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In this paper, we study the problem of analyticity of smooth solutions of the inviscid Boussinesq equations. If the initial datum is real-analytic, the solution remains real-analytic on the existence interval. By an inductive method we can obtain lower bounds on the radius of spatial analyticity of the smooth solution.

Introduction

In this paper, we consider the following multi-dimensional invisicd Boussinesq equation on the torus T d ,

         ∂ t u + (u • ∇)u + ∇p = θe d , ∂ t θ + (u • ∇)θ = 0, div u = 0,
u(x, 0) = u 0 (x), θ(x, 0) = θ 0 (x), (1.1) with div u 0 = 0. Here, u = (u 1 , . . . , u d ) is the velocity field, p the scalar pressure, and θ the scalar density. e d denotes the vertical unit vector (0, . . . , 0, 1). The Boussinesq systems play an important role in geophysical fluids such as atmospheric fronts and oceanic circulation (see, e.g., [START_REF] Guo | Spectral method for solving two-dimensional Newton-Boussinesq equation[END_REF][START_REF] Majda | Introduction to PDEs and Waves for the Atomsphere and Ocean[END_REF][START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]). Moreover, the Boussinesq systems are important for the study of the Rayleigh-Benard convection, see [START_REF] Constantin | Infinite Prandtl number convection[END_REF][START_REF] Doering | Applied Analysis of the Navier-Stokes Equations[END_REF].

Besides the physical importance, the invisicd Boussinesq equations can also be viewed as simplified model compared with the Euler equation. In the case d = 2, the 2D inviscid Boussinesq equations share some key features with the 3D Euler equations such as the vortex stretching mechanism. It was also pointed out in [START_REF] Majda | Vorticity and incompressible flow[END_REF] that the 2D invisicid Boussinesq equations are identical to the Euler equations for the 3D axisymmetric swirling flows outside the symmetric axis.

The inviscid Boussinesq equations have been studied by many authors through the years, for instance [START_REF] Chae | Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations[END_REF][START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF][START_REF] Shu | Small scale structures on Boussinesq convection[END_REF][START_REF] Guo | Spectral method for solving two-dimensional Newton-Boussinesq equation[END_REF][START_REF] Liu | Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces[END_REF][START_REF] Taniuchi | A note on the blow-up criterion for the inviscid 2D Boussinesq equations[END_REF][START_REF] Xu | Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms[END_REF][START_REF] Yuan | Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces[END_REF]. Specially, Chae and Nam [START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF] studied local existence and uniqueness of the inviscid Boussinesq equation and some blow-up criterion in the Sobolev space, Yuan [START_REF] Yuan | Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces[END_REF] and Liu et al. [START_REF] Liu | Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces[END_REF] in the Besov space, Chae and Kim [START_REF] Chae | Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations[END_REF] and Cui et al. [START_REF] Cui | Local well-posedness and blow up criterion for the inviscid Boussinesq system in Hölder spaces[END_REF] in the Hölder spaces, Xiang and Yan [START_REF] Xiang | On the well-posedness of the Boussinesq equation in the Triebel-Lizorkin-Lorentz spaces[END_REF] in the Triebel-Lizorkin-Lorentz spaces. It was remarked that the global regularity for the inviscid Boussinesq equations even in two dimensions is a challenging open problem in mathematical fluid mechanics.

In this paper, we are concerned with the analyticity of smooth solutions of the inviscid Boussinesq equations (1.1). The analyticity of the solution for Euler equations in the space variables, for analytic initial data is an important issue, studied in [START_REF] Alinhac | Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires[END_REF][START_REF] Benachour | Analyticité des solutions périodiques de l'équation d'Euler en trois dimensions[END_REF][START_REF] Bardos | Domaine d'analyticité des solutions de l'équation d'Euler dans un ouvert de R n[END_REF][START_REF] Bardos | Analyticité des solutions périodiques de l'équation d'Euler en deux dimensions[END_REF][START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF][START_REF] Kukavica | The domain of analyticity of solutions to the three dimensional Euler equations in half space[END_REF][START_REF] Levermore | Analyticity of solutions for a generalized Euler equation[END_REF]. In particular, Kukavica and Vicol [START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF] studied the analyticity of solutions for the Euler equations and obtained that the radius of analyticity τ (t) of any analytic solution u(t, x) has a lower bound

