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GLOBAL SOLUTIONS OF REACTION-DIFFUSION SYSTEMS ON
1D-NETWORKS

FREDERIC KUCZMA

ABSTRACT. The purpose of this paper is to assess some results and the asso-
ciated techniques for global existence of solutions of reaction-diffusion systems
on networks. The motivation comes from the fact that phenomena can oc-
cur on ramified physical structures, of which one-dimensional networks are
the simplest examples. We work in the setting of solutions provided by the
classical semigroup theory. Local existence and uniqueness in this setting
is ensured by the fixed-point argument, which is detailed. Construction of
diffusion operators on networks via bilinear forms, generation of an analytic
semigroup, ultracontractivity and maximal regularity properties, essential for
the global existence analysis, are recalled or proved in detail, following in par-
ticular Mugnolo [25]. With these tools at hand, we exemplify the fact that
fundamental results available in the literature on global existence and time
asymptotics of reaction-diffusion systems extend from open domains of R™ to
networks. To be specific, here we deal with one dimensional networks with
Kirchhoff conditions at nodes. In this setting, we first implement on a basic
2 x 2 example the celebrated LP-method of Martin-Pierre [22] which provided
a large number of existence results in past 30 years. To give a second example,
we revisit the system studied in Haraux-Youkana [17] where global existence
results from construction of a Lyapunov function. Compactness properties of
solutions, as t — +o00, are obtained adapting the arguments of Haraux-Kirane
[I6]. This permits to establish convergence of solutions to equilibria of the
Haraux-Youkana systems on networks.
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0. INTRODUCTION

Reaction-diffusion has been mainly studied on an open subset 2 C R" but
reaction-diffusion phenomena occur in physical spaces having a ramified structure.
One-dimensional network is the simplest case. Such problems appear, for exam-
ple, in the study of bloodstream oxygenation, or blooms of algae on a metal mesh
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plunged into the see. A one-dimensional heat equation comprising a piecewise con-
stant diffusion coefficient may also be seen as a heat equation on a one-dimensional
network.

The main goal of this article is to demonstrate, via a systematic presentation of
the underlying abstract theory and the detailed analysis of two concrete reaction-
diffusion examples, that the key aspects of the global well-posedness theory nat-
urally transfer to networks. To be precise, our analysis concerns the case where
the coupling at the network vertices obeys the conditions of continuity of the state
variables (population density) and of conservation of the fluxes. These conditions
are often called Kirchhoff conditions. In the forthcoming work [3], we will explore
the extension of these results to the setting of multidimensional networks, with
possible coupling of one-dimensional and higher dimensional areas relevant in some
ecological models of fragmented but connected patch-domains.

The analysis techniques we have in mind for reaction-diffusion problems require
a good understanding of the semigroup generated by the linear diffusion operators.
For the case of one-dimensional networks, properties of the semigroup generated by
the edge-wise diffusion ¢A coupled via the Kirchhoff conditions were established in
a series of papers including [6], [20], [25]. The work of Mugnolo [25] is our main
source. In section [2| we make a systematic presentation of this theory, combining
precise reference to the underlying literature and accurate proofs of results that are
classical in the community but for which we were not able to find a sharp reference.
In particular, we pay attention to carefully define the notion of local L°°-solution
and to justify its existence. The results contained in section [2] are also intended
to provide the frame for the forthcoming work [3]. Indeed, with appropriate re-
definition of the underlying measure-spaces, functional spaces and bilinear forms,
the results we compiled from [25] and several other sources permit to deal with
diffusion-generated semigroups in the setting of generalized network domains.

In the sections [] and [f] we will take advantage of the theory developed in the
section [2| to study the system

Our goal is to study these reaction-diffusion equations with two very different ap-
proaches.

This system has already been treated in the standard case (i.e. on an open sub-
set @ C R™) by Martin-Pierre (see [22]), Hollis-Martin-Pierre (see [19]), Pierre (see
[28]). It was the prototype of a wider class of systems studied via the LP-method
(see [28]). In particular, the system modelling the bloodstream oxygenation is
one of this class (see section . Note also that our study contains in partic-
ular the case of the system studied in [28, Theorem 3.1, p. 425] for the case
of diffusion —(c!(z)u')’, —(c?(x)v") with piecewise constant coefficients ¢!, c? in a
one-dimensional domain.

Following the duality method (see [22]), we will prove, under a suitable mass-
control assumption, that the previous system has global solutions. Although Kirch-
hoff conditions are analogous to homogeneous Neumann conditions in the standard
case, using the duality method, we have to sum the two equations. The diffusion
coefficients c; and c? being different, some cross vertex terms appear in the in-
tegrations by parts. These terms correspond rather to inhomogeneous Neumann
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conditions than to homogeneous Neumann conditions and we have to pay a special
attention to them.
We develop a second example following Haraux and Youkana (see [I7]), and

we suppose that f; and g; are of the form f;(r,s) = —rp;(r,s) and g;(r,s) =
r@;(r,s). In the standard case, this system has first been studied by Alikakos
for f(r,s) = —rs® (see [2]), followed by Masuda (see [23]) and then improved

by Haraux and Youkana (see [I7]). The method is based on use of a Lyapunov
functional. Assuming that

(1 +¢;(r))

1
V7 € Npp, — 0,

r r—+00
a global existence result will be proved. Secondly, we will deal with the asymptotic
behavior of the solutions and prove a uniform convergence toward a constant solu-
tion. The key point is due to Haraux-Kirane (see [16]), which permits to estimate
the C'-norm of u(t, ) In Appendix C} we will carefully verify that the results of
Haraux-Kirane transfer to one-dimensional networks.

Finally, let us note that, in the manner of Barabanova (see [8]), we can par-
tially generalize the result of Haraux-Youkana, assuming an exponential growth of
¢, (whereas the exponential growth is not attained in the hypothesis of Haraux-
Youkana). Note also that the asymptotic behaviour treated by Barabanova can
easily be extended to one-dimensional networks.

1. NETWORKS AND GRAPHS

1.1. Framework. Now, we consider a finite connected network, to which we asso-
ciate a graph G, comprising m edges eq, . . ., e, and n vertices vy, ..., v,. Edges will
be systematically parameterized by the interval [0, 1] and are arbitrarily oriented.
Following the standard terminology, let e;(0) denote the "tail” of the edge j (start
end) and let e;(1) denote the "head” of the edge j (finish end). We define two matri-

in the following way (see the figure [1)):

0 else, 0 else.

The matrix & = &+ — &~ is the incidence matriz of the graph G. Note that
each column of ® contains exactly one 1 and one -1. For every vertex v;, let T'(v;)
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denote the set of indices j of the edges having an endpoint at v;:
I'(vi)={je1,m]:e;(0) =v; or e;(1) =v;}.

Lastly, we call degree of the vertex v; the integer |I'(v;)|. For example, consider
the graph illustrated by the figure [2l The incidence matrix is given by

1 o o0 0 0 -1 o0
-1 -1 -1 0 0 0 -1
d=10 1 0 0 1 0 0
0 0 1 1 -1 0 0
o 0 0 -1 0 1 1

Moreover, T'(ve) = {1,2,3,7} and the degree of vy is equal to 4.

Generally, Dirichlet conditions are imposed on certain vertices. The topological
structure of the network not interesting us, we will systematically identify all these
vertices. From now on, we assume that the network has a unique vertex in which
a Dirichlet condition is imposed. Without loss of generality, it is assumed that the
Dirichlet condition holds on v,,.

1.2. Continuity at vertices. Since every edge is parameterized by the interval
[0, 1], each such edge can be identified with [0, 1]. Thus, a function u defined on the
network G will be described by a m-uplet w = (u, ..., uy), each function u; being
defined on e; or, in an equivalent manner, on [0,1]. When v; is an endpoint of e;,
we denote u;(v;) = u;(1) if gi);fj = 1 and u;(v;) := u;(0) if ¢, ; = —1. By abuse
of notation, we set u;(v;) := 0 when j ¢ I'(v;). We will be interested in functions
u = (u,...,uny) which are continuous at vertices, i.e. such that

Vi e N, V(4,¢) € F(vi)2,uj(vi) = ug(vy).

The following property gives a simple characterization of continuous functions
on the graph (see [6, Lemma 3.1, p. 7]).

Lemma 1.1. A function u € (C([0,1]))™ is continuous on the graph if and only if
there exists d* € R™ such that ‘®~d* = u(0) and ‘®+d* = u(1). So, the continuity
of u at vertices and the Dirichlet condition at v, translate into

v e R™ 1 x {0} : ‘D d* =u(0) and ‘®Td* = u(l),
where d represents the value of u at vertex v;.

Remark 1.2. Implicitly, we identify R™ and M, 1(R), i.e. row vectors and column
vectors are identified.

1.3. Diffusion on network. In order to introduce notations, let us start by de-
scribing a problem of diffusion on network. Consider a graph G satisfying the
previous assumptions. Let v = (u1,...,%) be a function depending on ¢ (the
”time variable”) and on x (the ”space variable”). Assume w is continuous on the
graph with respect to x. Such a function u : (¢,z) — u(t,z) being given, dzu, or
% denotes the time derivative whereas u’ denotes the space derivative, considered
edge-wise.
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Then we are interested in the following diffusion problem:

Opuj(t, ) = cjuf(t,z) + fi(t,z), 1<j<m,0<z<],

uj(t, vi) = ue(t, v;) == di(t), j,Lel(vy),1 <i<mn,
(1) Sy dieju(t,vi) =0, 1<i<n-—1,

dy(t) =0,

u;(0,-) = ugj, 1<j<m,0<x<1.

The first equation is an inhomogeneous heat equation; c¢; > 0 is the diffusion
coeflicient relative to the edge j.
The second equation translates the continuity of w at each vertex, and the fourth
translates the Dirichlet condition at v,,.
Conditions imposed by the third equation are Kirchhoff conditions: they correspond
to a conservation law. Note that the Kirchhoff condition is not imposed at the
vertex v,, but the homogeneous Dirichlet condition is assumed instead. Moreover,
consider a vertex v; which degree is equal to 1. Then, the Kirchhoff condition is
equivalent to the homogeneous Neumann condition at v;.

Now, let us introduce weighted incidence matrices ®;} = (w;" j) € My,m(R) and

o = (w;j) € My m(R):
4 _{cj if¢;fj:1andi§n—1,

and w

)

2V ]

{cj ifqb&:landiﬁn—l,

0 else, 0 else.

Remark 1.3. In terms of weighted incidence matrices, continuity at vertices,
Kirchhoff conditions and Dirichlet condition at v, translate to, in a more con-
densed way,

‘Dtqu(t) = u(t,1) and ‘®d"(t) = u(t,0),

vt,3"(t) € R" x {0} : {fb—u’(t 0) = B (t,1)

1.4. Reaction-diffusion on network. Now, let us consider a reaction-diffusion
problem on the previously described network. To make it more concrete, it is
supposed that N chemical components interact with each other on each edge e;.

The concentration of chemical component k,1 < k£ < N, on edge e; is denoted

by uf It is therefore a function with respect to the two variables ¢,x. Denote
ub = (uk,... uk) and u; = (uj,...,u}). We propose to study the following
reaction-diffusion system:

Ok = ok ()" + fhul, . ul), 1<j<m1<k<NO<w<l,

k

u?(t,vi) =uf(t,v;) :==d* (t), §,0el(v;),1<i<n,1<k<N,
(2) (8): 9 7% i ¢ (uF) (t,vi) = 0, 1<i<n—-11<k<N,

dy (t) =0, 1<k<N,

u_lj?(()f):ul&ja 1§]§ma
where

e the functions f]lC (these are the nonlinearities) have continuous derivative
on RY. They represent interactions between various chemical components,

° cf > 0 is the diffusion coefficient on the edge j with respect to the compo-
nent k.

As above,



GLOBAL SOLUTIONS OF REACTION-DIFFUSION SYSTEMS ON 1D-NETWORKS 7

e The second equation translate an assumption of continuity of each function
uP at vertex V.
e The third equation is a conservation law: these are the Kirchhoff conditions.
e The fourth equation is a Dirichlet condition at vertex v,,.
Moreover, let us assume that the initial condition is
e positive: Vk € [1, N],Vj € [1,m], uf ; := uk(0, )>0
e uniformly bounded: Vk € [1,N],Vj € ﬂl,m]] ,uo)j € L*>(0;1).
We stress that the solutions of systems must systematically be understood in
the sense of Definitions 2.23/2.24

Remark 1.4. In terms of weighted incidence matrices, continuity at vertices,
Kirchhoff conditions and Dirichlet condition at v, translate to, in a more con-
densed way,

Dl (1) = uk(t,1),
Vt, ¥k € [1,N],3d" (t) € R" ' x {0} : { "@k—aqv" () = uk (2, 0),
Oy (uh) (,0) = DT (uh) (1),

where &+ = (wk’*) € My (R) and ®F~ = (wfj_) € My m(R) are given by

k, ke ,
St cg? 2f¢+—12<n—1 and o — cé? zf(bm- =1Li<n-1,
I 0 else, 0 else

2. GENERAL RESULTS ABOUT ONE-DIMENSIONAL NETWORKS

2.1. Stating the problem. Let us recall that we are interested in the system
where the initial conditions satisfy
Uo,j €L°°(0;1), 1<j<m,1<k<N,
and where the functions fF have continuous derivative on RY. These are the
nonlinearities, witch represent interactions between various chemical components
_ [tk — (o

on the edge e;. Let f := (fj)lgjgm,1gk§N and, for u = (uj)lgjgm,lgng’ let
f(w) denote the function t — f(u(t,-)).

We say that the property of quasi-positivity (P) holds when

(P) :V(k,j) € [1, N|x[1,m] ,vV(r',...,rN) 6Rf,ff(rl,...,ri_170,ri+1,...,rN) > 0.

2.2. Functional framework: Hilbert spaces case. Let
N
Xy :=L*0,1)" and Xy:=[]X2=L?(0,1)""
k=1
Note that in the case N =1, X5 = X5. X, and X5 are equipped with their usual
inner product. For example

Yu,v € Xa, (ulv) ZZ/ x)dz

k=1j=1

where u = (u?)1§j§m71§kSN. The vector function u; := (u;,,uév) is the
concentration distribution of the chemical components on the edge j, whereas

uf = (u¥,...,uk)) is the concentration distribution of the chemical component



8 FREDERIC KUCZMA

k on all edges. The spaces X5 and X5 are complete. Define the unbounded linear
operator (A*, D(AF)) on X:

. d? .
Ak — <—d1ag (Cécdx?> , 1< < m) ,

o =uh(1),
D(A%) = { k€ (H?(0,1))™ : 3d*" € R x {0}, ‘g=d" = u*(0),

P (uh)'(0) = @ (ub)'(1).
Likewise, we define on Xs the unbounded linear operator (A4, D(A)) where D(A) =
Hszl D (Ak) and A = Hszl AF. This leads us naturally to study the homogeneous
abstract Cauchy problem

(ACP) %(t)JrAU(t):O, (t > 0),

u(0) = uyg,
on Xo, which is equivalent to the IV abstract Cauchy problems on Xs

uk
(ACPY) : Vkel[l,N], th(t) + Akuk(t)y =0, (t>0),
uk(0) = uf.

This problem enters the framework of Mugnolo: see [25].
Now, let us introduce the two new spaces

H:= {“ € (H'(0,1))™ : 3d" € R™ x {0}, {t¢+du = u(1), }

'6=d"" = u(0),
and H:=HYN =H x---x H.

Lemma 2.1. H equipped with its usual inner product
mo el
Y(u,v) € H x H, (u|v) = Z/ [ujv; + ujv]]
j=1"9

is densely and compactly embedded in Xo. Moreover, the bilinear form defined by

m

(ujv)g == Z/o w(x)vj(z) do

is an inner product; the associated norm is equivalent to the standard H' norm
defined by

Vu € H, |[u = i/ol [(07)2(2) + () (@) .

Equipped with one of this two equivalent norm, H is a Hilbert space. Evidently,
such results naturally extends from one to N components.

Proof. [25, Lemma 3.1, p. 4] The space H'(0,1) is a Hilbert space. Moreover, the
embedding H'(0,1) < C([0,1]) is continuous. So, H is a Hilbert space.

Inclusions (C§°(0,1))™ C H C Xs show that H is dense in X5. Furthermore,
according to the Rellich-Kondrachov Theorem, the embedding (H*(0, 1))m — Xo
is compact and then H is compactly embedded in X5. Finally, equivalence of the
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two norms is a direct consequence of the Poincaré inequality for networks (see
Property [2.35)). O
Definition 2.2. For k € [1, N], let a¥ the bilinear form defined on H x H by

kukvk:mc{?luk,m ’Uklﬂf X.
a* (u*, o) j;J/()(])U(j)Md

Likewise, let a the bilinear form defined on H x H by

m N 1 / /
a(u,v) :ZZC;“/O (uf) (x) (vf) (z)da.

j=1k=1
Property 2.3. e a is continuous on H x H, i.e. :
IM > 0:V(u,v) € Hx H, |a(u,v)|] < M||u|mg - ||v|lm=,
e a is symmetric,
e a is coercive i.e. : Ja > 0:Vu € H,a(u,u) > o|jul3.
Proof. The bilinear forms a* enjoy the same properties (see [25, Property 3.2,p.

5]). The conclusion follows easily. O

Now, let us state an elementary but fundamental lemma. It claims that, in
integrations by parts, the boundary terms cancel each other out. In other words,
and roughly speaking, Kirchhoff conditions are equivalent to homogenous Neumann
conditions for networks.

