
HAL Id: hal-02373355
https://hal.science/hal-02373355v1

Preprint submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GLOBAL SOLUTIONS OF REACTION-DIFFUSION
SYSTEMS ON 1D-NETWORKS

Frédéric Kuczma

To cite this version:
Frédéric Kuczma. GLOBAL SOLUTIONS OF REACTION-DIFFUSION SYSTEMS ON 1D-
NETWORKS. 2019. �hal-02373355�

https://hal.science/hal-02373355v1
https://hal.archives-ouvertes.fr


GLOBAL SOLUTIONS OF REACTION-DIFFUSION SYSTEMS ON

1D-NETWORKS

FRÉDÉRIC KUCZMA

Abstract. The purpose of this paper is to assess some results and the asso-

ciated techniques for global existence of solutions of reaction-diffusion systems
on networks. The motivation comes from the fact that phenomena can oc-

cur on ramified physical structures, of which one-dimensional networks are

the simplest examples. We work in the setting of solutions provided by the
classical semigroup theory. Local existence and uniqueness in this setting

is ensured by the fixed-point argument, which is detailed. Construction of

diffusion operators on networks via bilinear forms, generation of an analytic
semigroup, ultracontractivity and maximal regularity properties, essential for

the global existence analysis, are recalled or proved in detail, following in par-

ticular Mugnolo [25]. With these tools at hand, we exemplify the fact that
fundamental results available in the literature on global existence and time

asymptotics of reaction-diffusion systems extend from open domains of Rn to
networks. To be specific, here we deal with one dimensional networks with

Kirchhoff conditions at nodes. In this setting, we first implement on a basic

2× 2 example the celebrated Lp-method of Martin-Pierre [22] which provided
a large number of existence results in past 30 years. To give a second example,

we revisit the system studied in Haraux-Youkana [17] where global existence

results from construction of a Lyapunov function. Compactness properties of
solutions, as t→ +∞, are obtained adapting the arguments of Haraux-Kirane

[16]. This permits to establish convergence of solutions to equilibria of the

Haraux-Youkana systems on networks.
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0. Introduction

Reaction-diffusion has been mainly studied on an open subset Ω ⊂ Rn but
reaction-diffusion phenomena occur in physical spaces having a ramified structure.
One-dimensional network is the simplest case. Such problems appear, for exam-
ple, in the study of bloodstream oxygenation, or blooms of algae on a metal mesh
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plunged into the see. A one-dimensional heat equation comprising a piecewise con-
stant diffusion coefficient may also be seen as a heat equation on a one-dimensional
network.

The main goal of this article is to demonstrate, via a systematic presentation of
the underlying abstract theory and the detailed analysis of two concrete reaction-
diffusion examples, that the key aspects of the global well-posedness theory nat-
urally transfer to networks. To be precise, our analysis concerns the case where
the coupling at the network vertices obeys the conditions of continuity of the state
variables (population density) and of conservation of the fluxes. These conditions
are often called Kirchhoff conditions. In the forthcoming work [3], we will explore
the extension of these results to the setting of multidimensional networks, with
possible coupling of one-dimensional and higher dimensional areas relevant in some
ecological models of fragmented but connected patch-domains.

The analysis techniques we have in mind for reaction-diffusion problems require
a good understanding of the semigroup generated by the linear diffusion operators.
For the case of one-dimensional networks, properties of the semigroup generated by
the edge-wise diffusion c∆ coupled via the Kirchhoff conditions were established in
a series of papers including [6], [20], [25]. The work of Mugnolo [25] is our main
source. In section 2, we make a systematic presentation of this theory, combining
precise reference to the underlying literature and accurate proofs of results that are
classical in the community but for which we were not able to find a sharp reference.
In particular, we pay attention to carefully define the notion of local L∞-solution
and to justify its existence. The results contained in section 2 are also intended
to provide the frame for the forthcoming work [3]. Indeed, with appropriate re-
definition of the underlying measure-spaces, functional spaces and bilinear forms,
the results we compiled from [25] and several other sources permit to deal with
diffusion-generated semigroups in the setting of generalized network domains.

In the sections 4 and 5, we will take advantage of the theory developed in the
section 2 to study the system{

∂tuj − c1ju′′j = fj(uj , vj),

∂tvj − c2jv′′j = gj(uj , vj).

Our goal is to study these reaction-diffusion equations with two very different ap-
proaches.

This system has already been treated in the standard case (i.e. on an open sub-
set Ω ⊂ Rn) by Martin-Pierre (see [22]), Hollis-Martin-Pierre (see [19]), Pierre (see
[28]). It was the prototype of a wider class of systems studied via the Lp-method
(see [28]). In particular, the system modelling the bloodstream oxygenation is
one of this class (see section 4.5). Note also that our study contains in partic-
ular the case of the system studied in [28, Theorem 3.1, p. 425] for the case
of diffusion −(c1(x)u′)′,−(c2(x)v′)′ with piecewise constant coefficients c1, c2 in a
one-dimensional domain.

Following the duality method (see [22]), we will prove, under a suitable mass-
control assumption, that the previous system has global solutions. Although Kirch-
hoff conditions are analogous to homogeneous Neumann conditions in the standard
case, using the duality method, we have to sum the two equations. The diffusion
coefficients c1j and c2j being different, some cross vertex terms appear in the in-
tegrations by parts. These terms correspond rather to inhomogeneous Neumann
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Figure 1. Figure 2. Figure 3.

conditions than to homogeneous Neumann conditions and we have to pay a special
attention to them.

We develop a second example following Haraux and Youkana (see [17]), and
we suppose that fj and gj are of the form fj(r, s) = −rϕj(r, s) and gj(r, s) =
rϕj(r, s). In the standard case, this system has first been studied by Alikakos
for f(r, s) = −rsσ (see [2]), followed by Masuda (see [23]) and then improved
by Haraux and Youkana (see [17]). The method is based on use of a Lyapunov
functional. Assuming that

∀j ∈ Nm,
ln(1 + ϕj(r))

r
−→
r→+∞

0,

a global existence result will be proved. Secondly, we will deal with the asymptotic
behavior of the solutions and prove a uniform convergence toward a constant solu-
tion. The key point is due to Haraux-Kirane (see [16]), which permits to estimate

the C1-norm of u(t, )̇. In Appendix C, we will carefully verify that the results of
Haraux-Kirane transfer to one-dimensional networks.

Finally, let us note that, in the manner of Barabanova (see [8]), we can par-
tially generalize the result of Haraux-Youkana, assuming an exponential growth of
ϕj (whereas the exponential growth is not attained in the hypothesis of Haraux-
Youkana). Note also that the asymptotic behaviour treated by Barabanova can
easily be extended to one-dimensional networks.

1. Networks and graphs

1.1. Framework. Now, we consider a finite connected network, to which we asso-
ciate a graphG, comprisingm edges e1, . . . , em and n vertices v1, . . . ,vn. Edges will
be systematically parameterized by the interval [0, 1] and are arbitrarily oriented.
Following the standard terminology, let ej(0) denote the ”tail” of the edge j (start
end) and let ej(1) denote the ”head” of the edge j (finish end). We define two matri-
ces Φ+ = (φ+

i,j)1≤i≤n,1≤j≤m ∈ Mn,m(R) and Φ− = (φ−i,j)1≤i≤n,1≤j≤m ∈ Mn,m(R)

in the following way (see the figure 1):

φ+
i,j :=

{
1 if ej(1) = vi,

0 else,
and φ−i,j :=

{
1 if ej(0) = vi,

0 else.

The matrix Φ = Φ+ − Φ− is the incidence matrix of the graph G. Note that
each column of Φ contains exactly one 1 and one -1. For every vertex vi, let Γ(vi)
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denote the set of indices j of the edges having an endpoint at vi:

Γ(vi) = {j ∈ [[1,m]] : ej(0) = vi or ej(1) = vi}.

Lastly, we call degree of the vertex vi the integer |Γ(vi)|. For example, consider
the graph illustrated by the figure 2. The incidence matrix is given by

Φ =


1 0 0 0 0 −1 0
−1 −1 −1 0 0 0 −1
0 1 0 0 1 0 0
0 0 1 1 −1 0 0
0 0 0 −1 0 1 1

 .

Moreover, Γ(v2) = {1, 2, 3, 7} and the degree of v2 is equal to 4.
Generally, Dirichlet conditions are imposed on certain vertices. The topological

structure of the network not interesting us, we will systematically identify all these
vertices. From now on, we assume that the network has a unique vertex in which
a Dirichlet condition is imposed. Without loss of generality, it is assumed that the
Dirichlet condition holds on vn.

1.2. Continuity at vertices. Since every edge is parameterized by the interval
[0, 1], each such edge can be identified with [0, 1]. Thus, a function u defined on the
network G will be described by a m-uplet u = (u1, . . . , um), each function uj being
defined on ej or, in an equivalent manner, on [0, 1]. When vi is an endpoint of ej ,
we denote uj(vi) := uj(1) if φ+

i,j = 1 and uj(vi) := uj(0) if φ−i,j = −1. By abuse

of notation, we set uj(vi) := 0 when j /∈ Γ(vi). We will be interested in functions
u = (u1, . . . , um) which are continuous at vertices, i.e. such that

∀i ∈ Nn,∀(j, `) ∈ Γ(vi)
2, uj(vi) = u`(vi).

The following property gives a simple characterization of continuous functions
on the graph (see [6, Lemma 3.1, p. 7]).

Lemma 1.1. A function u ∈ (C([0, 1]))
m

is continuous on the graph if and only if

there exists du ∈ Rn such that
t
Φ−du = u(0) and

t
Φ+du = u(1). So, the continuity

of u at vertices and the Dirichlet condition at vn translate into

∃du ∈ Rn−1 × {0} :
t
Φ−du = u(0) and

t
Φ+du = u(1),

where dui represents the value of u at vertex vi.

Remark 1.2. Implicitly, we identify Rn andMn,1(R), i.e. row vectors and column
vectors are identified.

1.3. Diffusion on network. In order to introduce notations, let us start by de-
scribing a problem of diffusion on network. Consider a graph G satisfying the
previous assumptions. Let u = (u1, . . . , um) be a function depending on t (the
”time variable”) and on x (the ”space variable”). Assume u is continuous on the
graph with respect to x. Such a function u : (t, x) 7→ u(t, x) being given, ∂tu, or
∂u
∂t denotes the time derivative whereas u′ denotes the space derivative, considered
edge-wise.
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Then we are interested in the following diffusion problem:

(1)



∂tuj(t, x) = cju
′′
j (t, x) + fj(t, x), 1 ≤ j ≤ m, 0 < x < 1,

uj(t,vi) = u`(t,vi) := dui (t), j, ` ∈ Γ(vi), 1 ≤ i ≤ n,∑m
j=1 φi,jcju

′
j(t,vi) = 0, 1 ≤ i ≤ n− 1,

dun(t) = 0,

uj(0, ·) = u0,j , 1 ≤ j ≤ m, 0 < x < 1.

The first equation is an inhomogeneous heat equation; cj > 0 is the diffusion
coefficient relative to the edge j.
The second equation translates the continuity of u at each vertex, and the fourth
translates the Dirichlet condition at vn.
Conditions imposed by the third equation are Kirchhoff conditions: they correspond
to a conservation law. Note that the Kirchhoff condition is not imposed at the
vertex vn but the homogeneous Dirichlet condition is assumed instead. Moreover,
consider a vertex vi which degree is equal to 1. Then, the Kirchhoff condition is
equivalent to the homogeneous Neumann condition at vi.

Now, let us introduce weighted incidence matrices Φ+
w = (ω+

i,j) ∈ Mn,m(R) and

Φ−w = (ω−i,j) ∈Mn,m(R):

ω+
i,j =

{
cj if φ+

i,j = 1 and i ≤ n− 1,

0 else,
and ω−i,j =

{
cj if φ−i,j = 1 and i ≤ n− 1,

0 else.

Remark 1.3. In terms of weighted incidence matrices, continuity at vertices,
Kirchhoff conditions and Dirichlet condition at vn translate to, in a more con-
densed way,

∀t,∃du(t) ∈ Rn−1 × {0} :

{
t
Φ+du(t) = u(t, 1) and

t
Φ−du(t) = u(t, 0),

Φ−wu
′(t, 0) = Φ+

wu
′(t, 1).