τ (t) ≥ C(1 + t) -2 exp -C 0 t 0 ∇u(s, •) L ∞ ds (1.2)
for a constant C 0 > 0 depending on the dimension and C > 0 depending on the norm of the initial datum in some finite order Sobolev space. The same authors in [START_REF] Kukavica | The domain of analyticity of solutions to the three dimensional Euler equations in half space[END_REF] obtained a better lower bound for τ (t) for the Euler equations in a half space replacing (1 + t) -2 by (1 + t) -1 in (1.2). In [START_REF] Cheng | On the Gevrey regularity of solutions to the 3D ideal MHD equations[END_REF], we have investigated the Gevrey analyticity of the smooth solution for the ideal MHD equations following the method of [START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF]. The approach used in [START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF][START_REF] Kukavica | The domain of analyticity of solutions to the three dimensional Euler equations in half space[END_REF][START_REF] Levermore | Analyticity of solutions for a generalized Euler equation[END_REF][START_REF] Cheng | On the Gevrey regularity of solutions to the 3D ideal MHD equations[END_REF] relies on the energy method in infinite order Gevrey-Sobolev spaces. Recently, Cappiello and Nicola [START_REF] Cappiello | Some remarks on the radius of spatial analyticity for the Euler equations[END_REF] developed a new inductive method to simplify the proof of [START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF][START_REF] Kukavica | The domain of analyticity of solutions to the three dimensional Euler equations in half space[END_REF]. In this paper, we shall apply this inductive method to study the analyticity of smooth solution for the inviscid Boussinesq equations. The main additional difficulty arise from the estimate of the weak coupling term u • ∇θ.

The paper is organized as follows. In Section 2, we will give some notations and state our main results. In Section 3, we first recall some known results and then give some lemmas which are needed to prove the main Theorem. In Section 4, we finish the proof of Theorem 2.1.

Notations and Main Theorem

In this section we will give some notations and function spaces which will be used throughout the following arguments. Throughout the paper, C denotes a generic constant which may vary from line to line. Since we work on the torus T d throughout the paper, we shall write the function space L 2 or H k to represnt the functions that are squre integrable or squre integrable up to k-th derivative without mentioning the domain T d .

Let v = (v 1 , . . . , v d ) be a vector function, we say that v ∈ L 2 which means

v i ∈ L 2 for each 1 ≤ i ≤ d. We denote the L 2 norm of v by v L 2 = 1≤i≤d v i 2 L 2 . Let ρ be a scalar function, we say the pare (v, ρ) ∈ L 2 if v, ρ ∈ L 2 . We denote the L 2 norm of the pare (v, ρ) to be (v, ρ) L 2 = v 2 L 2 + ρ 2 L 2 . Denote •,
• to be the inner product in L 2 either for vector function or scalar function.

In [START_REF] Lions | Problemès aux limites non homogènes et applications[END_REF], it is stated that a smooth function f is uniformly analytic in T d if there exist M, τ > 0 such that

∂ α f L ∞ ≤ M |α|! τ |α| , (2.1) 
for all multi-indices α = (α 1 , . . . , α d ) ∈ N d 0 , where |α| = α 1 + . . . + α d . The supremum of the constant τ > 0 in (2.1) is called the radius of the analyticity of f . Notice that we can also replace the L ∞ norm with a Sobolev norm H k , k ≥ 0.

Let n ≥ 0 be an integer and α, β ∈ N d be multi-indices, then the sequence

M n = n! (n + 1) 2 satisfies β<α α β M |α-β| M |β|+1 ≤ C|α|M |α| , (2.2) 
for all multi-index α, β ∈ N d and some universal constant C, for proof please refer to [START_REF] Alinhac | Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires[END_REF].

With these notations, we can state our main results.

Theorem 2.1. Let k > d 2 + 1, (u 0 , θ 0 ) be analytic in T d , satisfying div u 0 = 0 and ∂ α (u 0 , θ 0 ) H k ≤ BA |α|-1 |α|!/(|α| + 1) 2 , α ∈ N d , (2.3) 
for some B ≥ 9 4 (u 0 , θ 0 ) H 2k+1 and A ≥ 1. Let u(t, x), θ(t, x) be the corresponding H k maximal solution of the inviscid Boussinesq equations (1.1), with the initial datum (u 0 , θ 0 ). Then u(t, x), θ(t, x) is analytic, and there exists constants C 0 , C 1 > 0, depending only on k and d, such that the radius of analyticity satisfying

τ (t) ≥ 1 A(1 + C 1 Bt) exp -C 0 t 0 1 + ∇u(s, •) L ∞ + ∇θ(s, •) L ∞ ds . (2.4)
Remark 2.1. In the case θ = 0, Theorem 2.1 recovers the result of Kukavica and Vicol [START_REF] Kukavica | On the radius of analyticity of solutions to the three-dimensional Euler equations[END_REF] and Cappiello and Nicola [START_REF] Cappiello | Some remarks on the radius of spatial analyticity for the Euler equations[END_REF] for the incompressible Euler equation.

