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Abstract 12 

The present study introduces new laminar burning velocity data for ammonia/hydrogen/air mixtures 13 

measured by means of the outwardly propagating spherical flame method at atmospheric pressure, for 14 

previously unseen unburned gas temperatures ranging from 298 to 473 K, hydrogen fractions ranging from 0 15 

vol.% to 60 vol.% in the fuel and equivalence ratios in the range [0.8 – 1.4]. Results show increasing 16 

velocities with increasing hydrogen fraction and temperature, with maximum values obtained for rich 17 

mixtures near stoichiometry. The new experimental dataset is compared to dedicated laminar burning 18 

velocity correlations from the literature and to simulations using detailed kinetic mechanisms. The 19 

ammonia/air correlation presents a good agreement with measurements over the whole range of 20 

experimental conditions. The ammonia/hydrogen/air correlation captures the effect of the initial temperature 21 

satisfactorily for equivalence ratios below 1.3 and hydrogen fractions below 50 vol.% in the fuel, but 22 

discrepancies are observed in other conditions. The effect of hydrogen addition is reproduced satisfactorily 23 

for hydrogen fractions between 20 and 40 vol.% in the fuel, but discrepancies are observed for rich mixtures 24 
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below 20 vol.% hydrogen and for all mixtures containing 50 vol.% hydrogen and more. An optimization of 25 

both correlations is proposed thanks to the experimental data obtained, but only with partial improvement of 26 

the ammonia/hydrogen/air correlation. State-of-the-art detailed kinetic reaction mechanisms yield values in 27 

close agreement with the present experiments. They could thus be used along with additional experimental 28 

data from different techniques to develop more accurate correlations for time-effective laminar burning 29 

velocity estimates of NH3/H2/air mixtures. 30 

Keywords 31 

Ammonia, Hydrogen, Laminar Burning Velocity, Elevated temperature, Spherical vessel, Sustainable fuel 32 

1. Introduction 33 

In response to growing concerns regarding climate change, a majority of governments have agreed on 34 

common objectives to mitigate this phenomenon [1]. A recent report by the Intergovernmental Panel on 35 

Climate Change evaluated the possibilities and implications of a global warming limitation of 1.5°C above 36 

pre-industrial levels, that would alleviate the negative effects of climate change [2]. The report indicated that 37 

fossil-free Renewable Energy Sources (RES) should supply 52 to 67% of the total primary energy demand 38 

by 2050 in order to sufficiently cut carbon-based greenhouse gas emissions and thus ensure the warming 39 

limitation. 40 

This transition will rely on diverse, mostly intermittent RES, such as wind or solar photovoltaic, and will 41 

thus require flexibility and grid-balancing strategies, as well as safe and efficient transport and storage. 42 

Power-to-Fuel strategies are promising options, in which excess electricity is used to produce hydrogen-43 

based synthetic fuels in gaseous or liquid form. Those so-called electrofuels [3] present a high energy 44 

density (> 4-5 MJ/l), are stable in time (seasonal or long-term storage), can be transported over long 45 

distances and their production can be carbon-neutral. In spite of being already and increasingly recognized 46 

as a fuel, molecular hydrogen (H2) presents major drawbacks caused by its high volatility and flammability, 47 

including the need for a tailored infrastructure and the associated storage and transport costs and safety 48 

issues. 49 

Ammonia (NH3) has received recent interest as a carbon-free electrofuel [4,5] with a relatively high 50 

energy density (13 MJ/l),  as it can be stored in liquid form under 1.1 MPa at 300 K and its lower heating 51 
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value reaches 18.8 MJ/kg. Additionally, ammonia is already transported and stored safely at industrial scale, 52 

which makes it a promising complementary alternative to molecular hydrogen. Current annual production 53 

reaches 180 Mt worldwide, mostly from the Haber-Bosch process using steam methane reforming as the 54 

main H2 source. However, renewable hydrogen from electrolysis could be used instead while ensuring a 55 

satisfactory stability of the Haber-Bosch process [6]. Grinberg Dana et al. showed that NH3 exhibits the 56 

highest Power-to-Fuel-to-Power ratio when compared with methane, methanol and dimethyl-ether [7]. 57 

However, the high corrosiveness and toxicity of ammonia require thorough safety precautions, especially 58 

when final users are exposed. 59 

Following these considerations, several studies focused on ammonia combustion, addressing many of 60 

the remaining challenges regarding NH3 fundamental combustion properties, chemical kinetics modeling or 61 

combustion in gas turbines and internal combustion engines as single or dual fuel [8,9]. A major drawback 62 

of NH3 as a fuel is its very low combustion intensity, as illustrated by its Laminar Burning Velocity (LBV),  63 

which is one order of magnitude smaller than that of conventional hydrocarbons in atmospheric conditions 64 

[10–17]. This represents a challenge for NH3 as a fuel in practical combustion systems, but also for laminar 65 

flame experiments themselves, as noted by Pfahl et al. [12], Takizawa et al. [14] and Hayakawa et al. [15]. 66 

