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Abstract

Our research aims to improve the accuracy of Earthquake
Early Warning (EEW) systems by means of machine learn-
ing. EEW systems are designed to detect and characterize
medium and large earthquakes before their damaging effects
reach a certain location. Traditional EEW methods based on
seismometers fail to accurately identify large earthquakes due
to their sensitivity to the ground motion velocity. The re-
cently introduced high-precision GPS stations, on the other
hand, are ineffective to identify medium earthquakes due to
its propensity to produce noisy data. In addition, GPS stations
and seismometers may be deployed in large numbers across
different locations and may produce a significant volume of
data consequently, affecting the response time and the robust-
ness of EEW systems.

In practice, EEW can be seen as a typical classification prob-
lem in the machine learning field: multi-sensor data are given
in input, and earthquake severity is the classification result. In
this paper, we introduce the Distributed Multi-Sensor Earth-
quake Early Warning (DMSEEW) system, a novel machine
learning-based approach that combines data from both types
of sensors (GPS stations and seismometers) to detect medium
and large earthquakes. DMSEEW is based on a new stack-
ing ensemble method which has been evaluated on a real-
world dataset validated with geoscientists. The system builds
on a geographically distributed infrastructure, ensuring an ef-
ficient computation in terms of response time and robustness
to partial infrastructure failures. Our experiments show that
DMSEEW is more accurate than the traditional seismometer-
only approach and the combined-sensors (GPS and seis-
mometers) approach that adopts the rule of relative strength.

1 Introduction

Earthquakes cause substantial loss of life and damage to the
built environment across areas spanning hundreds of kilo-
meters from their origins. These large ground motions of-
ten lead to hazards such as tsunamis, fires and landslides.
To mitigate the disastrous effects, a number of Earthquake
Early Warning (EEW) systems have been built around the
world (Allen and Melgar 2019). These critical systems, op-
erating 24/7, are expected to automatically detect and char-
acterize earthquakes as they happen, and to deliver alerts be-
fore the ground motion actually reaches sensitive areas so
that protective measures could be taken.

A recent review by (Allen and Melgar 2019) identified
the detection of the whole spectrum of earthquakes with
damaging potential and particularly large earthquakes as an
outstanding problem in the field of EEW. An EEW sys-
tem needs to be able to detect both medium (5 < magni-
tude < 6, Richter scale) and large earthquakes (6 < mag-
nitude, Richter scale). Depending on the distance from the
origin of the earthquake, both of these can cause serious
damages. Seismometers, which have long been the bulwark
of seismology to detect earthquakes, have a difficulty to de-
tect and characterize large earthquakes (Melgar et al. 2013)
due to a well-known saturation issue caused by their sen-
sitivity to ground motion velocity. As a result, earthquakes
over magnitude 7.5 tend to be underestimated. A promis-
ing solution to this issue (Melgar et al. 2015) emerged with
novel high-precision Global Positioning System (GPS) sen-
sors, with their millimeter to centimeter accuracy when mea-
suring high ground motion velocity. However, GPS are un-
able to characterize medium earthquakes, as they are prone
to containing significant signals from a variety of noise
sources, mostly of atmospheric origin. Consequently, multi-
sensor solutions (leveraging both GPS and seismometers)
appear as a promising approach. As EEW can be assim-
ilated as a classification problem, where the input is sen-
sor data and the ouput is a class (normal activity/medium
earthquake/large earthquake); recent machine learning ap-
proaches designed to combine large volumes of data from
multiple data sources can be applied.

Integrating and processing high-frequency data streams
from multiple sensors scattered over a large territory in a
timely manner requires high-performance computing tech-
niques and equipments. Thus, a machine learning earth-
quake detection solution has to be designed jointly with ex-
perts in distributed computing and cyberinfrastructure to en-
able real-time alerts. Because of the large number of sen-
sors and their high sampling rate, a traditional centralized
approach which transfers all data to a single point may
be impractical. We therefore design a distributed machine
learning-based approach.

In this paper, we use machine learning methods to address
the most urgent challenges faced by EEW systems, i.e. inte-
grating multiple data sources in real-time to cover the whole



spectrum of potentially damaging earthquakes (medium
and large). Our solution relies on two complementary types
of sensors (GPS stations and seismometers). We introduce
a new machine learning technique specifically tailored
to allow efficient computation on large-scale distributed
cyberinfrastructures.