1.4. Reaction-diffusion on network. Now, let us consider a reaction-diffusion
problem on the previously described network. To make it more concrete, it is
supposed that N chemical components interact with each other on each edge ej .
The concentration of chemical component k, 1 ≤ k ≤ N , on edge ej is denoted
by ukj . It is therefore a function with respect to the two variables t, x. Denote

uk = (uk1 , . . . , u
k
m) and uj = (u1

j , . . . , u
N
j ). We propose to study the following

reaction-diffusion system:

(2) (S):



∂tu
k
j = ckj

(
ukj
)′′

+ fkj (u1
j , . . . , u

N
j ), 1 ≤ j ≤ m, 1 ≤ k ≤ N, 0 < x < 1,

ukj (t,vi) = uk` (t,vi) := du
k

i (t), j, ` ∈ Γ(vi), 1 ≤ i ≤ n, 1 ≤ k ≤ N,∑m
j=1 φi,jc

k
j (ukj )′(t,vi) = 0, 1 ≤ i ≤ n− 1, 1 ≤ k ≤ N,

du
k

n (t) = 0, 1 ≤ k ≤ N,
ukj (0, ·) = uk0,j , 1 ≤ j ≤ m,

where

• the functions fkj (these are the nonlinearities) have continuous derivative

on RN . They represent interactions between various chemical components,
• ckj > 0 is the diffusion coefficient on the edge j with respect to the compo-

nent k.

As above,
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• The second equation translate an assumption of continuity of each function
ukj at vertex vi.
• The third equation is a conservation law: these are the Kirchhoff conditions.
• The fourth equation is a Dirichlet condition at vertex vn.

Moreover, let us assume that the initial condition is

• positive: ∀k ∈ [[1, N ]] ,∀j ∈ [[1,m]] , uk0,j := ukj (0, ·) ≥ 0,

• uniformly bounded: ∀k ∈ [[1, N ]] ,∀j ∈ [[1,m]] , uk0,j ∈ L∞(0; 1).

We stress that the solutions of systems 1-2 must systematically be understood in
the sense of Definitions 2.23-2.24.

Remark 1.4. In terms of weighted incidence matrices, continuity at vertices,
Kirchhoff conditions and Dirichlet condition at vn translate to, in a more con-
densed way,

∀t,∀k ∈ [[1, N ]] ,∃du
k

(t) ∈ Rn−1 × {0} :


t
Φk,+w du

k

(t) = uk(t, 1),
t
Φk,−w du

k

(t) = uk(t, 0),

Φk,−w (uk)′(t, 0) = Φk,+w (uk)′(t, 1),

where Φk,+w = (ωk,+i,j ) ∈Mn,m(R) and Φk,−w = (ωk,−i,j ) ∈Mn,m(R) are given by

ωk,+i,j =

{
ckj if φk,+i,j = 1, i ≤ n− 1,

0 else,
and ωk,−i,j =

{
ckj if φk,−i,j = 1, i ≤ n− 1,

0 else.

2. General results about one-dimensional networks

2.1. Stating the problem. Let us recall that we are interested in the system (2)
where the initial conditions satisfy

(3)

{
uk0,j ≥ 0, 1 ≤ j ≤ m, 1 ≤ k ≤ N,
uk0,j ∈ L∞(0; 1), 1 ≤ j ≤ m, 1 ≤ k ≤ N,

and where the functions fkj have continuous derivative on RN . These are the
nonlinearities, witch represent interactions between various chemical components
on the edge ej . Let f :=

(
fkj
)

1≤j≤m,1≤k≤N and, for u =
(
ukj
)

1≤j≤m,1≤k≤N , let

f(u) denote the function t 7→ f(u(t, ·)).
We say that the property of quasi-positivity (P) holds when

(P) : ∀(k, j) ∈ [[1, N ]]×[[1,m]] ,∀(r1, . . . , rN ) ∈ RN+ , fkj (r1, . . . , ri−1, 0, ri+1, . . . , rN ) ≥ 0.

2.2. Functional framework: Hilbert spaces case. Let

X2 := L2(0, 1)m and X2 :=

N∏
k=1

X2 = L2(0, 1)mN .

Note that in the case N = 1, X2 = X2. X2 and X2 are equipped with their usual
inner product. For example

∀u, v ∈ X2, (u|v)X2
=

N∑
k=1

m∑
j=1

∫ 1

0

ukj (x)vkj (x) dx

where u = (ukj )1≤j≤m,1≤k≤N . The vector function uj := (u1
j , . . . , u

N
j ) is the

concentration distribution of the chemical components on the edge j, whereas
uk := (uk1 , . . . , u

k
m) is the concentration distribution of the chemical component
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k on all edges. The spaces X2 and X2 are complete. Define the unbounded linear
operator (Ak, D(Ak)) on X2:

Ak =

(
−diag

(
ckj

d2

dx2

)
, 1 ≤ j ≤ m

)
,

D(Ak) =

uk ∈ (H2(0, 1)
)m

: ∃du
k

∈ Rn−1 × {0},


t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0),

φk,−w (uk)′(0) = φk,+w (uk)′(1).

 .

Likewise, we define on X2 the unbounded linear operator (A,D(A)) where D(A) =∏N
k=1D

(
Ak
)

and A =
∏N
k=1A

k. This leads us naturally to study the homogeneous
abstract Cauchy problem

(ACP) :


du

dt
(t) +Au(t) = 0, (t > 0),

u(0) = u0,

on X2, which is equivalent to the N abstract Cauchy problems on X2

(ACPk) : ∀k ∈ [[1, N ]] ,


duk

dt
(t) +Akuk(t) = 0, (t > 0),

uk(0) = uk0 .

This problem enters the framework of Mugnolo: see [25].
Now, let us introduce the two new spaces

H :=

{
u ∈

(
H1(0, 1)

)m
: ∃du ∈ Rn−1 × {0},

{
t
φ+du

k

= u(1),
t
φ−du

k

= u(0),

}
,

and H := HN = H × · · · ×H.

Lemma 2.1. H equipped with its usual inner product

∀(u, v) ∈ H ×H, (u|v) =

m∑
j=1

∫ 1

0

[
ujvj + u′jv

′
j

]
is densely and compactly embedded in X2. Moreover, the bilinear form defined by

(u|v)H :=

m∑
j=1

∫ 1

0

u′j(x)v′j(x) dx

is an inner product; the associated norm is equivalent to the standard H1 norm
defined by

∀u ∈ H, ‖u‖ =

m∑
j=1

∫ 1

0

[
(uj)

2(x) + (u′j)
2
(x)
]

dx.

Equipped with one of this two equivalent norm, H is a Hilbert space. Evidently,
such results naturally extends from one to N components.

Proof. [25, Lemma 3.1, p. 4] The space H1(0, 1) is a Hilbert space. Moreover, the
embedding H1(0, 1) ↪→ C([0, 1]) is continuous. So, H is a Hilbert space.
Inclusions (C∞0 (0, 1))

m ⊂ H ⊂ X2 show that H is dense in X2. Furthermore,

according to the Rellich-Kondrachov Theorem, the embedding
(
H1(0, 1)

)m
↪→ X2

is compact and then H is compactly embedded in X2. Finally, equivalence of the
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two norms is a direct consequence of the Poincaré inequality for networks (see
Property 2.35). �

Definition 2.2. For k ∈ [[1, N ]], let ak the bilinear form defined on H ×H by

ak(uk, vk) =

m∑
j=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx.

Likewise, let a the bilinear form defined on H×H by

a(u, v) =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx.

Property 2.3. • a is continuous on H×H, i.e. :

∃M ≥ 0 : ∀(u, v) ∈ H×H, |a(u, v)| ≤M‖u‖H · ‖v‖H,
• a is symmetric,
• a is coercive i.e. : ∃α > 0 : ∀u ∈ H, a(u, u) ≥ α‖u‖2H.

Proof. The bilinear forms ak enjoy the same properties (see [25, Property 3.2,p.
5]). The conclusion follows easily. �

Now, let us state an elementary but fundamental lemma. It claims that, in
integrations by parts, the boundary terms cancel each other out. In other words,
and roughly speaking, Kirchhoff conditions are equivalent to homogenous Neumann
conditions for networks.

Property 2.4. Let uk ∈ H such that Kirchhoff conditions hold. Then

(4) ∀wk ∈ H,
m∑
j=1

ckj

[(
ukj
)′

(1)wkj (1)−
(
ukj
)′

(0)wkj (0)
]

= 0.

Proof. Thanks to continuity of w, we have1

ckj
(
ukj
)′

(1)wkj (1) =

n−1∑
`=1

ckjφ
+
`j

(
ukj
)′

(v`)w
k
j (v`) =

n−1∑
`=1

ckjφ
+
`j

(
ukj
)′

(v`)d
wk

`

and

ckj
(
ukj
)′

(0)wkj (0) =

n−1∑
`=1

ckjφ
−
`j

(
ukj
)′

(v`)w
k
j (v`) =

n−1∑
`=1

ckjφ
−
`j

(
ukj
)′

(v`)d
wk

` .

By difference, and summing for j from 1 to m, it follows

m∑
j=1

ckj

[(
ukj
)′

(1)wkj (1)−
(
ukj
)′

(0)wkj (0)
]

=

m∑
j=1

n−1∑
`=1

ckj

[
φ+
`j − φ

−
`j

] (
ukj
)′

(v`)d
wk

`

=

n−1∑
`=1

dk` (w)

m∑
j=1

ckj

[
φ+
`j − φ

−
`j

] (
ukj
)′

(v`).

Yet, Kirchhoff condition for component k is exactly
m∑
j=1

ckj

[
φ+
`j − φ

−
`j

] (
ukj
)′

(v`) = 0

1` runs from 1 to n− 1 because, by Dirichlet condition, dwn = 0.
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and the proof is complete. �

From [25, Lemma 3.4, p. 7], we obtain the following property:

Property 2.5. • The unbounded linear operator associated with ak is equal
to (Ak, D(Ak)),
• The unbounded linear operator associated with a is equal to (A,D(A)),

where D(A) =
∏N
k=1D

(
Ak
)

and A =
∏N
k=1A

k.

The Proposition A.25 leads directly to:

Property 2.6. −Ak (respectively −A) is the infinitesimal generator of an analytic
semigroup of contractions on X2 (respectively on X2). Interchangeably, we will

denote by
(
T k2 (t)

)
t≥0

or
(

e−tA
k
)
t≥0

(respectively (T2(t))t≥0 or
(
e−tA

)
t≥0

) the semi-

group generated by −Ak (respectively −A).

Remark that all the properties of A are inherited by Ak (take N = 1).

Property 2.7. A is a self-adjoint operator on X2. Consequently, (T2(t))t≥0 is
self-adjoint for all t ≥ 0.

Proof. Since a is symmetric, Property A.26 asserts that A is self-adjoint. Moreover,
since X2 is reflexive (as a finite product of reflexive spaces), (T2(t))t≥0 is self-adjoint,

according to [27, Corollary 10.6, p. 41]. �

We will need a L∞-contractivity, in order to establish a local existence result.

Definition 2.8. Take p ∈ [1,+∞]. Consider the real vector space

Xp := Lp(0, 1)m = {u = (u1, . . . , um), uj ∈ Lp(0, 1)} .
Xp is equipped with its usual norm defined by

∀u ∈ Xp, ‖u‖Xp =


(∑m

j=1

∫ 1

0
|uj(x)|p dx

) 1
p

, if p 6= +∞,
sup1≤j≤m supx∈Ω |uj(x)|, if p = +∞.

Provided with this norm, X is a Banach space. Consider also the product space

Xp =
∏N
k=1Xp = (Lp(0, 1))

mN
provided with its usual product norm.

Property 2.9.

∀p < +∞,∀u ∈ X∞, ‖u‖Xp ≤ (mN)
1
p ‖u‖X∞ ≤ mN ‖u‖X∞ .

Proof. Let u = (ukj )1≤j≤m,1≤k≤N ∈ X∞ and let p < +∞. Then,

‖u‖pXp =

m∑
j=1

N∑
k=1

∫
Ω

∣∣ukj ∣∣p ≤ m∑
j=1

N∑
k=1

∫
Ω

‖u‖pX∞ = mN ‖u‖pX∞ .

�

Property 2.10. The semigroup
(
e−tA

)
t≥0

associated with the bilinear form a is

sub-markovian, i.e.

• positive,
• X∞-contractive i.e. the closed unit ball of X∞ is invariant under the action

of e−tA, for all t ≥ 0.
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Proof. [25, Theorem 3.5, p. 7] Recall that the bilinear form a is densely defined on
H ⊂ X2, continuous, accretive and closed. According to Theorem A.36, to prove
that

(
e−tA

)
t≥0

is positive, it is sufficient to verify the implication

u ∈ D(a)⇒ u+ ∈ D(a) and a(u+, u−) ≤ 0.