Indeed, as a function of the mixture composition, ignition energies have to be significantly higher than in the 67 

case of conventional hydrocarbons. Moreover, as the LBV for NH3/air mixtures is very slow, the buoyancy 68 

effect can cause an outwardly propagating spherical flame (OPSF) to propagate upward as well as outward, 69 

thus losing its spherical shape and compromising the measurement. 70 

Several experimental studies have considered enhancing the combustion by seeding NH3 with H2, which 71 

could conveniently be obtained from ammonia decomposition, leading to a significant increase in the LBV 72 

and extending the flammability ranges. Lee et al. investigated the combustion properties of NH3/H2/air 73 

premixed laminar OPSFs as a function of hydrogen fractions in the fuel blend, for several equivalence ratios 74 

from fuel-lean to fuel-rich at Normal Temperature and Pressure (NTP), i.e. 298K, 0.1 MPa [18,19]. Li et al., 75 

by using the Bunsen burner method, provided LBV measurements for various NH3/H2/air mixtures at NTP 76 

as a function of equivalence ratios [20]. Ichikawa et al. investigated the LBV and Markstein length of 77 

several NH3/H2/air stoichiometric mixtures by means of the OPSF method also at 298 K but for an initial 78 
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pressure ranging from 0.1 to 0.5 MPa [21]. Han et al. reported LBV measurements obtained by means of the 79 

heat flux method, with NH3 blended with H2, CO or CH4 as fuels and air as the oxidizer at NTP [22]. Kumar 80 

and Meyer conducted Bunsen burner experiments for different NH3/H2 blends at NTP, but their results 81 

contradict those of the previously mentioned studies [23]. 82 

All these studies reported that the addition of hydrogen to an NH3 blend significantly increased the LBV 83 

with a maximum value around an equivalence ratio of 1.1. However, only partial agreement is found 84 

between the different literature sources and the LBV dataset for NH3/H2/air flames remains significantly 85 

limited, especially at temperatures above 300 K and pressures above 0.1 MPa. Moreover, the comparisons 86 

between LBV measurements and numerical simulation results found in the literature show a remaining 87 

potential for the improvement of the chemical kinetic mechanisms. For instance, Ichikawa et al. [21] showed 88 

only qualitative agreement between their experimental LBVs and those obtained with the mechanisms of 89 

Miller et al. [24], Lindstedt et al. [25], Tian et al. [26] and Konnov [27], just as Han et al. [22] exhibited 90 

discrepancies between their experiments and the mechanisms of Okafor et al. [28] among others. Recently, 91 

Cavaliere et al. [29] conducted a survey on ten chemical kinetic mechanisms including NH3/H2 chemistry 92 

and selected those of Okafor et al. [28], Mathieu and Petersen [30] and Otomo et al. [31] to be reduced, so as 93 

to decrease their computational cost. However, they still report a significant scatter in the results obtained by 94 

the different mechanisms and see potential for further improvement in the NH3  and NH3/H2 sub-95 

mechanisms. 96 

As the use of chemical kinetic mechanisms in simulations remains very computationally intensive, 97 

Goldmann and Dinkelacker proposed semi-empirical correlations, called GD correlations in the following, 98 

for the LBV of NH3/air, NH3/H2/air and NH3/H2/N2/air mixtures [32]. These semi-empirical correlations 99 

were based on the correlation by Metghalchi and Keck [33], by considering the LBV dataset available and 100 

estimates obtained thanks to the detailed ammonia oxidation mechanism of Mathieu and Petersen [30]. The 101 

correlations are simple, making them very useful to be included in computationally intensive CFD 102 

simulations. The LBV is given as a function of the global equivalence ratio, the hydrogen amount, the 103 

nitrogen ratio (to simulate dilution) and the unburned temperature and pressure, following the form in Eq. 1: 104 
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where       
  is a reference velocity depending only on the fuel mixture composition and the equivalence 105 

ratio,    and     the normalized unburned gas temperature and pressure respectively,   a factor to model the 106 

effect of nitrogen dilution (when relevant) and    a correction factor to fit the correlations to the 107 

experimental values from the literature. Since literature data included only measurements around 300 K and 108 

pressure up to 0.5 MPa, the   factor was determined by considering only these conditions in the GD 109 

correlations. The proposed correlations were found to agree very well with the experimental data available 110 

in the literature, as well as with results from kinetics simulations using the detailed reaction mechanism of 111 

Mathieu and Petersen from which they were derived. Since those simulation results showed no abrupt 112 

behavior and an improved accuracy when increasing the pressure, Goldmann and Dinkelacker concluded 113 

that the mechanism could be extrapolated to pressures above its validation range, and therefore made the 114 

same assumption for their correlations. 115 

However, this conclusion remains uncertain, as is the accuracy of the reaction mechanisms and LBV 116 

correlations for NH3/air and NH3/H2/air mixtures at elevated temperature (above 300 K), due to the lack of 117 

experimental literature data under such conditions for validation purposes. The objective of the present study 118 

was to partially fill this lack of data by introducing new LBV measurements of NH3/air and NH3/H2/air 119 

outwardly propagating spherical flames at 0.1 MPa of pressure for unburned gas temperatures up to 473 K. 120 