The contributions of this paper are the following:

e We propose a new EEW approach to characterize the
whole spectrum of earthquakes with damaging potential
(both medium and large) using a real-world dataset col-
lected and validated with geoscientists combining two
complementary data sources;

o We present DMSEEW (Distributed Multi-Sensor Earth-
quake Early Warning), a new stacking ensemble method
jointly designed with cyberinfrastructure experts, which
enables real-time earthquake detection and robustness to
partial infrastructure failures;

e We show that DMSEEW is more accurate than both
the seismometer-only baseline approach, the combined
sensors (GPS and seismometers) baseline approach that
adopts the rule of relative strength and detects all large
earthquakes with a precision of 100%.

2 Background and Related Work

Before discussing in detail our approach, it is necessary to
introduce some key concepts and to understand how our
strategy fits in the state-of-the-art literature on EEW sys-
tems.

2.1 Earthquake Early Warning

An earthquake is the shaking of the surface of the Earth
caused by seismic waves. Among these seismic waves, two
types stand out: Primary waves (P-waves) and Secondary
waves (S-waves). Both waves have the same origin - most
commonly an abrupt movement of tectonic plates. However,
P-waves travel through Earth’s crust around 1.7 times faster
than S-waves which propagate through Earth’s interior. In
addition, only S-waves are responsible for the severe dam-
ages. P-waves cause soft shaking due to their longitudinal
shape (they move sideways), whereas S-waves are transverse
waves (they move up and down). Therefore, an Earthquake
Early Warning (EEW) system, which aims to provide an
alert before the damaging effects reach sensitive areas, relies
on the detection of the P-wave before the S-wave arrives.
This gives communities, organizations and governments a
time window of seconds to minutes to take protective ac-
tions.

Traditionally, inertial seismometers are used to detect pri-
mary waves. The inertial mass is designed to remain station-
ary following sudden movements while the frame and drum
move with the ground to record waves. However, during
large earthquakes, ground motion velocity causes the iner-
tial mass to be displaced above the allowed span. This effect
is called saturation. As a result, earthquakes over magnitude
7.5 (Richter scale) tend to be underestimated. On the other
hand, GPS satellites are not affected by earthquakes, so a

GPS receiver station on Earth can be used to assess strong
ground motion based on the station displacement. However,
GPS is sensitive to a variety of noise sources, mostly of
atmospheric origin, and is unable to characterize moderate
earthquakes. Both sensors produce data in the form of 3D
time series indicating the direction of a ground motion (east-
west, north-south and up-down) at a frequency of around
20Hz.

P-waves follow a propagation model (IASP91 (Kennet
1991)) which we use for labeling the time series (sequences
of measurements) corresponding to an earthquake. Based on
the distance below Earth’s surface where each earthquake
happened, we estimate the P-wave arrival time on each sen-
sor (seismometers and GPS stations) according to its dis-
tance to the epicenter with the propagation model.

2.2 Multivariate Time Series Classification

A time series is multivariate when a sequence of measure-
ments from multiple variables are present. Multivariate Time
Series (MTS) collected from GPS stations (3 dimensions:
east-west, north-south and up-down) and seismometers (3
dimensions: east-west, north-south and up-down) are la-
beled in 3 classes according to the the potential damage of
the ground motion: normal activity, medium earthquakes,
large earthquakes. Therefore, earthquake detection can be
formulated as a MTS classification problem.

MTS classifiers are composed of 3 categories: similarity-
based, feature-based and deep learning methods.

Similarity-based methods make use of similarity mea-
sures (e.g. Euclidean distance) to compare two MTS. Dy-
namic Time Warping (DTW) has been shown to be the best
similarity measure to use along k-Nearest Neighbors (k-
NN) (Seto, Zhang, and Zhou 2015) and is called kKNN-DTW.
There are two versions of KNN-DTW for MTS: dependent
(DTWp) and independent (DTW ). Neither dominates over
the other (Shokoohi-Yekta et al. 2017). DTW; measures the
cumulative distances of all dimensions independently mea-
sured under DTW. DTW p uses a similar calculation with
single-dimensional time series; it considers the squared Eu-
clidean cumulated distance over the multiple dimensions.