Property 2.4. Let u* € H such that Kirchhoff conditions hold. Then

m

(4) Vot e 1,y [(u;?)’ Mk (1) - (ub)’ (O)wf(O)] —0.
j=1
Proof. Thanks to continuity of w, we haveﬂ

n—1 n—1
o (uf) Wwf() =37 ol (uf) (vowf(ve) = D - cho () (veydy”
=1 =1

and
n—1 n—1
& (uk) (0)wk(0) = > oy (uB) (veywh(ve) = > oy, (uk) (vo)dy".
=1 =1

By difference, and summing for j from 1 to m, it follows

Sk [ (0w (1) = () @ 0)] = 323 ek [, — 03] (b vy
Jj=1 =1 t=1

Il
Q
ST
—_
S
(]
Ko
S+
-
S
—~
S
<
S—
—~
<
o~
S~—

Yet, Kirchhoff condition for component & is exactly
m _ !
el [0 — o) (4) (v =0

j=1

L runs from 1 ton — 1 because, by Dirichlet condition, d¥ = 0.
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and the proof is complete. ([
From [25] Lemma 3.4, p. 7], we obtain the following property:

Property 2.5. e The unbounded linear operator associated with a* is equal
to (Ak, D(AF)),
e The unbounded linear operator associated with a is equal to (A, D(A)),
where D(A) = [[r-, D (A*) and A =], A*.

The Proposition leads directly to:

Property 2.6. —AF (respectively —A) is the infinitesimal generator of an analytic
semigroup of contractions on Xo (respectively on Xg). Interchangeably, we will

k —tA* . —tA .
denote by (T3 (t))ltZO or (e ¢ )tzo (respectively (T2(t)),>q or (e )tZO) the semi-
group generated by —A* (respectively —A).

Remark that all the properties of A are inherited by A (take N = 1).

Property 2.7. A is a self-adjoint operator on Xy. Consequently, (T(t));~, 5
self-adjoint for all t > 0. -

Proof. Since a is symmetric, Property [A:26] asserts that A is self-adjoint. Moreover,
since Xy is reflexive (as a finite product of reflexive spaces), (T2(t)),~, is self-adjoint,
according to [27, Corollary 10.6, p. 41]. O

We will need a L*°-contractivity, in order to establish a local existence result.
Definition 2.8. Take p € [1,+00]. Consider the real vector space
X, :=LP(0,1)" ={u=(u1,...,um),u; € LP(0,1)}.
Xp is equipped with its usual norm defined by

1
m 1 ) P P .
Vu e X, Jully, = (S5 o lus@)Pda) ™, ifp # +ox,
SUD) < j<m SUPLeq |U; (2)|,  if p = +o0.
Provided with this norm, X is a Banach space. Consider also the product space
Xp= Hivzl X, = (LP(0, 1))MN provided with its usual product norm.
Property 2.9.
1
Vp < +00,Yu € Koo, Jully, < (mN)7 Jlully < mN Jully__ -

Proof. Let u = (Ué?)lgjgm,lngN € X and let p < 400. Then,

m N m N
Jully, =357 [ et < 3 [l = m

j=1k=1 j=1k=1
O

Property 2.10. The semigroup (e_tA)t>0 associated with the bilinear form a is
sub-markovian, i.e.
e positive,
e X -contractive i.e. the closed unit ball of X, is invariant under the action
of e tA, for all t > 0.
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Proof. [25, Theorem 3.5, p. 7] Recall that the bilinear form a is densely defined on
H c Xz, continuous, accretive and closed. According to Theorem to prove
that (e*tA)t>O is positive, it is sufficient to verify the implication

u€ D(a)=ut € D(a) and a(ut,u”) <O0.
Let u € D(a). The function u™ is clearly continuous on the graph and (u )+ €
H(Q) (see Corollary . Furthermore

. / ) (@) Lypsole) (~u8) (@)1 (@) do = 0

where, for every function w, 1,9 denotes the characteristic function of the set
{u > 0} etc.

Now, X.o-contractivity follows from Theorem [A728] Indeed, since a is symmetric,
it suffices to verify that (recall that Tu = (1 A |u|)sign (u))

VYu € D(a),Tu € H and a(Tu, Tu) < a(u,u).

Let w € D(a). Clearly, Tu € (Hl(O,l))mM (see Corollary . Moreover, by
continuity of u at each vertex, T'u is also continuous at each vertex. Lastly,

u(x), if lu(z)| <1, .
Tu(z) =< u(w) if fu(a)] > 1 and (Tu) =u'lj, <1 ae.
[u(@)]’ -

As a consequence,

m

a(Tu, Tu) = iZcf /01 ((Tu;C ) gkz /01 ( Il|uk|<1)2 (x)dx

j=1k=1 =1

which completes the proof. (I

2.3. Extrapolation; ultracontractivity. Let us recall that

m N 1 , ,
V(u,v) € H x H, a(u,v :z /0 (uf) (x) (vf) (z)dez,

j=1k=1

and that Th(t) = e~*4, where A denotes the operator associated with a. To prove
that (e*tA)tZO is X;-contractive, we will recall the following property.

Lemma 2.11. Let (2, A, u) be a measure space. Then

/uv.
<1lJa

Yu € LY(Q), lull i@y = sup

H”HLOO(Q)

Property 2.12. (e”'4),5¢ is Xy -contractive.
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Proof. Following [25], we can identify (LP(0,1))" and LP(0,m) (1 < p < +00).
More precisely, let U : (LP(0,1))™ — LP(0,m) the function defined by

Vu = (ulv e >um) € (Lp(ov 1))m Vi € [[la m]] V€ (jflaj)v U(u)(x) = Uj(l’*qu]_).

Clearly, U is an isometry. As no confusion can arise, we will use the same letter to
designate v and U(u). For u € Xy, we have
/ o tA" kR
[0,m]

—tA _ Y —tA* K _ Y 3
ey, = [l HX =Y sw
71 1

P vkl <1

N

:Z sup (eftAkuk‘vg
=1 PFllx <1 X2
N

:Z sup (uk‘e*mkvk>
1 0%l x . <1 Xz
N

k
= E sup / uF et YR
k=1 Iv*llx o <1 |/[0,m]

N

— k . .

< E sup / |uk| . ’vk’ because et is Xoo-contractive
=1 V"l x <1 J[0,m]

ke ko, . e
because et = e7t42 is self-adjoint

N
< Z sup / |uk| ) ’eftAk‘vk’
[0,m]

=1 0¥l x <1

N
<[ el = ful,
b1 [0,m]

Theorem 2.13. [25, Theorem 4.1, p. 12], [B, paragraph 7.2.2.]

o (T5(t))e>0 extrapolates to a family of real contractive semigroups (T (t))e>0
on X,, 1 <p<oo.

o (Tp(t))e>0 is positive for p € [1,+00].

o (T,(t))i>0 is strongly continuous for 1 < p < oo and analytic for 1 < p <
0.

Lemma 2.14 (Nash inequality). There exists a constant M > 0 such that
1 2
Vu € Hl(oa 1), ||u||L2(0,1) < MHUH;p(o,l)||UH21(071)-
See [7, Lemma 2.7] for a more general statement.
Property 2.15. e We have
Vt > 0,Yu € Xy, [ Ta(t)ullx, <Mt~ |ulx, .

o Therefore, the semigroup (T»(t))i>0 associated with a is ultracontractive.
e In particular, it satisfies

M > 0:Vt>0,Vu € Xo, |To(t)ullx. < Mt~ |ullx,.

Proof. o Let us prove the first inequality. Since (T5(t)):>0 is Xoo-contractive,
Theorem may be applied. Taking d = 1, it is enough to verify that

M > 0/Yu e HN LY(0,1)™N = H, ||u|l$, < Ma(u,w)|ul%,
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Let uw € H. We have

m N
2 4
=303 b Baon < M2 S S It o 9o

j=1k=1 j=1k=1

m N )
22 2 Il o
j=1k=1
m

j=1k

N 4
Z 5112 0,1

1 k=1

Ms

<.
Il

2 4
3 3

m N
‘u§“H1(O,1) ZZ ||U§||L1(0,1)

k=1

<.
—

- 1=

2 4 4

< Cllullgllull, < Calu,u)3|lull,,

C' denoting a constant depending on the data.
e So, we have proved that, forp=1,¢=2 and d = 1,

e > 09 €)0; 1], |70 ]| oo gy < et 2G3).
e According to Property again for d = 1,
Je>0:V1 < p < g < oo/t €l0; 1], [T eerrey < et~ 277

which proves that the semigroup (T%(t)):>0 associated with a is ultracon-
tractive.
e The second inequality is obtained taking p = 2 and ¢ = +o0. The proof is
complete.
|

The following property directly follows from [25], Property 4.6, p. 14].

Property 2.16. Let p € [1;400].
o Let —A’; denote the infinitesimal generator of the semigroup (Tf(t))tzo,

Then
t¢+d“k = uF (1),
D(AY) = {ue (W2P(Q)™ : 3" e R™' x {0} :  'g=d*" = uk(0),
¢ (u)'(0) = ¢ly~ (ub) (1),
d2
and the action of A% on D(AY) is given by: AF = —diag < G 42 1<j5< m> .

N
e D(4,) = Hk 1 D (A) and Ay = TT;—, A
Property 2.17. Consider the following abstract Cauchy problem

(5) (ACP): St Au=f(1) , u(0) =u” € X,

where A is the previously defined unbounded linear operator. Let u be a solution of
(ACP) on the interval [0,T), 0 <T < +o00. Assume that

Vp € (1,400), f € LP(0,T;X,).
Then, u € L>=(0,T;Xw).
Proof. Tt is a straightforward application of Property O
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2.4. Compactness.
Property 2.18. —A has compact resolvent.

Proof. Applying the Rellich-Kondrachov Theorem, we see that the embedding
D(A) — X, is compact. Moreover, since —A is the infinitesimal generator of a
Cy-semigroup of contractions (in fact, we even have here an analytic semigroup),
p(—A) # 0. This follows, for example, from the Hille-Yosida Theorem: see Theorem

[AZ6] It remains to apply Property [A-20] O
Property 2.19. For all p € (1,400), —A, has compact resolvent.

Proof. We have just seen that —A = — A, has compact resolvent. According to [5]
paragraph 7.2.2, p. 62], this property is inherited by —A4,,1 < p < +o0. O

Property 2.20. The semigroup (e_tAP) is compact for 1 < p < +oo andt > 0.

t>0
150 18

an analytic semigroup (because 1 < p < +00), and so (e_tAP) +>0 1s a differentiable

semigroup. Conclusion follows from Properties and O

Proof. We already know that —A,, has compact resolvent. Moreover, (e~*4»)

—tA)

Ultracontractivity of (e may also be used to improve the previous result.

>0
More precisely:

Property 2.21. The semigroup (e_tAP) is compact for 1 < p < +oo andt > 0.

>0
Moreover, c(Ap) does not depend on p, with 1 < p < +o0.

Proof. Take p € [1,+0c]. Let us factorize e *4

Theorem 2.1.5, p. 71]):

in the following way (see [10}

_t _t
—e 2 2

A
— 31 pa=e p3=Id
et Xy T — X TT—

A
Xy — Xj.

Here, ¢ is continuous by ultracontractivity; @9 is compact from the foregoing; @3
is continuous because Q is bounded. Consequently, e *4 : X; — X is compact.
Furthermore, A is a linear real positive self-adjoint operator on Xy and, for all ¢t > 0,
e t4 is positive and X,.-contractive. Consequently, according to [I0J, Theorem
1.6.4, p. 36], et : X, = X, is compact for all p € [1,+00]. Moreover,

* Vp,q € [1,+00],0(Ap) = o (Ag),

e cvery eigenfunction of A, is also in X, for all p € [1, +o0].

2.5. Exponential stability.

Property 2.22. F07E|1 < p < oo, w(T,) = s(—A). Consequently, (T,(t))i>0 is
uniformly exponentially stable.

Proof. Let us start off by looking at the case p = 2. Clearly, o,(—A) C] — 0, 0].
Moreover, A is one-to-one. Indeed, let u € D(A) such that Au = 0. Then a(u,u) =

0 and then
m N . o 2 .
g kg 1cj /Q (uj ) =0.

j=1k=

2See for the definition of growth bound and spectral bound.
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It is deduced that (uf)" = 0 and that u} is constant on Q. By continuity on the
graph and connectedness of the network, every function u” is constant. Finally,
through Dirichlet condition at vertex v,, every u* is equal to zero, i.e. u = 0.
Thus, 0 ¢ 0,(A). Since A has compact resolvent, o(A) = 0,(A) and 0,(A) consists
of a sequence of eigenvalues converging to infinity (see Property [A.20). It follows
that s(—A) < 0. Since (T2(t))>0 is an analytic semigroup, Prop implies
that s(—A) = w(Ts). Consequently, w(T3) < 0 and Th(t) is exponentially stable
(see Remark [A.23).

Now, fix p such that 1 < p < 4+00. Asseen in Property on hasﬂ o(4,) = o(Az).
Thus s(—A,) < 0. Since (T,(t)):>0 is analytic, we conclude as beforeﬂ O

2.6. Local existence in X,, 1 < p < 400. Throughout this section, we consider
p € (1,+00) (Note that we do not take account of the case p = +o0o because the
semigroup (e*tAOO)DO is not analytic). Recall that X, = LP(Q,R)™N. Let us
consider the following abstract Cauchy problem

(6) %—i—Apu:f(u) ;o u(0) = u’ € X,
where A, is the previously defined unbounded linear operator. We have seen that
—A, is the infinitesimal generator of an analytic semigroup of contractions. We
also consider a real number 7' > 0 which will be fixed later. We are looking for
T sufficiently small such that Equation @ has a solution on [0,7T). As usual, Q
denotes the open interval (0,1) and Qr := (0,T) x (0,1).

Following [27), definition 2.1, p. 105], we have the following definition:

Definition 2.23. Let T > 0. A function u: [0,T) — X, is a solution of @ when
u is continuous on [0,T), has continuous derivative on (0,T), u(t) € D(A) for all
0<t<T and (6) holds on (0,T).

We are particularly interested in solutions which are uniformly bounded. Hence
the following definition.

Definition 2.24. Let T > 0. A function u: [0,T) = X,, is a Xoo-solution of (6]
when

e for allp € (1,+00), u is a solution of (@ in Xp,

e ue LX([0,7T),Xx).

loc

The following fundamental result seems to be rather classical. Since we were not
able to find in the literature a detailed proof, and for the sake of exhaustiveness,
we give a complete statement as well as a self-contained proof.

Theorem 2.25. For T > 0 sufficiently small, @ has a unique X -solution on
[0,7).

Proof. (1) Take u® € X. Let B be the closed ball in X, 7 := L? (Qr,R™)
centred at 0 of radius R > 0 (the choice of R will be made later). For every

4 € B, let us consider the new abstract Cauchy problem:
du

O Au®) = f(@) = g(t) , uw(0)=u’ € X,

3 We can also note that A = A has compact resolvent and use [5, paragraph 7.2.2, p. 62].
4 We can also use [I1l Corollary 3.12, p. 281]: if A is the infinitesimal generator of an analytic
semigroup, then s(A) = w(A).
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g(t) denoting the function x — f(a(t,z)). We would like to show that the
map U +— u has a fixed point.
(2) For a > |[ul||x + 1, let T,, be a C*°-regularization of the function

—a ifzr<—a,
RoRaz—<zx if v € [—a,q,
« if x> a.

More precisely, let T, : R — R be an odd C°°-function such that
o Vte[0,a —1],Ty(x) = =,
o Vt > o, Ty (z) = «,
e T, is concave on [0, 400).
Let f]ka = f;? o (Tay...,Tw). Then, functions f]’-fa are globally Lipschitz

continuous on RY. As before, denote f, := ( kaa)1<j<m L<pen- Then, we
consider the new abstract Cauchy problem o

d

ﬁ""‘ApQ:fa(ﬁ) ’ Q(O):UOEXOO
Let u be the mild-solution of (2). Then, u € C([0;T); X,) and, for all

tel0;7):

t t
u(t) = e "l + / e U7 £ (@)(s) ds = e a4 / e =94 g, (s) ds,
0 0

where g,(s) := fo(@)(s) . Let us stress that, since the semigroups (e’tAP)DO
are consistent, the solution u(t) does not depend on the choice of p. -
(3) In order to apply the Picard Theorem, we have to prove that the ball B
is invariant under the action of the function @ — u and that the function
B — B, 4 — u is a contraction.
Let us start by studying the invariance of the ball B := B(0, R), for suffi-

ciently small T. For 4 € BB, we have (for t € [0,T))

¢
e g0 +/ e =94 £ (0)(s)ds

lu(®)llx, =

Xp

0
t
< [le~ 4], + / et fu(a)s) |, as
? 0

Xp

t
<, + [ Mo @), s

t
< mNHUOHXoo —|—/ mN || fo(@)(s)|x_ ds
0
because e *4r is a contraction and [-lx, < mN[|-x_: see Property
Consequently,
(@), < mN [l +mNT sup_[|fal@)(s)]l,
s€[0,T)

<mN HUOHXOO +mNT | foll
since f, is uniformly bounded. Integrating between 0 and T leads to

P

T
Il , = [N, e < T (m [+ mNT )
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By imposing the limitation
T<1,

we have

lullg, , <mN o]y +mNT||fall..
Then, let us take R such that R > mN HUOHXOO' Choose, for example
R:=mN HuOHXm + 1.
If T satisfies mNT || fal| o, < 1, we have
lullx, , <R ie. u€B.

Imposing the further limitation

< ;,
N fallo +1

we justify the desired invariance.
Now, let us prove that the function B — B, 4 — wu is a contraction. Let
4,0 € B and u,v be the mild-solutions of , ie.

— FAu=fo(@) , u(0)=u’€Xx,

— F A= fa(0) , v(0)=u’ € X

Thus, for all ¢ € [0,T), we have

t
u(t) = e Ml + / e~ =94 1 (0)(s)ds,
0

t

v(t) = e ey 4 / e~ =940 £ (5)(s) ds.
0

Taking the difference and using the triangle inequality, we have, with t €
[0; 77,

p

D= u(t) - w0l = | [ I (1000) - ful@)(e)ds

<

Since (e*tAP)

Xp

e—(t—s)Ap

L(Xp)

N fa(®)(s) = fal@)(s)]x, ds) .