The GD correlations are also discussed with respect to the new experimental data and an optimization 121 

attempt is presented. 122 

2. Experimental and numerical methods 123 

2.1. Experimental set-up 124 

We carried out the experiments in a 4.2 dm
3
 stainless steel spherical vessel that can be heated up to 473 K by 125 

an incorporated resistive coil. A type-K thermocouple and a piezoelectric pressure transducer were used to 126 

monitor the temperature Tu and pressure Pu inside the chamber, respectively. The filling procedure was 127 

already described in a previous study on a similar set-up [34] and is thus only briefly summarized here. A 128 

vacuum pump is used to empty the vessel to a residual pressure of less than 1 kPa and the preheated reactive 129 

gases are then introduced thanks to Brooks 5850S thermal mass flowmeters, while being stirred by a fan to 130 

ensure a homogeneous mixture. Bottled gases are used, including synthetic air with 20.9% ± 0.2% oxygen 131 
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and a 99.999% purity, hydrogen with a 99.999% purity and ammonia with a 99.98% purity. After the intake, 132 

a quiescent phase of 10 s is set in order to avoid any undesired fluid motion. Then, a discharge energy is 133 

delivered for ignition at the center of the chamber thanks to two 1 mm tungsten electrodes. The spark gap 134 

can be adjusted from 1 to 3 mm to favour ignition under lean conditions with a high ammonia content.  135 

2.2. Experimental conditions 136 

The global stoichiometric combustion reaction of NH3/H2/air is: 137 

      
        

   
     

 
            

 
     

 
      

             

 
         

 

with    
, the hydrogen molar fraction in the fuel mixture. The global equivalence ratio   is defined as: 138 

  

   
     

    

 
   

     

    
 
  

       

where    represents the molar fraction of the species s in the reactive mixture. The experimental conditions 139 

are summarized in Table 1. In some boundary cases, such as fuel-lean (resp. fuel-rich) mixtures with       140 

(resp.      ) and a small hydrogen fraction, the mixture ignition fails to induce flame propagation or 141 

buoyancy instability phenomena alter the flame propagation too much to extract meaningful data and such 142 

cases are thus left aside. 143 

Table 1. Experimental conditions 144 

Pu (MPa) Tu (K)    
   

0.1 {298 ; 323 ; 373 ; 423 ; 473} [0 – 0.6] [0.8 – 1.4] 

 145 

2.3. Image processing 146 

In the cases with sucessful laminar flame propagation, double Schlieren images of the flame are recorded 147 

from two orthogonal angles through two pairs of opposite quartz windows (70 mm diameter) by a Phantom 148 

v1210 high-speed CMOS camera, as fully described in [35]. The frame acquisition rate of the camera is 149 

adjusted with respect to the propagation velocity of the flame up to 18000 fps, in order to maximize the 150 
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number of usable images. Following recommendations by Huo et al. [36], a minimum number of 30 images 151 

is considered for post-processing. The double Schlieren configuration allows the detection of flame 152 

instabilities, but only one view is used to extract the LBV. An example of a flame image is shown in Figure 153 

1. 154 

 155 

Figure 1. Double Schlieren view at time t of a stable NH3/H2/air flame at 0.1 MPa and 473 K. 156 

The radii of the spherical flames are extracted using an image postprocessing algorithm with background 157 

substraction. The range of the flame radius    used for the analysis is manually kept between roughly 6.5 158 

and 25 mm in order to eliminate the spark ignition and wall-pressure confinement effects. The pressure 159 

measured in the vessel remains constant over the whole analysis range. The stretched laminar flame 160 

propagation velocity    is calculated as a first-order gradient          , since the burned gas is assumed 161 

to be quiescent. Assuming that the flame is adiabatic and the propagation quasi-steady,    is then 162 

extrapolated to zero stretch using the nonlinear Equation 4 proposed by Kelley and Law [37], based on an 163 

asymptotic analysis by Ronney and Sivashinsky [38] and validated by Halter et al. for methane and 164 

isooctane/air flames [39]: 165 

 
  

  
  

 

   
  

  
  

 

  
    

  
       

The flame stretch   is calculated according to               for a spherical flame,    is the Markstein 166 

length and   
  the unstretched flame propagation velocity of the burned state, respectively.  167 

The laminar burning velocity is finally calculated from the continuity equation through the flame 168 

surface,   
          

 , where burned and unburned gas densities are calculated from equilibrium 169 

calculations. 170 

2.4. Uncertainty considerations 171 
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The validation of kinetic mechanisms requires accurate measurement data including quantitative uncertainty 172 

ranges. In the present study, a method based on the work of Moffat [40] and developed by Brequigny et al. 173 

[41] was implemented for uncertainty quantification.  174 

The experimental errors are of two kind and described as experimental hardware errors     
        , 175 

reflecting the accuracy of the initial temperature, pressure and mixture composition monitoring, and imaging 176 

errors     
         , both from the imaging technique itself and the processing.  177 

The temperature and pressure error terms are determined by using the correlations by Goldmann and 178 

Dinkelacker [32] in Eq.  , as          and          respectively. The exponents   and  , which are 179 

functions   and    
 are calculated for each test condition. In most cases, the combined error from those two 180 

terms is significantly smaller than ± 2%, but can be higher in a few cases at 298 K initial temperature, due to 181 

the difficulty of maintaining the vessel temperature after several combustion tests, without exceeding ± 8%. 182 