Remark 2.2. When the dimension d = 2, the blow-up criterion proved by Chae and Nam in [START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF] stated that the solution remains smooth up to T as long as

T 0 ∇θ(•, s) L ∞ ds < ∞.
So, it will be very interesting if the quantity

t 0 1 + ∇u(•, s) L ∞ + ∇θ(•, s) L ∞ ds
in the lower bound of the radius of analytic solution in (2.4) can be replaced by t 0 ∇θ(•, s) L ∞ ds.

The estimate of the Sobolev norm

In order to prove the main Theorem 2.1, we recall the following results about the local existence and uniqueness of H k -solution of the inviscid Boussinesq equations (1.1) which is a proposition in [START_REF] Wang | Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain[END_REF] for d = 3. Theorem 3.1 (Wang-Xie, Proposition 1.2 of [START_REF] Wang | Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain[END_REF]). If u 0 (x), θ 0 (x) ∈ H 3 (Ω) and u 0 (x) satisfies the divergence-free condition, then there exists T 2 > 0 such that the inviscid problem (1.1) admits a unique solution

u, θ ∈ C 0, T 2 ; H 3 (Ω) ∩ C 1 0, T 2 ; H 2 (Ω) .
The domain considered in [START_REF] Wang | Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain[END_REF] is a boundaed domain with smooth boundary conditions and this case can be naturally extended to periodic domain with periodic boundary conditions. The proof is due to the argument in [START_REF] Chae | Generic solvability of the axisymmetric 3D Euler equations and the 2D Boussinesq equations[END_REF] and [START_REF] Li | Boundary value problems for quasilinear hyperbolic system[END_REF]. Since it is standard, we omit the details here. When the dimension d = 2, Chae and Nam [START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF] also proved the local existence and blow-up criterion.

In order to prove the main Theorem, we will need the following Lemma.

Lemma 3.2. Let d = 2, 3, and k > d 2 + 1 be fixed. Let (u, θ) ∈ C(0, T 1 ; H k ) be the corresponding maximal H k -solution of (1.1) with intial data (u 0 , θ 0 ) ∈ H k and u 0 satisfies the divergence-free condition and periodic boundary condition, then

∀ 0 ≤ t < T 1 , u(t, •), θ(t, •) H k ≤ (u 0 , θ 0 ) H k × exp C 0 t 0 1 + ∇u(s, •) L ∞ + ∇θ(s, •) L ∞ ds , (3.1) 
where the constant C 0 depending on the dimension and k.

Proof. Since the initial data (u 0 , θ 0 ) ∈ H k satisfies ∇ • u 0 = 0 and the periodic boundary conditions, the local existence of the H k -solution (u, θ) is already known. We here only need to show the

H k energy estimate (3.1). Let α ∈ N d satisfies 0 ≤ |α| = α 1 + α 2 + . . . + α d ≤ k.
We first apply the ∂ α on both sides of the first equation of (1.1) and then take the L 2 -inner product with ∂ α u with both sides, which gives 1 2

d dt ∂ α u 2 L 2 + ∂ α (u • ∇u), ∂ α u = ∂ α (θe d ), ∂ α u , (3.2) 
where the pressure term ∇∂ α p, ∂u = 0 is due to the fact u is divergence free and the domain considered here is a periodic domain.

