ∅ for every entry x.

In the upcoming lemmas, we will often use implicitely the following observation to check the correct-
ness of some extensions of pushable homomorphisms : if, for some (i, j), we have (X2−X1)(i, j) ∈ {1, 2, 4},
then taking f(u) = X1(i, j) and f(v) = X2(i, j) defines a homomorphism of the arc uv to

−−→
Pal7. Similarly,

if (X2 − X1)(i, j) ∈ {3, 5, 6} for some (i, j), then taking f(u) = X1(i, j) and f(v) = X2(i, j) defines a

homomorphism of the arc vu to
−−→
Pal7.

Lemma 4.3. The configuration depicted in Figure 3(i) cannot be contained in H.

Proof. Assume that H contains the configuration depicted in Figure 3(i). Let
−→
H1 be the oriented graph

obtained from
−→
H by deleting the vertices in {v1, v2, v3, v4}, and let

−→
H2 be the oriented graph obtained

from
−→
H by deleting the arc between u2 and v3. By minimality,

−→
H1 admits a pushable homomorphism

f to
−−→
Pal7. Up to pushing vertices in

−→
H1, we can assume that f is actually an oriented homomorphism.
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As
−−→
Pal7 is vertex-transitive, without loss of generality we can assume that f(u1) = 0. Moreover, up to

pushing v1, v2 and v4, we can assume that
−→
H has the arcs u1v1, v2v1, v4v1. Furthermore, up to exchanging

v2 and v4 and then pushing v3, we can also assume that
−→
H2 has the arcs v2v4 and v3v2.

We show that for every ` ∈ {1, . . . , 6} we can extend f to an oriented homomorphism from
−→
H2 to

−−→
Pal7

satisfying f(v3) = `. This allows to conclude: let β ∈ {+,−} such that v3 is a β-neighbor of u2 in
−→
H after

having possibly pushed v3 to obtain the arc v3v2. Since |Nβ(f(u2))| = 3, there exists ` ∈ Nβ(f(u2))\{0}.
We then extend f to an oriented homomorphism from

−→
H2 to

−−→
Pal7 such that f(v3) = `. Due to the choice

of `, this is also an oriented homomorphism from
−→
H to

−−→
Pal7, a contradiction.

Therefore, in order to prove that
−→
H cannot contain the configuration depicted in Figure 3(i), it

only remains to extend f to an oriented homomorphism from
−→
H2 to

−−→
Pal7 satisfying f(v3) = ` for every

` ∈ {1, . . . , 6}. To this end, we consider the following matrices:

Xv1 =

1 2 4
1 2 4
1 2 4

 , Xv2 =

0 1 3
6 0 2
4 5 0

 , Xv4
=

4 5 0
0 1 3
6 0 2

 ,
and

X+
v3

=

6 0 2
4 5 0
0 1 3

 , X−v3
=

3 4 6
5 6 1
2 3 5

 .
Let α ∈ {+,−} such that v3 ∈ Nα(v4), and ` ∈ {1, . . . , 6}. Observe that all values {1, . . . , 6} are

present in the matrix Xα
v3

, hence we can take (i, j) ∈ {1, 2, 3}2 such that ` = Xα
v3

(i, j). We can then

extend f to an oriented homomorphism from
−→
H2 to

−−→
Pal7 by choosing f(vk) = Xvk(i, j) for all k ∈ {1, 2, 4}

and f(v3) = Xα
v3

(i, j) = `, which concludes the proof.

Before moving on to proving Lemma 4.5, we need to show the following.

Lemma 4.4. The graph T3 depicted in Figure 4(i) cannot be contained in H.

v3

u3

v2

u2

v1

u1

(i) The graph T3

u4

v4

u3

v3

u2

v2

u1

v1

(ii) The graph T4

Figure 4: Two cubic graphs mentioned in the proof of Theorem 1.4.

Proof. Since T3 is cubic and H is connected, if H contains T3 then H = T3. Therefore, it is enough to

show that for any orientation
−→
T3 of T3, there exists a pushable homomorphism f from

−→
T3 to

−−→
Pal7. Note

that regardless of the orientation
−→
T3, it is always possible to push some vertices among {u1, u2, u3} so that

−→
T3 the vertices in {u1, u2, u3} induce a directed cycle. Indeed, if

−→
T3[{u1, u2, u3}] is an acyclic tournament

with, say, source u1 and sink u3, then pushing u1 and u3 gives what we want. Moreover, we can also
push some of the vertices among {v1, v2, v3} to obtain the arcs u1v1, u2v2, u3v3 as well (just push every
vertex vi whose incident arc to ui does not have the desired direction).