+>0 18 @ semigroup of contractions on X, we have

D< ( / Nal@)s) — L@, d)
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Then, by Hélder inequality, with £ + 1 = 1, it follows

T
/|fjka ))*fﬁa(ﬂ(s,x))’p dz ds
1k=1
T

|
gTZjij; 1/0 /Q(Lz'p(fﬁa))” sup [0

0j(s, ) — {Lf(s,m)|p dzds
1<¢<N
m N T N
STEZZ/ / Lip ( ( )| dz ds
j=1k=170 /€ (=1
m N N T
ST%KgZZZ/ f(s x) — ﬂﬁ(s x)‘p dzds
j=1k=1¢=170 /€
m N
= 522//@ smfu sx)| dx ds,
j=14¢=1
where K, := maxi<j<n,1<k<n Lip ( ]'a) and where Lip ( ) denotes the
Lipschitz constant of f]’fa. Then,

D < NKng H'[) - aHiP(QT)mN
Integrating between 0 and 7" leads to

v —

1
Q”iP(QT)mN < NKET +% |0 — u||L,,
and then to

(Qr)™

llu— @HLP(QT)mN < NKT[[o— f‘HLP(QT)mN

Now, all we need is to choose T such that

1
T<——.
T NK,+1

For such a T, the map B — B,u + u is a contraction. We are now in
position to use the Picard Theorem: there exists a unique function u € B
such that

t
Vi € [0,T), u(t) = e Arud + / = f (1) (s)ds |
0

u(0) = u°.
Here, we stress that T does not depend on p

(4) According to [27, Corollary 3.3, p. 113], to prove that u is a solution of the

abstract Cauchy problem , it is enough to verify that
o fa(u) € L1(0,T3X,),

e f.(u) is locally Lipschitz continuous on |0, T
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(13)
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E

The first condition is obvious since f,(u) is bounded.
Let t,t 4+ h €]0;T], h > 0. We have

B = a6+ ) — fal O, = Mo e +h,) — Fulult, DI,
m N
=503 [ Iskatute+ b)) = s (atto)]

j=1k=1

But, f, is Lipschitz continuous and then

m N
<NEZY Y /Q bt + by ) — b (t,2) [ da = C ut + ) — u(t)|
j=1k=1

where C' denotes a constant depending on the data, T and «, but not h.
Therefore, f,(u) is locally Lipschitz continuous. According to [27, Corollary
3.3, p. 113], u is a solution of the abstract Cauchy problem .

Now, let us prove that u(t) € Xo. Let us start off with the functional
equality

t
u(t) = el + / == £ (u)(s) ds,
0

valid in X, (p = 2, for instance). Then

Ol < Je il + [ e o], as

Xoo
But, up € Xo. Since semigroups e~ 47 are consistent, e~ t4ry0 = =t q0
and
—tA,, 0 —tAoo, 0 0
e "y = |le < < l|lu
I .. = | .. < lw’llx
because e ' is contractive. For the same reason, since f, is bounded,

fa(u)(s) € X and
/Ot He‘“‘”f‘pfa(u)(s)me ds < /Ot | fa(w)(8)lly ds < TM,,

where My 1= SUDP1<j<m 1<k<N SUPze[—a,a] ’fjk(x)’ Finally, (10),(LI) and
show that

lu(®)llx.. < [[u°]lg_ +TMa.

Consequently, u is uniformly bounded on [0; 7). Moreover, imposing the
limitation
a—1—|u
T L
M, + 1

we obtain

vt e (07T>7 ||@(t)||xoo <a-1L
Consequently, f(u) and f,(u) are equal for t € [0;T'), and u is also solution
of the abstract Cauchy problem

d
ﬁJrAp@:f(g) o u(0) = u’ € X



20 FREDERIC KUCZMA

Conditions (7)), (8), (9) and lead us to take
— 1= ||u0
T := min ( 1 ! ¢ Hu HX"") .

1? ) b
mN || fallo + 1" NKy +1 M, +1

We have proved existence and uniqueness of a solution of @ on [0,7).
(6) So, we have proved existence on [0,T") of a function u uniformly bounded
on [0;T), solution of the abstract Cauchy problems

d
Vp € (1,+00), ?1; +Au=fu) , w0)=1u’€X.

Let us stress that since extrapolations (e_tAP) are consistent, solutions do

t>0
not depend on p. O

Remark 2.26. Note that the previous proof provides a "minimum lifetime” T for
@, and that T is substantially characterized by HUOHX .

Remark 2.27. We turn now to the slightly modified system
d
?1; +Au=f(u,z) , w(0)=u"€Xy
where f = (fjk)lgjgm,lgkgjv, Suppose un addition that, for (j, k) living in [1, m] x
[1, NJ, the following properties hold:
) ff is locally Lipschitz continuous on RN x Q with respect to u,

o There exists a function gp? bounded on every compact such that
V(u,z) € RY x Q, |ff(u,x)| < gp?(u)
e f is locally Lipschitz continuous uniformly with respect to x, i.e. ,
VK c RN, K compact,3u > 0:Vu,v € RN Yz € Q, ‘f]k(u,x) — f]’-“(v,x)| < plu—o|.
Then, we readily check that the local existence Theorem is still valid.
To define a maximal X,-solution of @, we proceed as follows. For 1 < p <

+00, consider the maximal solution (u,[0,7})) of (@) in X, (note that u does
not depend on p). The previous theorem shows that infi<,<ie T, > 0. Let

T :=inf1<p<to0 T, Using once again the above theorem, we find that there exists
T € (0,T)] such that u(t) is uniformly bounded on [0, T).

Definition 2.28. Let T* :=supT,0 < T < T such that u(t) is uniformly bounded
on [0,T). We say that (u,[0,T*)) is the mazimal Xoo-solution of the abstract
Cauchy problem @

Property 2.29. Let us keep notations and assumptions of the previous theorem.
Then

e either T* = 40,

e or T" < 400 and |[u(t)|x_ is not bounded in the neighborhood of T*~.

Proof. Let u(t) be a solution on [0;7") uniformly bounded on [0;7),T < +oo.
Denote S := supg<, [|u(t)|x_ - Let us choose a > S+ 1 and take

o (1 1 1 a—1-—S5
= min .
T "N [fallo + 1 NEo+1° M, +1
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According to the previous theorem, the equation

da T T
14 U Aa=fa) ~(T_,): (T_,>
(14) S ayi=f@ , a(T-2)=u(T-2
has a unique solution on (T -5, T+ %) It remains to concatenate u and @ to find
a solution of @ which extends u to a solution of @ on [O, T+ %) O

Property 2.30 (Regularity).
Ve (0;77),u(t) € () (G (@)™
y<1

Proof. By Sobolev embedding (see [12, Theorem 6, p. 286]), we have

(] +1-1, if L ¢N,

wWkP(Q) C’k_[%]_l’”(ﬁ) where v := {
any positive number < 1, if ]% eN.

In particular, if k£ = 2:
w2r Q) c 21 @).
Since this is true for p arbitrarily large, it follows that
vt e (0;T%),u(t) € () (C(Q)

<1

mN

2.7. Positivity. Let us assume that the quasi-positivity (P) Property
(15)
V(j, k) € [1,m] x [1, N],¥(r,...,rN) e Rﬁ,ff(rl, TR0 R Ny >0

holds. Let us consider the modified system (S) obtained from (S) replacing the
functions ff by the functions fJ’ﬂ where

k(1 N . E
fi(rgsenrit), VR €1, N7 >0,

fj“(rjl-,...,rj-v), else .

ol Ny _
fi(rgser; )—{
Denote (@%)1<x<n,<j<m the weak solution of (S), i.e.

du ~
Yv € H, <u,v> +a(a,v) = (f’v) ,
dt
where (-, -) denotes the pairing between H and its dual space H'. Note that, since

% € Xy (because it is a solution of the abstract Cauchy problem), the previous
equation can be rewritten as

du ~
Yv e H, (u ’U) + a(@,v) = (f’v) .
dt
Take v =1~ := (ﬂff)Jk as test function. We have

(G ) +atain) = (fa).
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e According to the Mignot Lemma (see [I4] p. 31]), we have

() -Ssa [([ra)e- T s g [ e
dt’ st dt Jo \ Jo 2j:1k:1 dt Jo 7

where we used that

# 0 if 0 2
/ r-dr = ", 1 Z>% :*Zi]lz<0~
0 -5, if 2 <0, 2

e Moreover, we have

e Furthermore, by construction, 11;?7 ff (@j) > 0.

From the previous inequalities, we deduce that

and the nonnegative function ¢ — Z;nzl Zivzl fQ(ﬂ;?_)z dz is nonincreasing. Since
uf (t =0) >0, it is inferred that ﬂ?_ = 0 and that ﬁf > 0. Finally, it is clear that
ﬂf is also solution of (S). By uniqueness of the solution, it is deduced that u;? > 0.

2.8. Maximal regularity on network. Let us recall that
o 1:=(0,1).
e A (= As) is the unbounded linear operator associated with the graph (see

23).

e As it will cause no confusion, we will use the same letter to denote A and
Ap, where A, is defined in

A straightforward application of Theorem shows that we have

Theorem 2.31. The operator A has the mazimal LP-reqularity Property on Xg,

for p,q € [1,+00] (see Definition . Consequently, for p = q and ug = 0, we
have

+ [ Aull e, 7x,) < CllfllLe0,1:x,)

du
[ull 2o o, wrr 0,0y + |47
L (0,T3X,)

where C' denotes a constant depending only on the data, p and T. Coming back to

the functions uf, we obtain

éé(/OT/Q|u§|p+/OT/Q|(u§)/p+/oT/Q|8tu§|P+/oT/Q(ug?)//|p>

< Clfllzro1ix,)-

Remark 2.32. Note that we may assume that C' is a nondecreasing function with
respect to T'. Consequently, if T* < 400, the previous theorem is valid for T =T*
and C may be extended to a nondecreasing function C : [0, +00) — [0, +00).

Remark 2.33. If f € LP(0,T;X,), then uf € WhP([0,T) x Q).
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Corollary 2.34. By continuity of the trace function, we have
k
||afu ||Lp (0,T)xQ) + || ||Lp ((0,T)x Q) + sup Hu (t )HLP(Q)

+ 1§ (-, 0)ll oo,y + ||Uj S Dllzeo,ry < Cllflleo,rx,)-

2.9. Poincaré inequality on network. For p € [1, +0o0], let

Hy = {u: (u, ..., um) € (WH(0,1))™ : 3d* e R x {0}, {¢+d—U(1) }

‘¢=d = u(0)
¢rd =u(l),
‘9=d = u(0)

network, as well as a Dirichlet condition at vertex v,,. Likewise, let H, := (H),
Hy x - x Hpy.

where the condition: 3d* € R~ x {0}/ { means continuity on

)N

Property 2.35 (Poincaré Inequality). Let u € H,. Then
Vp € [1,+00], ully, <m |y, -

Proof. The proof of the case p = 1 (see [25]) is easily generalized to every p €
[1,400). It is based on the connectedness of the graph and the usual Poincaré
inequality on a interval. Passing to the limit as p — 400 yields the result for
p = +o0. a

3. THE CASE OF GLOBALLY CONSERVATIVE BOUNDARY CONDITIONS

3.1. New problem. In this paragraph, we replace the Dirichlet condition at v,
with an assumption of continuity and a Kirchhoff condition at v,. Roughly speak-
ing, this corresponds to the passage from HJ(Q2) to H'(€) in the standard case of
an open subset of R™. More specifically, we are now interested in the new problem

O = o (ub)" + fF(uful), 1<j<ml<k<NO<z<l,

(é) . u;‘f(t,vi) =uf(t,v;) = dfk(t), 5, 0el(v;),1<i<n 1<Ek<N,
) T iyl (ub) (E,vi) = 0, 1<i<n1<k<N,
u§(07'):u§,jv 1S]§m

subjected to the initial conditions

ug; 2 0, 1<j<m1<k<N,
uf; € L=((0;1)), 1<j<m,1<k<N.

= Wby

The weighted incidence matrices ®F+ = (wf;r) € M, (R) and ®F;~ hy

M,.m(R) are defined by
ko oie ik ko o gk,—
Wbt = {Cj’ it iy =1, and Wi = {Cj’ ifoi; =1

) €

J 0, else iJ 0, else.

With regard to weighted incidence matrices, continuity at vertices and Kirchhoff
conditions become, in a more streamline form

Dktdut () = uk(t,1) and  ‘®F—dv () = uk(t,0),

k
Vi, Yk € [1,N],3d"" (t) € R"
Lt~ ) {‘Pff(u’“)’(to)=‘I>’$+(u"“’)’(t,1)-
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3.2. Similarities. Some properties proved in the case of a Dirichlet condition at
vy, still hold. Let us summarize the main properties that persist. Let us define the
new spaces H and H by

t4 gu” — ok
H:= {uk € (HI(O,l))m :3dv" e R, {t¢_d L (1), },
u

H::{ue(Hl(OJ)) N:Vke[[ 1,N], 3 6R"{¢ K w'(1), }
u
H and H are provided with their usual inner products:
V(u®,v*) € H x H, (u*|v*) g Z/ ubvl + (uh) (vh)'],

N m

V(u,v) € H x H, (u|v)y Z (uF|v*) g ZZ/ wivl + (uh) ()] .

k=1 k=1 j=1

Property 3.1. H (respectively H) is densely and compactly embedded in Xo (re-
spectively Xo ). Moreover, H (respectively H) is a Hilbert space.

Remark 3.2. The Poincaré inequality being no more relevant, u — Zszl Z;nzl fol ((uf)’)2
is not a norm anymore, but only a seminorm.

We have the following formula again:

Property 3.3. Let u* € H satisfying Kirchhoff conditions. Then

vw e H, Y [(u) (D) (1) = (uf) (0)wf(0)] = 0.

We also define the two bilinear forms a*, a on respectively H, H by
m 1
. !/ /
af(ub oF) = Zcé?/o (uf) (x) (Uf) (x)dx
j=1
and
m N 1 , ,
afu,0) =33k [ (uh) (@) () (@) o
=1 k=1 0
Then, a is

densely defined,

continuous on H x H: 3M > 0: V(u,v) € H x H, |a(u, v)| < M|ju||m|/v|m,
symmetric,

positive: Yu € H, a(u, u) > 0.

A (or Az) will still denote the operator associated with the bilinear form a.

Property 3.4. o The unbounded linear operator (A*, D(A¥)) associated with
a is equal to:

k_ d2 .
A dlag jd 71§]§m )
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t¢+d“k = uk(1),
k\ _ k 2 m u” n t,— gk k
D(A®) =< u € (H?(0,1))" : 3d* € R, ‘p~d* = uk(0),
S~ (WF)'(0) = Bt (uh)' (1)
e The unbounded linear operator associated with a is equal to (A, D(A)),
where D(A) = [[~_, D (AF) and A = 1o, Ak

By considering the particular case N = 1, we see that semigroup for on compo-
nent enjoys the same properties of the semigroup for N components.

Property 3.5. o — A is the infinitesimal generator of an analytic semigroup
of contractions on Xo. Interchangeably, (T>(t)),~, or (e_tA)t>O denotes
this semigroup. a
o A is a self-adjoint operator on Xo; for all t > 0, To(t) is self-adjoint.
e The semigroup (eftA)DO associated with the bilinear form a is sub-markovian,
i.€. -
— positive,
— Xoo-contractive.

Theorem 3.6. o (T5(t))t>0 extrapolates to a family of contractive semigroups
(Tp(t))tzo on Xp, 1< P < o0.
o (T,(t))i>0 is real positive for p € [1,+00].
o (T,(t))i>0 ts strongly continuous for 1 < p < oo and analytic for 1 < p <
00.

Property 3.7. Let p € (1,400). Then
e —A, has compact resolvent.

e The semigroup (e’tAP)DO 18 compact.

o 0(Ap) does not depend on p.

Remark 3.8. It should be noted that, unlike the case previously studied (with a
Dirichlet condition at vertex v, ), values p =1 and p = 400 are excluded. This is
due to the fact that ultracontractivity (which doesn’t hold anymore) is closely linked
to the Dirichlet condition.

We have the following description of A,.

Property 3.9. Let p € [1;+00].

e Let —A¥ denote the infinitesimal generator of the semigroup (T (t))i>o-
Then

t¢+duk _ uk(l),
D(AY) = {ue (WPP(Q))™ : 3d"" e R",{ 'p=d" = uk(0),
Gy~ (uh)'(0) = o~ (uF)'(1)

d2
and the action ofA’; on D(A’;) is given by: Al; = —diag <c§d27 1<5< m> .
x

o D(A,) =TIIi_, D (A%) and A, = [T, AL.

Finally, note that the local existence Theorem still holds.



26 FREDERIC KUCZMA

3.3. But also some differences. The bilinear form a is not coercive anymore,
but it is positive. Exponential stability doesn’t hold anymore since 0 € o(A) and
so w(T) = s(A) = 0. Likewise, the Poincaré inequality is no longer valid. Ultra-
contractivity does not hold neither. Indeed, according to Theorem utracon-
tractivity is equivalent to (here, d = 1):
4 4
3¢ >0:Vu € D(a) N Xy, [full3? < calu,u) |[ul|Z, .

This property is clearly not fulfilled (consider constant functions). Roughly speak-
ing, the Poincaré inequality having disappeared, we can’t estimate u according to
u’ anymore. Nevertheless, a Poincaré-Wirtinger type inequality can be established,
which is our next goal. To do this, we will need a few preliminaries.