The uncertainties on the mixture composition are due to the accuracy of the mass flow meters (1% of the 183 

full scale) and propagate on the LBV through   and    
. Depending on the representation of   

  chosen in 184 

this article, either   or    
 can be a variable, while the other is a fixed parameter. While the uncertainty on 185 

the variable must be indicated with horizontal error bars, that on the fixed parameter(s) must be propagated 186 

in the depicted LBV. Since the LBV dependence on those parameters in the GD correlations is complex, the 187 

propagation of the uncertainty could hardly be formulated analytically as for the temperature and pressure 188 

errors. It was thus estimated by means of a Monte Carlo method as follows. The set point value of the fixed 189 

parameter (  or    
) is considered as the mean value of a normal probability density function (PDF), whose 190 

standard deviation is given by the uncertainty on the parameter. During a great number of N = 10 000 191 

iterations, a random value is taken for the parameter following that PDF. The LBV is then calculated by 192 

means of the corresponding GD correlation for each iteration, all other parameters and variables remaining 193 

unchanged. For each initial condition, a normal PDF for the LBV is obtained this way, of which the standard 194 

deviation is considered to be the propagated uncertainty of   or    
 on the LBV. The empirical correction 195 

factor   of the GD correlations (Eq. 1) was applied only when    
 < 0.5, as it degrades strongly the 196 

prediction capability of the   and    
 dependences at higher hydrogen fuel fractions, as will be seen in 197 
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Section 3. Overall, the LBV uncertainty resulting from mixture composition errors is thought to be 198 

conservative. 199 

Another uncertainty source associated with the OPSF technique is radiation-induced uncertainty. Yu et 200 

al. showed that radiative losses affect the LBV of OPSFs by reducing the flame temperature and by inducing 201 

an inward flow in the burned gas due to radiation cooling [42]. They proposed a fuel independent correlation 202 

for the determination of the radiation-induced relative error on the LBV in such flames, which is a 203 

decreasing function of the LBV and depends on Tu linearly. However, that correlation was only validated 204 

numerically in the case of different hydrocarbon fuels and syngas, and it is unclear whether it is applicable 205 

in our case, especially due to the absence of CO2 in the burned gas of NH3/H2/air flames. A recent numerical 206 

study by Nakamura and Shindo [43] showed a significant impact of radiative heat losses on the LBV of 207 

NH3/air flames using simulations of 1D freely propagating premixed flames with their own reaction 208 

mechanism [44]. Under NTP conditions, the relative error increased away from stoichiometry and reached 209 

about 13 % for   = 0.8, 3 % for   = 1.0 and about 8 % for   = 1.4, corresponding to absolute errors of a few 210 

millimeters per second. However, those results do not take into account the spherical geometry of the 211 

presently studied flames and depend on the accuracy of the reaction mechanism that was used. Those 212 

considerations are summarized in Figure 2 for NH3/air flames at NTP, which are the most radiation-affected 213 

conditions due to very low LBVs. The simulation results of Nakamura and Shindo are plotted together with 214 

similar simulations that we carried out in ChemkinPro [45] (see Sec. 2.5) with the absorption coefficients in 215 

[43] and the detailed reaction mechanism of Otomo et al. [31], as well as results obtained by applying the 216 

correlation of Yu et al. to present experimental data. Figure 2 highlights the dependence of the radiation-217 

induced error on the LBV, and shows good agreement between the different estimates. Therefore, the 218 

correlation of Yu et al. was used presently as the best estimate for the radiation-induced uncertainty, 219 

    
           , added only in the positive uncertainty       

   
, and decreasing with increasing LBV down to 220 

less than 1% for fast flames. The same estimation method was recently used by Mei et al. [17]. 221 
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 222 

Figure 2. Relative radiation-induced uncertainty on the LBV of NH3/air flames at NTP. 223 

 224 

The repeatability of the tests is assessed by conducting a minimum number   of three measurements for 225 

each initial condition. The standard deviation proves the repeatability of the measurements and is used to 226 

calculate the statistical error in the form of a 95% confidence interval by means of a Student’s t-distribution, 227 

as in Eq. 5:  228 

 
   

 

  
 
 
           

   
    

  
     

with  , the value of the Student’s density function (  = 3.182 for   = 3). The statistical error exceeds 229 

10% in a small number of cases, generally under very lean or rich conditions, where the flame propagation is 230 

mostly affected by perturbations. In general, this value is below 5% and down to 0.1%. 231 

The experimental error terms are finally combined with the imaging error, the radiation error and the 232 

statistical error obtained by repeating several identical measurements to calculate the overall uncertainty, 233 

    
   

, given in Eq. 6: 234 

    
         

   
      

   
      

    
      

         
      

           
      

             
      

Therefore, all the data are presented in the following figures with the average LBV values along with the 235 

overall uncertainty,   
           

   
, meaning that the error bars can be assimilated to 95% confidence intervals. 236 

All the uncertainties are reported in the Supplementary Material. 237 

2.5. Numerical modelling 238 
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LBV simulations were performed with Ansys ChemkinPro [45] by using three detailed kinetic mechanisms 239 

for NH3/H2/air combustion [30,31,44]. Otomo’s model [31] was validated against experimental results 240 

including LBVs obtained in various NH3/H2/Air mixture at ambient temperature and 0.1 MPa. Nakamura’s 241 

model [44] was validated against NH3/air weak flames in micro flow reactor, including species profiles 242 

measurements. Both mechanisms reveal the importance of intermediate species such as NH2, HNO and 243 

N2Hx. The third one by Mathieu and Petersen [30] was mostly validated against ignition delay times and 244 

was selected by Goldman and Dinkelacker [32] to fit their semi-empirical correlations. 245 

The intercomparison between the experimental values and results from full kinetic computations was limited 246 

to 2 cases, but in the entire range of equivalence ratio [0.8-1.4]. First, the unburned temperature is set to 247 