Up to relabelling the vertices of
−→
T3, we can assume that some of its vertices were pushed so that

we have the arcs u1u2, u2u3 and u3u1. We now define a homomorphism from
−→
T3 to

−−→
Pal7. We first set

f(u1) = 1, f(u2) = 2 and f(u3) = 4. As shown in Figure 5, whatever the orientation of the triangle
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3

v1

6

v2

5 v3

2

v1

3

v2

6 v3

5

v1

4

v2

6 v3

3

v1

4

v2

5 v3

5

v1

3

v2

1 v3

2

v1

3

v2

1 v3

3

v1

6

v2

1 v3

2

v1

3

v2

5 v3

Figure 5: The 8 orientations of the inner cycle induced by {v1, v2, v3}.

induced by {v1, v2, v3} in
−→
T3 is, we are always able to choose f(v1) ∈ {2, 3, 5}, f(v2) ∈ {3, 4, 6} and

f(v3) ∈ {1, 5, 6} to extend f to an oriented homomorphism from
−→
T3 to

−−→
Pal7.

Lemma 4.5. The configuration depicted in Figure 3(ii) cannot be contained in H.

Proof. Assume that H contains the configuration depicted in Figure 3(ii). Due to Lemmas 4.3 and 4.4,
we can assume that u1 and u2 are distinct non-adjacent vertices. Moreover, it is possible to push some

of the vertices among {v1, v2} to make sure that
−→
H has the arcs u1v1, u2v2. Furthermore, by symmetry,

we can assume the arc v1v2 is present in
−→
H .

Let
−→
H1 be the oriented graph obtained by adding the arc u1u2 in

−→
H . We also denote by

−→
H2 the

oriented graph obtained from
−→
H1 by deleting the vertices v1, v2 and v3. By minimality,

−→
H2 admits a

pushable homomorphism f to
−−→
Pal7. Up to replacing

−→
H2 (together with

−→
H1 and

−→
H ) by a push-equivalent

oriented graph, we can assume that f is an oriented homomorphism. However, note that this may cause

the arc u1u2 to be reversed in
−→
H2. This occurs if we needed to push u1 or u2 in

−→
H2 in order to make f

an oriented homomorphism. We again push (if needed) v1 and v2 to obtain the arcs u1v1 and u2v2 in
−→
H .

Observe that u1u2 and v1v2 are both present in
−→
H or both reversed. By symmetry, we can only consider

the first case. Finally, up to pushing v3, we assume that the arc v3v1 is in
−→
H .

Let
−→
H3 be the oriented graph obtained from

−→
H by deleting the arc between u3 and v3. Similarly to

the proof of Lemma 4.3, we first extend f to an oriented homomorphism from
−→
H3 to

−−→
Pal7, with some

additional constraint on f(v3), and then extend f to
−→
H .

As
−−→
Pal7 is arc-transitive, without loss of generality we can assume that f(u1) = 0 and f(u2) = 1.

Now consider the following matrices:

Xv1 =


1
1
1
2
4

 , Xv2 =


2
3
5
3
5

 , X+
v3

=


4
0
6
5
2

 , X−v3
=


0
6
4
1
3

 .
Let α, β ∈ {+,−} such that v3 is an α-neighbor of v2 and a β-neighbor of u3. Let Sα be the set of all

integers appearing in at least one entry in Xα
v3

. Observe that for every ` ∈ Sα, there exists j ∈ {1, . . . , 5}
such that ` = Xα

v3
(1, j). By choosing f(vk) = Xvk(1, j) for k ∈ {1, 2} and f(v3) = `, we can extend f to

an oriented homomorphism from
−→
H3 to

−−→
Pal7 satisfying f(v3) = `.

Observe that |Sα| = 5. Hence, since |Nβ(f(u2))| = 3, we can choose an ` ∈ Nβ(f(u2)) ∩ Sα.

The corresponding extension of f is now an oriented homomorphism from
−→
H1, to

−−→
Pal7. Since

−→
H is a

subgraph of
−→
H1, we obtain a contradiction. Therefore,

−→
H cannot contain the configuration depicted in

Figure 3(ii).

The proof of Lemma 4.7 is similar to Lemma 4.5. In particular, we first prove an auxiliary lemma in
the spirit of Lemma 4.4.

Lemma 4.6. The graph H cannot be the graph T4 depicted in Figure 4(ii).
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Proof. It is enough to show that for any orientation
−→
T4 of the cubic graph T4 depicted in Figure 4(ii),

there exists a pushable homomorphism f from
−→
T4 to

−−→
Pal7. We consider two cases, depending on parity

of the number of backward arcs of the 4-cycles of
−→
T4.

Let us first make more precise what are the backward and forward arcs (of an oriented cycle) we are
going to refer to. Here and further, we deal with cycles in some oriented graphs whose underlying graph
is depicted in some figure. For each such cycle C, the depicted embedding defines a natural clockwise
ordering of its vertices. With respect to that ordering, for any two adjacent vertices u and v of C where,
say, u precedes v, in the orientation of C we say that the arc between u and v is forward if uv is the arc,
while we say that the arc is backward if vu is the arc.