Feature-based methods include shapelets and bag-of-
words (BoW) models. Shapelets models use subsequences
(shapelets) to transform the original time series into a lower-
dimensional space that is easier to classify. gRSF (Karls-
son, Papapetrou, and Bostrom 2016) and UFS (Wistuba,
Grabocka, and Schmidt-Thieme 2015) are the current state-
of-the-art shapelets models in MTS classification. They re-
lax the major limiting factor of the time to find discrimina-
tive subsequences in multiple dimensions (shapelet discov-
ery) by randomly selecting shapelets. gRSF creates decision
trees over randomly extracted shapelets and shows better
performance than UFS on average (14 MTS datasets) (Karls-
son, Papapetrou, and Bostrém 2016). On the other hand,
BoW models (LPS (Baydogan and Runger 2016), mv-
ARF (Tuncel and Baydogan 2018), SMTS (Baydogan and
Runger 2014) and WEASEL+MUSE (Schifer and Leser
2017)) convert time series into a bag of discrete words, and
use a histogram of words representation to perform the clas-
sification. WEASEL+MUSE shows the best results com-



pared to gRSF, LPS, mv-ARF and SMTS on average (20
MTS datasets) (Schifer and Leser 2017). WEASEL+MUSE
generates a BoW representation by applying various sliding
windows with different sizes on each discretized dimension
(Symbolic Fourier Approximation) to capture features (uni-
grams, bigrams, dimension identification).

Finally, deep learning methods use Long-Short Term
Memory (LSTM) and/or Convolutional Neural Networks
(CNN) to extract latent features. The current state-of-the-
art model (MLSTM-FCN) is proposed in (Fazle, Majum-
dar, and Harford 2018) and consists of a LSTM layer and
a stacked CNN layer along with Squeeze-and-Excitation
blocks to generate latent features. MLSTM-FCN is shown
to be better than WEASEL+MUSE on large datasets on av-
erage (relative to the 20 MTS datasets tested).

Therefore, in this work we choose to experiment
with the best-in-class for each category (similarity-
based, feature-based and deep learning): DTWp, DTWy,
WEASEL+MUSE and MLSTM-FCN classifiers.

2.3 Targeting a Distributed Cyberinfrastructure

A cyberinfrastructure is the set of logical and physical com-
putational systems onto which a scientific application is de-
ployed. In the context of EEW, a cyberinfrastructure has to
support the processing of large amounts of data produced
by geographically distributed seismic sensors, such as GPS
stations and seismometers, in real-time.

Current approaches to EEW in the literature make use of
centralized data processing strategies: all sensors send their
data, through a network, to a data center where process-
ing will take place (Fischer et al. 2012). This strategy im-
plicitly depends on cyberinfrastructures supporting almost
insignificant network latency and very high bandwidth, of-
ten provided by costly fiber networks. Furthermore a lot of
trust is placed in the reliability of the network and teleme-
try paths (Allen and Melgar 2019). In the case of large
earthquakes, power failures and wiring disconnections can
frequently lead to regional shutdowns, as happened after
the magnitude-9 earthquake in Japan in 2011 (Hoshiba and
Ozaki 2012).

In this work, we target a distributed cyberinfrastructure
for executing the proposed EEW system, meaning that data
processing tasks can be performed in different parts of the
infrastructure and at different locations. In particular, we fa-
vor processing part of the data at the edge of the network, i.e.
as close as possible to the sources of data, in order to reduce
the amount of data transferred to the main data center (Yang
et al. 2010).

2.4 EEW Machine Learning Solutions

Machine learning in seismology is still a developing field.
There are a couple of studies (Yoon et al. 2015; Li et
al. 2018; Perol, Gharbi, and Denolle 2018) using machine
learning methods for earthquake characterization based on
P-wave detection (EEW). However, none of them used a
combination of GPS and seismometers data so the whole
spectrum of earthquakes with damaging potential is not ap-
propriately covered. Additionally, none of them used a dis-
tributed approach.

The three studies (Yoon et al. 2015; Li et al. 2018;
Perol, Gharbi, and Denolle 2018) adopted a binary classi-
fication approach (earthquakes vs. noise) with no distinc-
tion between medium and large earthquakes. Moreover, the
detection is only based on seismometers data, so the satu-
ration issue on large earthquakes is present. Two of these
studies (Perol, Gharbi, and Denolle 2018; Yoon et al. 2015)
limit their scope to medium earthquakes. Yoon et al. (2015)
proposed a waveform similarity-based method optimized by
locality-sensitive hashing search using seismometers data
from California. It presented a precision of 88.1% and a re-
call of 87.5%. Li et al. (2018) developed a generative adver-
sarial network with a random forest on seismometers data
from Southern California and Japan. It obtained an accu-
racy of 99.2%. Perol, Gharbi, and Denolle (2018) trained a
convolutional neural network using seismometers data from
Oklahoma and showed a precision of 94.8% and a recall of
100%.

Lastly, these studies use a centralized data processing
strategy and implicitly assume that data arrive almost in-
stantly at the processing cluster. This assumption implies an
insignificant latency and an overall network reliability which
is unfeasible in real-life scenarios having high latency and/or
low bandwidth networks.