Definition 3.10. For p € (1,4+00), H, will denote the vector space

ot =uk(1), }

H, = {uk e (W?(0,1))™ : 3d*" € R x {0}, {¢, v = uk(0)

provided with its usual norm

vt € Hy, |[ut]|,, = Z/ )
b

Likewise, we define the vector space

H, := {u € (W177’(0,1))mN .k € [1,N],3d"" e R™! x {0}, ¢+du =u*(1),

provided with its usual norm

D=

m

e Bl = (353 [ [0 + 01

Jj=1k=1
Note that, for p =2, we have Hy = H and Hy = H.
Property 3.11 (A Poincaré-Wirtinger inequality on network).
Vp € (1,400),3C > 0:Vu € Hp, ||u — (U)G”Xp <C Hu'HXp ,

where (u)g == L Z] 1 fo u;j(z) do denotes the average of u on the graph.

Proof. For the proof, we follow the guideline of [12] p. 292]. Nevertheless, we will
have to pay a special attention to the continuity at vertices. To this end, we will
use a weak convergence argument.

Let p > 1. Suppose by contradiction that the property is false. Therefore

(16) Vk € N*, Juy, € Hp : ||uk — (uk)G”Xp >k ”Duk”Xp R
where up = (Uk,1,. .., Uk,m). Let
ke N* oy, = 4 — (W)o

Jur — (ue)elly,
Evidently, we have
(17) Vk € N*, flugl[x, =1 and (vx)e =0.
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According to (16)),

¥k €N 1> k| Duglly, ie VkeN,|Dulx, <y
holds. As usual, let vy, = (vg1,...,Vkm). For every j (1 < j < m), the sequence

. is i Lp 3 . — .

(vk,j)k>1 1s bounded in WP(Q) (since [[or;llx < llurlly, =1 and [|Dvglly <
[Dvilly, < ). But, according to the Rellich-Kondrachov Theorem, W' () <
L?(Q), with compact embedding. Extracting m sub-sequences, we can assume that
every sequence (v j)k>1 is convergent in LP(§2). Denote V; such that

Viel,m], vk, P V; in LP(Q)

ie. , with V= (V1,...,Vy)
(18) vy — V. oin LP(Q)™.

k—+o00
We also know that, for 1 < p < oo, WP(0,1) is reflexive (more generally, for
all 1 < p < oo, W™P(Q) is reflexive, where 2 denotes an open subset of R™:
see [I Theorem 3.5, p. 47]). Then so is the space (Wl’p(O,l))m. Since the
sequence (vg) is bounded in the reflexive space (W'?(0, 1))m, extracting again
m subsequences, we may assume that the sequence (vg) is weakly convergent in
(Wtr(0,1))™. Consequently, there exists Ve (WtPr(0,1))™ such that

(19) vy =V veakly in (WP(0,1))™.

From and , we deduce that V = V. Moreover, H,, is closed (because it
is complete) and convex. It is deduced that H, is weakly closed (see [9, Theorem

II1.7, p. 38]). Consequently, Ve H, and then V =V is continuous on the graph.
Then, implies that
(20) ||VHXP =1 and (V)g=0.
On the other hand, for j € [1,m], let us consider ¢; € C§°(2). We have
/Q Vi da = kEI}Lloo A v,y da = — kEIJIrloo A v i de =0,

since |[Dugllyr < £. Is deduced that V; € W'P(Q) and that V] =0 on Q.
P

Consequently, V; is constant on Q. Since V is continuous on the connected graph

G, V is constant on G. This contradicts (20)). O

3.4. The bilinear form of the globally conservative operator. Later, we will
need ultracontractivity to prove that solutions of the following abstract Cauchy

problem
du

(ACP) : i +Au=f , wu(0)=wug

are global. Since, without a Dirichlet condition at vertex v,, ultracontractivity
doesn’t hold anymore, we rewrite (ACP) as

(XETD);%HAH(DU:HU . u(0) = up.

Let us introduce the new bilinear forms a* and a respectively defined on H, H by

Uk’l]k ~kukvk=mck l’l,l/k-)/(E v’-“/x X - lukkax X
V(b oh) € HxH, & (u*, ") ;J/O(j)u(])()ﬁ;/o K)ol (x)d
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and

m N 1 / / 1
V(u,v) € HxH, a(u, v :ZZC;“/O ) (x) (vf) (x)dx—FZZ/O uf(x)vf(x)dx

j=1k=1 =1 k=1

Clearly, the operator associated with a is given by A + Id.

Property 3.12. The bilinear forms a* and a previously defined are

e closed,
o densely defined,
e continuous, i.e.

IM*E >0 V(uk,vk) € HxH, |ak(uk,vk)| < Mk||uk||HHvk||H

and

M > 0:V(u,v) € Hx H,|a(u,v)|] < M||u||a|lv|m,

e symmetric,
® coercive i.e.

Jok > 0:vu* € H,a" Wk uk) > oF|[uk),
and

Ja > 0:Vu € H,d(u,u) > afjullF.

Property 3.13. Let (T(t))¢>0 denote the semigroup generated by —(A+1d). Then,

T(t) = e 'T(t) = e~te~tA. The main properties of a and A are inherited by a and
A:= A +1d. More precisely:
o —A is the infinitesimal generator of an analytic semigroup of contractions
on Xs.
o (T(t))i>0 is positive, Xoo-contractive.
o — (Tx(t))i>0 extrapolates to a family of real contractive semigroups (Tp(t))t>0
on X,, 1 <p<oo.
— (Ty(t))+>0 is positive for p € [1,+00].
— (T(t))s>0 is strongly continuous for 1 < p < oo and analytic for
1 <p<oo.
° (T(t))tzo is ultracontractive; indeed, the proof of Property is still valid.
The tmportant point to note here is that the bilinear form a is coercive.
o Compactness, mazximal regularity and positivity properties still hold.
o The local existence Theorem is still valid.

Property 3.14. Consider the following abstract Cauchy problem
du 0
(ACP) : ¥ +Au=f , u0)=u"€Xsx

where A is the unbounded linear operator previously defined (without Dirichlet con-

dition at v, ). Let u be a solution of (ACP) on the interval [0,T), 0 < T < 4o0.
Assume that

Vp € (1,+400), f € LP(0,T;X,).
Then, u € L>=(0,T;Xw).
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Proof. We first observe that, since for all p € (1, +00), f € LP(0,T;X,), necessarily
u € LP(0,T;X,) (see Property |A.30)). Consequently,

Vp>1,f+ueLP0,T;X,).
Moreover, note that (ACP) is equivalent to the new abstract Cauchy problem

(ACP):%—&—Au:f—i—u ;o uw(0) =u’ € Xo

where A = A+1d. Since A is ultracontractive (see Proposition [3.13)), Lemma
applies and u € L*(0,T; X ). O

To sum up, we will remember that, with or without Dirichet condition at vertex
vV, LP bounds of the right-hand term (for all p > 1) implies L* bound of the
solution.

Application to reaction-diffusion

In the two following sections, we propose to extend to one-dimensional networks
two theorems concerning reaction-diffusion, the first proved by Martin and Pierre
in [22], and the second by Haraux and Youkana in [I7]. These results concerning
global existence and asymptotic behavior of solutions are typical for the theories
developed in the past 30 years.

4. APPLICATION I TO REACTION-DIFFUSION: A RESULT BY MARTIN AND PIERRE

Our goal is to extend to one-dimensional networks a theorem by Martin and
Pierre (see [22, Theorem 4.2, p. 372]). We refer to paragraphs and for two
practical cases.

For convenience of readers, we briefly recall the notations. Let €2 denote the
open interval (0,1). As usual, let 9;u denote the time derivative of u and v’, u” the
space derivatives of u. Recall that m denotes the number of edges on the graph G,
and that Q; denotes the open set (0,t) x 2. Then, we are interested in the following
problem

(21) {atuj —cjuf = fj(uj,v5),

with continuity on the graph, Kirchhoff conditions and Dirichlet condition at vertex
vp. Functions f;, g; are supposed to have continuous derivative on [0, +00)?;
assume that the quasi-positivity Property

P) : Vs>0,f(0,s)>0 and Vr>0,g,(r,0)>0

holds. Assume also that the initial conditions ug = (uo,;); < j<,, and v0 = (v0,7); <<,
are nonnegative and belong to L>(Q)™. Thus, the solutions u and v of are
nonnegative.

Moreover, we will assume that the nonlinearities verify the following mass-control
structure (M)

(M) : 3FJL,M>0:VYje[l,m],¥r,s>0,f;rs)+gj(r,s) <Lr+s)+ M.

According to Theorem and Property [2.29] System has a unique maximal
solution (u,v) on an interval [0, 7*), with 0 < T* < 400. Our goal is to prove that
T = +00.
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Throughout the rest of this paragraph, and unless otherwise specified, C' will
denote a generic constant depending only on the data.

4.1. Estimates in L? (1 < p < 4+00). We recall that the method of Martin and
Pierre is based on L? estimates via maximal regularity.

Lemma 4.1. For all p € (1,400) and all T < T*, there exists a constant C
depending only on the data, p and T such that

(22)  Wollzoiguym < C (14 6ol ogaym + ool oym + llo gy ) -
Proof. Adding the two equations of leads to

(23) O (uj +vj) — c;u;’ — C?U;»’ = fi(uj,v;) + gj(uj,v;).

For nonnegative x; € C§°(Qr), let us consider the dual problem

(24) — Oy — G = x;  with ¢;(T,-) =0

with continuity on the graph, Kirchhoff conditions at vertices v;, 1 <i <n—1, and
Dirichlet condition at vertex v,, (see Remark concerning the existence of such
solutions). Since the right-hand side of Equati is nonnegative, it follows that
the functions ¢; are also nonnegative. Let multiply by et oFs

Oy (uj +vj)e oy — (cjul + vl e hy = (fi(uj,v5) + gj(uj, v5))e” ey

< L(uj 4 vy)e” " ¢; + Me ™" ¢,
i.e.
Oe(uj +vj)e " d; — L(us + vy)e o, < (cjuf + cSv))e o, + Me ¢,
i.e.
0 —tL 1,1 2 1\ —tL —tL
n [(u] +vj)e ] ¢; < (cjuj + ¢jvj Je " + Me ;.

Integrate on [0, T, and integrate by parts. Since ¢;(T,-) = 0, we have

T
— (uo,j + 0,5)9;(0,-) — / (uj +vj)e " 0,9 dt
0

T T
< / (cjuf + vl e g, dt + M/ e thg, dt.
0 0
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Then, integrate on Q = (0,1). Perform an integration by parts two times with
respect to . We obtain

/(UO,] + ’UO,_])(ﬁj dx - / / Uj + U_] —tL 6t¢] dtdx
Q

/ /clu”—i—c%” _tLgbjdxdt—l—M/ /e_tLgbjdxdt
0o Jo

:/}K&u()+cvLJ»€M@O%%@%@®+ﬁ%@®k4%ﬂﬂmdt
/ / (cjuy + c3v)) fL¢;dxdt+M/0T/QetL¢jdxdt

::Jﬁ (A (-, 1) + 2 (-, 1)e s (, 1) — (chd (-, 0) + 205, 0))e L, (-, 0)] dt

—/T [(cjui (1) + G (- 1))e™ (-, 1) = (cju;(-, 0) + (-, 0))e™ (-, 0)] dt

/ /cuj—i—c vj)e _tL¢"dJ;dt+M/ / e L, drdt.

In addition with the equality c?gb;-’ = —0t¢; — X, the previous inequality immedi-
ately leads to

L et

Uo,j + vo,j ¢]( )+/ [(cl = ) tL¢”+M ,tLd)]jI

C u] + C?vj('v 1))eitL¢;('a 1) - (C}U‘j('v 0) + C?vj('a 0))67“;(15;'('3 O)]
=L+ I+ +1;.

/
/ ) + GV e, 1) = (cjuj(-,0) + G (-, 0)e ™ ¢;(-, 0)]
A

We estimate separably each of the above terms.

e Estimate of I}.

=1} = /Q(Uo,j +20,5)95(0,) < lluoj +v0,5ll o) 1950 )l Lo
< (10,4l oy + 100,31y ) 1650 ) gy -
But Corollary yields the estimate
16500, M Loy < ClIXlLa(rym -

Then, we obtain

1711 < € (loll o ym + 1900y ) X0y -
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e Estimate of T JQ
7| = ‘/ [(cj — Huje Mg + Me " ¢;]
Qr

5/ [IC§—0§|uj|¢;’\+M¢j]e—tLg/ [

1 2 1
< |Cj - le HujHLp(QT) ‘|¢;I‘|Lq(QT) + M Q7 ||¢j||Lq(QT)
<1+|9Q|

< Cllullaomym 19" za(@ym + C 16llagomyn -
Again, by maximal regularity (see Corollary ,

¢j = csluj|6| + Moy

T

191l o(@rym < ClXllLagrym  and 16"l Laiqrym < ClIXN La@rym -

Hence the following estimate:

121 < C (1+ Tullpogpym ) XN Lagpym -

e Estimate of I]3.

m

Sor= [ e w0051 — (065, 0)]

j=1 0

T m
[ e e - 0] o

each of the two sums being equal to zero by Kirchhoff conditions (see Prop-

erty .

e Estimate of I;l. Now, let us underline that 23":1 I;L does not vanish by

Kirchhoff conditions anymore. We have
T
I; - - /O [le‘uj('a 1)¢3(7 1) - le'uj('a O)¢;(a 0)} eitL

T
- /0 [C?Uj('v 1)¢;(7 1) - CJZ’U](70)¢;(’O)] e_tL = Ij5 + Ij6

Here, > . I% = 0 by Kirchhoff conditions, and it remains to estimate

j=17J

S IP. Naturally, it is sufficient to estimate §; := ‘fOT ciui(-, 1) (- 1)’

J=173"
We have, for all p € (1, +00):

(Sj < C/o |uj('71>| ' ’¢;(’1)’ <C (/0 |uj("1)|p>

k]
VR
h
!
Y
o>
=
T e
~
Q=

where C' denotes a constant depending only on the data. Moreover, since
T < T*, we have ||uj(t)\|Loc(Q) < lu@®)llpee@ym < € = C(T). Conse-

quently,

T
$g04|@mnﬂ
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But, by Sobolev embedding, W'?(2) < C (©) (continuous embedding)
and then

55 00" < C 65y =€ ([ 16517+ [ hes1”)

which implies that

@ sec( [ flare [ [lar).

But, according to Lemma [B.I] we have

[ =e(for o)

and inequality (25| . becomes

5gsc</0T/Q|¢j|‘J+/OT/Q!¢;’!q>.

Moreover, by maximal regularity (see Corollary [2.34 m
”QSHL‘I(QT)W <C ||X||Lq(QT)m and H¢N||L(1(QT <C ”XHLq(QT)m .

Hence the following estimate:

0; <C ||XHLq(QT)m -

It remains to concatenate the previous estimates to find

Z/ (uj+v)eFx; < C {1 + luoll Lo ym + lvoll Lo ym + HUHLP(QT)"L] X[ o (Qgym -
— T

and then

Z/ (uj+vj)x; <C [1 + HUOHLP(Q)"L + HUOHLP(Q)m + ||UHLP(QT)W] ||XHL<1(QT)m :

; T

Taking xx = 0 for k # j, we have

/ (uj +vj)x; <C [1 + HUOHLP(Q)W + ||UO||Lp(Q)m + ||u||LP(QT)m:| ||Xj||Lq(QT) )

T

which implies
s + 05l oy < C [1# o]l ocym + 100l ym + 6l gy | -
Summing these inequalities for j from 1 to n yields

lu+ vl ogpym <C [1 + lluoll Lo @y =+ llvoll Loy + ||u||LP(QT)Mi| ;

and finally, since u and v are nonnegative, we obtain:

||”HLp(QT)m < lu "‘“”LP(QT)W <C {1 + ||“0||Lp(9)m + ||UOHLP(Q)7” + HUHLP(QT)?”] .
d

Remark 4.2. Interchanging u and v, we also have

el o rym < € (1+ Ioll gy + Nooloayn + Ioll o gpyn ) -
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Remark 4.3. As in Remark[2.53, we may assume that C' is a nondecreasing func-
tion with respect to T and, if T* < 400, C' may be extended to a nondecreasing
function C' : [0, +00) — [0, +00).

4.2. Main statement.

Theorem 4.4. Let us consider the mazimal solution (u,v) introduced in the pre-
vious paragraph. Assume that there exists a continuous, mondecreasing function
Ni : [0,+00) = [0, 4+00) such that

(26) vt € [0,T7), [|u(t, ')”Loo(ﬂ)m < Nq(t)

as well as a nonnegative real number o and two nonnegative functions Ly, My :
[0,400) — [0, +00) such that

(27) Vie[l,m],vr,s >0,[r <R=|g;i(r,s)| < Li(R)s® + Mi(R)].

Then, T* = +oo and the solution (u,v) is global.

Proof. Suppose by contradiction that T* < 4oc0. By assumption, we have
VT < T [[u(T, )| Lo (ym < No(T) < No(T)

and then u € L (Q7+)™. According to Property for all p > 1, we have

VI <T", ||UHLP(QT)m <c(T) (1 + ||u0||LP(Q)m + ||U0||LP(Q)M + ||u||LP(QT)m)
< C(T) (1+ ol g ym + 0ll oy + il oy ym)
< C(T7) (1 + lluoll o @ym + [1voll o (@ym + ||u||L°°(QT*)m) < +o0

because, since Qp- is bounded, L>®(Qr+) C LP(Qr+) and because we may assume
that T — C(T) is nondecreasing. Consequently, v € LP(Qp-)™ for all p > 1. Since,
by assumption

> 11055, 07)] < Ly (I e ) ¥ + M1 (1]l 1 g ) -
we have
Vp > 1, |g;(uj,v;)| € LP(Qr-).