Let u ∈ D(a). The function u+ is clearly continuous on the graph and (ukj )+ ∈
H1(Ω) (see Corollary B.3). Furthermore

a(u+, u−) =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
(ukj )+

)′
(x)
(
(ukj )−

)′
(x) dx

=

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
ukj
)′

(x)1ukj>0(x)
(
−ukj

)′
(x)1ukj<0(x) dx = 0

where, for every function u, 1u>0 denotes the characteristic function of the set
{u > 0} etc.
Now, X∞-contractivity follows from Theorem A.28. Indeed, since a is symmetric,
it suffices to verify that (recall that Tu = (1 ∧ |u|)sign (u))

∀u ∈ D(a), Tu ∈ H and a(Tu, Tu) ≤ a(u, u).

Let u ∈ D(a). Clearly, Tu ∈
(
H1(0, 1)

)mM
(see Corollary B.4). Moreover, by

continuity of u at each vertex, Tu is also continuous at each vertex. Lastly,

Tu(x) =

u(x), if |u(x)| ≤ 1,
u(x)

|u(x)|
, if |u(x)| ≥ 1,

and (Tu)
′

= u′1|u|<1 a.e.

As a consequence,

a(Tu, Tu) =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

((
Tukj

)′)2

(x) dx =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

((
ukj
)′
1|ukj |<1

)2

(x) dx

≤
m∑
j=1

N∑
k=1

ckj

∫ 1

0

((
ukj
)′)2

(x) dx = a(u, u),

which completes the proof. �

2.3. Extrapolation; ultracontractivity. Let us recall that

∀(u, v) ∈ H×H, a(u, v) =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx,

and that T2(t) = e−tA, where A denotes the operator associated with a. To prove
that (e−tA)t≥0 is X1-contractive, we will recall the following property.

Lemma 2.11. Let (Ω,A, µ) be a measure space. Then

∀u ∈ L1(Ω), ‖u‖L1(Ω) = sup
‖v‖L∞(Ω)≤1

∣∣∣∣∫
Ω

uv

∣∣∣∣ .
Property 2.12. (e−tA)t≥0 is X1-contractive.
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Proof. Following [25], we can identify (Lp(0, 1))
m

and Lp(0,m) (1 ≤ p ≤ +∞).
More precisely, let U : (Lp(0, 1))

m → Lp(0,m) the function defined by

∀u = (u1, . . . , um) ∈ (Lp(0, 1))
m
,∀j ∈ [[1,m]] ,∀x ∈ (j−1, j), U(u)(x) = uj(x−j+1).

Clearly, U is an isometry. As no confusion can arise, we will use the same letter to
designate u and U(u). For u ∈ X2, we have

∥∥e−tAu
∥∥
X1

=

N∑
k=1

∥∥∥e−tA
k

uk
∥∥∥
X1

=

N∑
k=1

sup
‖vk‖X∞≤1

∣∣∣∣∣
∫

[0,m]

e−tA
k

uk · vk
∣∣∣∣∣

=

N∑
k=1

sup
‖vk‖X∞≤1

∣∣∣∣(e−tA
k

uk
∣∣∣vk)

X2

∣∣∣∣
=

N∑
k=1

sup
‖vk‖X∞≤1

∣∣∣∣(uk∣∣∣e−tAkvk)X2

∣∣∣∣ because e−tA
k

= e−tA
k
2 is self-adjoint

=

N∑
k=1

sup
‖vk‖X∞≤1

∣∣∣∣∣
∫

[0,m]

uk · e−tA
k

vk

∣∣∣∣∣ ≤
N∑
k=1

sup
‖vk‖X∞≤1

∫
[0,m]

∣∣uk∣∣ · ∣∣∣e−tAkvk∣∣∣
≤

N∑
k=1

sup
‖vk‖X∞≤1

∫
[0,m]

∣∣uk∣∣ · ∣∣vk∣∣ because e−tA
k

is X∞-contractive

≤
N∑
k=1

∫
[0,m]

∣∣uk∣∣ = ‖u‖X1
.

�

Theorem 2.13. [25, Theorem 4.1, p. 12], [5, paragraph 7.2.2.]

• (T2(t))t≥0 extrapolates to a family of real contractive semigroups (Tp(t))t≥0

on Xp, 1 ≤ p ≤ ∞.
• (Tp(t))t≥0 is positive for p ∈ [1,+∞].
• (Tp(t))t≥0 is strongly continuous for 1 ≤ p < ∞ and analytic for 1 < p <
∞.

Lemma 2.14 (Nash inequality). There exists a constant M > 0 such that

∀u ∈ H1(0, 1), ‖u‖L2(0,1) ≤M‖u‖
1
3

H1(0,1)‖u‖
2
3

L1(0,1).

See [7, Lemma 2.7] for a more general statement.

Property 2.15. • We have

∀t > 0,∀u ∈ X1, ‖T2(t)u‖X2
≤Mt−

1
4 ‖u‖X1

.

• Therefore, the semigroup (T2(t))t≥0 associated with a is ultracontractive.
• In particular, it satisfies

∃M > 0 : ∀t > 0,∀u ∈ X2, ‖T2(t)u‖X∞ ≤Mt−
1
4 ‖u‖X2 .

Proof. • Let us prove the first inequality. Since (T2(t))t≥0 is X∞-contractive,
Theorem A.29 may be applied. Taking d = 1, it is enough to verify that

∃M > 0/∀u ∈ H ∩ L1(0, 1)mN = H, ‖u‖6X2
≤Ma(u, u)‖u‖4X1

.
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Let u ∈ H. We have

‖u‖2X2
=

m∑
j=1

N∑
k=1

‖ukj ‖2L2(0,1) ≤M
2
m∑
j=1

N∑
k=1

‖ukj ‖
2
3

H1(0,1)‖u
k
j ‖

4
3

L1(0,1)

≤M2

 m∑
j=1

N∑
k=1

‖ukj ‖
2
3

H1(0,1)

 m∑
j=1

N∑
k=1

‖ukj ‖
4
3

L1(0,1)


≤ C

 m∑
j=1

N∑
k=1

‖ukj ‖H1(0,1)

 2
3
 m∑
j=1

N∑
k=1

‖ukj ‖L1(0,1)

 4
3

≤ C‖u‖
2
3

H‖u‖
4
3

X1
≤ Ca(u, u)

1
3 ‖u‖

4
3

X1
,

C denoting a constant depending on the data.
• So, we have proved that, for p = 1, q = 2 and d = 1,

∃c > 0 : ∀t ∈]0; 1], ‖T (t)‖L(Lp,Lq) ≤ ct−
d
2 ( 1

p−
1
q ).

• According to Property A.18, again for d = 1,

∃c > 0 : ∀1 ≤ p < q ≤ ∞/∀t ∈]0; 1], ‖T (t)‖L(Lp,Lq) ≤ ct−
d
2 ( 1

p−
1
q ),

which proves that the semigroup (T2(t))t≥0 associated with a is ultracon-
tractive.
• The second inequality is obtained taking p = 2 and q = +∞. The proof is

complete.
�

The following property directly follows from [25, Property 4.6, p. 14].

Property 2.16. Let p ∈ [1; +∞].

• Let −Akp denote the infinitesimal generator of the semigroup (T kp (t))t≥0.
Then

D(Akp) =

u ∈ (W 2,p(Ω)
)m

: ∃du
k

∈ Rn−1 × {0} :


t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0),

φk,−w (uk)′(0) = φk,−w (uk)′(1),


and the action of Akp on D(Akp) is given by: Akp = −diag

(
ckj

d2

dx2
, 1 ≤ j ≤ m

)
.

• D(Ap) =
∏N
k=1D

(
Akp
)

and Ap =
∏N
k=1A

k
p.

Property 2.17. Consider the following abstract Cauchy problem

(5) (ACP) :
du

dt
+Au = f(t) , u(0) = u0 ∈ X∞,

where A is the previously defined unbounded linear operator. Let u be a solution of
(ACP) on the interval [0, T ), 0 < T < +∞. Assume that

∀p ∈ (1,+∞), f ∈ Lp(0, T ;Xp).

Then, u ∈ L∞(0, T ;X∞).

Proof. It is a straightforward application of Property A.31. �



14 FRÉDÉRIC KUCZMA

2.4. Compactness.

Property 2.18. −A has compact resolvent.

Proof. Applying the Rellich-Kondrachov Theorem, we see that the embedding
D(A) ↪→ X2 is compact. Moreover, since −A is the infinitesimal generator of a
C0-semigroup of contractions (in fact, we even have here an analytic semigroup),
ρ(−A) 6= ∅. This follows, for example, from the Hille-Yosida Theorem: see Theorem
A.6. It remains to apply Property A.20. �

Property 2.19. For all p ∈ (1,+∞), −Ap has compact resolvent.

Proof. We have just seen that −A = −A2 has compact resolvent. According to [5,
paragraph 7.2.2, p. 62], this property is inherited by −Ap, 1 < p < +∞. �

Property 2.20. The semigroup
(
e−tAp

)
t≥0

is compact for 1 < p < +∞ and t > 0.

Proof. We already know that −Ap has compact resolvent. Moreover,
(
e−tAp

)
t≥0

is

an analytic semigroup (because 1 < p < +∞), and so
(
e−tAp

)
t≥0

is a differentiable

semigroup. Conclusion follows from Properties A.21 and A.13. �

Ultracontractivity of
(
e−tA

)
t≥0

may also be used to improve the previous result.

More precisely:

Property 2.21. The semigroup
(
e−tAp

)
t≥0

is compact for 1 ≤ p ≤ +∞ and t > 0.

Moreover, σ(Ap) does not depend on p, with 1 ≤ p ≤ +∞.

Proof. Take p ∈ [1,+∞]. Let us factorize e−tA in the following way (see [10,
Theorem 2.1.5, p. 71]):

e−tA : X1
ϕ1=e−

t
2
A

−→ X2
ϕ2=e−

t
2
A

−→ X2
ϕ3=Id−→ X1.

Here, ϕ1 is continuous by ultracontractivity; ϕ2 is compact from the foregoing; ϕ3

is continuous because Ω is bounded. Consequently, e−tA : X1 → X1 is compact.
Furthermore, A is a linear real positive self-adjoint operator on X2 and, for all t ≥ 0,
e−tA is positive and X∞-contractive. Consequently, according to [10, Theorem
1.6.4, p. 36], e−tA : Xp → Xp is compact for all p ∈ [1,+∞]. Moreover,

• ∀p, q ∈ [1,+∞], σ(Ap) = σ(Aq),
• every eigenfunction of A2 is also in Xp, for all p ∈ [1,+∞].

�

2.5. Exponential stability.

Property 2.22. For2 1 < p < ∞, ω(Tp) = s(−A). Consequently, (Tp(t))t≥0 is
uniformly exponentially stable.

Proof. Let us start off by looking at the case p = 2. Clearly, σp(−A) ⊂] −∞, 0].
Moreover, A is one-to-one. Indeed, let u ∈ D(A) such that Au = 0. Then a(u, u) =
0 and then

m∑
j=1

N∑
k=1

ckj

∫
Ω

(
ukj
′)2

= 0.

2See A.22 for the definition of growth bound and spectral bound.
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It is deduced that (ukj )′ = 0 and that ukj is constant on Ω. By continuity on the

graph and connectedness of the network, every function uk is constant. Finally,
through Dirichlet condition at vertex vn, every uk is equal to zero, i.e. u = 0.
Thus, 0 /∈ σp(A). Since A has compact resolvent, σ(A) = σp(A) and σp(A) consists
of a sequence of eigenvalues converging to infinity (see Property A.20). It follows
that s(−A) < 0. Since (T2(t))t≥0 is an analytic semigroup, Property A.24 implies
that s(−A) = ω(T2). Consequently, ω(T2) < 0 and T2(t) is exponentially stable
(see Remark A.23).
Now, fix p such that 1 < p < +∞. As seen in Property 2.21, on has3 σ(Ap) = σ(A2).
Thus s(−Ap) < 0. Since (Tp(t))t≥0 is analytic, we conclude as before4. �

2.6. Local existence in Xp, 1 < p < +∞. Throughout this section, we consider
p ∈ (1,+∞) (Note that we do not take account of the case p = +∞ because the
semigroup

(
e−tA∞

)
t≥0

is not analytic). Recall that Xp = Lp(Ω,R)mN . Let us

consider the following abstract Cauchy problem

(6)
du

dt
+Apu = f(u) , u(0) = u0 ∈ X∞,

where Ap is the previously defined unbounded linear operator. We have seen that
−Ap is the infinitesimal generator of an analytic semigroup of contractions. We
also consider a real number T > 0 which will be fixed later. We are looking for
T sufficiently small such that Equation (6) has a solution on [0, T ). As usual, Ω
denotes the open interval (0, 1) and QT := (0, T )× (0, 1).