Case 1: Suppose that
−→
T4 contains a 4-cycle with an odd number of backward arcs. By symmetry, assume

that this cycle is the outer one. We can now push some vertices among {u1, u2, u3, u4} to make sure that
−→
T4 has the arcs u1u2, u1u4, u4u3 and u3u2. Up to pushing some vertices among {v1, v2, v3, v4}, we can

also assume that
−→
T4 contains all the arcs uivi for i ∈ {1, 2, 3, 4}. Let f(u1) = 0, f(u2) = 4, f(u3) = 2 and

f(u4) = 1. As shown in Figure 6, whatever the orientation of the 4-cycle induced by {v1, v2, v3, v4} is,
we are always able to choose f(v1) ∈ {1, 2, 4}, f(v2) ∈ {1, 5, 6}, f(v3) ∈ {3, 4, 6} and f(v4) ∈ {2, 3, 5} to

extend f to a homomorphism from
−→
T4 to

−−→
Pal7.

1v1 5 v2

6 v32v4

1v1 5 v2

4 v33v4

4v1 5 v2

6 v32v4

4v1 6 v2

4 v32v4

1v1 5 v2

6 v33v4

4v1 5 v2

4 v35v4

2v1 6 v2

3 v35v4

4v1 1 v2

6 v33v4

1v1 6 v2

3 v32v4

1v1 6 v2

4 v32v4

2v1 5 v2

6 v35v4

2v1 1 v2

6 v35v4

2v1 5 v2

6 v33v4

1v1 6 v2

4 v35v4

2v1 1 v2

3 v35v4

2v1 5 v2

3 v35v4

Figure 6: The 16 possible orientations of the inner cycle induced by {v1, v2, v3, v4}.

Case 2: Suppose that every 4-cycle of
−→
T4 has an even number of backward arcs. Up to pushing some

vertices among {u1, u2, u3, u4}, we can assume that
−→
T4 has the arcs u1u2, u1u4, u3u2 and u3u4. We also

push some vertices among {v1, v2, v3, v4} such that
−→
T4 contains all the arcs uivi for i ∈ {1, 2, 3, 4}. By

hypothesis, observe that
−→
T4 must contain the arcs v1v2, v1v4, v3v2 and v3v4. We can then define an oriented

homomorphism from
−→
T4 to

−−→
Pal7 by setting f(u1) = f(u3) = 0, f(v1) = f(v3) = f(u2) = f(u4) = 1 and

f(v2) = f(v4) = 2.

Using this auxiliary lemma, we can prove that H does not contain the next configuration.

Lemma 4.7. The configuration depicted in Figure 3(iii) cannot be contained in H.

Proof. Assume that H contains the configuration depicted in Figure 3(iii). We follow the same approach
as in Lemma 4.5: we first use Lemma 4.6 and symmetry to show we can add the are u1u2. Then we
remove some vertices and use minimality to obtain a pushable homomorphism, that we extend in two

steps to a pushable homomorphism from
−→
H to

−−→
Pal7.
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We first assume that u1 and u2 are distinct non-adjacent vertices due to Lemmas 4.5 and 4.6. Up to
renaming the vertices of the graph, we assume that if u3, u4 are adjacent, then either u1, u4 are adjacent
or u2, u3 are adjacent. Indeed, if u3 and u4 are adjacent while all the other pairs are not, then we can
relabel vertices and “rotate” the configuration so that e.g. u2 and u3 only are adjacent. Moreover, up

to pushing v1 or v2, we can assume that
−→
H has the arcs v1u1, v2u2. Furthermore, by symmetry, we can

assume the arc v2v1 is present in
−→
H .

Let
−→
H1 be the oriented graph obtained from

−→
H by adding the arc u1u2 and an arc between u3 and u4

(if such is not already present) in such a way that the oriented cycle induced by the vertices {u3, v3, v4, u4}
has an even number of forward and backward arcs.

After that, let
−→
H2 be the oriented graph obtained from

−→
H1 by deleting the set of vertices {v1, v2, v3, v4},

and
−→
H3 be the oriented graph obtained from

−→
H by deleting the arc between u3 and v3, and the arc between

u4 and v4.

By minimality,
−→
H2 admits a pushable homomorphism f to

−−→
Pal7. Again, up to replacing

−→
H2 (together

with
−→
H1 and

−→
H ) by a push-equivalent oriented graph, we can assume that f is an oriented homomorphism.

Observe that, because we have replaced
−→
H2 by a push-equivalent oriented graph, the arc joining u1 and

u2 may have its direction changed compared to what it was before the replacement. We push v1 or v2

if needed to make sure that
−→
H2 contains v1u1 and v2u2. Now either

−→
H2 contains both u1u2 and v2v1 or

both u2u1 and v1v2. By symmetry, we consider only the first case. Moreover, since
−−→
Pal7 is arc-transitive,

we can assume that f(u1) = 0 and f(u2) = 1.