We then apply the ∂ α on both sides of the second equation of (1.1) and take the L 2 inner product with ∂ α θ on both sides, which gives 1 2

d dt ∂ α θ 2 L 2 + ∂ α (u • ∇θ), ∂ α θ = 0. (3.3) 
Now adding (3.2) with (3.3) and taking summation over 0 ≤ |α| ≤ k, we can obtain 1 2

d dt (u, θ) 2 H k = 0≤|α|≤k ∂ α (θe d ), ∂ α u - 0≤|α|≤k ∂ α (u • ∇u), ∂ α u - 0≤|α|≤k ∂ α (u • ∇θ), ∂ α θ . (3.4) 
The Hölder inequality implies that

0≤|α|≤k ∂ α (θe d ), ∂ α u ≤ θ H k u H k . (3.5) 
Notice that u is divergence free, by use of the Sobolev inequality which can be found in [START_REF] Majda | Vorticity and incompressible flow[END_REF] we can obtain

0≤|α|≤k ∂ α (u • ∇u), ∂ α u ≤ C ∇u L ∞ u 2 H k , (3.6) 
where the constant C depends on k and the dimension d. In the same way, we can obtain

0≤|α|≤k ∂ α (u • ∇θ), ∂ α θ ≤ C ∇u L ∞ u H k + ∇θ L ∞ u H k θ H k , (3.7)
where the constant C also depends on k and the space dimension d. Substituting (3.5), (3.6) and (3.7) into (3.4), we obtain

1 2 d dt (u, θ) 2 H k ≤ C ∇u L ∞ + ∇θ L ∞ (u, θ) 2 H k + C (u, θ) 2 H k ≤ C 1 + ∇u L ∞ + ∇θ L ∞ (u, θ) 2 H k , (3.8) 
where C is some constant depending on k, d. By the Gronwall inequality, (3.1) is then proved.

Lemma 3.2 tells us that the solution for the inviscid Boussinesq equation has the same Sobolev regularity as the initial data. In the following Lemma we will show that if the initial data (u 0 , θ 0 ) ∈ H k for arbitrary k ≥ 3, there exists an interval [0, T ] uniformly with respect to k such that the unique smooth solution (u, θ) ∈ L ∞ ([0, T ]; H k ). Lemma 3.3. Let (u, θ) be the H 3 -solution of the inviscid Boussinesq equation (1.1) on the time interval [0, T ], with initial data (u 0 , θ 0 ) ∈ H 3 . Then for all k ≥ 3, if (u 0 , θ 0 ) ∈ H k , the corresponding solution (u, θ) satisfies

(u, θ) ∈ L ∞ [0, T ], H k for all k ≥ 3.
Proof. We claim that for every 3 ≤ m ≤ k there exist a constant C m such that

sup 0≤s≤T u(•, s), θ(•, s) H m ≤ C m .
For m = 3 the statement follows from our assumption. Take 4 ≤ m ≤ k and suppose that the statement is true for m -1, i. e.

sup 0≤s≤T u(•, s), θ(•, s) H m-1 ≤ C m-1 .
We take the H m inner product of the first equation of (1.1) with u and take the H m inner product of the second equation of (1.1) with θ, which gives

1 2 d dt (u, θ) 2 H m = 0≤|α|≤m ∂ α (θe d ), ∂ α u - 0≤|α|≤m ∂ α (u • ∇u), ∂ α u - 0≤|α|≤m ∂ α (u • ∇θ), ∂ α θ .
For 4 ≤ m ≤ k, by (3.8) we obtain

d dt (u, θ) H m ≤ C 1 + ∇u L ∞ + ∇θ L ∞ (u, θ) H m ,
where C is a constant depending on m, d. Then the Gronwall inequality yields

(u(•, t), θ(•, t)) H m ≤ (u 0 , θ 0 ) H m × exp C t 0 1 + ∇u(•, s) L ∞ + ∇θ(•, s) L ∞ ds . (3.9) 
By Sobolev embedding inequality, we have

∇u L ∞ ≤ C ′ u H 3 , ∇θ L ∞ ≤ C ′ θ H 3 ,
for some constant C ′ . Then from (3.9) and the assumption, we have

(u(•, t), θ(•, t)) H m ≤ (u 0 , θ 0 ) H m × exp C t 0 (1 + C ′ u(•, s) H 3 + C ′ θ(•, s) H m )ds ≤ (u 0 , θ 0 ) H m exp C(1 + 2C ′ C 3 )t .
So it easily follows that

sup 0≤s≤T u(•, s), θ(•, s) H m ≤ C m ,
which proves the Lemma by induction.

Remark 3.1. In Lemma 3.3, the uniform lifespan [0, T ] of the Sobolev solution is independent of the Sobolev order k which allows us to take k → ∞. In other words, if the initial datum (u

0 , θ 0 ) is C ∞ , then solution (u(t, x), θ(t, x)) is also C ∞ for almost every t ∈ [0, T ].