Following [27, definition 2.1, p. 105], we have the following definition:

Definition 2.23. Let T > 0. A function u : [0, T )→ Xp is a solution of (6) when
u is continuous on [0, T ), has continuous derivative on (0, T ), u(t) ∈ D(A) for all
0 < t < T and (6) holds on (0, T ).

We are particularly interested in solutions which are uniformly bounded. Hence
the following definition.

Definition 2.24. Let T > 0. A function u : [0, T ) → Xp is a X∞-solution of (6)
when

• for all p ∈ (1,+∞), u is a solution of (6) in Xp,
• u ∈ L∞loc([0, T ),X∞).

The following fundamental result seems to be rather classical. Since we were not
able to find in the literature a detailed proof, and for the sake of exhaustiveness,
we give a complete statement as well as a self-contained proof.

Theorem 2.25. For T > 0 sufficiently small, (6) has a unique X∞-solution on
[0, T ).

Proof. (1) Take u0 ∈ X∞. Let B be the closed ball in Xp,T := Lp
(
QT ,RmN

)
centred at 0 of radius R > 0 (the choice of R will be made later). For every
û ∈ B, let us consider the new abstract Cauchy problem:

du

dt
(t) +Apu(t) = f(û) =: g(t) , u(0) = u0 ∈ X∞,

3 We can also note that A = A2 has compact resolvent and use [5, paragraph 7.2.2, p. 62].
4 We can also use [11, Corollary 3.12, p. 281]: if A is the infinitesimal generator of an analytic

semigroup, then s(A) = ω(A).
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g(t) denoting the function x 7→ f(û(t, x)). We would like to show that the
map û 7→ u has a fixed point.

(2) For α > ‖u0‖X∞ + 1, let Tα be a C∞-regularization of the function

R→ R, x 7→


−α if x ≤ −α,
x if x ∈ [−α, α],

α if x ≥ α.
More precisely, let Tα : R→ R be an odd C∞-function such that
• ∀t ∈ [0, α− 1], Tα(x) = x,
• ∀t > α, Tα(x) = α,
• Tα is concave on [0,+∞).

Let fkj,α := fkj ◦ (Tα, . . . , Tα). Then, functions fkj,α are globally Lipschitz

continuous on RN . As before, denote fα :=
(
fkj,α

)
1≤j≤m,1≤k≤N . Then, we

consider the new abstract Cauchy problem

du

dt
+Apu = fα(û) , u(0) = u0 ∈ X∞.

Let u be the mild-solution of (2). Then, u ∈ C([0;T );Xp) and, for all
t ∈ [0;T ):

u(t) = e−tApu0 +

∫ t

0

e−(t−s)Apfα(û)(s) ds = e−tApu0 +

∫ t

0

e−(t−s)Apgα(s) ds,

where gα(s) := fα(û)(s) . Let us stress that, since the semigroups
(
e−tAp

)
t≥0

are consistent, the solution u(t) does not depend on the choice of p.
(3) In order to apply the Picard Theorem, we have to prove that the ball B

is invariant under the action of the function û 7→ u and that the function
B → B, û 7→ u is a contraction.
Let us start by studying the invariance of the ball B := B(0, R), for suffi-
ciently small T . For û ∈ B, we have (for t ∈ [0, T ))

‖u(t)‖Xp =

∥∥∥∥e−tApu0 +

∫ t

0

e−(t−s)Apfα(û)(s) ds

∥∥∥∥
Xp

≤
∥∥e−tApu0

∥∥
Xp

+

∫ t

0

∥∥∥e−(t−s)Apfα(û)(s)
∥∥∥
Xp

ds

≤
∥∥u0
∥∥
Xp

+

∫ t

0

‖fα(û)(s)‖Xp ds

≤ mN
∥∥u0
∥∥
X∞

+

∫ t

0

mN ‖fα(û)(s)‖X∞ ds

because e−tAp is a contraction and ‖·‖Xp ≤ mN ‖·‖X∞ : see Property 2.9.

Consequently,

‖u(t)‖Xp ≤ mN
∥∥u0
∥∥
X∞

+mNT sup
s∈[0,T )

‖fα(û)(s)‖X∞

≤ mN
∥∥u0
∥∥
X∞

+mNT ‖fα‖∞
since fα is uniformly bounded. Integrating between 0 and T leads to

‖u‖pXp,T =

∫ T

0

‖u(t)‖pXp dt ≤ T
(
mN

∥∥u0
∥∥
X∞

+mNT ‖fα‖∞
)p
.
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By imposing the limitation

(7) T ≤ 1,

we have

‖u‖Xp,T ≤ mN
∥∥u0
∥∥
X∞

+mNT ‖fα‖∞ .

Then, let us take R such that R > mN
∥∥u0
∥∥
X∞

. Choose, for example

R := mN
∥∥u0
∥∥
X∞

+ 1.

If T satisfies mNT ‖fα‖∞ ≤ 1, we have

‖u‖Xp,T ≤ R i.e. u ∈ B.

Imposing the further limitation

(8) T ≤ 1

mN ‖fα‖∞ + 1
,

we justify the desired invariance.
Now, let us prove that the function B → B, û 7→ u is a contraction. Let
û, v̂ ∈ B and u, v be the mild-solutions of (2), i.e.

du

dt
+Apu = fα(û) , u(0) = u0 ∈ X∞,

dv

dt
+Apv = fα(v̂) , v(0) = u0 ∈ X∞.

Thus, for all t ∈ [0, T ), we have

u(t) = e−tApu0 +

∫ t

0

e−(t−s)Apfα(û)(s) ds,

v(t) = e−tApu0 +

∫ t

0

e−(t−s)Apfα(v̂)(s) ds.

Taking the difference and using the triangle inequality, we have, with t ∈
[0;T ],

D : = ‖v(t)− u(t)‖pXp =

∥∥∥∥∫ t

0

e−(t−s)Ap(fα(v̂)− fα(û))(s) ds

∥∥∥∥p
Xp

≤
(∫ t

0

∣∣∣∣∣∣∣∣∣e−(t−s)Ap
∣∣∣∣∣∣∣∣∣
L(Xp)

.‖fα(v̂)(s)− fα(û)(s)‖Xp ds

)p
.

Since
(
e−tAp

)
t≥0

is a semigroup of contractions on Xp, we have

D ≤
(∫ t

0

‖fα(v̂)(s)− fα(û)(s)‖Xp ds

)p
.
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Then, by Hölder inequality, with 1
p + 1

q = 1, it follows

D ≤ t
p
q

∫ t

0

‖fα(v̂)(s)− fα(û)(s)‖pXp ds ≤ T
p
q

∫ T

0

‖fα(v̂)(s)− fα(û)(s)‖pXp ds

= T
p
q

m∑
j=1

N∑
k=1

∫ T

0

∫
Ω

∣∣fkj,α(v̂(s, x))− fkj,α(û(s, x))
∣∣p dx ds

≤ T
p
q

m∑
j=1

N∑
k=1

∫ T

0

∫
Ω

(
Lip

(
fkj,α

))p
sup

1≤`≤N

∣∣v̂`j(s, x)− û`j(s, x)
∣∣p dxds

≤ T
p
q

m∑
j=1

N∑
k=1

∫ T

0

∫
Ω

(
Lip

(
fkj,α

))p N∑
`=1

∣∣v̂`j(s, x)− û`j(s, x)
∣∣p dxds

≤ T
p
qKp

α

m∑
j=1

N∑
k=1

N∑
`=1

∫ T

0

∫
Ω

∣∣v̂`j(s, x)− û`j(s, x)
∣∣p dxds

= NKp
αT

p
q

m∑
j=1

N∑
`=1

∫ T

0

∫
Ω

∣∣v̂`j(s, x)− û`j(s, x)
∣∣p dxds,

where Kα := max1≤j≤N,1≤k≤N Lip
(
fkj,α

)
and where Lip

(
fkj,α

)
denotes the

Lipschitz constant of fkj,α. Then,

D ≤ NKp
αT

p
q ‖v̂ − û‖pLp(QT )mN .

Integrating between 0 and T leads to

‖v − u‖p
Lp(QT )mN

≤ NKp
αT

1+ p
q ‖v̂ − û‖p

Lp(QT )mN

and then to

‖v − u‖Lp(QT )mN ≤ NKαT‖v̂ − û‖Lp(QT )mN .

Now, all we need is to choose T such that

(9) T ≤ 1

NKα + 1
.

For such a T , the map B → B, û 7→ u is a contraction. We are now in
position to use the Picard Theorem: there exists a unique function u ∈ B
such that

∀t ∈ [0, T ), u(t) = e−tApu0 +

∫ t

0

e−(t−s)Apfα(u)(s) ds , u(0) = u0.

Here, we stress that T does not depend on p.
(4) According to [27, Corollary 3.3, p. 113], to prove that u is a solution of the

abstract Cauchy problem (2), it is enough to verify that
• fα(u) ∈ L1(0, T ;Xp),
• fα(u) is locally Lipschitz continuous on ]0, T ].
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The first condition is obvious since fα(u) is bounded.
Let t, t+ h ∈]0;T ], h > 0. We have

E : = ‖fα(u)(t+ h)− fα(u)(t)‖pXp = ‖fα(u(t+ h, ·))− fα(u(t, ·))‖pXp

=

m∑
j=1

N∑
k=1

∫
Ω

∣∣fkj,α(u(t+ h, x))− fkj,α(u(t, x))
∣∣p dx.

But, fα is Lipschitz continuous and then

E ≤ NKp
α

m∑
j=1

N∑
k=1

∫
Ω

∣∣ukj (t+ h, x)− ukj (t, x)
∣∣p dx = C ‖u(t+ h)− u(t)‖pXp

where C denotes a constant depending on the data, T and α, but not h.
Therefore, fα(u) is locally Lipschitz continuous. According to [27, Corollary
3.3, p. 113], u is a solution of the abstract Cauchy problem (2).

(5) Now, let us prove that u(t) ∈ X∞. Let us start off with the functional
equality

u(t) = e−tApu0 +

∫ t

0

e−(t−s)Apfα(u)(s) ds,

valid in Xp (p = 2, for instance). Then

(10) ‖u(t)‖X∞ ≤
∥∥e−tApu0

∥∥
X∞

+

∫ t

0

∥∥∥e−(t−s)Apfα(u)(s)
∥∥∥
X∞

ds.

But, u0 ∈ X∞. Since semigroups e−tAp are consistent, e−tApu0 = e−tA∞u0

and

(11)
∥∥e−tApu0

∥∥
X∞

=
∥∥e−tA∞u0

∥∥
X∞
≤
∥∥u0
∥∥
X∞

because e−tA∞ is contractive. For the same reason, since fα is bounded,
fα(u)(s) ∈ X∞ and

(12)

∫ t

0

∥∥∥e−(t−s)Apfα(u)(s)
∥∥∥
X∞

ds ≤
∫ t

0

‖fα(u)(s)‖X∞ ds ≤ TMα,

where Mα := sup1≤j≤m,1≤k≤N supx∈[−α,α]

∣∣fkj (x)
∣∣. Finally, (10),(11) and

(12) show that

‖u(t)‖X∞ ≤
∥∥u0
∥∥
X∞

+ TMα.

Consequently, u is uniformly bounded on [0;T ). Moreover, imposing the
limitation

(13) T ≤
α− 1−

∥∥u0
∥∥
X∞

Mα + 1
,

we obtain

∀t ∈ (0, T ), ‖u(t)‖X∞ ≤ α− 1.

Consequently, f(u) and fα(u) are equal for t ∈ [0;T ), and u is also solution
of the abstract Cauchy problem

du

dt
+Apu = f(u) , u(0) = u0 ∈ X∞.
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Conditions (7), (8), (9) and (13) lead us to take

T := min

(
1,

1

mN ‖fα‖∞ + 1
,

1

NKα + 1
,
α− 1−

∥∥u0
∥∥
X∞

Mα + 1

)
.

We have proved existence and uniqueness of a solution of (6) on [0, T ).
(6) So, we have proved existence on [0, T ) of a function u uniformly bounded

on [0;T ), solution of the abstract Cauchy problems

∀p ∈ (1,+∞),
du

dt
+Apu = f(u) , u(0) = u0 ∈ X∞.