Up to pushing v3 or v4 if needed, we can assume that
−→
H1 contains the arcs v1v4 and v2v3. Now

consider the following matrices:

Xv1 =


3 5 6 3 5 6
3 5 6 3 5 6
3 5 6 3 5 6
2 2 4 2 4 4
2 2 4 2 4 4
2 2 4 2 4 4

 , Xv2 =


6 4 4 5 2 3
6 4 4 5 2 3
6 4 4 5 2 3
4 6 6 5 2 3
4 6 6 5 2 3
4 6 6 5 2 3

 , Xv4 =


4 6 0 4 6 0
5 0 1 5 0 1
0 2 3 0 2 3
5 5 0 5 0 0
0 0 2 0 2 2
1 1 3 1 3 3

 ,

X+
v3

=


1 1 1 0 0 2
0 1 5 ∅ 1 2
1 6 5 4 ∅ ∅
6 0 1 ∅ 1 2
1 1 3 4 ∅ 6
5 3 0 3 5 ∅

 , X
−
v3

=


0 5 6 3 5 6
1 5 6 1 5 6
3 5 6 3 5 6
1 3 ∅ 4 5 6
5 3 1 3 0 1
6 0 1 4 1 2

 .

Let
−→
H3 be the oriented graph obtained by deleting the arc between u3 and v3 and the arc between

u4 and v4 in
−→
H1. For every ` ∈ {0, . . . , 6}, we first extend f to a pushable homomorphism from

−→
H3 to

−−→
Pal7 such that f(v3) = `. We then apply, in

−→
H1, this homomorphism with the right value of ` to obtain a

pushable homomorphism from
−→
H1 to

−−→
Pal7. Recall that

−→
H1 and

−→
H3 are indeed defined over the same set

of vertices, so f is well defined in
−→
H1.

Let α ∈ {+,−} such that v3 is an α-neighbor of v4 and let ` ∈ {0, . . . , 6}. Observe that there

exists i, j ∈ {1, . . . , 6} such that ` = Xα
v3

(i, j). We push the vertex v1 (resp. v2) in
−→
H3 if i > 3 (resp.

j > 3). Now, if we choose f(vk) = Xvk(i, j) for all k ∈ {1, 2, 4} and any f(v3) = `, then f is a pushable

homomorphism from
−→
H3 to

−−→
Pal7.

It now remains to choose the value of ` to extend this homomorphism to
−→
H1. Let β3, β4 ∈ {+,−}

such that v3 is a β3-neighbor of u3, and v4 is a β4-neighbor of u4 in
−→
H1. Consider the set of integers

Sα =

 ⋃
{(i,j):Xv4 (i,j)∈Nβ4 (f(u4))}

{Xα
v3

(i, j)}

 \ {∅}.
Observe that Sα depends on the value of f(u4) and β4.
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Intuitively speaking, Sα is the set of those values such that if any of them is assigned as f(v3), then

it is possible to extend f to a homomorphism from
−→
H4 to

−−→
Pal7, where

−→
H4 is the oriented graph obtained

from
−→
H1 by deleting the arc between u3 and v3.

To make this point clearer, let us demonstrate a sample calculation of a such set Sα. Let us assume
that α = +, β4 = +, and f(u4) = 0. Therefore, Nβ4(f(u4)) = N+(0) = {1, 2, 4}. So we look for those
(i, j) for which the set Xv4

(i, j) contains 1, 2 or 4. In this particular case, those indices (i, j) are the
following: (1, 1), (1, 4), (2, 3), (2, 6), (3, 2), (3, 5), (5, 3), (5, 5), (5, 6), (6, 1), (6, 2), (6, 4). Now we get Sα

by taking the union of all the entries of X+
v3

which have these indices, which, here, is

Sα = {1, 0, 5, 2, 6, 3, 6, 5, 3, 3} = {0, 1, 2, 3, 5, 6} = V (
−−→
Pal7) \ {4}.

Hence, for each ` ∈ Sα there exists an extension of f to a pushable homomorphism from
−→
H3 to

−−→
Pal7

such that f(v4) ∈ Nβ4(f(u4)) and f(v3) = `. In particular, if ` also lies in Nβ3(f(u3)), then f is also a

pushable homomorphism from
−→
H1 to

−−→
Pal7. Therefore, we can conclude as soon as Nβ3(f(u3)) ∩ Sα 6= ∅.

Note that if |Sα| ≥ 5, then we must have Nβ3(f(u3)) ∩ Sα 6= ∅ as |Nβ3(f(u3))| = 3. Therefore, we
can assume that |Sα| < 5, which may happen for some values of f(u4) and β4. To handle those instances,
we split the rest of the proof into two cases. In each of them, we modify f so that Nβ3(f(u3)) ∩ Sα 6= ∅
afterwards, which allows to extend f to a pushable homomorphism from

−→
H1 to

−−→
Pal7. Since

−→
H is a

subgraph of
−→
H1, this leads to a contradiction. Therefore, H cannot contain the configuration depicted in

Figure 3(iii).