Proposition [2.17 (or if we work without a Dirichlet condition at vertex v,,)
claims that v € L*®(Qr~)™. This leads to a contradiction and the solution is
global. O

4.3. Generalization to linearly growing source f. Let us replace L*-a priori

estimate by
Vj € [[1,m]] ,HAj,Bj,Dj S [0,4—00) : VUj,Uj >0, fj(uj,vj) < AjUj + Bj’l)j + Dj.

Note that we only estimate f;, and not |f;|. Without loss of generality, we can
suppose that the constants A;, B;, D; do not depend on j. Let A, B,D denote
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these constants. For all p > 1 we have
(28)
1d

My = 5 [ = [ B
:/Qu?_l[l H+f1(u]’vj)] S/Qui;_l[l //+Au]+BvJ—|—D]
=c}/u§1”+A/u +B/ W o+ D [ b

Q Q

- - 1
cjl-/ﬂup 1u;'_|_AHujHiP(Q)—|—B/Qu 1}]+D/ P
.7l 2 3 4
= I+ BT

e Estimate of I Jl an integration by parts shows that

(29) Z Z / DuP~ (u})? < 0.

e Estimate of Ij’: thanks to Holder inequality, we have

foree (o) () = ()’ (1)

ya
(30) = ||uj|| . ijnm) = g 1 iy 197 o
1
<- H us | o + uvj||Lp(Q)—guu]Hm)+ 1917 0

where we used the Young inequality.
e Estimate of I;»*: Same as previous with v; replaced by 1, we have

_ 1
(31) L < Sl + 5
Adding ) for < j < 'm, and using (29| , and , we find
P
S I
B 1, o 1
<A ”“HLp(Q m+B Hu”Lp Q)m ]; ”v”LP(Q)m +D q ”“j”Lp(Q) + D

< C(p) (I1ull ym + ||v||m +1).
Let us integrate this inequality between 0 and t; we find
Hu( )”LP(Q < ||u0||LP (£2)m + C(p) |:||u||LP (Qe)™ + ”’UH]Zp(Qt)m +t}

< Clp,t) [1+ [l g, ym + 101 guym

where C(p, t) denotes a generic constant depending on the data, ¢ and p. Replacing
T by t, we may invoke Inequality to find

(e Wy < C.8) [14 0l
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which is equivalent to

t
ut, Wy < C01) [1 + [t ->|’zp<mm] ds.

This is a Gronwall-type inequality. This allows to estimate [[u(Z,-)||(q)m for all
t > 0. Indeed, we have

X(t) = Jy luls, Mo qym ds,
alt) = C(p,1)

where a € L7 ([0, +00)) (because a is nondecreasing with respect to t) . A classical

computation shows that

¢ ¢
t d t t
X(t) < / a(s)els 1) d= g5 = 7/ d—efs a(x)dz g5 = elo a(z)dz _
0 0

(32) X'(t) <a(t)X(t) +alt) with{

s
Suppose, by contradiction, that 7% < +oo. Then,

Vi e [0,T%), X(t) <els a®dz _q
and X (¢) is bounded on [0,T*), i.e. u € LP(Qr-)™. So, Lemma (4.1) claims that

v € LP(Qr+)™. Now, let us consider the solution w = (wy,...,w,) of the system
Vj € [L,m],dww; — cjw] = Au; + Bv; + D with w(0,-) = u(0,-).

From the foregoing, Au; + Bv; + D € LP(Qp-), and this for all p > 1. According
to Proposition 2.17] (or Proposition if we work without Dirichlet condition at
vertex vy,), w; € L>(Qr-). Since f;(uj,v;) < Auj+ Bvj + D, comparison Lemma
yields
Viel,m],u; <w.

Moreover, we know that u; > 0. Therefore

Vje[l,m],0<wu; <w,
and then u € L>®(Qrp+)™.
Then, the estimate shows that g;(u;,v;) € LP(Qr+),Vp > 1. Again, L? bounds
of g imply L*°-bound of v, i.e. v € L>®(Qr~)™. This contradicts Property and
we deduce that T* = +oo: thus, the solution is global.

4.4. Application to one-dimensional domain with piecewise constant dif-
fusion coefficients. Consider the reaction-diffusion system

{@u(t,w) — (M) (t,2)) = flu,0),
v(t,x) — (A(2)'(t,2)) = g(u,v)

on an open interval I C R and where ¢!, ¢? are piecewise constant diffusion co-

efficients. For the sake of simplicity, suppose that I = (0,L), where L € N* and
suppose that ¢!, ¢? are constant on every subinterval (k—1,k), k € [1, L]. Assume
the following initial and homogenous Dirichlet boundary conditions:

u(0) = u® € L>®(I),v(0) = v° € L=®(I) and w(0) =v(0) = u(L) =v(L) = 0.
Thus, the standard weak formulation of the system contains

e the continuity of u,v,
e the fluxes conservation conditions at every node: these are the Kirchhoff
conditions.

(33)
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I

Dirichlet

Dirichlet Kirchhoff

FIGURE 4.

This problem naturally enters the general framework previously described in the
setting pictured in figure

4.5. Extension to N x N systems; example of the bloodstream oxygena-
tion. The previous LP-method can be extended to more general systems corre-
sponding to N chemical components. As a concrete application which is naturally
posed on a network domain, let us consider the following system which models
bloodstream oxygenation (see [4], [13], [29]):

Oput — ct(ul)’ = Kou? — Kyutub,
Ou? — 2 (u?)" = —Kou? + Kjulud,
(34) o3 — A(u?) = Kyu* — Kzudu®,
atu4 _ C4(u4)// _ —K4u4 + K3u3u5,
Ou® — S (ud) = Kou? + Kqut — Kyutu® — Kzudu®.

Here, w1, us, us, ug, us represent the concentrations of the species Oz, HbOsy, CO4,
HbCOs, Hb and K1, Ks, K3, K, are the reaction rates. Once again, we can exploit
the LP-method to extend [28, Theorem 3.5, p. 430] to show that the previous system
has a global solution. To be more precise, it is sufficient to ensure the existence of
b = (b1, ba, b3, by, bs) € M51(R) and a lower triangular invertible 5 x 5 matrix P
with non negative entries such that

Vr = (r1,72,73,74,75) € [OvJFOO)S?Pf(T) <

5
1+ Z?"Z‘| b
1=1

where

Kaorg — Kyrirs
—Kors + K175
f(r)= Kyry — K3rsrs
—Kyry + K3rars
Koro + Kyry — Kir17s — K3rars
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But we have

1 0 0 0 O KQ’I“Q —K1T17"5 KQ’I“Q
110 0 O 0 0

0 01 0 O f(T) = K47’4 - K37’31"5 S K47’4

0 01 10 0 0

00 0 01 Korg + Kyry — Kyrirs — K3rsrs Korys + Kyry

and the conclusion follows.

Given the tools developed in [4] concerning asymptotic behavior, as well as the
contents of the section [2| we conclude that the results of [4] naturally extend to
networks.

5. APPLICATION II TO REACTION-DIFFUSION: A RESULT BY HARAUX AND
YOUKANA

Once again, let us consider a one-dimensional network with n vertices, m edges
and 2 chemical components. Let u; := u},vj = u? denote the respective concen-
trations of each chemical component on the edge j. Let ¢; € C1(R.,R) be m
nonnegative functions. We assume that

) In(1+ ;(r
Vi e ﬂl,mﬂ,w — 0.

r r—4o00

g,
Typically, ¢; satisfy 0 < ¢,(v;) < e’ with 0 < B; < 1and o > 0. We are
interested in the following reaction-diffusion system

(35) Opu; — cjuf + uje5(v;) = 0,
vy — v —ujp(vy) =0
where u := (u1,...,un), v:= (v1,...,0,) are continuous on the graph and where

Kirchhoff conditions and, optionally, Dirichlet condition at vertex v, hold. It is
proposed to prove that the problem thus posed has global solutions. This will
extend to networks the existence result by Haraux and Youkana ([I7]). We will
also include the analysis of the asymptotic behavior of these solutions.

We will write ujo := u;(t = 0) and v; o := v;(t = 0). In the sequel, we assume
that ujo > 0 and vjo > 0. Recall that Q denotes the open interval (0,1). For
T > 0, we recall that Qp := (0,T) x Q. Let Cp((0,4+00) x Q) denote the space of
real, continuous and bounded functions on (0, +00) x Q.

5.1. Global existence. According to Theorem[2.25]and Proposition[2.29] we know
that has a maximal solution (in the sense of definition on [0,T*). To
prove that the solution (u,v) is global, we need to verify that (u,v) is uniformly
bounded on every Q77, 0 < T < T, T < +o00.

Lemma 5.1. Let (u,v) be a solution of on (0,T). Then, for all j, u; > 0.

Proof. The right-hand side (i.e. the nonlinearities) clearly satisfy the quasi-positivity
Property (P) (see(15])). The conclusion follows. O

Lemma 5.2. Let u = (u1,...,Up),v = (v1,...,0n) be a solution of on (0,7T)
Then, there exist two real positive numbers € and §, depending only on the data
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such that
m
t— Z/ {146 [uj(t,z) + u?(t, z)]} =12 dg s nonincreasing on (0,T).
j=1"9
Proof. This is exactly the same proof as in [I7, Theorem 1, p. 160], the vertices
terms vanishing by Kirchhoff conditions. ([l

Theorem 5.3. Let ¢; € C*(R;,R) be m nonnegative functions. Let us consider
the reaction-diffusion system

(36) Ovuj — cjuf +ujpi(v;) =0,
O, — c?v;-’ —ujpi(v;) =0
where u = (u1,...,Upy), v = (V1,...,0y) are continuous on the graph and satisfy

Kirchhoff condition, with nonnegative initial conditions (u;0)i1<j<m n L™(Q).
Moreover, assume that

(1 + ¢;(r))

1
Vj e [1,m], — 0.

r r—+00

Then, the solutions of are global.
If in addition we assume a Dirichlet condition at vertex v, , then the solution is
uniformly bounded for t > 0.

Proof. Let T < T*,T < +o0. Set any p > 1. Take §,¢ > 0 as in Lemmal5.2] Since
In(1+ ¢;(r))

r r—r+00

Vi el,m], 0,

we have, for r > V sufficiently large:

(14 9;(r) _ =
— T 2 < e 1 ; <epr',
. , ie +i(r)<e

Let K := max;<j<mSuPg<,<y (1 + ¢;(r)). Then
Vr > 0,14+ ¢;(r) < Ker” and then Vr > 0,p;(r) < Ker".
It is deduced that

2= [t ke [ oo,
j=1 Q j=1 Q
Since 1446 [uj(t,a:) + u?(t, x)] > 1, we have
¢ < KPZ/ {1406 [u;(t,z) +u§(t,x)]}eeuj(t,x) da.
j=1"%

Finally, since t — >0, [, {140 [u;(t, ) +u3(t,2)] } e (t:2) dg is nonincreasing
on (0,7),

¢ < KPZ/ {1406 [u;(0,2) +u3(0,2)] } e« *) dz
j=1"9

=K? Z/ {1+ [ujo(z) + ufo(z)] } eU30(®) qg =: C,
j=1"%
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the constant C' being independent of ¢. Since T is finite, an integration from 0 to
T shows that the functions ¢;(v;) belong to LP(Qr) (recall that Qr = (0,T) x Q).
Since the functions u; are uniformly bounded (by maximum principle, ||u;l|| L) <
||Uj,0||Loo(Q)), the functions u;p;(v,) belong to LP(Qr). The previous computations
being valid for all p > 1 , Property asserts that v € L*°(Qr)™. Finally, the
solution is global.

Assume in addition a Dirichlet condition at vertex v,. So, the semigroup (e_tA)

>0
is ultracontractive. The previous computations show that |lugp(v)|| x, < C, where

the constant C' does not depend on t. Consequently, u;p(v;) € L>(0,+o00; LP(£2)).
We are in position to apply Property which claims that v; € L>°(0, +00; L>(12)).
U

5.2. Asymptotic behavior.

Property 5.4. Let (u,v) be a nonnegative solution of , continuous on the graph
and satisfying Kirchhoff conditions. Suppose, in addition, that for all j € [1,m],
we hav uj,vj; € Cp((0,+00) x Q) , where C((0,+00) x Q) denotes the vector
space of continuous functions o : (0,+00) x Q — R bounded on (0,+00) x Q. Then

lut) ~ wllx 0,

lo@) = v*llx. =0,

where u*, v* are two nonnegative real numbers such that ¥j € [1,m] ,u*p;(v*) = 0.

Proof. In the remainder of the proof, as a convenience, ||Hp ,1 < p < 0, will denote
(if there is no possibility of confusion), interchangeably the norms -1, q), [ X,

e Integrate the first equation of , namely Oyu; — c}u;’ + ujpi(v;) = 0.
After summing with respect to j, we obtain

d m m
(37) EZ/QUJ dz = —Z/Qujgoj(vj)d:v <0.
j=1 Jj=1
Then, integrate the equality between 0 and ¢, getting
m m m t
Z/ wj(t,z)de — Z/ ujo(z)de = —Z/ /ujgo]—(vj)dacds
=/e =re =0 Ja

hence

mo ot
OSZ/ /ujgoj(vj) dz ds

= _Z u;(t, x) dx—i—Z/ ujo(z)de < Z/ ujo(z)de,
j—1/QT j=179 j=1"¢

which proves that for all j, t — [, u;@;(v;) dz € L*(Ry).
Identify also shows that the function ¢ — Z;nzl Jo uj(t, z) dz is non-
negative nonincreasing; so, it has a limit as t — +oco. Let u* denote the

5This is the case, in particular, if in addition we assume a Dirichlet condition at vertex v,.
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real number such that

:tﬂlmz/szuj (t,7)

e Moreover

baS [ ar= 3 [wlar= 35 [ungar- [ et
:_Zc;/ﬂu;?dm—/ﬂuiwj(vj)dx.
j=1

Integrating between 0 and ¢, we get

ic}/ot/gu;?dxdsqti/ot/ﬂu?@j(vj)dxds
= =

%Z/ tx :cffZ/ “(t,z)d
S;i/ dz.

This shows that for all 7, the function ¢ — fQ u}z dz is integrable on R .

e To study integrability of ¢ — [, v;-Q dz, we write

1d ¢
5?5 /v dx—g /vjavjdx—g /UJ’U d;v—i—g /ujv]gojvj
=38 [ Y [ et
=1 Q j=17%

Integrate between 0 and ¢ and then estimate:

Z / / U’deds
1
=3 Z ] odz — Z t x)
+Z/ /uj(s,x)vj(s,x)cpj(vj(s,x))dxds
j=1"0 7@
1™ moetoo
< 52/ 3 d:E—&—Z/ /uj(s,:c)vj(s,:v)goj(vj(&x))dxds
= /e = Jo Q
1 m ) m +oo
52 V5o dx+2||ijoo uj(s,x)p;j(vi(s,z))deds < +oo.
j=179 j=1 0 L

<+oo

IN

Hence the integrability on R, of the function ¢ — fQ v 2 da.

41
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e By summation of the two equations of (3F)), integration on 2 and summa-
tion with respect to j, we find

d & m m
EZ/(“J'MJ)M:ZC}/“Q’d“ZC?/vé—’dff=0'
j=17% j=1 Q j=1 Q

We lastly integrate between 0 and ¢, which gives

Z /Q(uj(t7 x)+vi(t,x))de = Z /Q(ujp +vj0)de

Since Y°7" ) [ uj(t, ) dz has a finite limit as ¢ — +oo, it is the same for
doieq Jovi(t,z) da. Let v* be such that

:ti%z/vjm

e In appendix we show that techniques used in [I6] apply and then, for
all 6 > 0, we have uj,v; € Cg(d,+00;C1(Q)). According to the Ascoli
Theorem, the family (u;(t)):>1 is relatively compact in C(2). Conse-
quently, there exists a nondecreasing sequence (7,) of [1,4o00[ converging
to +oo such that (u;(7,))n>0 is uniformly convergent on €. Let u; :=
lim,, 400 w;(7,) and let @ := (U1, . .., Um)-

o Let m,(t) denote the average of u on the graph i.e. m, (t) = -5 37" [ u;(t, -) da.
According to the Poincaré-Wirtinger inequality for networks (see Property

3.11)), we have, for all p € (1, +00):
[u(t) = mu@)]l, < C[|Dull, .

Then, for p = 2 and taking the square power, we get

(38) [u(t) = ma ()3 < C | Du(t)]5-
But
[u(t) = mu ()5 = Z/Q(uj(t’ ) = mu(t)? dz
= Y U 2dx Y m?2 T —2m - U T
—E/Q J(t.)7d +Z_j/ﬂ 2(t)dr -2 m;/g (8.
:Z/Quj(t’)2dx+m mu(t) 2m mu(t)
:Z/Quj( ) dz —m - mi(t)

Now, the function ¢ — Y™ =1 Jo usi(t ,-)?dx is nonincreasing, and so it has
a finite limit.

Likewise, the function t +— m2(t) = L5 (Z] Lo u(t )dx) is nonin-

m2

creasing, and so it has a finite limit. Consequently ¢ — |lu(t) — mu(t)||§
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has a finite limit as t — +o00. Let £ := limy_, o ||u(t) — mu(t)||§ Accord-
ing to
lu(t) = mu (t)ll; < Cl|Dull;
i

with ¢ — ||Du(t)|\§ =211 Jouj” da integrable on Ry It is deduced that
¢ =0 and ||u(t) —my(t)l]l, — 0. Since m,(t) — wu*, it follows that
t——+oo t——+oo
* . 2 m
u(t) S W in L?(Q)

e To obtain a contradiction, suppose that (u(t));>0 does not converge uni-
formly on Q toward u* as t — 400, i.e. that [Ju(t) — u*|| 74> 0. In this

7l—> oo
case, there exists € > 0 and a nondecreasing sequence (7,,) of nonnegative
numbers which converge to +o0o such that

vn, [|u(r,) —u*||, > €.
By the relative compactness of the family (u(t)), and according to the Ascoli
Theorem, there exists a subsequence (7y(,)) such that (u(7y(,))) converge

uniformly on Q. Since uniform convergence on Q imply L2-convergence

(because 2 is bounded), and by uniqueness of the limit, u(Ty(n)) _>—+> u*

uniformly on Q. Hence, we get a contradiction.
e Now, we have to deal with v. To this end, come back to the second equation,
namely

0
% = czv;’ +ujpi(vy), Vje[l,m].