Let us stress that since extrapolations
(
e−tAp

)
t≥0

are consistent, solutions do

not depend on p. �

Remark 2.26. Note that the previous proof provides a ”minimum lifetime” T for
(6), and that T is substantially characterized by

∥∥u0
∥∥
X∞

.

Remark 2.27. We turn now to the slightly modified system

du

dt
+Apu = f(u, x) , u(0) = u0 ∈ X∞

where f = (fkj )1≤j≤m,1≤k≤N . Suppose un addition that, for (j, k) living in [[1,m]]×
[[1, N ]], the following properties hold:

• fkj is locally Lipschitz continuous on RN × Ω with respect to u,

• There exists a function ϕkj bounded on every compact such that

∀(u, x) ∈ RN × Ω,
∣∣fkj (u, x)

∣∣ ≤ ϕkj (u)

• f is locally Lipschitz continuous uniformly with respect to x, i.e. ,

∀K ⊂ RN ,K compact,∃µ ≥ 0 : ∀u, v ∈ RN ,∀x ∈ Ω,
∣∣fkj (u, x)− fkj (v, x)

∣∣ ≤ µ|u−v|.
Then, we readily check that the local existence Theorem is still valid.

To define a maximal X∞-solution of (6), we proceed as follows. For 1 < p <
+∞, consider the maximal solution (u, [0, T ∗p )) of (6) in Xp (note that u does
not depend on p). The previous theorem shows that inf1<p<+∞ T ∗p > 0. Let

T̃ := inf1<p<+∞ T ∗p . Using once again the above theorem, we find that there exists

T ∈ (0, T̃ ] such that u(t) is uniformly bounded on [0, T ).

Definition 2.28. Let T ∗ := supT, 0 < T ≤ T̃ such that u(t) is uniformly bounded
on [0, T ). We say that (u, [0, T ∗)) is the maximal X∞-solution of the abstract
Cauchy problem (6).

Property 2.29. Let us keep notations and assumptions of the previous theorem.
Then

• either T ∗ = +∞,
• or T ∗ < +∞ and ‖u(t)‖X∞ is not bounded in the neighborhood of T ∗−.

Proof. Let u(t) be a solution on [0;T ) uniformly bounded on [0;T ), T < +∞.
Denote S := sup0≤t<T ‖u(t)‖X∞ . Let us choose α > S + 1 and take

τ = min

(
1,

1

mN ‖fα‖∞ + 1
,

1

NKα + 1
,
α− 1− S
Mα + 1

)
.
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According to the previous theorem, the equation

(14)
dũ

dt
+Apũ = f(ũ) , ũ

(
T − τ

2

)
= u

(
T − τ

2

)
has a unique solution on

(
T − τ

2 , T + τ
2

)
. It remains to concatenate u and ũ to find

a solution of (6) which extends u to a solution of (6) on
[
0, T + τ

2

)
. �

Property 2.30 (Regularity).

∀t ∈ (0;T ∗), u(t) ∈
⋂
γ<1

(
C1,γ(Ω)

)mN
.

Proof. By Sobolev embedding (see [12, Theorem 6, p. 286]), we have

W k,p(Ω) ⊂ Ck−[ 1
p ]−1,γ(Ω) where γ :=

{[
1
p

]
+ 1− 1

p , if 1
p /∈ N,

any positive number < 1, if 1
p ∈ N.

In particular, if k = 2:

W 2,p(Ω) ⊂ C2−[ 1
p ]−1,γ(Ω).

Since this is true for p arbitrarily large, it follows that

∀t ∈ (0;T ∗), u(t) ∈
⋂
γ<1

(
C1,γ(Ω)

)mN
.

�

2.7. Positivity. Let us assume that the quasi-positivity (P) Property
(15)
∀(j, k) ∈ [[1,m]]× [[1, N ]] ,∀(r1, . . . , rN ) ∈ RN+ , fkj (r1, . . . , rk−1, 0, rk+1, . . . , rN ) ≥ 0

holds. Let us consider the modified system (S̃) obtained from (S) replacing the

functions fkj by the functionsf̃kj , where

f̃kj (r1
j , . . . , r

N
j ) =

{
fkj (r1

j , . . . , r
N
j ), if ∀k ∈ [[1, N ]] , rkj ≥ 0,

fk+
j (r1

j , . . . , r
N
j ), else .

Denote (ũkj )1≤k≤N,1≤j≤m the weak solution of (S̃), i.e.

∀v ∈ H,
〈

dũ

dt
, v

〉
+ a(ũ, v) =

(
f̃
∣∣∣v) ,

where 〈·, ·〉 denotes the pairing between H and its dual space H′. Note that, since
dũ
dt ∈ X2 (because it is a solution of the abstract Cauchy problem), the previous

equation can be rewritten as

∀v ∈ H,
(

dũ

dt

∣∣∣∣v)+ a(ũ, v) =
(
f̃
∣∣∣v) .

Take v = ũ− := (ũk−j )j,k as test function. We have〈
dũ

dt
, ũ−

〉
+ a(ũ, ũ−) =

(
f̃
∣∣∣ũ−) .
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• According to the Mignot Lemma (see [14, p. 31]), we have〈
dũ

dt
, ũ−

〉
=

m∑
j=1

N∑
k=1

d

dt

∫
Ω

(∫ ũkj (·,x)

0

r− dr

)
dx = −1

2

m∑
j=1

N∑
k=1

d

dt

∫
Ω

(ũk−j )2 dx

where we used that∫ z

0

r− dr =

{
0, if z > 0,

− z
2

2 , if z < 0,
= −z

2

2
1z<0.

• Moreover, we have

a(ũ, ũ−) =

m∑
j=1

N∑
k=1

ckj

∫
Ω

(ũkj )′(ũk−j )′ dx = −
m∑
j=1

N∑
k=1

ckj

∫
Ω

((ũkj )′)21ũkj<0 dx ≤ 0.

• Furthermore, by construction, ũk−j f̃kj (ũj) ≥ 0.

From the previous inequalities, we deduce that

m∑
j=1

N∑
k=1

d

dt

∫
Ω

(ũk−j )2 dx ≤ 0

and the nonnegative function t 7→
∑m
j=1

∑N
k=1

∫
Ω

(ũk−j )2 dx is nonincreasing. Since

ukj (t = 0) ≥ 0, it is inferred that ũk−j = 0 and that ũkj ≥ 0. Finally, it is clear that

ũkj is also solution of (S). By uniqueness of the solution, it is deduced that ukj ≥ 0.

2.8. Maximal regularity on network. Let us recall that

• Ω := (0, 1).
• A (= A2) is the unbounded linear operator associated with the graph (see

2.5).
• As it will cause no confusion, we will use the same letter to denote A and
Ap, where Ap is defined in 2.16.

A straightforward application of Theorem A.41 shows that we have

Theorem 2.31. The operator A has the maximal Lp-regularity Property on Xq,
for p, q ∈ [1,+∞] (see Definition A.37). Consequently, for p = q and u0 = 0, we
have

‖u‖Lp(0,T,(W 1,p(0,1))m) +

∥∥∥∥ du

dt

∥∥∥∥
Lp(0,T ;Xp)

+ ‖Au‖Lp(0,T ;Xp) ≤ C‖f‖Lp(0,T ;Xp)

where C denotes a constant depending only on the data, p and T . Coming back to
the functions ukj , we obtain

m∑
j=1

N∑
k=1

(∫ T

0

∫
Ω

|ukj |p +

∫ T

0

∫
Ω

|(ukj )′|p +

∫ T

0

∫
Ω

|∂tukj |p +

∫ T

0

∫
Ω

|(ukj )′′|p
)

≤ C‖f‖Lp(0,T ;Xp).

Remark 2.32. Note that we may assume that C is a nondecreasing function with
respect to T . Consequently, if T ∗ < +∞, the previous theorem is valid for T = T ∗

and C may be extended to a nondecreasing function C : [0,+∞)→ [0,+∞).

Remark 2.33. If f ∈ Lp(0, T ;Xp), then ukj ∈W 1,p([0, T )× Ω).
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Corollary 2.34. By continuity of the trace function, we have∥∥∂tukj∥∥Lp((0,T )×Ω)
+
∥∥(ukj )′′

∥∥
Lp((0,T )×Ω)

+ sup
0≤t≤T

‖ukj (t)‖Lp(Ω)

+ ‖ukj (·, 0)‖Lp(0,T ) + ‖ukj (·, 1)‖Lp(0,T ) ≤ C‖f‖Lp(0,T ;Xp).

2.9. Poincaré inequality on network. For p ∈ [1,+∞], let

Hp :=

{
u = (u1, . . . , um) ∈

(
W 1,p(0, 1)

)m
: ∃du ∈ Rn−1 × {0},

{
t
φ+d = u(1),
t
φ−d = u(0)

}
,

where the condition: ∃du ∈ Rn−1 × {0}/

{
t
φ+d = u(1),
t
φ−d = u(0)

means continuity on

network, as well as a Dirichlet condition at vertex vn. Likewise, let Hp := (Hp)
N

=
Hp × · · · ×Hp.

Property 2.35 (Poincaré Inequality). Let u ∈ Hp. Then

∀p ∈ [1,+∞], ‖u‖Hp ≤ m ‖u
′‖Hp .

Proof. The proof of the case p = 1 (see [25]) is easily generalized to every p ∈
[1,+∞). It is based on the connectedness of the graph and the usual Poincaré
inequality on a interval. Passing to the limit as p → +∞ yields the result for
p = +∞. �

3. The case of globally conservative boundary conditions

3.1. New problem. In this paragraph, we replace the Dirichlet condition at vn
with an assumption of continuity and a Kirchhoff condition at vn. Roughly speak-
ing, this corresponds to the passage from H1

0 (Ω) to H1(Ω) in the standard case of
an open subset of Rn. More specifically, we are now interested in the new problem

(S̃) :


∂tu

k
j = ckj

(
ukj
)′′

+ fkj (u1
j , . . . , u

N
j ), 1 ≤ j ≤ m, 1 ≤ k ≤ N, 0 < x < 1,

ukj (t,vi) = uk` (t,vi) := du
k

i (t), j, ` ∈ Γ(vi), 1 ≤ i ≤ n, 1 ≤ k ≤ N,∑m
j=1 φi,jc

k
j (ukj )′(t,vi) = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ N,

ukj (0, ·) = uk0,j , 1 ≤ j ≤ m

subjected to the initial conditions{
uk0,j ≥ 0, 1 ≤ j ≤ m, 1 ≤ k ≤ N,
uk0,j ∈ L∞((0; 1)), 1 ≤ j ≤ m, 1 ≤ k ≤ N.

The weighted incidence matrices Φk,+w = (ωk,+i,j ) ∈ Mn,m(R) and Φk,−w = (ωk,−i,j ) ∈
Mn,m(R) are defined by

ωk,+i,j :=

{
ckj , if φk,+i,j = 1,

0, else
and ωk,−i,j =

{
ckj , if φk,−i,j = 1,

0, else.

With regard to weighted incidence matrices, continuity at vertices and Kirchhoff
conditions become, in a more streamline form

∀t,∀k ∈ [[1, N ]] ,∃du
k

(t) ∈ Rn :

{
t
Φk,+w du

k

(t) = uk(t, 1) and
t
Φk,−w du

k

(t) = uk(t, 0),

Φk,−w (uk)′(t, 0) = Φk,+w (uk)′(t, 1).
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3.2. Similarities. Some properties proved in the case of a Dirichlet condition at
vn still hold. Let us summarize the main properties that persist. Let us define the
new spaces H and H by

H :=

{
uk ∈

(
H1(0, 1)

)m
: ∃du

k

∈ Rn,

{
t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0)

}
,

H :=

{
u ∈

(
H1(0, 1)

)mN
: ∀k ∈ [[1, N ]] ,∃du

k

∈ Rn,

{
t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0)

}
.

H and H are provided with their usual inner products:

∀(uk, vk) ∈ H ×H, (uk|vk)H :=

m∑
j=1

∫ 1

0

[
ukj v

k
j + (ukj )′(vkj )′

]
,

∀(u, v) ∈ H×H, (u|v)H =

N∑
k=1

(uk|vk)H :=

N∑
k=1

m∑
j=1

∫ 1

0

[
ukj v

k
j + (ukj )′(vkj )′

]
.

Property 3.1. H (respectively H) is densely and compactly embedded in X2 (re-
spectively X2). Moreover, H (respectively H) is a Hilbert space.