Consequently, a distributed EEW machine learning-based
solution that can be generalized to the whole spectrum of
earthquakes with damaging potential is necessary.

3 A Distributed Machine Learning Approach
to Earthquake Early Warning

In this section, we present the Distributed Multi-Sensor
Earthquake Early Warning algorithm (DMSEEW), a new
two-step stacking ensemble method for earthquake detec-
tion. A stacking ensemble is a method which takes the pre-
dictions of sub-models as inputs and then attempts to learn
how to best combine the input predictions to make a better
output prediction. DMSEEW takes sensor-level class pre-
dictions (normal activity, medium earthquake or large earth-
quake) based on the data gathered by each individual sensor
(GPS stations and seismometers). It then aggregates those
sensor-level class predictions using a bag-of-words repre-
sentation in order to calculate a final prediction for the earth-
quake category.

The rest of this section explains the algorithm steps and
introduces the cyberinfrastructure onto which DMSEEW
would be deployed in a real-life scenario.

3.1 Algorithm

Step 1 — Predicting the MTS Category at the Sensor-
Level: We have two types of sensors - GPS stations and
seismometers, and we train one MTS classifier per sensor
type. The classifiers are trained using a dataset composed
of time series of 3 dimensions (east-west, north-south and
up-down) and fixed time length (60 seconds, defined in Sec-
tion 4.1). We illustrate this first step of our approach in the
upper part of Figure 1.

In order to predict the earthquake category at the individ-
ual sensor level, we employ the WEASEL+MUSE (Schifer



Seismometers

STEP 1
Individual Sensor

v

MTS Classifier

Predictions
‘WEASEL+MUSE

GPS Stations

A A

MTS Classifier
WEASEL+MUSE

Bag-of-Words
Representation

Event Normal Medium Large Normal Large Label
ID Activity Earthquake Earthquake Activity Earthquake
1 0.8 0.2 0 1 0 Normal
STEP 2 2 0.3 0.6 0.1 1 0 Medium
Combined . .
Prediction at n 0.1 0.6 0.3 0.05 0.95 Large

Central Level

—

Classifier
1-Nearest Neighbor
———

Combined Prediction

Figure 1: Distributed Multi-Sensor Earthquake Early Warning Algorithm (DMSEEW).

and Leser 2017) MTS classifier. WEASEL+MUSE creates
a symbolic representation of the MTS (a Symbolic Fourier
Approximation - SFA) on each dimension, then generates a
set of features (multiple window lengths, unigrams, bigrams,
dimension identification), and finally performs the classifi-
cation based on a one-hot encoding representation of the
MTS (bag-of-words, feature selection). WEASEL+MUSE
fits our approach because (4) its symbolic representation fil-
ters out noise (related to GPS and seismometers sensors)
from the dataset; (i%) it is phase invariant, i.e. features gen-
erated do not have to appear at the same time across differ-
ent MTS belonging to the same class, which improves gen-
eralization; (i7) it keeps the interplay of dimensions since
features generated by WEASEL+MUSE contain the identi-
fier of the dimension, which allows the characterization of
co-occurrence of events on different dimensions. As we fur-
ther discuss in the Section 5, WEASEL+MUSE outperforms
other MTS classifiers on both GPS and seismometers data.

Step 2 — Detecting Earthquakes by Combining Sensor-
level Predictions: We collect the class predictions from
the different sensors (GPS stations and seismometers)
and perform a bag-of-words representation. Each sensor-
predicted class is considered to be a word and the relative
frequency vector of the words from each earthquake is used
to classify its category. This frequency vector is normalized
by the number of instances (number of MTS per earthquake,
i.e. number of sensors) to obtain the relative frequency vec-
tor. The last step consists of combining the bag-of-words
of GPS stations and seismometers to characterize the whole
spectrum of earthquakes with damaging potential. We illus-
trate this second step of our approach in the lower part of
Figure 1. For example, 80% of seismometers and 100% of
GPS stations for event 1 predict that the activity recorded
is normal. Finally, we train a classifier on this bag-of-words
representation to perform the combined class prediction. As

presented in Section 5, 1-nearest neighbor outperforms other
classifiers.

3.2 Cyberinfrastructure

We propose a distributed cyberinfrastructure composed of
geographically distributed data sources. Its objective is to
support the processing of high volumes of data produced by
GPS stations or seismometers, meanwhile meeting the real-
time requirements of EEW applications. Furthermore, in dis-
aster situations, such as partial network shutdown, this type
of architecture allows for the redirection of data produced at
sensor-level (i.e. individual sensor predictions) to other pro-
cessing data centers. Figure 2 provides an overview of the
cyberinfrastructure.
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Figure 2: High-level architecture and data workflow for the
Earthquake Early Warning System.