Case 1: Suppose that v3 is a −-neighbor of v4, that is, α = − and the arc v3v4 is present. In this
case, |S−| < 5 only if f(u4) = 1 and β4 = −, and we have S− = {0, 3, 5, 6}. The only way of having
Nβ3(f(u3)) ∩ S− = ∅ happens when Nβ3(f(u3)) = {1, 2, 4}, which implies f(u3) = 0 and β3 = +. Since

f(u3) = 0 and f(u4) = 1,
−→
H1 contains the arc u3u4. This means that the oriented cycle induced by

{u3, v3, v4, u4} has an odd number of backward and forward arcs. Since this property is invariant with

respect to the push operation, this was also valid when
−→
H1 was constructed. Due to this construction,

we obtain that u3 and u4 were adjacent in H itself. Moreover, by hypothesis, this implies that either u1

and u4 are adjacent, or u2 and u3 are adjacent.

• If u1 and u4 are adjacent, then we must have the arc u1u4, since f(u1) = 0 and f(u4) = 1. In this

case, since
−→
H is cubic, the only neighbors of u4 are u1, u3 and v4, so we can modify f by setting

f(u4) = 2, so that we now have Nβ3(f(u3)) ∩ S− 6= ∅.

• If u2 and u3 are adjacent, then we must have the arc u3u2, since f(u3) = 0 and f(u2) = 1. Similarly,
we modify f by setting f(u3) = 4, so that we now have Nβ3(f(u3)) ∩ S− 6= ∅.

Case 2: Suppose that v3 is a +-neighbor of v4, that is, α = + and the arc v4v3 is present. We have
|S+| < 5 only when (f(u4), β4) = (1,+), (2,+), (0,−), (1,−) or (6,−). In these cases, we respectively
have S+ = {0, 3, 5, 6}, {0, 1, 5}, {0, 1, 5, 6}, {0, 1, 2, 4} or {0, 1, 3, 6}.

For S+ = {0, 1, 5, 6}, there exist no f(u3) and β3 satisfying Nβ3(f(u3)) ∩ S+ = ∅. Thus it is not
possible to have (f(u4), β4) = (0,−). Also note that in order to satisfy Nβ3(f(u3)) ∩ S+ = ∅, for each
value of (f(u4), β4) = (1,+), (2,+), (1,−) or (6,−), we must have (f(u3), β3) = (0,+), (2,+), (0,−) or

(6,−). Since u3 and u4 are adjacent in
−→
H1, it is not possible to have f(u3) = f(u4). Therefore, there exists

γ ∈ {+,−} such that (f(u4), β4) = (1, γ), and thus (f(u3), β3) = (0, γ). In particular,
−→
H1 contains the

arc u3u4. This means that the oriented cycle induced by {u3, v3, v4, u4} has an odd number of backward
and forward arcs. Since this property is invariant with respect to the push operation, this was again also

the case when
−→
H1 was constructed. This implies that u3 and u4 are adjacent in H itself. By hypothesis,

either u1 and u4 are adjacent, or u2 and u3 are adjacent.

• If u1 and u4 are adjacent, then we must have the arc u1u4, since f(u1) = 0 and f(u4) = 1. In this
case, we modify f by setting f(u4) = 2, so that we now have Nβ4(f(u4)) ∩ S+ 6= ∅.

• If u2 and u3 are adjacent, then we must have the arc u3u2, since f(u3) = 0 and f(u2) = 1. In this
case, we modify f by setting f(u3) = 4, so that now we have Nβ3(f(u3)) ∩ S+ 6= ∅.
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Lemma 4.8. The configuration depicted in Figure 3(iv) cannot be contained in H.

Proof. Let X be a graph on four vertices having a degree-3 vertex x with neighbors a1, a2 and b. There

are no more edges in X, that is, the only edges of X are xa1, xa2 and xb. Let h : V (X)→ V (
−−→
Pal7) be a

function such that h(a1) = 0 and h(a2) = 1. Furthermore let h∗ : V (X) → V (
−−→
Pal7) be a function such

that h∗(a1) = h∗(a2) = 0. Note that h and h∗ are both functions, not homomorphisms. Also, X is an
undirected graph. Later in the proof, we will consider different orientations of X and examine how h or
h∗ can be extended into a homomorphism.

Now let
−→
X be an orientation of X. Moreover, let

−→
X ′ be the orientation of X obtained from

−→
X by

pushing the vertex x. Without loss of generality assume that the arc a1x is present in
−→
X . Therefore−→

X is of one of the following four types below. For each type we list a number of observations following,

notably, from the arc-transitivity of
−−→
Pal7.

Type 1:
−→
X has the arcs a1x, a2x and bx. Observe that for any l ∈ V (

−−→
Pal7) \ {2, 4, 6} it is possible to

extend h to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h(b) = l. Moreover, for any l ∈ V (

−−→
Pal7) it

is possible to extend h∗ to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h∗(b) = l.

Type 2:
−→
X has the arcs a1x, a2x and xb. Observe that for any l ∈ V (

−−→
Pal7) \ {0, 1} it is possible to extend

h to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h(b) = l. Moreover, for any l ∈ V (

−−→
Pal7) \ {0} it

is possible to extend h∗ to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h∗(b) = l.

Type 3:
−→
X has the arcs a1x, xa2 and bx. Observe that for any l ∈ V (

−−→
Pal7) \ {1} it is possible to extend

h to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h(b) = l.