Multiply by v;, sum with respect to j and integrate by parts; we obtain:

thZ/v dz = — Z /U’de—i—Z/qujgo] (v;)d

Let us integrate between 0 and ¢:

m 1 m m t m t
Z/ ”i(t)zdx_52/ viode = _ZC?/ /”§2dxd3+2/ /Ujvjwj(vj)dxd&
Pl i = JoJa =ilo Ja

Now, by assumption, v is uniformly bounded on R. Consequently

t t
[ [ wvsestopldeds <ol [ [ ugestop dods.
0 JQ 0 JQ

In addition, we know that the function t — fQ uj@;(v;) de is integrable on
R. Therefore, the function ¢ — 377" fot Jo ujvie;i(v;) deds has a finite
limit as t — +o0.

Likewise, the function ¢ +— fﬂ v’ 2dz is integrable on R;. Consequently,

the function ¢ — Z] 165 fo ’de ds has a ﬁnite limit as t — +oo. It
is deduced that the function t — Zj 1 fQ vj(t)>dx has a finite limit as
t — 4o0.

Moreover, we have seen that ¢ — E;nzl Jov;(t,z) dz has a finite limit as
t — 4o00. So, we are allowed to reiterate the method used for u, which
leads to

v(t) — v* in L2(Q)™

t——+oo
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e The compactness argument used for u is valid also for v and it shows that

v(t) N v* uniformly.

e For all j € [1,m], u; B u* and v; Mo v* uniformly on Q. Con-
—+o00 —+00

sequently, since ¢; is continuous, u;p;(v;) B u*p;(v*) uniformly and
—+00
then [, u;p;(v;)dx e Jouej(v*)dz = u*p;(v*). But, the function

t — Jou;0;(v;)dz is integrable on Ry. Necessarily, [, u;p;(v;)dx el

0. Finally, we obtain
Vj e [1,m],u"p;(v*) =0,
which is the desired result.
O

Remark 5.5. Assume we imposed a Dirichlet condition at vertex v,. Then, we
necessarily have u* = v* = 0.

5.3. A partial extension in the manner of Barabanova. Following Bara-
banova (see [8]), we can partially generalize the result of Haraux-Youkana, assum-
ing an exponential growth of ¢; (recall that the exponential growth is not attained
in the hypothesis of Haraux-Youkana). In this case, and provided that the initial
condition is small enough, the solutions are global. This additional assumption may
seem rather surprising. The point is that the Lyapunov functional of Barabanova
depends on the L>°-norm of the initial condition u® whereas that of Haraux and
Youkana does not. More precisely, the following properties hold.

Property 5.6. Assume that
Ja>0:Yr > 0,¢,(r) <e.
Let u = (U1,...,Um) and v = (v1,...,0y) be solutions of on [0,T). For
C, 5 > 0, consider the function
1.2
dejc;

C B
g:ur gu) = < > where 8= 1glgnm 7(0]1 e

C—u ;
Then, there exist 3> 0,C > |uol|x_ and p > 1 such that the function

m
13 [ ot an
j=1"9

is nonincreasing on [0,T).
The previous property yields the following global existence result.
Theorem 5.7. Assume exists a > 0 such that
Vj e [1,m],Vr>0,¢(r) <e*.
Let (u,v) be a solution of , with ug, vy € Xoo monnegative satisfying

4ctc?
Juollx_. < B with B= win B -
Tooa 1<j<m (¢ — ¢5)?

Then, the solution (u,v) is global. Moreover, if in addition we assume a Dirichlet
condition at vertex v, then the solution is uniformly bounded.
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We previously prove that,

lu(t) —u HXoo t_:go 0 and |v(t) —wv ”Xoo t—:)oo 0

where u*,v* are two nonnegative numbers such that Vj € [1,m],u*p;(v*) = 0.
In the sequel, a Dirichlet condition at vertex v, is required. Consequently, as
seen before, u* = v* = 0. It is also assumed that the functions ¢; are given by
@;(r) =e™", where o; denote nonnegative real numbers.

Let (T (t))1=0 (respectively (T72(t))¢>0) denote the semigroup on X, governing the
equation Oyu; — cjlu;.’ = 0 (respectively Oyv; — c?v}' = 0) with continuity on the
graph, Kirchhoff conditions and Dirichlet condition at vertex v,,.

Let —AF (k € {1,2},p € [1, +00]) denote the infinitesimal generator of (T (t)):>o-
Lastly, for 1 < p < 400, A* will denote the smallest eigenvalue of A* (recall that
J(A’;) does not depend on p and that A* is nonnegative since A* is accretive). The
following property describes the asymptotic behavior of u(¢) and v(t) as t converges

to 4o00.

Property 5.8. Let (u,v) be a global nonnegative solution of , continuous on
the graph, with Kirchhoff conditions and Dirichlet condition at vertex v,. Then
vt >0, [[u(t)] x_ < Ce (A

and

VE >0, [lo()llx,. <

Cle= min(\HIANE Gl L] £ )2,
CL+6e™ if A +1=)2

APPENDIX A. THE ABSTRACT SETTING UNDERLYING THE ANALYSIS

A.1l. A few remainders about semigroups. For the sake or readability, we
include some essential facts about semigroups of linear operators on Banach spaces.
We mainly refer to [27] (but also to [5],[11]) for details and further results. We pay
particular attention to extrapolation of semigroups, to operator defined by bilinear
forms (see [26]), to their ultracontractivity and L>°-bounds, and finally to maximal
regularity (see [24]). Indeed, these are the key arguments of the analysis developed

in sections [ and

A.1.1. Semigroups; strongly continuous semigroups.

Definition A.1. Let X be a Banach space.

(1) A semigroup (T'(t))i>0 is as family of bounded linear operators T(t) : X —
X such that

T(0)=1dx and Vs,t>0,T(s+T)=T(s)T(t).
(2) The semigroup (T'(t))¢>0 is strongly continuous if
Ve e X, T(t)x — =x.
t—0+
It is also said that (T(t))i>0 is a Co-semigroup.
(3) (T'(t))t>0 is a semigroup of contractions if for all t > 0, T'(t) is a contrac-

tion, i.e.
Ve e X, [T@t)xl x < llz]x -

Definition A.2. Let (T(t))t>0 be a Cy-semigroup on the Banach space X. We
call infinitesimal generator of (T'(t))¢>0 the unbounded operator A on X defined by
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e D(A) = {x € X : limy_,o+ T(t)f_'r exists},
e Vx € D(A), Az = lim;_,o+ Tt)z—=z

t
T(t) is also denoted by e'.

Remark A.3. The notion of semigroup is particularly powerful to study the exis-
tence and the uniqueness of solutions of abstract Cauchy problems. More precisely,
let X be a Banach space and let A be an unbounded linear operator on X. Consider
the following abstract Cauchy problem:

_ du(t) = Au(t), t>0
(39) (ACP) {u(O) . :

We say that a function u : [0,T[— X is a classical solution of abstract evolution
problen{’| (ACP) if

o u is continuous on [0,T), continuously differentiable on (0,T),

o Vi€ (0,7),u(t) € D(A) and is satisfied on (0,T).
It is shown that (see |27, Theorem 1.2.4, p. 4]) if A is the infinitesimal generator
of a Cy-semigroup (etA)t>0, then, for all x € D(A), (ACP) has a unique solution,
given by u(t) = e*4x. We say that the problem (ACP) is well posed.

Property A.4. Let (etA)t>O be a Cy-semigroup. Then, there exists w € R and
M > 1 such that B
vt >0, IT(t)]] < Me*".

Definition A.5. Let X be a Banach space and A an unbounded operator on X.

e The resolvent set of A is the set p(A) of all X € C such that N\l — A s
invertible, i.e. (\l — A)™1 is a bounded operator on X.

o The spectrum of A is the set o(A) = C\p(A).

o The numbers A € o(A) such that \I— A is not one-to-one are the eigenvalues
of A; the collection, denoted o,(A), of such elements is the point spectrum

of A.

Theorem A.6 (Hille-Yosida). Let X a Banach space and A an unbounded lin-
ear operator on X. Then, A is the infinitesimal generator of a Cy-semigroup of
contractions if and only if

o A is closed, densely defined i.e. D(A) = X,
o The resolvent set p(A) of A contains (0,400) and
1
VA> 0 RO A < -

Definition A.7. Let X be a Banach space and let A be an unbounded linear oper-
ator on X. We say that A is accretive when

Vo € D(A),YA >0, || AT+ A)z| > |z -
Remark A.8. Let X be a Hilbert space. It is shown that A is accretive if and only

if
Vx € D(A), (Az|x) > 0,

6 Not to be confused with the classical solution in the meaning of the partial differential
equations for the partial differential equation underlying (ACP).
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where (+|-) denotes the inner product on X. Roughly speaking, A is accretive means
that for all x € D(A), x and Ax point to the same direction.

Theorem A.9 (Lumer-Phillips). Let X be a Banach space and A an unbounded
linear densely defined operator on X. Then, the following properties are equivalent:

o —A is the infinitesimal generator of a Cy-semigroup of contractions in X,
o A is accretive and IXg > 0: R(A\oI+ A) = X,
o A is accretive and YA > 0, R(AI+ A) = X.

A.1.2. Differentiable semigroups.

Definition A.10. Let X be a Banach space and (T(t))i>0 a Co-semigroup on X.
We say that (T(t))i>o is differentiable when for all x € X, the function t — T(t)x
is differentiable on (0, 400).

Property A.11. Let (T(t))i>0 be a differentiable Cy-semigroup on the Banach
space X. Then
o Vz e X,Vt>0,T(t)ze (| D(A".

neN
o The functiont — T(t) is a C*-function on (0, +00) in the uniform operator

topology.
Remark A.12. Let us consider once again the abstract Cauchy problem (ACP).
Assume also that (etA)DO is differentiable on (0,+00). Then, for all x € X,
(ACP) has a unique solution (see [27, p. 104]). Note that the differentiability
removes the need x € D(A).

Property A.13. If (T(t))i>0 is a differentiable Cy-semigroup then (T(t))i>o is
infinitely many times differentiable in the norm operator topology, for t > 0.

A.1.3. Analytic semigroups.

Definition A.14. Let (T(t))i>0 be a Co-semigroup on the Banach space X .
o fory e (0, %], Ay denotes the angular sector

Ay ={z € C\{0} : |argz| < ¢} .

o We say that the semigroup (T(t))i>o0 is analytic if there exists ¢ € (07 g]
and an extension (T'(2)).ea, such that
— The function z — T(z) is analytic on Ay,
— Y(21,22) € A}, T(21 + 22) = T(21)T(22),
— Vo e X,lim, ,0.ca T(2)x = x : in other words, (T'(2)).ea, is strongly
continuous at 0.

Definition A.15. Let us now consider the inhomogeneous abstract Cauchy problem

{f};;(t) = Au(t) + f(t), t>0

(40) (ACP)) .~

where f:[0,T[— X. We say that the function u : [0, T[— X is a classical solution
of (ACP;) when

o u is continuous on [0,T), continuously differentiable on (0,T),
(

e Vi e (0,7),u(t) € D(A) and is satisfied on (0,T).
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Remark A.16. The analyticity assumption allows, under certain conditions on f,
to ensure the existence of solutions of the problem (ACP;), and that, for allxz € X.
For example (see |27, p. 113]), assume that A is the infinitesimal generator of an
analytic semigroup (T(t));>0. Let f € L'(0,T;X) be locally Hélder continuous on
(0,T). Then, for all x € X, the problem (ACP;) has a unique solution.

A.2. Extrapolating semigroups. We refer to [5] for more details about extrap-
olating semigroups. From now on, all the measures are supposed o-finite.
Let (Q, A, 1) be a measure space. For S € £(L*(Q)) and 1 < p,q < 0o, we define

HISIHL(LP(Q),H(Q)) by

10t @.oten) = 500 LISl gy = F € Q) VLA, |y <1}
We will assume that for p € {1; 00}, we have
(41) M V€ [0, 1T 2 ro () < M-
By interpolation, this inequality is always true for alﬂ p € [1,00]. From we

deduce the existence of a real number w such that (see [27, Theorem 2.2, p. 4])
Vp € [17 OO]’Vt =0, mT(t)”lﬁ(LP(Q)) < Me®'.
Indeed, if 0 <t < 1, we have
o T(t) : LY(Q) N L?(Q) — LY(Q) N L?(Q) is continuous with respect to the
norm L', with

vt € 0,10, Tl £ 110y < M.

o T(t): L>®(Q) N LA(Q) — L>(Q) N L?(Q) is continuous with respect to the
norm L°°, with

vt € [0, 1, 1Tl £ () < M-

e By interpolation, for all p € [1,00], T'(¢) : LP(2) N L%(2) — LP(Q) N L?(Q)
is continuous with respect to the norm LP, with

vt € 0,1 1Tl 2(1r () < M.
Now, for t > 0, p € [1,400] and f € LP(Q), we have, with n = [t] and t =n+0,d €
[0,1]:
1T fll Loy = 1T +8) fll 1oy = 1T TE) fll oy < M fll o) = MM™ || fll 1o
= Me" "M || fll oy < MM fll o) = Me“ (| fll oo

and then [|[T'(t)]| ,»(q) < Me“* where w =In M.

For 1 < p < oo, and by density of LP(Q) N L?(2) in LP(Q) (hence the hypothesis
p < 00), we deduce the existence of continuous linear operators T,,(t) € L(LP(12))
which are consistent i.e. such that

Vt > 0,p,q € [1,00[,Vf € LP() N LY(Q), T, (1) f = To(t) f

and such that
Vit > 0,Ta(t) = T(t).

7Strictly speaking, this inequality is true only for complex-valued functions. For real-valued
functions, we have to double the coefficient M. See [30]. Nevertheless, the operators we will
consider will be associated to a real bilinear form. Consequently, we can get rid of this coefficient
considering complex spaces; the sesquilinear forms, with real coefficients, will be in fact real.
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Property A.17. [ p. 61]
o Forl<p< oo, (Ty(t))i>o is a Co-semigroup.
o If Q has finite measure, then (T1(t))i>0 is also a Cy-semigroup.

A.3. Ultracontractivity. In the following, we define ultracontractivity for general
semigroups. In practice, for one-dimensional networks, we will allways have d = 1.
However, in the forthcoming work [3], we will use general d € N*.

Property A.18. [5 p. 65]
Let d > 0 be a positive number. Let (Q, A, 1) be a measure space and (T'(t))i>0 a
Co-semigroup on L?(Q). Then, the two following properties are equivalent:
e 3¢>0,1<p<q<00:Vte (O NTO s poiey poey < et FG7).
_d(1_1
o 3> 0/V1<p<q<oo:Vte (01T popmoy poy < et 21,
Definition A.19. Let (Q, A, 1) a measure space and let (T'(t))i>0 be Co-semigroup

on L?(2). (T(t))i>0 is called ultracontractive when one of the two equivalent pre-
vious properties holds. The real

dim(7T) := inf {d >0:3¢>0,1<p<q<oo,Vte(0;1], \||T(t)\||£(Lp(Q))Lq(Q)) <ect 2

is called the dimension of the semigroup (T'(t))¢>0 (See [B, p. 65]).
A.4. Compactness.

Property A.20. [5 p. 15]
Let A be a unbounded linear operator on the Banach space X and assume that
p(A) # 0. We say that A has compact resolvent if one of the three following
equivalent properties holds:

e For all A € p(A), R(\, A) is compact,
o There exists A € p(A) such that R(\, A) is compact,
e The embedding D(A) — X is compact, D(A) provided with the graph norm.

In this case, 0(A) = 0,(A) and o,(A) is a sequence converging to +oo (or a finite
sequence if dim X < 400).

Property A.21. [27, Theorem 3.3, p. 48]

Let (T'(t))i>0 be a Cy-semigroup with infinitesimal generator A. Then, (T'(t))i>0
is a compact semigroup if and only if (T'(t))i>0 is continuous in the norm operator
topology for t > 0 and R(\, A) is compact for A € p(A).

A.5. Spectral bound and growth bound; exponential stability. Following
[Bl, p. 12], we define the spectral bound and the growth bound as follows.

Definition A.22. Let (T'(t))i>0 be a Co-semigroup with infinitesimal generator A.
e We call spectral bound of A
s(A) =sup {R(A), A € o(4)}.
o We say that (T'(t))i>0 is exponentially stable when
Je>0,IM > 1:Vt>0,||T(t)| < Me=".
o We define the growth bound of (T'(t))>0 by:

w(T) = inf {w ssupe T (1) < —l—oo} .
>0
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Remark A.23. (T'(t))i>0 is exponentially stable if and only if w(T) < 0.

The inequality s(A) < w(T) always holds ([I1, Proposition 2.2, p.251]). Some-
times, the previous inequality is in fact an equality. This is the object of the
following proposition.

Property A.24. [Tl Corollary 3.12, p. 281]
Let A be the infinitesimal generator of a Cy-semigroup (T'(t))i>0. Then, w(T) =
s(A) in the following cases:

o if (T(t))i>0 is a compact semigroup,

o if (T(t))e>0 is differentiable and, in particular, if (T'(t))i>0 is analytic.

A.6. Bilinear forms; associated operators. Let X be a real Hilbert space pro-
vided with its inner product (-|-)x and its norm |[-|| . Consider a bilinear form
a: H x H— R defined on a subspace H of X. H is called the domain of a and is
denoted D(a). Throughout this paragraph, we suppose that a is

e densely defined, i.e. H is dense in X,
e accretive, i.e.