In summary, the cyberinfrastructure has two main lev-
els: the sensor-level and the central level. The sensor-level
is composed of sensing devices (i.e. GPS stations and seis-
mometers) with limited computing capabilities. The cen-
tral level is composed of well-provisioned computing sys-
tems that can accommodate large computing demands (e.g.
cloud datacenters). This type of architecture has been the



subject of several contributions in the context of Edge com-
puting (Shi et al. 2016; Satyanarayanan 2017), an emerg-
ing paradigm adapted for Internet of Things (IoT) scenarios.
Due to space constraints, we leave an in-depth discussion
of cyberinfrastructure in a future work. In this paper, we fo-
cus on the distributed algorithm in charge of analyzing the
data produced by seismic sensors and on its interaction with
those main levels of the infrastructure.

Distributed execution. The first step of the algorithm is
performed on the sensor-level part of the infrastructure.
There, a MTS classifier is ran on each individual sensor
(GPS stations and seismometers) in order to generate sensor-
level class predictions based on data produced by each sen-
sor. Then, the output of the MTS classifier from each sensor
is transferred over the network to the central level part of
the cyberinfrastructure. There, the second part of the algo-
rithm is ran, i.e., a machine learning method combines all
the class predictions from GPS stations and seismometers to
form a final class prediction. It is important to highlight that,
in comparison to the traditional centralized EEW cyberin-
frastructures, this approach drastically reduces the amount
of data over the network since most of data produced by a
sensor is not related to an earthquake event and thus can be
filtered out. Moreover, a sensor-level prediction is, in fact,
an aggregation of data, hence, it also helps reduce on the
amount of data sent to central to level data centers.

4 Experiments

In this section, we introduce the methodology and datasets
used for evaluating our work, as well as our preprocessing
routines and experimental setting. In addition, we render
public our real-world dataset collected and validated with
geoscientists and we make public reference to the code of
our machine learning algorithms used.

4.1 Dataset

We employ a real-world dataset' (Fauvel et al. 2019) com-
posed of GPS and seismometers data on normal activ-
ity/medium earthquakes/large earthquakes collected and val-
idated with geoscientists. There are two main difficulties to
construct such a dataset: 7) large earthquakes are rare and 74)
GPS data is not continuously recorded. The dataset has been
built around the most complete GPS/seismometers dataset
of large earthquakes (29 earthquakes worldwide) which oc-
curred between 2001 and 2018 (Ruhl et al. 2019) with the
corresponding metadata (time, magnitude, and location). We
adopted a differentiated approach between GPS and seis-
mometers data to augment the dataset and present it in the
following two paragraphs. MTS length is set to 60 sec-
onds for both GPS and seismometers. This value reflects
the relevant time window to distinguish primary waves from
noise across geographical regions, as recognized by the geo-
science community.

First, the two main seismometers data repositories world-
wide are the American Incorporated Research Institutions

"https://figshare.com/articles/Earthquake_Early_Warning_
Dataset/9758555

for Seismology (IRIS) and the Japanese National Research
Institute for Earth science and Disaster Resilience (NIED).
Earthquake origins are defined differently between the two
repositories, preventing a direct comparison of P-wave ar-
rival time on each seismometer. Therefore, in order to be
able to adopt a homogeneous labeling method, we limited
our study to the data available from IRIS (14 large earth-
quakes remaining over 29). Seismometers data correspond-
ing to medium earthquakes are sampled from medium earth-
quakes occurring in the same region as large earthquakes (-
179 < longitude < 25, -62 < latitude < 73). The number
of medium earthquakes is calculated by the ratio of medium
over large earthquakes during the past 10 years in the re-
gion. Then, we keep a ratio above 30% between the num-
ber of MTS corresponding to earthquakes (medium + large)
and total (earthquakes + normal activity) number of MTS
to prevent a class imbalance issue during the training phase.
So, we collect two normal activity MTS for each medium
earthquake MTS (9 and 7 minutes before each medium
earthquake) to respect this ratio. IRIS data (normal activ-
ity, medium earthquakes) is collected with the international
Federation of Digital Seismograph Networks (FDSN) client
available in Python package ObsPy>. Based on geoscience
expertise, the relevant region of seismometers is set to 1,000
kilometers around the earthquake epicenter.