Type 4:
−→
X has the arcs a1x, xa2 and xb. Observe that for any l ∈ V (

−−→
Pal7) \ {0} it is possible to extend

h to a homomorphism from
−→
X or

−→
X ′ to

−−→
Pal7 such that h(b) = l.

In the first two cases, we are able to convert both h and h∗ into homomorphisms as x is adjacent to
a1 and a2 through arcs having similar directions (out-going or in-coming) with respect to x. In contrast,
for the last two cases, we are able to convert h only into a homomorphism.

Assume now that H contains the configuration depicted in Figure 3(iv). Let
−→
H1 be the oriented graph

obtained from
−→
H by deleting the vertex b0,

−→
H2 be the oriented graph obtained from

−→
H1 by deleting the

set of vertices {x1, x2, x3}, and
−→
H3 be the oriented graph obtained from

−→
H2 by deleting the set of vertices

{a11, a12}. By minimality,
−→
H1 admits a pushable homomorphism f1 to

−−→
Pal7. Up to replacing

−→
H by a

push equivalent oriented graph, we can assume that f1 is an oriented homomorphism. Let f2 and f3 be

the restriction of f1 to
−→
H2 and

−→
H3, respectively.

In what follows, we say that the vertex xi is Type-j, for some j ∈ {1, 2, 3, 4}, if the oriented graph

induced by {ai1, ai2, xi, b0} is the same as the Type-j orientation of
−→
X or

−→
X ′ where xi plays the role

of x and b0 plays the role of b for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. Note that if xi is Type-1 (Type-3,
respectively), then pushing the vertex b0 will turn it to Type-2 (Type-4, respectively), and vice versa.

Now we want to extend f2 or f3 to a pushable homomorphism from
−→
H to

−−→
Pal7. Note that from the above

we know that if xi is Type-1 then it may forbid at most three values for f(b0), if xi is Type-2 then it may
forbid at most two values for f(b0), and if xi is Type-3 or Type-4 then it may forbid at most one value
for f(b0). Moreover, we can (if necessary) push b0 to ensure that at most one vertex among {x1, x2, x3}
is Type-1. Therefore, if any of them is Type-3 or Type-4, then we will be able to extend f2 to a pushable

homomorphism from
−→
H to

−−→
Pal7.

The only bad situation is to have one Type-1 vertex and two Type-2 vertices among {x1, x2, x3}. We
here consider two cases:

Case 1: If x1 is Type-1, then we simply push a11 and a12 to make it Type-2. Then we are able to extend

f3 to a pushable homomorphism from
−→
H to

−−→
Pal7.

Case 2: Assume that x2 is Type-1 and x1, x3 are Type-2. Without loss of generality assume that
f1(a21) = 0 and f1(a22) = 1 (since if f1(a21) = f1(a22), then x2 forbids only two values for f(b0)).
Therefore, x2 forbids the values 2, 4, 6 for f(b0).
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By definition of type 2, x1 (resp. x3) forbids the values f1(a11), f1(a12) (resp. f1(a31), f1(a32)). This

is correct because
−−→
Pal7 is arc-transitive, and we have noticed in the observations on Type-2 orientations

of X that having h(a1) = 0 and h(a2) = 1 forbid the values {0, 1} for b. That is, given a Type-2

orientation of X, if a1 and a2 are mapped to distinct vertices of
−−→
Pal7, then one can extend the mapping

to a homomorphism of
−→
X such that b gets mapped to any prescribed vertex distinct from the images of

a1, a2.

Then, we can extend f2 to a pushable homomorphism from
−→
H to

−−→
Pal7, except in the situation where

{f1(a11), f1(a12), f1(a31), f1(a32)} = {0, 1, 3, 5}.
For S ⊆ {a11, a12}, we denote by

−→
H2(S) the graph obtained from

−→
H2 by pushing the vertices of S.

Note that for each choice of S, we can extend f3 to an oriented homomorphism fS from
−→
H2(S) to

−−→
Pal7

using Observation 2.3 and the fact that a11 and a12 are degree-2 vertices in
−→
H2. We can even ensure that

for every vertex v /∈ S, we have fS(v) = f2(v) and, for v ∈ {a11, a12}, f{a11,a12}(v) = f{v}(v). We show

that there exists a choice of S such that fS can be extended to
−→
H (S).

Let S = {a11, a12}, and observe that x1 has Type-1 in
−→
H (S).

• If (f1(a11), f1(a12)) = (fS(a12), fS(a11)), then due to the property of Type-1 vertices, x1 does not
forbid the values fS(a11) = f1(a12) and fS(a12) = f1(a11) for b0 anymore. In other words, since, for
Type-1 orientations of X, the forbidden values for f(b) were different from 0 and 1 (the images of
a1, a2), here also the set of forbidden values for b0 must be different from the images of a11, a12. As
these values were only forbidden for f(b0) (due to x1) up to this point, after pushing the vertices of
S these values are no longer forbidden. Therefore, we can extend fS to a pushable homomorphism

from
−→
H to

−−→
Pal7.