Yu € H,a(u,u) >0,

e continuous on H, i.e. such that

IM >0:V(u,v) € Hx H,|a(u,v)| <M |lull, ||v],,

with: Yu € D(a), |Jull, := \/||ull% + a(u,u),

e closed, i.e. (H,|-||,) is a complete space.
So, we can consider a as an unbounded bilinear form on X x X, with domain
D(a) =H.
With the bilinear form a is associated the unbounded linear operator A on X
defined by
e D(A):={ue H:3¢€ X,Yv e D(a),a(u,v) = (¢|v)u},
o Au:= ¢.
Later, we will need the following properties. Recall that X is a real Hilbert

space, a is a bilinear form defined on a subspace H C X. Let us assume that a is
densely defined, accretive, continuous on H and closed.

Property A.25. |26, Proposition 1.51, Theorem 1.52, p. 29]
— A is the infinitesimal generator of an analytic semigroup of contractions on X.

From now on, (e’tA)tzo or (T(t));>o will denote indistinctly the semigroup
generated by —A.

Property A.26. |26, Proposition 1.24, p. 15]

Suppose further that a is symmetric. Then, A is a self-adjoint operator.
Definition A.27. Let u:Q — R.

1 ifu(z) >0,

o sign (u) is defined by: sign (u) =<0  ifu(z) =0,

-1 dfu(z) <0
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o Let Tu denote the function (1A|u])sign (u). Tu is a truncation of u. Indeed:

w(z) iffu(@) <1, [ul@) iffulz)] <1,
(LA lul)sign (w) (@) = § u(z) .\ =11 if u(z) > 1,
lu(x)| flu@] 21, -1 if u(z) < —1.

o Suppose now that u = (u1,...,u,) : Q@ = R™. We definesign (u) and Tu as
follows: sign (u) := (sign (u1),...,sign (u,)) and Tu:= (Tuy,...,Tuy).

Theorem A.28. [26] Theorem 2.14 page 55|
Let a be a bilinear form defined on the measure space X := L?(Q2, u, R) and assume
that a is symmetric. The two following properties are equivalent:

e The semigroup (e*tA)DO is L -contractive,

e Yu € D(a),Tu € D(a) and a(Tu, Tu) < a(u,u).

Theorem A.29. [26] Theorem 6.3, p. 158]

Let a defined on the measure space X := L*(Q2, u,R). Assume, in addition, that a
is symmetric and that the semigroup (e’“‘)t>0 is L°°-contractive. The following
properties are equivalent: B

—t4) _, is ultracontractive,

<et™i,

o The semigroup (e t>0
7tA|||£(L1(Q),L2(Q))

e 3¢,d>0:vt>0,|le
4 4
e 3c',d>0:Vu € D(a) N LY(Q), IIUII?Q(?Z) < da(u, u) [ull f1q)-

A.7. L*-bounds and ultracontractivity. Let (2,4, 1) be a real measure space
and let X := L?*(Q) provided with its natural inner product (:|-);2(q) and the
associated norm ||| ;2(q). Consider a bilinear form a : H x H — R defined on a
subspace H of X. Throughout this paragraph, we suppose that the form a is densely
defined, accretive, continuous on H and closed. Let A be the unbounded linear
operator associated with a. We are interested in the following abstract Cauchy
problem
du
(ACP) n +Au=f(t) , u(0)=up

where ug € L*(Q) and f € L'(0,7; L*(Q)). Let u be the solution of (ACP) on
(0,T) (for example, sufficient hypothesis to insure such an existence is that f is
locally Holder continuous on (0,T): see [27]).

Property A.30. Assume that 0 < T < +00 and that
o Yg € [1,+oc],Vt € [0,T), Yo € L) N LUR), [l 0| 1y ) < V]l Ly
e dp>1:feLP(0,T;LP(Q)).

Then: w € LP(0,T; L?(Q2)).

Proof. According to Duhamel formula, we have
t

vt € [0, T u(t) = e g —l—/ e (=)Af(5) ds.
0

Then, for all ¢ € [0, T, we have

t t
”u(t)”LP(Q) < He_tAUOHLp ot e 74 (s) ds < Hu0||LP(Q)+ Hf(S)HLP(Q) ds
@ " fy L 0

(2)
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because (e’tA is a semigroup of contractions. Consequently, thanks to Holder

) oo
inequality (here, p’ denotes the conjugate of p):

1

¢ »
||u(t)||LP(Q) < ||U0||LG(g)+</0 ||f(5)||]zp(9)> tp < HUOHLZD(Q)_'—HJC”LP(OTLP(Q))T .

:HfHLP(o,t;Lp(Q)>

It remains to integrate with respect to ¢ between 0 and 7. (]

More interesting is to deduce L°°-bounds of u from LP-bounds of f. The two
following properties are very classical for open subsets 2 C R™. Much more general
results can be found in the literature (see [2I, Theorem 7.1, p. 181]). Nevertheless,
based on semigroups techniques, our proofs permit to expand much partially but
sufficiently such results to networks, including multidimensional networks, studied
in the forthcoming work [3].

Property A.31. For T < 400, suppose in addition that the semigroup (e_tA)DO
is ultracontractive and that B

Vp > 1, f e LP(0,T; LP(Q)).

Then, u € L*>®(0,T; L*>(R2)). The conclusion is not affected if we only suppose that
f € Lr(0,T; LP(Q)), where p > 942, d denoting the dimension of the semigroup

9
(e_tA)tzo'

Proof. Duhamel formula asserts that u is given by

t t
vt € [0,T), u(t) = e ug + / e (=)Af(s)ds = e Hug + / e At —s5)ds

0 0
Since He_tAuoHLOO(Q) < [Juol| e () (Pecause (e7*4),., is a semigroup of contrac-
tions), we only have to estimate He_SAf(t - S)HLOO(Q).

Recall that the semigroup (e*tA) />0 18 ultracontractive, which means that

AC >0:Vs € (0,7), @) <0s 5G9
Choosing ¢ = 400, we have
. —sA d
3C > 0:¥s5 € (0,7), [[e |||L‘(LP(Q),L°°(Q)) <Cs%

and then
™2 f(t = 9| o 0y < Me™ N 2y, oo 0y 1F E = gy < Cs™ % || £(t = )| 1oe

Then, integrate between 0 and ¢; The Holder inequality shows that

. t ds i
/||e At =9 e ds<c(/ 1£E = )15 ) d) (/ ) :
s 2p

:HfHLP(o,t;LP(Q))

T =
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where p’ denotes the conjugate of p, defined by: % + z% = 1. Choosing p > %, in
such as way as ‘é—’;: < 1, and by triangle inequality, we obtain
%
i ds P
||u(t)HL>°(Q) < HuOHLOC(Q) +C Hf“LP(O,t;LP(Q)) R
S 2p
T 7
ds
< woll o) + C Il oo, 751000 (/0 W)
s2p
= HUOHLoc(Q) +CI ”fHLP(O,T;LP(Q))
where [ := ( OT ‘jj, ) " . This completes the proof in the case T' < +oo. O
sﬁ

Property A.32. Property[A-3]) is still valid for T = +o0.

Proof. Let (t,)n>0 denote an increasing sequence of real numbers such that ¢o = 0.
For n € N, we define é,, := t,,4+1 — t,, in such a way as t, = do + 91 + - + dp_1-
Moreover, we assume that the sequence (d,,) is bounded above by a positive real
number. By Duhamel formula, we have

ty
u(ty) :e_tlAuo—i—/ e A f(t; — s)ds.
0

Consequently

t1
(42) () oo () < ||e*t1AuoHLw(Q) +/O He*SAf(tl - S)HLOO(Q) ds.
But we know that
3K 2 0:9t 20, [Jle” | o ) < Ke ™

where A denotes the smallest eigenvalue of A (A > 0 by positivity and ultracontrac-
tivity). Moreover, by ultracontractivity (with ¢ = +00), we have

30 > 0:¥s € [0, 0], [le™ | £ oy Ly < C5 %

Then, becomes

t1 4
[u(t)ll poe ) < Ke™ ™ Jluol| poo (0 + C/O 52 || f(ts = ) Lo (q) ds-

Holder inequality shows that

.
7

N t1 % t1 dS P
1)l ey < K ol gy + C ([ 15 = )y ds s
0 0

S2p

:”fHLP(O,tl;Lp(Q))

where p’ denotes the conjugate of p, defined by: % + 1% = 1. Recall that t; = dg

t 5
and let [ := [;' -5 = [ 45 Then, we have
s2p s2p

1
(43) Hu(tl)”LOO(Q) < Kem % HUOHLW(Q) + CIY ||f||Lp(o,t1;Lp(Q)) :
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Likewise,

61
la(ta) | g iy = [l A ultr) + / e f(ty — 5)ds
0 L=(9)

o1
< le™ u(t)|| poe +/0 [Cmae = 8)|[ oo 8

51 d
< Ke "M u(ty)] o o +C/O s72 || f(ta = 8)ll ooy ds

1
< Ke lu(@)ll Lo ) + CI3 1 fll Loty o520 ()

b ds Combining and the previous inequality leads to

where I := |7 %
520
||u(t2)HL°°(Q) < Ke 2 [Ke_%A H“OHLOO(Q) + 011? ||f||Lp(0,t1;Lp(Q)) + CIQF ||fHLP(t1,t2;LP(Q))

1 1
= K?e (%000 HU‘OHLW(Q) +C [Ke_él/\flp ||fHLp(t0,t1;Lp(Q)) + 137 ||fHLp(t1,t2;Lp(Q))

ds_ By induction, we have

Let I’H, = f(;sn_l dap’ *
2p
lulta)ll poe gy < K€ ol gy +C Y K" 2Ot L fll ey

»

Jj=1

Indeed, assume that the previous equality is true. Then,

[u(tnt 1)l Lo ()
6'”
e o Au(t,) + / e A f(tpyr — s)ds
0

1
N
Ly I et tnininr ()

Le(Q)

< Ke " Mlu(tn)|| o ) + C

< Ke "M K e flug|| oo ) + C D K™ I MO0 [ )
j=1

1
+ CLY A W Lot tnsnsno ()
- ; o
— gl A(taton) ||u0||L00(Q) _|_OZKTH*l*]e*)\(5j+~~-+5n—1+5n)ljp Hf||sz(tj,1,t,-;Lp(Q))

j=1
1
+ CLY A W Lot s ()
n+1 1
— Kl Mg IIUOlle(Q) + CZKn+1—ye—A(5j+~~+5n_1+6n)IjP’ ||f||Lp(tj71,tj;Lp(Q)).
j=1

Then

(44)
||u(tn)HL°°(Q) < K"e A ||U0||Loo(Q)+CIZKn_je_/\((sﬁmwnfl) Hf“LP(tj_l,tj;LP(Q))
j=1
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1
where I := sup;>; [ f’ (recall that the sequence (4,) is bounded above, and so is

1
the sequence (I jp/ ) ). By the Holder inequality, we have

n—j A= A8+
(45) ZK Jem MO+t 1)||f||LP(tj_1,tj;LP(Q))
j=1

7
P n

—§ =X+ _1)p
< ZKn Jo= MG+ 48n1)p Z\|f||§r(tjfl,tj;m(ﬂ>)

j=1 j=1

3=

Now, assume that 6; = r, where r denotes a positive integer. combined with

becomes

4
7

n P
[u(tn)ll oo 0y < K™ [uo|l poo () +CT ZKnﬂeﬂ\(nﬂ)w Il 2o (1o 20 2
j=1
i.e.
1
n—1 »’
u(tn) | ey < K¢ ol e 0y + CT | 32 KT ) fll oo 1y
j:
and then
n—1 j i
el oe ey < (Ke™)" Nutoll oo +CT | D2 (K™ ) ) 1l oo sty -
j=0

Now, choose r sufficiently large such that Ke " < 1 and Ke """ < 1. From the
previous inequality, we deduce that

+00 ;

o’ J
Vn € N, [[u(tn)|| = ) < [toll oo (o) + CT > (Ke ATP ) 11 Lo (0,4-00:L7 ()
=0

Considering t € [t,,t,+1] and applying once again Duhamel formula, it follows that
sup [[u(t) ([ ;0 ) < +00,
>0
which ends the proof. [
In the same way, we can derive L*> bounds from uniform L? bounds.
Property A.33. For 0 < T < +oo, assume that the semigroup (e* 18
ultracontractive and that

tA)tZO

d
Ip > 3 feL>0,T;,LP(Q)),
d denoting the dimension of the semigroup (e’tA)DO. Then, u € L*(0,T; L (Q)).

Proof. Duhamel formula asserts that u is given by

t t
vt € [0,T),u(t) = e “ug + / e =945 (s)ds = e Hug + / e A f(t — ) ds.
0 0



56 FREDERIC KUCZMA

—t4) _ . is a semigroup of contrac-

Since ||e’tAu0HLoo(Q) < luoll oo (@) (because (e >0

tions), we only have to estimate ||e=*4 f(t — S)HLOQ(Q).

Recall that the semigroup (e*tA) />0 18 ultracontractive, which means that

AC >0:Vs € (0,7),V1 <p < g < +oo,

e_SA”’lZ(LP(Q),Lq(Q)) =

Choosing ¢ = 400, we have

3C >0:Vs € (0,7),||

s 4
€ AH|L(LP(Q),L°°(Q)) < Cs72,

and then
le™sAf(t - S)HLOC(Q) < H|eisA|||1;(Lp(g),Loo(Q))'||f(t =)o) < Cs™ % | f(t - () -

Then, integrate between 0 and ¢ and obtain

t . t d
/0 le™*2 £ (t = 9 ooy 45 < C NSl oo (0,702 ( /0 )

a
S2p

By triangle inequality, we have

t
d
[l oo () < lluoll e ) + CIlF | oo 0,130 (02 </0 ;)
S2p

)

This completes the proof in the case T' < +o0. O

Va)

d

S

V)

T
< lwollpee ) + C I fll e 0,710 (02)) (/0

S

= lluoll o () + CL I f 1l poo (0,720 ()

T ds

d -
0 $3p

Property A.34. Property[A.33 is still valid for T = +oc.

where [ :=

Proof. Let (t,)n>0 denote an increasing sequence of real numbers such that ¢y = 0.
For n € N, we define 6,, := t,,41 — t,, in such a way that ¢, =dg+ 1 + -+ + 6p_1-
Moreover, we assume that the sequence (8,) is bounded above by a positive real
number. By Duhamel formula, we have

ty
u(ty) = e Ay + / e A f(t; — s)ds.
0

Consequently

ty
I ) P A e (R [P

We also have

K >0:Vt>0,|e < Ke ™™

—tA

Il o)
where A denotes the smallest eigenvalue of A (A > 0 by positivity and ultracontrac-
tivity). Moreover, by ultracontractivity (with ¢ = +00), we have

AC > 0:Vs € [0,t1], [|le**|
Then, becomes

_a
HL(LP(Q),LM(Q)) < Cs™en.

t1 a
lu(t)ll o () < K™ Jluoll oo gy + C/O 52 || f(t = 8) ]| o ds-
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Recall that t; = dp and let I := Otl ds — fgo ds  Then, we have
s2p s2p

(47) [u()l o () < Ke™%* [woll oo () + CT1 | f 1l poc (0,00:17 (02)) -

Likewise,

o1
e Ay (ty) + / e A f(ty — s)ds
0

l[u(t2)ll o () =
Lo ()

o1
= He_élA“(tl)HLw(Q) +/0 He_SAf(t? - 8)||L°°(Q) ds

61 d
< Ke™ [lu(ty)]| oo o +C/O 572 || f(ta = 8)ll Loy ds

< Ko™ [Ju(ts)l| e ) + C2 | fll e (0,001 (52)

where I := (f ! ‘ii . Combining and the previous inequality leads to
s2p

lute)ll o oy < Ke™* | Ke™™ ol e ) + C T 11| 0 estmqeny | + €L 11l o cestriony

— K26f(50+51))\ HUOHLOC(Q) +C [Kefzsl)\Il + IQ} ”fHLOC(O,oo;LP(Q)) )

Let I, := f(f"_l -45 By induction, we have
S
n

[ultn) | ooy < K™ [[ug|| oo ) +C | D K™ e 20D L Il 0 0 ()
j=1

Indeed, assume that the previous equality is true. Then,

On
e O Au(t,) + / e A f(tprr — s)ds
0

ultns)ll o) =
Le=(9)
< Ke %A o)l oo () + Clut1 11l Loe (0,00,L0 (02))
< Ke A | Knen ||U0||Loo(g) +C ZKn—je—/\(éj+-~+6n71)Ij |‘f||Lw(07m;Lp(Q))
j=1
+ Clnt1 [[fll 1o (0,00, (92))
— Ko Atntdn) ||U0||Loo(Q) +C ZKn+1*je*>\(5j+'“+5n*1*5")Ij ||fHLoo(O,OO;LP(Q))
Jj=1
+ OIn+1 ||f||L°°(0,oo;LP(Q))
n+1
= gntlg= g ||u0||Loo(Q) +C ZK'rH—l—Je—)\(5j+'“+5n71+5n)]j ||fHL©°(O,oo;LP(Q)) .
Jj=1
Then
(45)

()| ooy < K™ [Juol| oo () +CT | D K" e X000 |1 £l|L 6 osnniany)
j=1



58 FREDERIC KUCZMA

where [ := sup;~; [; (recall that the sequence (d,,) is bounded above, and so is the
sequence (I;)). Now, assume that 6; = 7, where r denotes a positive integer.
becomes

[ultn)ll ooy < K™ o] oo (o) +CT | D K™ eI N | L 00020 (02)
j=1
i.e.

n—1

[ut)ll o () < Kre uoll poe (@) + C1 ZKjef/\jr 11l oo (0,003 (02)) -
j:

and then

Ju

n—

et gy < (K)ol oy + CT [ 52 (K™ | 11l 0 ooty -
0

=
Now, choose 7 sufficiently large such that Ke™*" < 1. From the previous inequality,
we deduce that

—+o0

—ar\J
Vn e N, [lu(tn)ll L) < lluoll o ) + CT Z (Ke ™) 1Nl oo (0,405 7 (02)) -
=0

Considering t € [t,,t,+1] and applying once again Duhamel formula, it follows that

sup [[u(t)|| o ) < +00,
>0
and the proof is complete. O

A.8. Positive semigroups. As in [5, p. 13|, we have the following definition.
Definition A.35. Let (2, A, 1) be a measure space, p € [1,4+00) and let (T'(t))i>o0
be a Cy-semigroup on X = LP(Q, A, u).
o We call positive cone of X the set
Xt ={ueX:ulx)>0 p—ae x€Q}
o We say that the semigroup (T'(t)):>0 s positive when
vt >0,e X T C X

Theorem A.36. [20, Theorem 2.6, p. 50]
Let us assume that the bilinear form a is defined on the measure space L*(€), u, R).
The two following properties are equivalent:
o The semigroup (e_tA)t>O s positive,
e Vu € D(a),u™ € D(a) and a(ut,u™) <0.
A.9. Maximal regularity. Let X be a Banach space and let A be an unbounded,

closed, and densely defined linear operator on X. Let f : [0,400) — X be a
measurable function. We consider the existence and regularity problem:

vt > 0,u'(t) + Au(t) = f(t) , wu(0)=0.
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Definition A.37. Let p € (1,400). We say that A has the maximal LP-regularity
Property (see [24]) if there exists a constant C' > 0 such that for all f € LP(0,400; X),
there exists a unique function u € LP(0,+o00; D(A)) with u' € LP(0,400; X) satis-
fying the previous equation for almost every t > 0 and

[ull Lo 0,400:) + 19| Lo (0, 4005) T 1A L2 (0,400:%) < CllF (0, 400;%) -

Remark A.38. We can naturally consider (0,T), T > 0, instead of (0,+00). In
this case, we say that A has the mazimal LP-regularity Property on (0,T).