Second, unlike seismometers data, GPS displacement
data is not continuously recorded. Furthermore, GPS data
outside of large earthquake periods can be considered as
normal activity (noise). Hence, our approach based on GPS
sensors characterizes only normal activity and large earth-
quakes. We collected GPS normal activity data from an
archive of real-time GPS positions maintained by the Uni-
versity of Oregon® which stores a representative extract
of GPS noise. Normal activity MTS are randomly sam-
pled from the archive to match the number of seismome-
ters events (255, normal activity and medium earthquakes)
and to keep a ratio above 30% between the number of large
earthquakes MTS and normal activity in order to avoid class
imbalance issues.

The number of sensor records available varies between
earthquakes according to the location and the magnitude of
the earthquake. The full dataset composition is presented in
Table 1.

Table 1: Dataset Composition

# 60s MTS Seismometers (# Events) GPS (# Events)
Normal Activity 7,718 (170) 1,424 (255)
Medium Earthquakes 3,859 (85) None
Large Earthquakes 1,688 (14) 648 (14)
Total 13,265 (269) 2,072 (269)

Zhttps://docs.obspy.org/packages/obspy.clients.fdsn.html
3http://tunguska.uoregon.edu/rtgnss/data/cwu/mseed/



4.2 Preprocessing

First, seismometers data are available as digital signal,
which is specific for each sensor. Therefore, we converted
each instrument digital signal to its physical signal (accel-
eration) to obtain comparable seismometers data. Second,
we performed standardization (StandardScaler (Pedregosa
et al. 2011)) of the GPS and seismometers data (fitted on
train sets and applied on test sets) to harmonize the different
scales. Standardization procedure allows us to keep outliers,
which are fundamental in P-wave detection, as compared to
the normalization procedure. Finally, we perform data ag-
gregation by second (mean) which permits a common time
scale between sensors (frequency between sensors can dif-
fer) without deteriorating the P-wave signal.

4.3 Experimental Setting

In this section, we present the algorithms evaluated and the
methods used to assess them.

Algorithms We evaluate different algorithms at sensor-
level and central level according to the data type in order
to define the two blocks of our machine learning solution
(Figure 1).

At sensor-level, we have a multivariate time series classi-
fication task. Therefore, as presented in section 2.2 on MTS
classification, we compare the following algorithms:

e DTWp and DTW;: we use the public implementation*
based on the original paper (Shokoohi-Yekta et al. 2017);

o WEASEL+MUSE: we use the public implementation’
with the recommended settings (SFA word lengths 1 in
[2,4,6], windows length in [4:60], chi=2, bias=1, p=0.1,
c=5 and a solver equals to L2R LR DUAL) (Schifer and
Leser 2017);

e MLSTM-FCN, we test the public implementation® based
on the original paper (Fazle, Majumdar, and Harford
2018), using the recommended settings (128-256-128 fil-
ters, 250 training epochs, a dropout of 0.8 and a batch size
of 128);

At central level, we have a classification task on a bag-
of-words representation (relative frequency vector) for each
earthquake based on individual class predictions of GPS
stations and seismometers. We compare the state-of-the art
classifiers with the following implementations: K-Nearest
Neighbors’; Elastic Net”; Support Vector Machine’ with a
radial basis function kernel due to the lower number of fea-
tures than the number of samples in our dataset; Random
Forest’ and Extreme Gradient Boosting®.

Hyperparameters Optimization Firstly, at sensor-level,
classifier hyperparameters setting is presented in previous
section with the public implementations of the algorithms

*https://github.com/DavideNardone/MTSS-Multivariate-
Time- Series-Software

>https://github.com/patrickzib/SFA

Shttps://github.com/titu1994/MLSTM-FCN

"https://scikit-learn.org/stable/

8https://xgboost.readthedocs.io/en/latest/python/

used. Next, hyperparameters of classifiers at central level are
set by hyperopt, a sequential model-based optimization us-
ing a tree of Parzen estimators search algorithm (Bergstra,
Yamins, and Cox 2013). Hyperopt chooses the next hyperpa-
rameters decision from the previous choices and a tree-based
optimization algorithm. Tree of Parzen estimators meet or
exceed grid search and random search performance for hy-
perparameters setting (Bergstra et al. 2011). We use the
implementation available in the Python package hyperopt’.
Optimization is undertaken to maximize accuracy score con-
sidering our multiclass study.