Proof of Theorem 2.1

In this Section, we will give the proof of the main theorem.

Proof of Theorem 2.1. By Lemma 3.3, we know that the solution (u, θ) is smooth, since (u 0 , θ 0 ) is. Now we claim that for all |α| = N > 2 we have

(∂ α u(t, •), ∂ α θ(t, •)) H k M |α| ≤ 2BA N -1 (1 + C 1 Bt) N -2 × exp C 0 (N -1) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds , (4.1) 
where C 0 , C 1 are positive constants depending only on k and d. We set

E N [(u, θ)(t)] = sup |α|=N ∂ α (u(t, •), θ(t, •)) H k M |α| .
To prove the claim, we proceed by induction on N . The result is true for N = 2 by (3.1) with notice that k + 2 < 2k + 1 and B ≥ 9 4 (u 0 , θ 0 ) H 2k+1 , A ≥ 1. Hence, let N ≥ 3 and assume (4.1) holds for multi-indices α of length 2 ≤ |α| ≤ N -1 and prove it for |α| = N .

For |α| = N, |γ| ≤ k, we first apply ∂ α+γ on both sides of the first and the second equation of (1.1) and then take the L 2 -inner product with ∂ α+γ u and ∂ α+γ θ respectivily, which gives 1 2

d dt ∂ α+γ (u, θ) 2 L 2 + ∂ α+γ (u • ∇u), ∂ α+γ u + ∂ α+γ (u • ∇θ), ∂ α+γ θ = ∂ α+γ (θe d ), ∂ α+γ u . (4.2)
Denote Lw = L u w := u • ∇w and

I 1 = [∂ α+γ , L]u := ∂ α+γ (u • ∇u) -u • ∇∂ α+γ u, I 2 = [∂ α+γ , L]θ := ∂ α+γ (u • ∇θ) -u • ∇∂ α+γ θ, I 3 = (∂ α+γ θ)e d .
Taking summation with 0 ≤ |γ| ≤ k in (4.2), we have by the Cauchy-Schwartz inequality

d dt ∂ α u(t, •), θ(t, •) H k ≤ 0≤|γ|≤k I 1 L 2 + 0≤|γ|≤k I 2 L 2 + ∂ α (u, θ) H k , (4.3) 
where we used the the standard argument in [pp. 47-48, [START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF]]. It remains to estimate I 1 and I 2 . Note that by the Leibniz rule, we can expand the expression of I 1 as follows

I 1 = β≤α α β ∂ γ (∂ α-β u • ∇∂ β u) = β≤α α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β+γ-δ u • ∇∂ β+δ u,
where the restriction |β|+|δ| < |α|+|γ| is due to the fact that u•∇∂ α+γ u, ∂ α+γ u = 0 because u is divergence free. By [START_REF] Cappiello | Some remarks on the radius of spatial analyticity for the Euler equations[END_REF], we have

I 1 L 2 ≤ β≤α α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β+γ-δ u • ∇∂ β+δ u L 2 ≤ C N M N ∇u L ∞ E N [(u, θ)] + N M N B 2 A N -1 × exp C 0 (N -1) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds (1 + C 1 Bt) N -3 .
We then follow the ideal of [START_REF] Cappiello | Some remarks on the radius of spatial analyticity for the Euler equations[END_REF] to estimate I 2 . Similarly, we can expand I 2 as

I 2 = β≤α α β ∂ γ (∂ α-β u • ∇∂ β θ) = β≤α α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β+γ-δ u • ∇∂ β+δ θ. (4.4) 
Then we divide the summation of the right of (4.4) into three parts

I 2 = I 21 + I 22 + I 23 ,
where

I 21 = β≤α 0 =|β|≤|α|-2 α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β+γ-δ u • ∇∂ β+δ θ, I 22 = β=α α α |δ|=|γ|-1 γ δ ∂ γ-δ u • ∇∂ α+δ θ + |β|=|α|-1 α β δ=γ γ γ ∂ α-β u • ∇∂ β+γ θ + β=0 α β δ=0 γ δ ∂ α+γ u • ∇θ,
and

I 23 = β=α α α |δ|≤|γ|-2 γ δ ∂ γ-δ u • ∇∂ α+δ θ + |β|=|α|-1 α β |δ|≤|γ|-1 γ γ ∂ α-β u • ∇∂ β+γ θ + β=0 α β δ =0 γ δ ∂ α+γ u • ∇θ.
Estimation of I 21 : With the fact that H k is an algbra if k > d 2 + 1 and |γ| ≤ k, we have 