Property A.39. [24, Proposition 2.4, p. 6]

Let A be an unbounded operator on a Banach space X and assume that there exists
p € (1,+400) such that A has the mazimal LP-regularity Property. Then, A has the
mazimal L1-reqularity Property for all g € (1,400).

Property A.40. [24, Theorem 2.6, p. 9]
Let — A be the infinitesimal generator of an analytic semigroup on an Hilbert space
H. Then, A has the mazimal LP-reqularity Property for all p € (0,+00).

Theorem A.41. [24] Theorem 3.1, p. 14]
Let (2, 1) be a measure space and let —A be the infinitesimal generator of an
analytic semigroup of contractions (T(t))e>o on L*(Q,u). Assume that for all
q € [1,+00], the inequality

Vvt > 0,Yu € L*(Q) N LYQ), [T (t)ully < Jully
holds. Then, for all p € (1,+400), the operator A has the mazimal LP-regularity
Property on L1(QY), A being extrapolated to L1(QY) in the way of paragraph 2.

APPENDIX B. AUXILIARY RESULTS

B.1. An interpolation inequality for intermediate derivatives.

Lemma B.1. [I, Lemma 4.10, p. 70]

Let —00o < a < b < 400, 1 <p < oo, and 0 < g9 < +0o. Then, there exists
K = K(go,p,b — a) such that for every e satisfying 0 < ¢ < eg, and for every
function f twice continuously differentiable on the open interval (a,b), we have

b b K [t
[irwra ke [ropas S [Ciora
a a € a
B.2. Lipschitz continuous functions and Sobolev spaces.

Theorem B.2. [31, Theorem 2.1.11, p. 48]

Let Q C R™ be an open subset of R™, f: R — R be a Lipschitz continuous function
and u € WHP(Q), p> 1. If fou € LP(2), then fou € WLP(Q) and for almost all
x € Q, we have:

D(f o u)(x) = f'(u(x)) - Du(z).

Corollary B.3. Let Q be an open subset of R™ and let v € H'(Q) (with u real
valued). Then, u™ :=u V0 € H(Q) and

Vi € [1,n],0,,u” = 1,500,,u almost everywhere on 2.
Consequently, u~= = (—u)* € HY(Q) and |u| = u* +u~ € HY(Q) and
Vi € [1,n], Oy,

u| = sign (u) Oz, u  almost everywhere on
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where sign (u) is defined by

1 dfu(z) >0,
sign () =10  ifu(z) =0,
-1 dfu(z) <0

Moreover,
Vi e [1,n],0,,u=0 almost everywhere on {x € : u(x) = 0}.

Proof. Tt is a straightforward consequence of the previous theorem. See also [7,
Lemma 2.2, p. 91] and [I5, Lemma 7.6, p. 152]. O

Corollary B.4. Let Q be an open subset (eventually unbounded) of R™ and u €
HY(Q) (real valued). Recall that Tu = (1A|u|)sign (u). Then, we have Tu € H'(Q).
Furthermore

Vie[l,n],0,Tu=1_1c4<10zu.

Proof. 1t is enough to recall that T'u is obtained from u truncating the values of u
greater than 1 or smaller than -1, i.e. that

w(x) ifu(z)) <1, |w@) i ju(z)] <1,
T = =<1 if >1
u(z) u(z) if Ju()| > 1 1 u(z) > 1,
u()| -1 ifu(z) < -1
Note that this property holds true by replacing H'(Q2) by WP(Q), for all p €
[1, 400l O

B.3. Maximum principle on networks. According to the Mignot Lemma, and
doing exactly the same computations as in subsection [2.7] we obtain the following

property:

Property B.5 (Maximum principle). Let u = (u1,...,un,) continuous on the
graph, satisfying Kirchhoff conditions and such that
(49) vt e (0,T),V) € [1,m], dpuj — cjulj = f;

Assume that
o Vje[l,m],f; <0,
e 4(0) =up > 0.
Then
Vp € [1,400], Vt, u(t)] x, < lu(0)ly, -

B.4. Comparison Lemma.

Lemma B.6 (Comparison Lemma). Let u = (ug,...,Un) and v = (v1,...,0p)
continuous on the graph, satisfying Kirchhoff conditions and such that

Vi€ [1,m],0uu; —cjuf = f;  and  Ow; — c;vf = gj.
Assume in addition that

L4 VJ € II]-vm]]va ngy
o Uj(tZO):Uj(tZO).
Then, for all j, u; < v;.

Once again, the same computations as in subsection [2.7] yield the result.
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APPENDIX C. A SUMMARY OF HARAUX-KIRANE TECHNIQUES

In [I6], A. Haraux and M. Kirane developed a method which yields estimates
in the C'-norm of solutions of a semi-linear evolution equation on open subsets
2 C R". We need such estimates in subsection[5.2]to study the asymptotic behavior
of the solution of a reaction-diffusion system on networks. So, the purpose of this
appendix is to make sure that these techniques transfer to networks. There are
two key points. The first important result is given by [I6, Theorem 1.1, p. 15]. In
terms of networks, this is Theorem|[C.1] The proof involves the Gagliardo-Nirenberg
inequalities and the passage to networks consists in a straightforward adaptation
of the Haraux-Kirane computations. The second key point is given by Theorem
[C:2] This is a general result concerning semigroups and the analysis of Section [C.3]
ensures that it applies to networks. Finally, combining Theorems [C.I] and [C.2] we
obtain the desired estimates.

C.1. Introductory remarks. For the sake of readability, we now recall some gen-
eral results which will be useful in the sequel.

o As usual, Q denotes the open interval (0,1).

e Recall that we are interested in the reaction-diffusion system (35); X, de-
notes the space (LP(€2))™Y (1 < p < 400) and for all p € [1;400], —A,
denotes the infinitesimal generator of the semigroup (T, (¢))i>0. (Tp(t))i>0
is also denoted by (e_tAP)t>0.

e Since there is no possibility of confusion, let A denote A,.

o Vp > 2, D(A,) — (WQJ’(Q))mN, D(A,) provided with the graph norm
defined by

Vu € D(Ap), lullpa,) = llull, + [[Au], -
The embedding D(4,,) < (WQ’p(Q))mN is continuous, due to Lemma
e In the proof of Property [2:30] we saw that
Vp > 1,D(A,) C W*P(Q) c CH(Q).

Consequently, we have

Doc(A4) = () D(4,) € (C'(@)

p>1

mN

C.2. A linear estimate.

Theorem C.1. For all ug € X and all t > 0, the following estimates
1 —tA __1
Ve > 5,30 >0:Vte (0,1], e UOHXW < Ct™ T ||u0||X%+E
and
1 . —tA -1 ¢
Vee (0,5 ),3D>0:Vte (0,1], le u0||(W1,M(Q))mN < Dt727 Jluglly

hold.
Proof. We closely follow [16l Theorem 1.1].
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e Let ug € X. Since ) is bounded, we have
Vp > 1,ug € X,,.
Then
Vp > 1,Vt > 0,6 ruy € D(A,)
and:

Wt > 0,0 Mrug € Doo(A) = () D(4,) C (@)™ .

p>1

e According to [27, p. 62]

(50) Vp >2,3C(p) > 0:Vt >0, HApe*pruOHXp < @ [[uollx, -
Indeed, we need to verify that
— (e*tAP) is a uniformly bounded semigroup: this is the case because
(e*ml’) is a semigroup of contractions (see Theorem .
— 0 € p(A). Indeed, since A has compact resolvent, the spectrum of A
contains only eigenvalues. So, we are reduced to verify that 0 is not
an eigenvalue of A. Let u such that Au = 0. Then, a(u,u) = 0, i.e.

S [ =0
j=1k=1 Q

By continuity of u and connectedness of the graph, u is constant. By
Dirichlet condition at v,,, u = 0.
. . N, .
Moreover, since the embedding D(A,) < (W2P(2))™" is continuous, we
have

t>0

N

Vu € D(Ap), [[ull e ymy < Cllullpa,y = Cllully, + [ Aullg,),

where C' denotes a constant depending only on the data. Now, we substitute
e~y for u, which gives

le™ o]l 2 (qymn < C [Hefmp“Opr + ||ApeitApu°”XJ

<C [||Uo||xp + HApe_tA”uOHXJ because e '7 is a contraction

C .
<C [|u0|xp + @ ||“0|Xp] according to
1+ C(p) Ci(p)
=0 lluolly, = =~ lluolly,
for ¢t € (0,1]. Hence the estimate
_ Ci(p)
(51) Vi € (0, 1) ||e™ 47| 0.y o < — lluollx, -

e Recall the Gagliardo-Nirenberg inequalities (see, for example, [I8, p. 37]).
Let € be an open bounded subset of R™ with Lipschitz continuous bound-
aryﬁ Let m € N and p,q > 1 two real numbers. If u € W™P(Q) and if

8 See, for example, [T, Theorem 4.17, p.79], [I8}, p. 37]
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v > 0 satisfies v < m — 2, therﬂu € C¥ (Q). Moreover, if 6 € [0,1] satisfies
1/<9<m—n> —(1—0)§,
P r

lellyeoe gy < CO) Ntllgymon (e el -

we have

Concerning networks, applylng these inequalities at every function u?, we
find
k k k 0 1-6
||u ||WV00(Q) < C Hu HWm () Hu ’ L ( Q) < Cj (9) HUH(WWP(Q))"LN ||u||(LT(Q))mNa
which gives, after summing
(52) lll ey < CO) gy Il ey -
e Let apply with v = 0, 7 = p and m = 2. Substituting e *4ug for u
yields:
—tA —tA —tA 1-
e UOHXOO < C(0)]le “0||(W2m(9))mN e UOHXP

_ o - LtA, - .
<C(9)]e tAuoH(Ww(Q))mN ||u0||§1gp9 because e 47 is a contraction

c? _ c? .
< 0O TP g8 Juol? = 0(0) L2 gl according to ).
t D D t P

Taking r = p = % + & (recall that € > %, in such a way that p =r > 1), we
have

vt € (0,1],

_ CY(p
e~ ugll,_ < C(6) 25 ) luolly, -

Here, 8 must satisfy

OI/<0(m]1)>(10)i

Sincev=0andp=1r=3 + €, this inequality is equivalent to 6 > 1+26
Taking
1
0 >
1+¢’
we have
Cle
vt e (Oa 1}7 7tAu0HX < (1 )
o T yTe

e We now turn to the second property. Choose v = 1, m = 2 (p and r will
be later determined) and apply , substituting e~*4uq for u:

o SC(0) [le _tAUOH(Lr Q)™

_ 0
e “ UUH(WZP(Q))mN e

UOH (W1 ()

—tA

<C(0 He*tA because e” ““'? is a contraction

(2 _
“°||<W21v<9>>mN ol

C )
< C(9) 1t( ) [lu OHX I 0|| according to (51)).

9 Following [18 p. 7], if v > 0 is not an integer, C¥ (Q) denotes the space of [v] times
continuously differentiable functions on Q where the [v]-order derivative satisfies a Holder condition
with exponent v — [v].



64 FREDERIC KUCZMA

Now, we need to choose p,r and # such that:

v<m-—1 I
p
{u<9<m;)(10)1 11

r

Taking account of ¥ = 1 and m = 2, the inequality I is equivalent to p > 1. Then,
inequality IT amounts to

1+
9>2 TR
Since % < 1, we have
1+1 1+ 141

< = =
T, 1 1 I
2—14+1 9141 141
Then, for every choice of p > 1, we can determine a suitable #. Since €2 is bounded,
we have
luollx,, » luollx, < C'lluollx,,

and the inequality

c? _
< (0) 2L gl Jfuglli

He 0

ftAUOH(Wl,oo(Q))mN
leads to 1
||e—tAu0H(W1yoo(Q))mN < C(p,r, 9)?0 lluollx

2_@?:; , 1] A quick study on [0, 1] of the function f : z —

f(z) = 2_11’3_37 shows that f is nondecreasing on [0,1] and that f(0) = 32 < 1.

and this, for every 0 € (

Let 0 € (%, 1) fixed. Since f(0) = 2_% —+> %, we can take p sufficiently large so
p P—1+00
that f(0) < 6. Then, we choose r such that § > f (1) = jSil'
pr

p,r and 0 = % +¢e with e € (O7 %) such that

So we have found

vVt € (0, 1]’ HeftAUOH(WLoo(Q))mN < C(é‘)t%ﬁ ”uOHX(xJ )
and the proof is complete. O

C.3. A result about semi-linear evolution equations. Let FF be a Banach
space and let a € R. Let Cg(Ja,+00), E) denote the vector space of continuous
functions ¢ : [a,+oo[— E bounded on [a,+0o0). For p € [1,+o0], let SP(R4, E)
denote the vector space of functions f € LF (R, E) such that

loc
41
sup/ 1 f(s)|[% ds < +o0.
t>0 Jt

Theorem C.2. [16, Theorem 2.1] Let E, F two real Banach spaces, respectively
provided with the norms ||-||5 and ||-||z. Assume that F — E. We consider an
unbounded linear operator L on E which generates a strongly continuous semigroup

(T(t))i>0 on E such that
e Vi >0,T(t)E CF,
e 3o €[0,1[,3C >0:Vt € (0,1],Vz € B, || T(t)z||p < & ||7] -
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Lastly, let p > ﬁ, f € SP(RY, E) and let u be a solution on Ry of the equation
du

(5) Se) = Lut) + S(0),
in the sense of Definition (2.23)), i.e. u is continuous on [0,+00), has continuous
derivative on (0, +00), u(t) € D(L) for allt > 0 and holds on (0,+00). Then,
if u:[0,400) = E is bounded, actually

o Vt>0,u(t) € F,

o V6 > 0,u € Cp([§,+00); F).

C.4. Application to networks. Let (u,v) be a global nonnegative solution of the
reaction-diffusion system

Ovj — v —ujp;(vy) =0

{8tuj — c}u}' +u;p;i(v;) =0,
2
where v = (u1,...,Um), v = (v1,...,0,,) are continuous on the graph and sat-
isfy the Kirchhoff conditions. Assume moreover that for all j € [1,m], u;,v; €
Cp((0,+00) x ©). Our intention is to show that for all j € [1,m], uj,v; €
Cp([1,+00),C1(2)). This is precisely the purpose of Theorem |C.2
The initial system becomes an abstract Cauchy problem, namely

(ACP) %(t) +AX(t) = f(t), t>0,
X(0) = Xo
with X = (U,U) = (Uly. cey Um, Uty e e - ,um)7 Xy = (u(),'Uo) and
F(t) = (mua(t, Jor(vr(t ), =t (b )pm (vt ), wa (8, )pr (va(E, ), tim (8, ) pm (vm (£, ).

In view to apply Theorem take £ = X, and F = (C’l(ﬁ))mN equipped with
their natural norms. Let us verify assumptions of Theorem
e Vt > 0,T(t)E C F: see Theorem [C.1
e 30 €0,1,3C >0Vt € (0,1,YX € B, |[T()X], .. < t%lleloor this is
precisely the purpose of Theorem taking € < %
e f € SP(Ry, E), for a particular p > ﬁ. Indeed, consider such a p.

We want to make sure that supy>q [l 1o 451,m) < +00, Le. that for all
Hlsj=m

t+1
sup [ luy(s, s (g, DI ds < oc.
>0 Jt
But, by assumption

M >0:Vt>0,Ve € Q,0 <wuj(t,z),v;(t,z) < M.

Since the functions ¢; continuous, we have similar estimates for the func-
tions u;¢;(v;). Hence

3C >0:Vt>0,Ve € Q,0 < u;(t,z)p;(v;(t,z)) < C,

and

t+1
sup || f o < C
/ S0 5011, < €.
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So,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.
27.

28.
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where C' denotes a generic constant depending only on the data.
Theorem [C.2] applies and u,v € C([8, +oo|, F) for all § > 0.
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