• If f1(a11) 6= fS(a12), then we claim that f{a12} can be extended to
−→
H ({a12}). Indeed, in

−→
H ({a12}),

x1 is Type-3 or Type-4. In particular, we can extend f{a12} unless f{a12}(a12) = f{a12}(a11).
However, note that we have fS(a12) = f{a12}(a12) and f{a12}(a11) = f2(a11) = f1(a11) by definition
of fS . This is impossible by hypothesis.

• Otherwise, we have f1(a12) 6= fS(a11). Similarly to the previous item, we claim that f{a11} can

be extended to
−→
H ({a11}). Indeed, x1 is again Type-3 or Type-4, so f{a11} can be extended unless

f{a11}(a11) = f{a11}(a12), which is again impossible by hypothesis.

In each case, we can thus extend f3 to a pushable homomorphism from
−→
H to

−−→
Pal7, which concludes the

proof.

5 Proof of Theorem 1.5

The lower bound follows from the existence of oriented graphs with maximum average degree less than 3
and pushable chromatic number 5, such as the one depicted in Figure 2(ii). To prove the upper bound of
Theorem 1.5, we show below that every oriented graph with maximum average degree less than 3 admits

a pushable homomorphism to the Paley tournament
−−→
Pal7 on seven vertices. Towards a contradiction, let

us assume that there exists
−→
H , a minimum (with respect to number of vertices) oriented graph having

mad(
−→
H ) < 3 that does not admit a pushable homomorphism to

−−→
Pal7. Note that the underlying graph H

of
−→
H
−→
H must be connected due to the minimality condition. We prove below that, by minimality, none

of the configurations depicted in Figure 7 can appear in H.

Lemma 5.1. None of the configurations (i)-(v) depicted in Figure 7 can be contained in H.

Proof. (i) Suppose H has a degree-1 vertex u with neighbor v, where u is an α-neighbor of v for α ∈
{+,−}. By minimality,

−→
H − {u} admits a pushable homomorphism f to

−−→
Pal7. We can extend f to

−→
H

by setting

f(u) =

{
f(v) + 1 if α = +

f(v) + 3 if α = −,
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(i) (ii)

u1

u2

u3v1 v2

(iii)

u1

u2

u3

u4v1

(iv)

u1

u2

u3

u4

u5

v1

(v)

Figure 7: Configurations needed for proving Theorem 1.5. Black square vertices are distinct vertices
whose full neighborhood is part of the configuration. White circle vertices are (not necessarily distinct)
vertices that might have other neighbors outside the configuration, or be equal.

a contradiction. Therefore, H cannot contain the configuration depicted in Figure 7(i).

(ii) Assume H has two adjacent degree-2 vertices u and v. By minimality,
−→
H −{u, v} admits a pushable

homomorphism f to
−−→
Pal7. According to Equation (2) of Observation 2.3, f can be extended to a pushable

homomorphism from
−→
H to

−−→
Pal7, a contradiction. Indeed, denote by u′ the other neighbour of u in

−→
H ,

and by v′ the other neighbour of v. That equation tells us that, whatever f(u′) and f(v′) are, there is, in
−−→
Pal7, a 3-path f(u′)xyf(v′) with the same orientation as the 3-path from u′ to v′ through u and v in

−→
H .

Then it suffices to set f(u) = x and f(v) = y. Therefore, H cannot contain the configuration depicted in
Figure 7(ii).

(iii) Assume H contains the configuration depicted in Figure 7(iii) (where, here and further, we deal
with the vertices of a configuration through the notation introduced in the corresponding figure). By

minimality,
−→
H − {v2} admits a pushable homomorphism f to

−−→
Pal7. Suppose that v1 ∈ N (α1,α2)(u1, u2).

If f(v1) = f(u3), then push v1 and update f(v1) to some value in N (ᾱ1,ᾱ2)(f(u1), f(u2)) (this is possible

since
−−→
Pal7 has property P̂ (2, 2)). Note that the resulting updated f remains a pushable homomorphism.

Additionally, now we have f(v1) 6= f(u3). It is now possible to extend f to a pushable homomorphism

from
−→
H to

−−→
Pal7 due to Equation (1) in Observation 2.3, a contradiction. Indeed, that equation tells us

that, whenever f(v1) 6= f(u3), there is always, in
−−→
Pal7, a 2-path f(v1)xf(u3) with the same orientation

as the 2-path from v1 to u3 through v2 in
−→
H . Then it suffices to set f(v2) = x. Therefore, H cannot

contain the configuration depicted in Figure 7(iii).

(iv) − (v) Assume H contains one of the configurations depicted in Figure 7(iv) and (v). Let S be the

set of black vertices of the configuration. By minimality,
−→
H − S admits a pushable homomorphism f to−−→

Pal7. Now, push v1, if needed, so that at most two of the 2-paths connecting v1 to the ui’s are directed
2-paths. Note that this indeed holds: pushing v1 makes each of these directed 2-paths not directed, and
vice versa. If at least three of the 2-paths are directed, then, when pushing v1, we make them not directed
any more, while the other 2-paths (there is at most one such) get directed.