I 21 L 2 ≤ β≤α 0 =|β|≤|α|-2 α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β+γ-δ u • ∇∂ β+δ θ L 2 ≤ C β≤α 0 =|β|≤|α|-2 α β δ≤γ, |β|+|δ|<|α|+|γ| γ δ ∂ α-β u H k ∇∂ β θ H k .
∂ α-β u H k ≤ M |α-β| 2BA |α-β|-1 × exp C 0 (|α -β| -1) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds (1 + C 1 Bt) |α-β|-2
(4.6) and

∇∂ β θ H k ≤ M |β|+1 2BA |β| × exp C 0 (|β|) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds (1 + C 1 Bt) |β|-1 . (4.7) 
Substituting (4.6) and (4.7) into (4.5) and employing (2.2), we obtain

I 21 L 2 ≤C β≤α 0 =|β|≤|α|-2 α β M |α-β| M |β|+1 B 2 A N -1 × exp C 0 (N -1) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds (1 + C 1 Bt) N -3 ≤CN M N B 2 A N -1 × exp C 0 (N -1) t 0 (1 + ∇u(s) L ∞ + ∇θ(s) L ∞ )ds (1 + C 1 Bt) N -3 .
Estimation of I 22 : In a similar way, we rewrite I 22 as

I 22 = β=α α α |δ|=|γ|-1 γ δ ∂ γ-δ u • ∇∂ α+δ θ + |β|=|α|-1 α β δ=γ γ γ ∂ α-β u • ∇∂ β+γ θ + β=0 α β δ=0 γ δ ∂ α+γ u • ∇θ = R 21 + R 23 + R 23 .
For R 21 , we obtain

R 21 L 2 ≤ β=α α α |δ|=|γ|-1 γ δ ∂ γ-δ u • ∇∂ α+δ θ L 2 ≤ β=α α α |δ|=|γ|-1 γ δ ∂ γ-δ u • ∇∂ α+δ θ L 2 ≤ C ∇u L ∞ ∂ α θ H k . (4.8) 
for some constant C depending on k.

For R 22 , we have the following estimate

R 22 ≤ |β|=|α|-1 α β δ=γ γ γ ∂ α-β u • ∇∂ β+γ θ L 2 ≤ |β|=|α|-1 N δ=γ γ γ ∂ α-β u • ∇∂ β+γ θ L 2 ≤ CdN M N ∇u L ∞ E N [θ].
(4.9)

Then for R 23 , we have

R 23 L 2 ≤ β=0 α β δ=0 γ δ ∂ α+γ u • ∇θ L 2 ≤ ∇θ L ∞ ∂ α u H k . (4.10) 
Summing up the estimates of (4.8), (4.9) and (4.10), we obtain

I 22 L 2 ≤ C ∇u L ∞ ∂ α θ H k + ∇θ L ∞ ∂ α u H k + dN M N ∇u L ∞ E N (θ) .
Estimate of I 23 : We divide I 23 as follows

I 23 = β=α α α |δ|≤|γ|-2 γ δ ∂ γ-δ u • ∇∂ α+δ θ + |β|=|α|-1 α β |δ|≤|γ|-1 γ γ ∂ α-β+γ-δ u • ∇∂ β+γ θ + β=0 α β δ =0 γ δ ∂ α+γ-δ u • ∇∂ δ θ = R 31 + R 32 + R 33 .
For R 31 , we have

R 31 L 2 ≤ C β=α α α |δ|≤|γ|-2 γ δ ∂ γ-δ u • ∇∂ α+δ θ L 2 ≤ C ∂ γ-δ u L ∞ ∇∂ α+δ θ L 2 ≤ C ∂ γ-δ u H k ∂ α θ H k-1 ≤ C ∂ γ-δ (u, θ) H k ∂ α (u, θ) H k-1 ≤ C (u 0 , θ 0 ) H 2k exp C 0 t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds sup j:αj ≥1 ∂ α-ej (u, θ) H k ≤ C (u 0 , θ 0 ) H 2k exp C 0 t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds × M N -1 BA N -2 exp C 0 (N -2) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds (1 + C 1 Bt) N -3 ≤ CM N -1 B 2 A N -2 exp C 0 (N -1) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds (1 + C 1 Bt) N -3 , (4.11 
) where we used the fact |γ -δ| + k ≤ 2k in (4.11), the inductive hypothesis (4.1), and the fact that B > (u 0 , θ 0 ) H 2k+1 . For R 32 , we have