Remark 3.2. The Poincaré inequality being no more relevant, u 7→
∑N
k=1

∑m
j=1

∫ 1

0

(
(ukj )′

)2
is not a norm anymore, but only a seminorm.

We have the following formula again:

Property 3.3. Let uk ∈ H satisfying Kirchhoff conditions. Then

∀w ∈ H,
m∑
j=1

ckj
[
(ukj )′(1)wkj (1)− (ukj )′(0)wkj (0)

]
= 0.

We also define the two bilinear forms ak, a on respectively H, H by

ak(uk, vk) :=

m∑
j=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx

and

a(u, v) :=

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx.

Then, a is

• densely defined,
• continuous on H×H: ∃M ≥ 0 : ∀(u, v) ∈ H×H, |a(u, v)| ≤M‖u‖H‖v‖H,
• symmetric,
• positive: ∀u ∈ H, a(u, u) ≥ 0.

A (or A2) will still denote the operator associated with the bilinear form a.

Property 3.4. • The unbounded linear operator (Ak, D(Ak)) associated with
ak is equal to:

Ak =

(
−diag

(
ckj

d2

dx2

)
, 1 ≤ j ≤ m

)
,
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D(Ak) =

uk ∈ (H2(0, 1)
)m

: ∃du
k

∈ Rn,


t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0),

φk,−w (uk)′(0) = φk,+w (uk)′(1).


• The unbounded linear operator associated with a is equal to (A,D(A)),

where D(A) =
∏N
k=1D

(
Ak
)

and A =
∏N
k=1A

k.

By considering the particular case N = 1, we see that semigroup for on compo-
nent enjoys the same properties of the semigroup for N components.

Property 3.5. • −A is the infinitesimal generator of an analytic semigroup
of contractions on X2. Interchangeably, (T2(t))t≥0 or

(
e−tA

)
t≥0

denotes

this semigroup.
• A is a self-adjoint operator on X2; for all t ≥ 0, T2(t) is self-adjoint.
• The semigroup

(
e−tA

)
t≥0

associated with the bilinear form a is sub-markovian,

i.e.
– positive,
– X∞-contractive.

Theorem 3.6. • (T2(t))t≥0 extrapolates to a family of contractive semigroups
(Tp(t))t≥0 on Xp, 1 ≤ p ≤ ∞.

• (Tp(t))t≥0 is real positive for p ∈ [1,+∞].
• (Tp(t))t≥0 is strongly continuous for 1 ≤ p < ∞ and analytic for 1 < p <
∞.

Property 3.7. Let p ∈ (1,+∞). Then

• −Ap has compact resolvent.
• The semigroup

(
e−tAp

)
t≥0

is compact.

• σ(Ap) does not depend on p.

Remark 3.8. It should be noted that, unlike the case previously studied (with a
Dirichlet condition at vertex vn), values p = 1 and p = +∞ are excluded. This is
due to the fact that ultracontractivity (which doesn’t hold anymore) is closely linked
to the Dirichlet condition.

We have the following description of Ap.

Property 3.9. Let p ∈ [1; +∞].

• Let −Akp denote the infinitesimal generator of the semigroup (T kp (t))t≥0.
Then

D(Akp) =

u ∈ (W 2,p(Ω)
)m

: ∃du
k

∈ Rn,


t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0),

φk,−w (uk)′(0) = φk,−w (uk)′(1)


and the action of Akp on D(Akp) is given by: Akp = −diag

(
ckj

d2

dx2
, 1 ≤ j ≤ m

)
.

• D(Ap) =
∏N
k=1D

(
Akp
)

and Ap =
∏N
k=1A

k
p.

Finally, note that the local existence Theorem still holds.
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3.3. But also some differences. The bilinear form a is not coercive anymore,
but it is positive. Exponential stability doesn’t hold anymore since 0 ∈ σ(A) and
so ω(T ) = s(A) = 0. Likewise, the Poincaré inequality is no longer valid. Ultra-
contractivity does not hold neither. Indeed, according to Theorem A.29, utracon-
tractivity is equivalent to (here, d = 1):

∃c ≥ 0 : ∀u ∈ D(a) ∩X1, ‖u‖
2+ 4

d

X2
≤ ca(u, u) ‖u‖

4
d

X1
.

This property is clearly not fulfilled (consider constant functions). Roughly speak-
ing, the Poincaré inequality having disappeared, we can’t estimate u according to
u′ anymore. Nevertheless, a Poincaré-Wirtinger type inequality can be established,
which is our next goal. To do this, we will need a few preliminaries.

Definition 3.10. For p ∈ (1,+∞), Hp will denote the vector space

Hp =

{
uk ∈

(
W 1,p(0, 1)

)m
: ∃du

k

∈ Rn−1 × {0},

{
t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0)

}
provided with its usual norm

∀uk ∈ Hp,
∥∥uk∥∥

Hp
=

 m∑
j=1

∫ 1

0

[(
ukj
)p

+
∣∣(ukj )′

∣∣p] 1
p

.

Likewise, we define the vector space

Hp :=

{
u ∈

(
W 1,p(0, 1)

)mN
: ∀k ∈ [[1, N ]] ,∃du

k

∈ Rn−1 × {0},

{
t
φ+du

k

= uk(1),
t
φ−du

k

= uk(0)

}
provided with its usual norm

∀u ∈ Hp, ‖u‖Hp :=

 m∑
j=1

N∑
k=1

∫ 1

0

[(
ukj
)p

+
∣∣(ukj )′

∣∣p] 1
p

.

Note that, for p = 2, we have H2 = H and H2 = H.

Property 3.11 (A Poincaré-Wirtinger inequality on network).

∀p ∈ (1,+∞),∃C ≥ 0 : ∀u ∈ Hp, ‖u− (u)G‖Xp ≤ C ‖u
′‖Xp ,

where (u)G := 1
m

∑m
j=1

∫ 1

0
uj(x) dx denotes the average of u on the graph.

Proof. For the proof, we follow the guideline of [12, p. 292]. Nevertheless, we will
have to pay a special attention to the continuity at vertices. To this end, we will
use a weak convergence argument.
Let p > 1. Suppose by contradiction that the property is false. Therefore

(16) ∀k ∈ N∗,∃uk ∈ Hp : ‖uk − (uk)G‖Xp > k ‖Duk‖Xp ,

where uk = (uk,1, . . . , uk,m). Let

∀k ∈ N∗, vk =
uk − (uk)G

‖uk − (uk)G‖Xp
.

Evidently, we have

(17) ∀k ∈ N∗, ‖vk‖Xp = 1 and (vk)G = 0.
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According to (16),

∀k ∈ N∗, 1 > k ‖Dvk‖Xp i.e. ∀k ∈ N∗, ‖Dvk‖Xp <
1

k

holds. As usual, let vk = (vk,1, . . . , vk,m). For every j (1 ≤ j ≤ m), the sequence
(vk,j)k≥1 is bounded in W 1,p(Ω) (since ‖vk,j‖Xp ≤ ‖vk‖Xp = 1 and ‖Dvk,j‖Xp ≤
‖Dvk‖Xp ≤

1
k ). But, according to the Rellich-Kondrachov Theorem, W 1,p(Ω) ↪→

Lp(Ω), with compact embedding. Extracting m sub-sequences, we can assume that
every sequence (vk,j)k≥1 is convergent in Lp(Ω). Denote Vj such that

∀j ∈ [[1,m]] , vk,j −→
k→+∞

Vj in Lp(Ω)

i.e. , with V = (V1, . . . , Vm)

(18) vk −→
k→+∞

V in Lp(Ω)m.

We also know that, for 1 < p < ∞, W 1,p(0, 1) is reflexive (more generally, for
all 1 < p < ∞, Wm,p(Ω) is reflexive, where Ω denotes an open subset of Rn:

see [1, Theorem 3.5, p. 47]). Then so is the space
(
W 1,p(0, 1)

)m
. Since the

sequence (vk) is bounded in the reflexive space
(
W 1,p(0, 1)

)m
, extracting again

m subsequences, we may assume that the sequence (vk) is weakly convergent in(
W 1,p(0, 1)

)m
. Consequently, there exists Ṽ ∈

(
W 1,p(0, 1)

)m
such that

(19) vk ⇀ Ṽ veakly in
(
W 1,p(0, 1)

)m
.

From (18) and (19), we deduce that Ṽ = V . Moreover, Hp is closed (because it
is complete) and convex. It is deduced that Hp is weakly closed (see [9, Theorem

III.7, p. 38]). Consequently, Ṽ ∈ Hp and then V = Ṽ is continuous on the graph.
Then, (17) implies that

(20) ‖V ‖Xp = 1 and (V )G = 0.

On the other hand, for j ∈ [[1,m]], let us consider ϕj ∈ C∞0 (Ω). We have∫
Ω

Vjϕ
′
j dx = lim

k→+∞

∫
Ω

vk,jϕ
′
j dx = − lim

k→+∞

∫
Ω

v′k,jϕj dx = 0,

since ‖Dvk‖Xkp < 1
k . Is deduced that Vj ∈ W 1,p(Ω) and that V ′j = 0 on Ω.

Consequently, Vj is constant on Ω. Since V is continuous on the connected graph
G, V is constant on G. This contradicts (20). �

3.4. The bilinear form of the globally conservative operator. Later, we will
need ultracontractivity to prove that solutions of the following abstract Cauchy
problem

(ACP) :
du

dt
+Au = f , u(0) = u0

are global. Since, without a Dirichlet condition at vertex vn, ultracontractivity
doesn’t hold anymore, we rewrite (ACP) as

(ÃCP) :
du

dt
+ (A+ Id)u = f + u , u(0) = u0.

Let us introduce the new bilinear forms ãk and ã respectively defined on H, H by

∀(uk, vk) ∈ H×H, ãk(uk, vk) =

m∑
j=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx+

m∑
j=1

∫ 1

0

ukj (x)vkj (x) dx



28 FRÉDÉRIC KUCZMA

and

∀(u, v) ∈ H×H, ã(u, v) =

m∑
j=1

N∑
k=1

ckj

∫ 1

0

(
ukj
)′

(x)
(
vkj
)′

(x) dx+

m∑
j=1

N∑
k=1

∫ 1

0

ukj (x)vkj (x) dx.

Clearly, the operator associated with ã is given by A+ Id.

Property 3.12. The bilinear forms ãk and ã previously defined are

• closed,
• densely defined,
• continuous, i.e.

∃Mk ≥ 0 : ∀(uk, vk) ∈ H ×H, |ãk(uk, vk)| ≤Mk‖uk‖H‖vk‖H

and

∃M ≥ 0 : ∀(u, v) ∈ H×H, |ã(u, v)| ≤M‖u‖H‖v‖H,

• symmetric,
• coercive i.e.

∃αk > 0 : ∀uk ∈ H, ãk(uk, uk) ≥ αk‖uk‖2H
and

∃α > 0 : ∀u ∈ H, ã(u, u) ≥ α‖u‖2H.

Property 3.13. Let (T̃ (t))t≥0 denote the semigroup generated by −(A+Id). Then,

T̃ (t) = e−tT (t) = e−te−tA. The main properties of a and A are inherited by ã and

Ã := A+ Id. More precisely:

• −Ã is the infinitesimal generator of an analytic semigroup of contractions
on X2.

• (T̃ (t))t≥0 is positive, X∞-contractive.

• – (T̃2(t))t≥0 extrapolates to a family of real contractive semigroups (T̃p(t))t≥0

on Xp, 1 ≤ p ≤ ∞.

– (T̃p(t))t≥0 is positive for p ∈ [1,+∞].

– (T̃p(t))t≥0 is strongly continuous for 1 ≤ p < ∞ and analytic for
1 < p <∞.

• (T̃ (t))t≥0 is ultracontractive; indeed, the proof of Property 2.15 is still valid.
The important point to note here is that the bilinear form ã is coercive.

• Compactness, maximal regularity and positivity properties still hold.
• The local existence Theorem is still valid.

Property 3.14. Consider the following abstract Cauchy problem

(ACP) :
du

dt
+Au = f , u(0) = u0 ∈ X∞

where A is the unbounded linear operator previously defined (without Dirichlet con-
dition at vn). Let u be a solution of (ACP) on the interval [0, T ), 0 < T < +∞.
Assume that

∀p ∈ (1,+∞), f ∈ Lp(0, T ;Xp).

Then, u ∈ L∞(0, T ;X∞).
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Proof. We first observe that, since for all p ∈ (1,+∞), f ∈ Lp(0, T ;Xp), necessarily
u ∈ Lp(0, T ;Xp) (see Property A.30). Consequently,

∀p > 1, f + u ∈ Lp(0, T ;Xp).