473K, and    
 is varied between 0 and 0.6. Second, the temperature varies in the entire range of the 248 

experiments, but    
 is fixed equal to 0.6. Those are the conditions of maximal discrepancy between the GD 249 

correlations and the present experiments, as it will be seen in Sec. 3. 250 

3. Results and discussion 251 

This section presents the main experimental results and compares them to the LBV values estimated by 252 

means of the detailed kinetic mechanisms in Sec. 2.5 and the GD correlation. The experimental corrective 253 

factor   defined in Section 1 is always applied in the GD correlations with the values given in [30], unless 254 

otherwise stated. The extensive dataset obtained during the present study is available in the Supplementary 255 

Material. 256 

3.1. Effect of the equivalence ratio 257 

Figure 3 shows a comparison of the present LBV measurements with experimental literature data and 258 

the GD correlation for NH3/air flames under NTP. The very low LBVs result in a significant scatter in the 259 

experimental data, due to technique-dependent uncertainties that are exacerbated by the instability 260 

phenomena already described in Sec. 1 and Sec. 2.2 for the OPSF technique. While the data for 261 

stoichiometric flames show a good general consistency across the studies, lean and rich flames exhibit 262 

differences between the measurements up to more than 2 cm/s. While this discrepancy might seem 263 

reasonable in other cases, it represents presently an error of more than 50%, due to the very low LBVs. 264 

Present measurements are in the middle of the literature scatter, including very recent measurements with 265 
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different techniques by Han et al. [22] and Mei et al. [17]. Error bars are asymmetric due to the positive-only 266 

radiation-induced uncertainty, which is especially significant at low LBVs. 267 

 268 

 269 

Figure 3. Laminar burning velocities of NH3/air flames under atmospheric conditions. Symbols: 270 

experiments. Line: GD correlation at 0.1 MPa, 298 K [32]. 271 

Figure 4 shows the variation of the measured LBV as a function of the equivalence ratio over the whole 272 

temperature range for NH3/air and NH3/H2/air flames, along with experimental data from the literature close 273 

to 298 K and 0.1 MPa and GD correlations values. For NH3/H2/air flames, present measurements at 298 K 274 

are in reasonable agreement with the experimental literature data. For    
      (Fig. 4b), good agreement 275 

is found with Ichikawa et al. [21] at stoichiometry, while a small discrepancy is observed with Han et al. 276 

[22]. For    
     (Fig. 4c), the present measurements partially agree with those of Lee et al. [19] and a 277 

very good agreement is found with Han et al. at stoichiometry. For    
     (Fig. 4d), our values agree with 278 

those of Han et al. for equivalence ratios between 0.8 and 1.2, and disagree for   = 1.3 and 1.4, while a 279 

slight mismatch is observed with a value of Ichikawa et al. at stoichiometry. For    
     (Fig. 4e),  very 280 

good agreement is found with the data of Li et al. [20], except for   = 1.4 and partial agreement is observed 281 
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with the data of Lee and coworkers. For    
     (Fig. 4f), present values agree with those of Li et al. only 282 

below stoichiometry, and a good agreement is found at stoichiometry with Ichikawa and coworkers. Overall, 283 

a comparative assessment of the uncertainties relative to LBV measurement using different methods would 284 

be of interest in the case of NH3/H2/air flames, along with additional measurements with various techniques, 285 

in order to evaluate the reliability of the global dataset. This is however beyond the scope of the present 286 

work. 287 

The measured LBVs present a classical bell shape as a function of the equivalence ratio, with a 288 

maximum near   = 1.1 for all temperatures and hydrogen fractions up to    
    . However, for mixtures 289 

with    
    , the variation in the experimental LBV as   varies becomes smaller around the maximum 290 

due to the effect of hydrogen, resulting in a relatively “flatter” shape of the data distribution and a slight shift 291 

of the maximum towards   = 1.2, as illustrated in Fig. 4f. At Tu = 373 K for instance, this results in a 292 

relative increase of about 30 % of the LBV between   = 0.9 and   = 1.1, and a decrease of 18% between   293 

= 1.1 and   = 1.3 for    
    , while the relative increase and decrease reach only 13 % and 5 % 294 

respectively for    
    . 295 

 The NH3/air GD correlation reproduces well the shape of the LBV as a function of  , even at elevated 296 

temperatures, as shown in Fig. 4a. The shape is also relatively well reproduced by the NH3/H2/air GD 297 

correlation for        
    , as illustrated in Fig. 4c and 4d for    

= 0.3 and 0.4. Those are cases where 298 

the effect of the equivalence ratio in the GD correlation was validated against literature measurements at 299 

NTP conditions. In the cases for which limited experimental data were available or only data that do not 300 

agree with the present results, the NH3/H2/air GD correlation fails to reproduce accurately the shape of the 301 

present measurements. In particular for    
     , Fig. 4b shows that the correlation underestimates the 302 

LBVs for rich mixtures at all temperatures. The correlation values are not symmetric with respect to the 303 

maximum LBV, which is underestimated itself both in its magnitude and equivalence ratio of occurrence as 304 

compared to the experiments. Fig. 4f shows that when    
     the estimated shape is symmetric, but does 305 

not accurately reproduce the much “flatter” shape of the present experimental points, especially at higher 306 
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temperatures. Thus, the availability of reliable experimental LBV data seems to be critical for the behavior 307 

of the GD correlations with respect to the equivalence ratio, when the original correction factor   is applied. 308 