Classification Performance Classifiers are trained (at
sensor and central level) with a 3 class labeling (see sec-
tion 4.1) on seismometers data and a 2 class labeling on
GPS data. We performed a stratified k-fold cross-validation
which kept the same proportion of earthquakes of different
categories for each fold. K is set to 3 considering the num-
ber of large earthquakes (14 earthquakes). We present the
dataset split in Table 2. Therefore, the results presented cor-
responds to the 3-fold performance on the test sets. Classi-
fiers are trained to optimize the accuracy score.

Table 2: Cross-Validation Split

# Events Fold 1 Fold 2 Fold 3 ‘ Total
Seismometers 920 90 89 269
Normal Activity 56 57 57 170
Medium Earthquakes 29 28 28 85
Large Earthquakes 5 5 4 14
GPS 90 90 89 269
Normal Activity 85 85 85 255

Medium Earthquakes None None None None
Large Earthquakes 5 5 4 14

5 Results and Discussions

This section first presents the results at sensor-level (DM-
SEEW step 1). Then, we evaluate the performance of our
combined approach (DMSEEW steps 1 and 2) compared to
the traditional seismometers baseline approach and the com-
bined sensors (GPS and seismometers) baseline approach
that adopts the rule of relative strength.

5.1 Sensor-Level Predictions

We present the accuracy results of the different MTS classi-
fiers on GPS stations (2,072 MTS, 2 classes) and seismome-
ters (13,265 MTS, 3 classes) in Table 3.

Table 3: Accuracy Score on Test Sets of the MTS Classifiers
Trained on GPS or Seismometers Data

A (%) DTW DTW MLSTM - WEASEL

ceuracy (% p T FCN + MUSE
Seismometers 353 355 54.6 63.6
GPS 97.9 97.8 98.9 99.5

*https://github.com/hyperopt/hyperopt
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We observe that WEASEL+MUSE outperforms

MLSTM-FCN and similarity-based classifiers (DTWp
and DTWj;) on both GPS and seismometers data. The
difference between WEASEL+MUSE and other classifiers
is particularly important on seismometers data. We can infer
that the noise reduction performed by the truncated Fourier
Transform and discretization of WEASEL+MUSE led to a
better exploitation of the P-wave information.

The detection results obtained from both GPS stations
and seismometers data confirm the complementary perfor-
mance of these sensors. GPS data distinguishes large earth-
quakes while the detection based on seismometers data per-
forms poorly (F1 score on large earthquakes: GPS 99%), seis-
mometers 28%). In the next section, we present the results
of a combined prediction benefiting from the complemen-
tary performance of these sensors following the transfer of
all sensor-level class predictions to a central computation fa-
cility.

5.2 Combined Predictions at Central Level

DMSEEW benefits from the complementary performances
through the combination of sensor-level class predictions
(GPS and seismometers) using a bag-of-words representa-
tion, followed by the training of a classifier on this rep-
resentation. There is no state-of-the-art method covering
the whole spectrum of earthquakes with damaging potential
(medium and large). In order to evaluate the performance of
DMSEEW, we define two baselines at central level.

The first is the traditional seismometer approach which
relies on seismometers data only. We compute the perfor-
mance of the traditional seismometer approach by calculat-
ing the arg max directly on the seismometers bag-of-words
representation for each of the 269 events in our dataset. The
second baseline corresponds to the combined sensors (GPS
and seismometers) baseline approach that adopts the rule
of relative strength in order to assess the value added by
DMSEEW combining approach. It is defined based on the
strengths of each sensor type: if the GPS bag-of-words rep-
resentation indicates that the event is a large earthquake, a
large earthquake is predicted. Else, we calculate the arg max

between normal activity and medium earthquake on the seis-
mometers bag-of-words representation. Table 4 shows the
performance of the two baselines and DMSEEW. The tradi-
tional seismometer approach is indicated as “Baseline Seis-
mometer” and the combined rule-based approach as “Base-
line Combined”. The DMSEEW scores correspond to aver-
age results on test sets of the 1-Nearest Neighbors (1NN)
trained on the combined bag-of-words representation (GPS
and seismometers representations). 1NN outperforms other
classifiers (Elastic Net, Support Vector Machine, Random
Forest, Extreme Gradient Boosting) on the 3-fold cross-
validation.