Moreover, note that (ACP) is equivalent to the new abstract Cauchy problem

(ÃCP) :
du

dt
+ Ãu = f + u , u(0) = u0 ∈ X∞

where Ã = A+ Id. Since Ã is ultracontractive (see Proposition 3.13), Lemma A.31
applies and u ∈ L∞(0, T ;X∞). �

To sum up, we will remember that, with or without Dirichet condition at vertex
vn, Lp bounds of the right-hand term (for all p > 1) implies L∞ bound of the

solution.

Application to reaction-diffusion
In the two following sections, we propose to extend to one-dimensional networks
two theorems concerning reaction-diffusion, the first proved by Martin and Pierre
in [22], and the second by Haraux and Youkana in [17]. These results concerning
global existence and asymptotic behavior of solutions are typical for the theories
developed in the past 30 years.

4. Application I to reaction-diffusion: a result by Martin and Pierre

Our goal is to extend to one-dimensional networks a theorem by Martin and
Pierre (see [22, Theorem 4.2, p. 372]). We refer to paragraphs 4.4 and 4.5 for two
practical cases.

For convenience of readers, we briefly recall the notations. Let Ω denote the
open interval (0, 1). As usual, let ∂tu denote the time derivative of u and u′, u′′ the
space derivatives of u. Recall that m denotes the number of edges on the graph G,
and that Qt denotes the open set (0, t)×Ω. Then, we are interested in the following
problem

(21)

{
∂tuj − c1ju′′j = fj(uj , vj),

∂tvj − c2jv′′j = gj(uj , vj)

with continuity on the graph, Kirchhoff conditions and Dirichlet condition at vertex
vn. Functions fj , gj are supposed to have continuous derivative on [0,+∞)2;
assume that the quasi-positivity Property

(P) : ∀s ≥ 0, fj(0, s) ≥ 0 and ∀r ≥ 0, gj(r, 0) ≥ 0

holds. Assume also that the initial conditions u0 = (u0,j)1≤j≤m and v0 = (v0,j)1≤j≤m
are nonnegative and belong to L∞(Ω)m. Thus, the solutions u and v of (21) are
nonnegative.
Moreover, we will assume that the nonlinearities verify the following mass-control
structure (M)

(M) : ∃L,M ≥ 0 : ∀j ∈ [[1,m]] ,∀r, s ≥ 0, fj(r, s) + gj(r, s) ≤ L(r + s) +M.

According to Theorem 2.25 and Property 2.29, System (21) has a unique maximal
solution (u, v) on an interval [0, T ∗), with 0 < T ∗ ≤ +∞. Our goal is to prove that
T ∗ = +∞.
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Throughout the rest of this paragraph, and unless otherwise specified, C will
denote a generic constant depending only on the data.

4.1. Estimates in Lp (1 < p < +∞). We recall that the method of Martin and
Pierre is based on Lp estimates via maximal regularity.

Lemma 4.1. For all p ∈ (1,+∞) and all T < T ∗, there exists a constant C
depending only on the data, p and T such that

(22) ‖v‖Lp(QT )m ≤ C
(

1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

)
.

Proof. Adding the two equations of (21) leads to

(23) ∂t(uj + vj)− c1ju′′j − c2jv′′j = fj(uj , vj) + gj(uj , vj).

For nonnegative χj ∈ C∞0 (QT ), let us consider the dual problem

(24) − ∂tφj − c2jφ′′j = χj with φj(T, ·) = 0

with continuity on the graph, Kirchhoff conditions at vertices vi, 1 ≤ i ≤ n−1, and
Dirichlet condition at vertex vn (see Remark 2.27 concerning the existence of such
solutions). Since the right-hand side of Equation (24) is nonnegative, it follows that
the functions φj are also nonnegative. Let multiply (23) by e−tLφj :

∂t(uj + vj)e
−tLφj − (c1ju

′′
j + c2jv

′′
j )e−tLφj = (fj(uj , vj) + gj(uj , vj))e

−tLφj

≤ L(uj + vj)e
−tLφj +Me−tLφj

i.e.

∂t(uj + vj)e
−tLφj − L(uj + vj)e

−tLφj ≤ (c1ju
′′
j + c2jv

′′
j )e−tLφj +Me−tLφj

i.e.

∂

∂t

[
(uj + vj)e

−tL]φj ≤ (c1ju
′′
j + c2jv

′′
j )e−tLφj +Me−tLφj .

Integrate on [0, T ], and integrate by parts. Since φj(T, ·) = 0, we have

− (u0,j + v0,j)φj(0, ·)−
∫ T

0

(uj + vj)e
−tL∂tφj dt

≤
∫ T

0

(c1ju
′′
j + c2jv

′′
j )e−tLφj dt+M

∫ T

0

e−tLφj dt.
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Then, integrate on Ω = (0, 1). Perform an integration by parts two times with
respect to x. We obtain

−
∫

Ω

(u0,j + v0,j)φj(0, ·) dx−
∫ T

0

∫
Ω

(uj + vj)e
−tL∂tφj dtdx

≤
∫ T

0

∫
Ω

(c1ju
′′
j + c2jv

′′
j )e−tLφj dx dt+M

∫ T

0

∫
Ω

e−tLφj dxdt

=

∫ T

0

[
(c1ju

′
j(·, 1) + c2jv

′
j(·, 1))e−tLφj(1)− (c1ju

′
j(·, 0) + c2jv

′
j(·, 0))e−tLφj(·, 0)

]
dt

−
∫ T

0

∫
Ω

(c1ju
′
j + c2jv

′
j)e
−tLφ′j dxdt+M

∫ T

0

∫
Ω

e−tLφj dxdt

=

∫ T

0

[
(c1ju

′
j(·, 1) + c2jv

′
j(·, 1))e−tLφj(·, 1)− (c1ju

′
j(·, 0) + c2jv

′
j(·, 0))e−tLφj(·, 0)

]
dt

−
∫ T

0

[
(c1juj(·, 1) + c2jvj(·, 1))e−tLφ′j(·, 1)− (c1juj(·, 0) + c2jvj(·, 0))e−tLφ′j(·, 0)

]
dt

+

∫ T

0

∫
Ω

(c1juj + c2jvj)e
−tLφ′′j dxdt+M

∫ T

0

∫
Ω

e−tLφj dx dt.

In addition with the equality c2jφ
′′
j = −∂tφj − χj , the previous inequality immedi-

ately leads to∫
QT

(uj + vj)e
−tLχj

≤
∫

Ω

(u0,j + v0,j)φj(0, ·) +

∫
QT

[
(c1j − c2j )uje−tLφ′′j +Me−tLφj

]
+

∫ T

0

[
(c1ju

′
j(·, 1) + c2jv

′
j(·, 1)e−tLφj(·, 1)− (c1ju

′
j(·, 0) + c2jv

′
j(·, 0)e−tLφj(·, 0)

]
−
∫ T

0

[
(c1juj(·, 1) + c2jvj(·, 1))e−tLφ′j(·, 1)− (c1juj(·, 0) + c2jvj(·, 0))e−tLφ′j(·, 0)

]
=: I1

j + I2
j + I3

j + I4
j .

We estimate separably each of the above terms.

• Estimate of I1
j .

|I1
j | = I1

j =

∫
Ω

(u0,j + v0,j)φj(0, ·) ≤ ‖u0,j + v0,j‖Lp(Ω) ‖φj(0, ·)‖Lq(Ω)

≤
(
‖u0,j‖Lp(Ω) + ‖v0,j‖Lp(Ω)

)
‖φj(0, ·)‖Lq(Ω) .

But Corollary 2.34 yields the estimate

‖φj(0, ·)‖Lq(Ω) ≤ C ‖χ‖Lq(QT )m .

Then, we obtain

|I1
j | ≤ C

(
‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m

)
‖χ‖Lq(QT )m .
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• Estimate of I2
j .

|I2
j | =

∣∣∣∣∫
QT

[
(c1j − c2j )uje−tLφ′′j +Me−tLφj

]∣∣∣∣
≤
∫
QT

[
|c1j − c2j |uj |φ′′j |+Mφj

]
e−tL ≤

∫
QT

[
|c1j − c2j |uj |φ′′j |+Mφj

]
≤ |c1j − c2j | ‖uj‖Lp(QT )

∥∥φ′′j ∥∥Lq(QT )
+M |Ω|

1
p︸︷︷︸

≤1+|Ω|

‖φj‖Lq(QT )

≤ C ‖u‖Lp(QT )m ‖φ
′′‖Lq(QT )m + C ‖φ‖Lq(QT )m .

Again, by maximal regularity (see Corollary 2.34),

‖φ‖Lq(QT )m ≤ C ‖χ‖Lq(QT )m and ‖φ′′‖Lq(QT )m ≤ C ‖χ‖Lq(QT )m .

Hence the following estimate:

|I2
j | ≤ C

(
1 + ‖u‖Lp(QT )m

)
‖χ‖Lq(QT )m .

• Estimate of I3
j .

m∑
j=1

I3
j =

∫ T

0

e−tL
m∑
j=1

c1j
[
u′j(·, 1)φj(·, 1)− u′j(·, 0)φj(·, 0)

]
−
∫ T

0

e−tL
m∑
j=1

c2j
[
v′j(·, 1)φj(·, 1)− v′j(·, 0)φj(·, 0)

]
= 0,

each of the two sums being equal to zero by Kirchhoff conditions (see Prop-
erty 2.4).

• Estimate of I4
j . Now, let us underline that

∑m
j=1 I

4
j does not vanish by

Kirchhoff conditions anymore. We have

I4
j = −

∫ T

0

[
c1juj(·, 1)φ′j(·, 1)− c1juj(·, 0)φ′j(·, 0)

]
e−tL

−
∫ T

0

[
c2jvj(·, 1)φ′j(·, 1)− c2jvj(·, 0)φ′j(·, 0)

]
e−tL =: I5

j + I6
j

Here,
∑m
j=1 I

6
j = 0 by Kirchhoff conditions, and it remains to estimate∑m

j=1 I
5
j . Naturally, it is sufficient to estimate δj :=

∣∣∣∫ T0 c1juj(·, 1)φ′j(·, 1)
∣∣∣.

We have, for all p ∈ (1,+∞):

δj ≤ C
∫ T

0

|uj(·, 1)| ·
∣∣φ′j(·, 1)

∣∣ ≤ C (∫ T

0

|uj(·, 1)|p
) 1
p
(∫ T

0

∣∣φ′j(·, 1)
∣∣q) 1

q

where C denotes a constant depending only on the data. Moreover, since
T < T ∗, we have ‖uj(t)‖L∞(Ω) ≤ ‖u(t)‖L∞(Ω)m ≤ C = C(T ). Conse-

quently,

δqj ≤ C
∫ T

0

∣∣φ′j(·, 1)
∣∣q .
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But, by Sobolev embedding, W 1,q(Ω) ↪→ C
(
Ω
)

(continuous embedding)
and then∣∣φ′j(·, 1)

∣∣q ≤ C ∥∥φ′j∥∥qW 1,q(Ω)
= C

(∫
Ω

∣∣φ′j∣∣q +

∫
Ω

∣∣φ′′j ∣∣q)
which implies that

(25) δqj ≤ C

(∫ T

0

∫
Ω

∣∣φ′j∣∣q +

∫ T

0

∫
Ω

∣∣φ′′j ∣∣q
)
.

But, according to Lemma B.1, we have∫
Ω

∣∣φ′j∣∣q ≤ C (∫
Ω

|φj |q +

∫
Ω

∣∣φ′′j ∣∣q)
and inequality (25) becomes

δqj ≤ C

(∫ T

0

∫
Ω

|φj |q +

∫ T

0

∫
Ω

∣∣φ′′j ∣∣q
)
.

Moreover, by maximal regularity (see Corollary 2.34),

‖φ‖Lq(QT )m ≤ C ‖χ‖Lq(QT )m and ‖φ′′‖Lq(QT )m ≤ C ‖χ‖Lq(QT )m .

Hence the following estimate:

δj ≤ C ‖χ‖Lq(QT )m .

It remains to concatenate the previous estimates to find
m∑
j=1

∫
QT

(uj+vj)e
−tLχj ≤ C

[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
‖χ‖Lq(QT )m ,

and then
m∑
j=1

∫
QT

(uj+vj)χj ≤ C
[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
‖χ‖Lq(QT )m .