R 32 L 2 ≤ |β|=|α|-1 α β |δ|≤|γ|-1 γ γ ∂ α-β+γ-δ u • ∇∂ β+γ θ L 2 ≤ |α| ∂ α-β+γ-δ u L ∞ ∇∂ β+δ θ L 2 ≤ C|α| ∂ γ-δ u H k ∂ β θ H k ≤ C|α| ∂ γ-δ (u, θ) H k ∂ β (u, θ) H k ≤ CN M N -1 (u 0 , θ 0 ) H 2k exp[C 0 t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds] × BA N -2 exp C 0 (N -2) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds (1 + C 1 Bt) N -3 ≤ CM N -1 B 2 A N -2 exp C 0 (N -1) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds (1 + C 1 Bt) N -3 .
(4.12) For R 33 , in a similar way we have (4.15) We can take C 0 ≥ C in (4.15), so that Grownwall inequality [Lemma 2.1 in [START_REF] Cappiello | Some remarks on the radius of spatial analyticity for the Euler equations[END_REF]] gives

R 33 L 2 ≤ β=0 α β δ =0 γ δ ∂ α+γ-δ u • ∇∂ δ θ L 2 ≤ C ∂ α u H k-1 ∇∂ δ θ H k ≤ CM N -1 B 2 A N -2 exp C 0 (N -1) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds (1 + C 1 Bt) N -3 .
E N [(u, θ)(t)] ≤ exp C 0 (N -1) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds × E N [(u, θ)(0)] + CN B 2 A N -1 t 0 (1 + C 1 Bs) N -3 ds ≤ exp C 0 (N -1) t 0 (1 + ∇u L ∞ + ∇θ L ∞ )ds × E N [(u, θ)(0)] + CN C 1 (N -2) BA N -1 (1 + C 1 Bt) N -2 .
Note that we have E N [(u, θ)(0)] ≤ BA N -1 by the assumption (2.3). If we choose C 1 = 3C, so that 3C C1 = 1, since A ≥ 1, N ≥ 3 we have

E N [(u, θ)(0)] + CN C 1 (N -2) BA N -1 (1 + C 1 Bt) N -2 ≤ BA N -1 + 3C C 1 BA N -1 (1 + C 1 Bt) N -2 ≤ 2BA N -1 (1 + C 1 Bt) N -2 ,
and we obtain exactly (4.1) for |α| = N . Then the theorem is proved.

(4. 5 )

 5 Noting that 2 ≤ |α -β| ≤ N -1 and 2 ≤ |β| + 1 ≤ N -1, the hypothesis (4.1) for 2 ≤ |α| ≤ N -1 indicates that

(4. 13 )I 2 L 2 ≤ 1 + 0 ( 1 + 0 C(N - 1 )( 1 + 0 CN A N - 1 B 2 ( 1 + C 1 3 × 0 ( 1 +

 132210101101211301 Summing up (4.11),(4.12) and (4.13), we obtain CN M N ( ∇uL ∞ + ∇θ L ∞ )E N [(u, θ)] + CN M N B 2 A N -1 exp C 0 (N -1) t 0 ∇u(s) L ∞ + ∇θ(s) L ∞ ds .Combining the estimates I 1 and I 2 , we have from (4.3)d dt ∂ α (u, θ)(t) H k M |α| ≤ C(N -1)(1 + ∇u(t) L ∞ + ∇θ(t) L ∞ )E N [(u, θ)(t)] + CN A N -1 B 2 exp C 0 (N -1) t ∇u(s) L ∞ + ∇θ(s) L ∞ )ds × (1 + C 1 Bt) N -3 ,(4.14) where we used the Cauchy-Schwartz inequality and the fact N N -1 ≤ 3 2 if N ≥ 3 and the constant C > 0 depending only on the dimension d and k. Now we integrate (4.14) from 0 to t and take the supremum on |α| = N . We obtainE N [(u, θ)(t)] ≤ E N [(u 0 , θ 0 )] + t ∇u(t) L ∞ + ∇θ(t) L ∞ )E N [(u, θ)(s)]ds + t Bs) N -exp C 0 (N -1)s ∇u(ℓ) L ∞ + ∇θ(ℓ) L ∞ )dℓ ds.
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