 309 

Figure 4. Laminar burning velocities of NH3/air and NH3/H2/air mixtures at Pu = 0.1 MPa.  310 

Symbols: experiments; vertical error bars are 95% confidence intervals. Lines: GD correlation [32]. 311 

3.2. Effects of hydrogen enrichment 312 
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The influence of the fuel hydrogen fraction on the LBV is presented in Fig. 5 at NTP conditions. For the 313 

sake of readability, only three equivalence ratios are depicted, along with corresponding LBV data from the 314 

literature and GD correlation values. Note that the Bunsen burner study of Li et al. [20] did not always 315 

provide data at the exact equivalence ratios that are depicted, so the closest values were plotted. The LBV 316 

exhibits an exponential increasing trend with volumetric hydrogen addition in the fuel. Present LBV 317 

measurements agree well with available literature data for a large majority of cases, as well as with GD 318 

correlation values. However, significant discrepancies are noticed for    
     and      , as noted in 319 

Sec. 3.1. In those conditions, the present data agree with the value of Ichikawa et al. [21], but disagree with 320 

the data of Li et al. [20] and the correlation. The good agreement between the correlation and Li et al.'s data 321 

is explainable by the high relative weight of that experimental dataset in the NH3/H2/air LBV literature at the 322 

time of establishing the correlation. The latter was thus mainly fitted on that dataset, through the correction 323 

factor  . Therefore, the accuracy of the measurements at high hydrogen fractions in the fuel might be 324 

questioned, with respect to the chosen experimental method. The OPSF method used by Ichikawa et al. and 325 

the present authors yields closely agreeing values at   = 1.0. Under NTP conditions, the GD correlation 326 

slightly underestimates present LBVs when       and         
    , agrees well with all 327 

measurements for        
    , and significantly overestimates LBVs for    

     and      . The 328 

data of Lee et al. [19] show slight discrepancies with the other data and the correlation but remain in the 329 

trend. However, the data of Kumar et al. [23] are off the trend and will thus be left aside in the 330 

considerations of Sec. 3.4, as it was originally the case when the GD correlation was developed in [32]. 331 
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 332 

Figure 5. Laminar burning velocities of NH3/H2/air mixtures at Tu = 298 K and Pu = 0.1 MPa.  Symbols: 333 

experiments; vertical error bars are 95% confidence intervals. Lines: GD correlation [32]. 334 

The behavior of the GD correlation with respect to the hydrogen fraction is confirmed by LBV 335 

measurements at higher temperatures, as shown in Figure 6 in the case      , where the maximum LBV 336 

value is reached in most conditions. The measured and estimated values both exhibit exponential increasing 337 

trends as a function of the fuel hydrogen fraction for all temperatures, but with different slopes when 338 

depicted in a logarithmic scale. A general underestimate of the present data by the GD correlation is 339 

observed for low hydrogen fractions, while the LBVs at high hydrogen fractions are largely overestimated. 340 

However, the correlation is in close agreement with data of Han et al. [22] up to 40% H2 at Tu = 298 K.  341 

It should be noted that only the correlation for NH3/H2/air mixtures was plotted here. The NH3/air 342 

correlation agrees much better with experimental values for    
  , as previously seen in Fig. 4a. So, a 343 

lack of continuity is observed between the NH3/H2/air and NH3/air correlations when the hydrogen fraction 344 

becomes very small. Again, this is likely a consequence of the limited availability of accurate measurement 345 

data for correlation fitting at the time it was established. Since most of the previously available data were 346 

within the range        
    , the best correlation prediction is found here. It should be noted here that 347 

the mechanism by Mathieu and Petersen [30], used also to establish the correlation, is found to 348 

underestimate, respectively overestimate, the LBV of mixtures with low, respectively high hydrogen content 349 

[32].  350 



[Tapez ici] 
 

 351 

Figure 6. Laminar burning velocities of NH3/H2/air mixtures at Pu = 0.1 MPa and   = 1.1. Filled symbols: 352 

present measurements. Hollow triangles: measurements of Han et al. [22]. Lines: GD correlation [32]. 353 

This is partly confirmed by Figure 7 that shows the evolution of the LBV with    
 at 473 K. Present 354 

measurements are compared with GD correlation values and simulations results using the detailed kinetic 355 

mechanisms introduced in Sec. 2.5. In such conditions, the mechanism of Mathieu and Petersen 356 

underestimates the experimental LBVs when   = 0.8, when   = 1.0 and    
     and when   = 1.2 and 357 

   
    . The mechanism of Otomo et al. is found to slightly underestimate the LBV in most cases, 358 

especially for intermediate hydrogen fuel fractions. The mechanism of Nakamura et al. shows the best 359 

overall agreement with the present data at elevated temperature as a function of the hydrogen fuel fraction. 360 

The GD correlation estimates diverge significantly from both the experimental and kinetic modelling trends 361 

when    
 increases, even though it is based on the Mathieu and Petersen mechanism. This is probably a 362 

consequence of the scarcity and accuracy of the available experimental dataset at high hydrogen fractions 363 

used to fit the correlation in the first place, through the correction factor   that is applied here. The behavior 364 

of the correlation without applying   is much closer to the Mathieu and Petersen’s mechanism (no plotted 365 

here for readability), and yields thus accurate estimates for    
    . 366 



[Tapez ici] 
 