Table 4: Performances on Test Sets of DMSEEW and the
Two Baselines. Standard Errors are Presented in Parentheses

R i R i
b b

. . DMSEEW
Seismometer Combined
Normal Activity
Precision (%) 76.2 (1.8) 76.6 (1.5) 75.5(1.8)
Recall (%) 94.1 (3.2) 94.1 (3.2) 94.1 (3.2)
FI (%) 84.2 (0.6) 84.4 (0.7) 83.8(0.9)
Medium Earthquakes
Precision (%) 65.9 (12.2) 70.7 (10.5) 76.7 (9.7)
Recall (%) 34.1(11.8) 34.1(11.8) 38.8 (7.3)
FI (%) 45.0(11.5) 46.0 (12.0) 51.6 (6.1)
Large Earthquakes
Precision (%) 53.3(17.9) 63.2 (16.2) 100.0 (0.0)
Recall (%) 57.1(19.2) 85.7 (13.3) 100.0 (0.0)
Fl1 (%) 55.2(11.6) 72.7 (6.1) 100.0 (0.0)
Total
Accuracy (%) 73.2(1.5) 74.7 (1.8) 76.9 (1.6)

Our dataset has a class imbalance (normal activity
63%/medium earthquakes 32%/large earthquakes 5%), but
it does not affect the detection performance on the least rep-
resented class. DMSEEW detects all the large earthquakes
(100.0% recall) without false alert (100.0% precision). The
1-NN of DMSEEW is always able to closely match an exist-
ing typical distribution of GPS predictions in case of large
earthquakes, which allows the correct 1-NN classification.



It is critical for an EEW system to detect all the large earth-
quakes with a precision of 100%. The decisions subsequent
to a large earthquake alert imply major mitigation measures
for the population possibly impacted. We observe in Table 4
that DMSEEW outperforms both baselines (accuracy score:
76.9% versus 74.7% and 73.2%). Moreover, DMSEEW out-
performs both baselines on medium and large earthquakes
detection. Figure 3 shows the precision-recall curves of DM-
SEEW versus both baseline on medium and large earth-
quakes (second and third plots). Firstly, DMSEEW obtains
an average F1-score on test sets for medium earthquakes de-
tection of 51.6% versus 45.0% for the baseline seismometer
and 46.0% for the baseline combined. The higher F1-score
of DMSEEW on medium earthquakes compared to both
baselines is driven by higher performances on both precision
and recall (precision: 76.7% versus 65.9% baseline seis-
mometer versus 70.7% baseline rule-based, recall: 38.8%
versus 34.1% baselines). Lastly, DMSEEW obtains an av-
erage Fl-score on test sets for large earthquake detection
of 100.0% versus 55.2% for the baseline seismometer and
72.7% for the baseline combined. The higher Fl-score of
DMSEEW on large earthquakes compared to both baselines
is also driven by higher performances on both precision and
recall (precision: 100.0% versus 53.3% baseline seismome-
ter versus 63.2% baseline rule-based, recall: 100.0% ver-
sus 57.1% baseline seismometer versus 85.7% baseline rule-
based). These performances confirm the interest of combin-
ing GPS stations and seismometers data to cover the whole
spectrum of earthquakes with damaging potential (medium
and large). In addition, it reveals the benefit of DMSEEW
combined approach instead of the combined sensors (GPS
and seismometers) baseline approach that adopts the rule of
relative strength.

6 Conclusion

The use of machine learning methods in seismology is
still in an early phase. One area of development where it
demonstrated promising results is earthquake early warn-
ing (EEW), i.e. the characterization of an earthquake be-
fore it reaches sensitive areas. Current state-of-the-art meth-
ods based on seismometers data only demonstrated an ap-
plicability limited to medium earthquakes. In contrast, GPS-
based methods are only suitable for large earthquake detec-
tion.

We propose DMSEEW, a novel stacking ensemble ap-
proach for characterizing the whole spectrum of earthquakes
with damaging potential by combining both GPS and seis-
mometer data. Our evaluation on a real-world dataset col-
lected with domain experts demonstrates that the proposed
distributed stacking ensemble approach improves the detec-
tion of both medium and large earthquakes compared to
traditional seismometer only approach and the combined
sensors (GPS and seismometers) baseline approach that
adopts the rule of relative strength (F1 score: +7% and +6%
on medium earthquakes, +45% and +27% on large earth-
quakes). In addition, DMSEEW detects all large earthquakes
with a precision of 100%.

While existing solutions rely on fully centralized process-
ing of the sensor data, our approach assumes distributed data

processing based on a geographically distributed cyberin-
frastructure. This design significantly reduces the volume of
data transmitted in the network, meets the real-time require-
ments while increasing reliability of the EEW system. With
regards to future work, we plan to simulate different scenar-
ios in an existing EEW execution platform to evaluate DM-
SEEW response time and robustness. Then, we plan to work
on the evaluation of DMSEEW on the other main seismic
network through collaboration with the Japanese National
research Institute for Earth science and Disaster resilience
(NIED).
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