Without loss of generality, assume that, in the worst-case scenario, u2 and u3 are the vertices that are
connected by a directed 2-path to v1. Assume v1 is an α-neighbor of u1 for some α ∈ {+,−}. Choose a
vertex i ∈ Nα(f(u1)) \ {f(u2), f(u3)} and assign f(v1) = i. Now we are able to extend f to a pushable

homomorphism from
−→
H to

−−→
Pal7 due to Equation (1) in Observation 2.3 (by similar arguments as earlier),

a contradiction. Therefore, H cannot contain the configurations depicted in Figure 7(iv) and (v).

We are now ready to prove Theorem 1.5, which we do using the so-called discharging method.

Proof of Theorem 1.5. Let us assign the charge ch(v) = d(v) to each vertex v of
−→
H , where, recall, d(v)

denotes the degree of v in H, the graph underlying
−→
H . Since mad(

−→
H ) < 3, the total sum of the charges
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is strictly less than 3|V (
−→
H )|, that is, ∑

v∈V (
−→
H)

ch(v) < 3|V (
−→
H )|.

Now apply the following discharging procedure: Every vertex v of
−→
H with degree at least 4 sends 1/2

to each of its neighbors with degree 2. We show in the following that for every vertex v the resulting
charge ch∗(v) is at least 3, which contradicts the assumption mad(H) < 3. We consider the vertices v
accordingly to their degree, which satisfies d(v) > 1 by Lemma 5.1(i).

• d(v) = 2. Since H does not contain the configurations depicted in Figures 7(ii) and 7(iii), the
neighbors of v have degree at least 4 and thus v does not send any charge. Furthermore, v receives
exactly 2× 1/2 = 1. Thus, ch∗(v) = 2 + 1 = 3.

• d(v) = 3. Since H does not contain the configuration depicted in Figure 7(iii), v does not send any
charge. Furthermore, v does not receive any charge. Therefore, we have ch∗(v) = 3.

• d(v) = 4. Since H does not contain the configuration depicted in Figure 7(iv), v sends at most
2× 1/2 = 1. Therefore, we have ch∗(v) ≥ 4− 1 = 3.

• d(v) = 5. Since H does not contain the configuration depicted in Figure 7(v), v sends at most
3× 1/2 = 3/2. Therefore, we have ch∗(v) ≥ 5− 3/2 = 7/2 > 3.

• d(v) = k ≥ 6. v sends at most k × 1/2 = k/2 charges. Therefore, we have ch∗(v) ≥ k − k/2 =
k/2 ≥ 6/2 = 3.

Therefore, every vertex v of
−→
H gets final charge ch∗(v) at least 3. Hence

3|V (
−→
H )| >

∑
v∈V (

−→
H)

ch(v) =
∑

v∈V (
−→
H)

ch∗(v) ≥ 3|V (
−→
H )|,

since no charge was created after assigning the initial charges, which is a contradiction. Thus every

oriented graph with maximum average degree less than 3 admits a pushable homomorphism to
−−→
Pal7.

6 Conclusions and perspectives

In this work, we have studied the pushable chromatic number of several classes of graphs with degree
constraints. We have provided bounds for graphs with large maximum degree ∆ (Theorem 1.2), graphs
with maximum degree ∆ ≤ 3 (Theorem 1.4), and graphs with maximum average degree less than 3
(Theorem 1.5). None of our results is tight however, and a natural direction for further work could
thus be to tighten our bounds. In particular, we wonder whether there exist subcubic graphs or graphs
with maximum average degree less than 3 with pushable chromatic reaching the upper bounds we have
established. Let us mention that we first checked the proof of Theorem 1.4 through computer programs
(before coming up with the presented matrices), and that we did not find any tournament on six vertices
for which all configurations in Figure 3 are reducible. Also, although we managed to generate many
graphs with maximum average degree less than 3 (planar graphs with girth at least 6, respectively)
and check their pushable chromatic number via computer programs, we were not able to spot one with
pushable chromatic 6 (5, respectively). These two facts might be good hints regarding the maximum
value of the pushable chromatic number of these families of graphs.

Another interesting direction for further research on the topic could be to generalize our results to
graphs with given maximum degree ∆ more than 3, graphs with given maximum average degree, and
planar graphs with given girth. In other words, we wonder how these graph parameters influence the
pushable chromatic number. We would be quite interested, for instance, in having bounds for graphs
with maximum degree ∆ at most 4.

Finally, several recent works have established that, when it comes to coloring, pushable graphs and
signed graphs sometimes have very comparable behaviors. Let us recall that a signed graph is a graph in
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which each edge is either positive or negative, and that comes with a vertex-resigning operation which
consists in switching the sign of all edges incident with a vertex. It would be interesting to know if,
in general, graphs with degree constraints have their pushable chromatic number and signed chromatic
number behaving the same. We will propose a study of this very question, inspired from our results in
the current work, in a forthcoming paper.
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