 367 

Figure 7. Laminar burning velocities of NH3/H2/air mixtures at Pu = 0.1 MPa and Tu = 473 K. Symbols: 368 

experiments. Lines: numerical models. 369 

3.3. Effects of the temperature increase 370 

Increasing the unburned gas temperature leads to an increase in the LBV and allows a more stable flame 371 

propagation in most cases. The respective influences of the equivalence ratio and hydrogen fraction on the 372 

LBV remain qualitatively unchanged when the temperature is increased: the experimental data distributions 373 

keep similar bell shapes in Fig. 4 and the slopes of the different distributions remain approximately parallel 374 

in Fig. 6 with increasing temperature.  375 

The influence of the unburned gas temperature on the LBV is well estimated by the NH3/air GD correlation 376 

(Fig. 4a), as well as by the NH3/H2/air GD correlation when    
      for lean mixtures (Fig. 4b) and 377 

when        
     (Figs. 4c and 4d). In order to isolate the temperature effect, the values of the 378 

temperature exponent,  , assuming an exponential temperature dependence of the LBV as in Eq. 1 are 379 

depicted in Figure 8 as a function of the H2 fraction. The experimental values of  , as well as the associated 380 

uncertainties were estimated by means of a Monte Carlo method to allow for the propagation of the 381 

uncertainties on the LBV measurements as described in Sec. 2.4. For each test point and each iteration,   is 382 

determined as the slope of      
             by means of a least-squares linear regression, where   

  is 383 

randomly chosen from a normal PDF with the average measured LBV as mean value and the global positive 384 

LBV uncertainty as standard deviation. The mean value and standard deviation of the resulting  -385 
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distribution are taken as the best guess and uncertainty for  . Results show satisfactory agreement with the 386 

values given by the GD correlations, as a function of both the equivalence ratio and the hydrogen fraction, 387 

indicating the ability of the correlation to accurately estimate the temperature effect in most cases. However, 388 

no agreement is found between the experimental and estimated temperature behavior when the fuel contains 389 

50% H2 or more. 390 

 391 

Figure 8. Temperature dependence of the LBV.  : temperature exponent as in Eq. 1. 392 

This is emphasized in Figure 9, where the experimental LBVs are shown as a function of the initial gas 393 

temperature along with the GD correlation and results from kinetic simulations for    
 = 0.6. Again, the 394 

estimations by the GD correlation diverge away from the experimental trend and the kinetic model 395 

estimations, in particular those obtained with Mathieu and Petersen’s mechanism for the same reasons 396 

mentioned in Sec. 3.2. While the different kinetic reaction mechanisms tested here show similar trends with 397 

respect to the temperature effect on the LBV, their estimations remain scattered and do not completely agree 398 

with the present measurements. While the mechanism of Otomo et al. generally underestimates the LBVs 399 

(as emphasized in the Supplementary Material), the mechanisms of Mathieu and Petersen agrees well, while 400 

the one of Nakamura et al. slightly overestimates the experimental data for rich mixtures. It should be 401 

remembered here that the error bars shown in Fig. 9 are considered to be conservative due to the use of the 402 

GD correlation to estimate the uncertainty caused by the mixture composition error as explained in Sec. 2.4. 403 
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 404 

Figure 9. Comparison of the predictive capabilities of various models with respect to the temperature effect 405 

on the LBV for Pu = 0.1 MPa and     = 0.6. 406 

3.4. Correlation optimization 407 

In an attempt to optimize the correlations proposed by Goldmann and Dinkelacker [32], the new 408 

experimental dataset was used to adjust the coefficient correlations for Pu ≤ 0.5 MPa and Tu ≤ 700 K. To that 409 

end, the present LBV experimental dataset was consolidated with the literature data [10,11,20–22,12–19] 410 

and used to fit the correction factor   by means of a least-squares algorithm. The form of the correction 411 

factor was extended by introducing two new coefficients    and    to take into account the temperature 412 

dependence, analogously to the pressure dependence:       
    

           
    

  . In each case, the 413 

accuracy of the obtained correlation is assessed by the mean absolute percentage error   , the maximum 414 

absolute percentage error     , the minimum absolute percentage error      and the coefficient of 415 

determination    over the considered dataset of size N, as in [32]. Different comparisons were conducted 416 

and are summarized for the NH3/air and NH3/H2/air correlations in Table 2 and Table 3, respectively. 417 

Unsurprisingly, the GD correlation compares well with the consolidated experimental dataset for 418 

NH3/air mixtures as seen in Table 2, since a satisfactory agreement was found with the new experimental 419 

data at elevated temperatures in Sec. 3.1 and 3.3. The extended correlation with the new coefficients of 420 
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Table 4 presents a slightly worsened mean absolute percentage error but a better coefficient of determination 421 

than the GD correlation. 422 

Table 2. Accuracy of the NH3/air correlation against experiments for Pu ≤ 0.5 MPa. 423 

 424 

However, Table 3 shows that the new consolidated dataset does not compare well with the GD 425 

correlation for NH3/H2/air mixtures, since    increases from 8.26 % to 11.56 % and R² drops from 0.977 to 426 

0.867. This was expected following the discrepancies observed in Sec. 3.1, 3.2 and 3.3 between the GD 427 

correlation and the present experimental values, especially at high hydrogen fractions. For this reason, a 428 

comparison between the GD correlation and the experimental dataset for      
     was attempted. The 429 

original correlation proved to be slightly more accurate in that case, though not reaching the accuracy shown 430 

against the former experimental dataset. Thus, the present attempts to fit the new correlation on the new 431 

consolidated dataset resulted in a poorer accuracy when considering the entire H2 range. Considering that the 432 

original correlation behaves differently for small and large hydrogen fractions, it was decided to apply the 433 

optimization only in the range      
    , leading to an improvement in accuracy of the correlation 434 

against the consolidated dataset, as seen in Table 3.  435 

Table 3. Accuracy of the NH3/H2/air correlation against experiments for Pu ≤ 0.5 MPa. 436 

Comparison Tu      (%)    (%)      (%)    N 

GD vs. previous literature data ≤ 300 K 0.28 15.0 47.06 0.795 82 

GD vs. consolidated data ≤ 473 K 0.08 12.04 47.06 0.948 122 

New coefficients vs. consolidated data ≤ 473 K 0.13 13.05 58.41 0.9664 122 

Comparison    
 Tu 

     

(%) 

   (%)      (%)    N 

GD vs. previous literature data ]0 – 0.6] ≤ 300 K 0.05 8.26 36.55 0.977 93 

GD vs. consolidated data ]0 – 0.6] ≤ 473 K 0.03 11.56 49.15 0.867 418 

GD vs. consolidated data ]0 – 0.4] ≤ 473 K 0.03 10.31 41.72 0.963 295 
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 437 

The corresponding coefficients in Table 4 can be used for the correction factor   in LBV calculations in 438 

the range      
    , all other coefficients in the GD correlations remaining unchanged compared to 439 

[32]. However, the new correlation estimates the consolidated dataset less accurately than the original GD 440 

correlation estimates the original dataset. Ultimately, a better understanding of the role of NH3 and H2 441 

reactions in the detailed kinetic mechanisms should help in better predicting the laminar burning velocity, 442 

especially for mixtures containing very low or very high hydrogen fractions. Refined mechanisms could 443 

then be used to establish more reliable correlations for reduced computational intensity. 444 

Table 4. New coefficients for the empirical correction factor   with temperature dependence. 445 

Case k1 k2 k3 k4 k5 k6 

NH3/air 1.9112 1.0019 -0.0444 0.3526 0.7444 -0.1078 

NH3/H2/air 

   
= ]0 – 0.4] 

2.0873 1.0081 -0.1559 0.5383 0.7357 -0.0702 

 446 

4. Summary and conclusions 447 

An extensive new experimental dataset of ammonia/air and ammonia/hydrogen/air laminar burning 448 

velocities was obtained at atmospheric pressure for equivalence ratios ranging from 0.8 to 1.4, hydrogen 449 

fractions in the fuel from 0 % to 60 % and unburned gas temperatures from 298 to 473 K by means of the 450 

outwardly propagating spherical flame method. Experimental hardware, imaging, radiation-induced and 451 

statistical errors were taken into account. Results are in good agreement with previous measurements from 452 

the literature obtained with the same method and the heat flux method under NTP, but discrepancies are 453 

observed with measurements obtained with the Bunsen burner method for high hydrogen fractions. More 454 

than 260 new data points are presented, that significantly enrich the literature data, especially at high 455 

temperatures and hydrogen fuel fractions. 456 

New coefficients vs. consolidated data ]0 – 0.4] ≤ 473 K 0.02 9.15 47.24 0.971 295 
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A comparison of the present measurements with the LBV correlations recently developed by Goldmann 457 

and Dinkelacker, as well as with chemical kinetic simulations using state-of-the-art reaction mechanisms, 458 

led to the following summary:  459 

1. The original NH3/air correlation agrees well with the present experimental data for all 460 

temperatures, thus validating its ability to accurately approximate the LBV of mixtures at 461 

higher temperatures. 462 

2. The original NH3/H2/air correlation underestimates the LBV of rich mixtures with low 463 

hydrogen fractions, while it generally overestimates the LBV of mixtures with high hydrogen 464 

fractions, especially at elevated temperature and regardless of the equivalence ratio. The LBV 465 

of mixtures with intermediate hydrogen fractions are estimated satisfactorily in most cases. This 466 

is explained by the better accuracy and availability of experimental data in that range at the time 467 

the correlation was first developed. 468 

3. The influence of the temperature is reproduced satisfactorily by the NH3/H2/air correlation, 469 

except for mixtures with    
    , where the influence of the temperature is again 470 

overestimated. 471 

4. Current reaction mechanisms show satisfactory agreement with the present experimental data 472 

over the whole range of investigation, but a significant scatter remains between them. 473 

5. An attempt to optimize the correlations by fitting them on the new consolidated experimental 474 

dataset through an experimental correction factor was successful for a limited set of conditions 475 

only.  476 

As a result, while the detailed kinetic mechanisms may still require some fine tuning to improve their 477 

accuracy, the development of new LBV correlations for NH3/H2 fuels requires careful validation based on 478 

fully validated reaction mechanisms and accurate experimental data. However, the present optimization 479 

proposed for the GD correlations should allow to conduct turbulent combustion simulations with satisfactory 480 

accuracy and low computational cost for hydrogen fractions in the fuel smaller than 50%. 481 
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