Taking χk = 0 for k 6= j, we have∫
QT

(uj + vj)χj ≤ C
[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
‖χj‖Lq(QT ) ,

which implies

‖uj + vj‖Lp(QT ) ≤ C
[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
.

Summing these inequalities for j from 1 to n yields

‖u+ v‖Lp(QT )m ≤ C
[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
,

and finally, since u and v are nonnegative, we obtain:

‖v‖Lp(QT )m ≤ ‖u+ v‖Lp(QT )m ≤ C
[
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

]
.

�

Remark 4.2. Interchanging u and v, we also have

‖u‖Lp(QT )m ≤ C
(

1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖v‖Lp(QT )m

)
.
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Remark 4.3. As in Remark 2.32, we may assume that C is a nondecreasing func-
tion with respect to T and, if T ∗ < +∞, C may be extended to a nondecreasing
function C : [0,+∞)→ [0,+∞).

4.2. Main statement.

Theorem 4.4. Let us consider the maximal solution (u, v) introduced in the pre-
vious paragraph. Assume that there exists a continuous, nondecreasing function
N1 : [0,+∞)→ [0,+∞) such that

(26) ∀t ∈ [0, T ∗), ‖u(t, ·)‖L∞(Ω)m ≤ N1(t)

as well as a nonnegative real number σ and two nonnegative functions L1,M1 :
[0,+∞)→ [0,+∞) such that

(27) ∀j ∈ [[1,m]] ,∀r, s ≥ 0, [r ≤ R⇒ |gj(r, s)| ≤ L1(R)sσ +M1(R)].

Then, T ∗ = +∞ and the solution (u, v) is global.

Proof. Suppose by contradiction that T ∗ < +∞. By assumption, we have

∀T < T ∗, ‖u(T, ·)‖L∞(Ω)m ≤ N1(T ) ≤ N1(T ∗)

and then u ∈ L∞(QT∗)
m. According to Property 4.1, for all p > 1, we have

∀T < T ∗, ‖v‖Lp(QT )m ≤ C(T )
(

1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT )m

)
≤ C(T ∗)

(
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖Lp(QT∗ )m

)
≤ C(T ∗)

(
1 + ‖u0‖Lp(Ω)m + ‖v0‖Lp(Ω)m + ‖u‖L∞(QT∗ )m

)
< +∞

because, since QT∗ is bounded, L∞(QT∗) ⊂ Lp(QT∗) and because we may assume
that T 7→ C(T ) is nondecreasing. Consequently, v ∈ Lp(QT∗)m for all p > 1. Since,
by assumption

∀p > 1, |gj(uj , vj)| ≤ L1

(
‖uj‖L∞(QT∗ )

)
vσj +M1

(
‖uj‖L∞(QT∗ )

)
,

we have

∀p > 1, |gj(uj , vj)| ∈ Lp(QT∗).

Proposition 2.17 (or 3.14 if we work without a Dirichlet condition at vertex vn)
claims that v ∈ L∞(QT∗)

m. This leads to a contradiction and the solution is
global. �

4.3. Generalization to linearly growing source f . Let us replace L∞-a priori
estimate (26) by

∀j ∈ [[1,m]] ,∃Aj , Bj , Dj ∈ [0,+∞) : ∀uj , vj ≥ 0, fj(uj , vj) ≤ Ajuj +Bjvj +Dj .

Note that we only estimate fj , and not |fj |. Without loss of generality, we can
suppose that the constants Aj , Bj , Dj do not depend on j. Let A,B,D denote
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these constants. For all p > 1 we have
(28)
1

p

d

dt
‖uj(t, ·)‖pLp(Ω) =

1

p

d

dt

∫
Ω

upj =

∫
Ω

∂tuj · up−1
j

=

∫
Ω

up−1
j

[
c1ju
′′
j + fj(uj , vj)

]
≤
∫

Ω

up−1
j

[
c1ju
′′
j +Auj +Bvj +D

]
= c1j

∫
Ω

up−1
j u′′j +A

∫
Ω

upj +B

∫
Ω

up−1
j vj +D

∫
Ω

up−1
j

= c1j

∫
Ω

up−1u′′j +A ‖uj‖pLp(Ω) +B

∫
Ω

up−1
j vj +D

∫
Ω

up−1
j

=: I1
j + I2

j + I3
j + I4

j .

• Estimate of I1
j : an integration by parts shows that

(29)

m∑
j=1

I1
j = −

m∑
j=1

c1j

∫
Ω

(p− 1)up−1(u′j)
2 ≤ 0.

• Estimate of I3
j : thanks to Hölder inequality, we have

(30)

∫
Ω

up−1
j vj ≤

(∫
Ω

u
(p−1)q
j

) 1
q
(∫

Ω

vpj

) 1
p

=

(∫
Ω

upj

) 1
q
(∫

Ω

vpj

) 1
p

= ‖uj‖
p
q

Lp(Ω) ‖vj‖Lp(Ω) = ‖uj‖p−1
Lp(Ω) ‖vj‖Lp(Ω)

≤ 1

q
‖uj‖(p−1)q

Lp(Ω) +
1

p
‖vj‖pLp(Ω) =

1

q
‖uj‖pLp(Ω) +

1

p
‖vj‖pLp(Ω)

where we used the Young inequality.
• Estimate of I4

j : Same as previous with vj replaced by 1, we have

(31)

∫
Ω

up−1
j ≤ 1

q
‖uj‖pLp(Ω) +

1

p

Adding (28) for ≤ j ≤ m, and using (29), (30) and (31), we find

1

p

d

dt
‖u(t, ·)‖pLp(Ω)m

≤ A ‖u‖pLp(Ω)m +B

[
1

q
‖u‖pLp(Ω)m +

1

p
‖v‖pLp(Ω)m

]
+D

[
1

q
‖uj‖pLp(Ω) +

1

p

]
≤ C(p)

(
‖u‖pLp(Ω)m + ‖v‖pLp(Ω)m + 1

)
.

Let us integrate this inequality between 0 and t; we find

‖u(t, ·)‖pLp(Ω)m ≤ ‖u0‖pLp(Ω)m + C(p)
[
‖u‖pLp(Qt)m

+ ‖v‖pLp(Qt)m
+ t
]

≤ C(p, t)
[
1 + ‖u‖pLp(Qt)m

+ ‖v‖pLp(Qt)m

]
where C(p, t) denotes a generic constant depending on the data, t and p. Replacing
T by t, we may invoke Inequality (22) to find

‖u(t, ·)‖pLp(Ω)m ≤ C(p, t)
[
1 + ‖u‖pLp(Qt)m

]
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which is equivalent to

‖u(t, ·)‖pLp(Ω)m ≤ C(p, t)

[
1 +

∫ t

0

‖u(s, ·)‖pLp(Ω)m

]
ds.

This is a Gronwall-type inequality. This allows to estimate ‖u(t, ·)‖Lp(Ω)m for all

t > 0. Indeed, we have

(32) X ′(t) ≤ a(t)X(t) + a(t) with

{
X(t) :=

∫ t
0
‖u(s, ·)‖pLp(Ω)m ds,

a(t) := C(p, t)

where a ∈ L∞loc([0,+∞)) (because a is nondecreasing with respect to t) . A classical
computation shows that

X(t) ≤
∫ t

0

a(s)e
∫ t
s
a(z) dz ds = −

∫ t

0

d

ds
e
∫ t
s
a(z) dz ds = e

∫ t
0
a(z) dz − 1.

Suppose, by contradiction, that T ∗ < +∞. Then,

∀t ∈ [0, T ∗), X(t) ≤ e
∫ T∗
0

a(z) dz − 1,

and X(t) is bounded on [0, T ∗), i.e. u ∈ Lp(QT∗)m. So, Lemma (4.1) claims that
v ∈ Lp(QT∗)m. Now, let us consider the solution w = (w1, . . . , wn) of the system

∀j ∈ [[1,m]] , ∂twj − c1jw′′j = Auj +Bvj +D with w(0, ·) = u(0, ·).

From the foregoing, Auj + Bvj + D ∈ Lp(QT∗), and this for all p > 1. According
to Proposition 2.17 (or Proposition 3.14 if we work without Dirichlet condition at
vertex vn), wj ∈ L∞(QT∗). Since fj(uj , vj) ≤ Auj +Bvj +D, comparison Lemma
B.6 yields

∀j ∈ [[1,m]] , uj ≤ wj .
Moreover, we know that uj ≥ 0. Therefore

∀j ∈ [[1,m]] , 0 ≤ uj ≤ wj
and then u ∈ L∞(QT∗)

m.
Then, the estimate (27) shows that gj(uj , vj) ∈ Lp(QT∗),∀p > 1. Again, Lp bounds
of g imply L∞-bound of v, i.e. v ∈ L∞(QT∗)

m. This contradicts Property 2.29 and
we deduce that T ∗ = +∞: thus, the solution is global.

4.4. Application to one-dimensional domain with piecewise constant dif-
fusion coefficients. Consider the reaction-diffusion system

(33)

{
∂tu(t, x)− (c1(x)u′(t, x))′ = f(u, v),

∂tv(t, x)− (c2(x)v′(t, x))′ = g(u, v)

on an open interval I ⊂ R and where c1, c2 are piecewise constant diffusion co-
efficients. For the sake of simplicity, suppose that I = (0, L), where L ∈ N∗ and
suppose that c1, c2 are constant on every subinterval (k− 1, k), k ∈ [[1, L]]. Assume
the following initial and homogenous Dirichlet boundary conditions:

u(0) = u0 ∈ L∞(I), v(0) = v0 ∈ L∞(I) and u(0) = v(0) = u(L) = v(L) = 0.

Thus, the standard weak formulation of the system (33) contains

• the continuity of u,v,
• the fluxes conservation conditions at every node: these are the Kirchhoff

conditions.
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Figure 4.

This problem naturally enters the general framework previously described in the
setting pictured in figure 4.

4.5. Extension to N ×N systems; example of the bloodstream oxygena-
tion. The previous Lp-method can be extended to more general systems corre-
sponding to N chemical components. As a concrete application which is naturally
posed on a network domain, let us consider the following system which models
bloodstream oxygenation (see [4], [13], [29]):

(34)



∂tu
1 − c1(u1)′′ = K2u

2 −K1u
1u5,

∂tu
2 − c2(u2)′′ = −K2u

2 +K1u
1u5,

∂tu
3 − c3(u3)′′ = K4u

4 −K3u
3u5,

∂tu
4 − c4(u4)′′ = −K4u

4 +K3u
3u5,

∂tu
5 − c5(u5)′′ = K2u

2 +K4u
4 −K1u

1u5 −K3u
3u5.

Here, u1, u2, u3, u4, u5 represent the concentrations of the species O2, HbO2, CO2,
HbCO2, Hb and K1, K2, K3, K4 are the reaction rates. Once again, we can exploit
the Lp-method to extend [28, Theorem 3.5, p. 430] to show that the previous system
has a global solution. To be more precise, it is sufficient to ensure the existence of
b =

t
(b1, b2, b3, b4, b5) ∈ M5,1(R) and a lower triangular invertible 5 × 5 matrix P

with non negative entries such that

∀r := (r1, r2, r3, r4, r5) ∈ [0,+∞)5, Pf(r) ≤

[
1 +

5∑
1=1

ri

]
b

where

f(r) =


K2r2 −K1r1r5

−K2r2 +K1r1r5

K4r4 −K3r3r5

−K4r4 +K3r3r5

K2r2 +K4r4 −K1r1r5 −K3r3r5

 .
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But we have
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

 f(r) =


K2r2 −K1r1r5

0
K4r4 −K3r3r5

0
K2r2 +K4r4 −K1r1r5 −K3r3r5

 ≤


K2r2

0
K4r4

0
K2r2 +K4r4


and the conclusion follows.

Given the tools developed in [4] concerning asymptotic behavior, as well as the
contents of the section 2, we conclude that the results of [4] naturally extend to
networks.

5. Application II to reaction-diffusion: a result by Haraux and
Youkana

Once again, let us consider a one-dimensional network with n vertices, m edges
and 2 chemical components. Let uj := u1

j ,vj := u2
j denote the respective concen-

trations of each chemical component on the edge j. Let ϕj ∈ C1(R+,R) be m
nonnegative functions. We assume that

∀j ∈ [[1,m]] ,
ln(1 + ϕj(r))

r
−→
r→+∞

0.

Typically, ϕj satisfy 0 ≤ ϕj(vj) ≤ eαv
βj
j with 0 < βj < 1 and α > 0. We are

interested in the following reaction-diffusion system

(35)

{
∂tuj − c1ju′′j + ujϕj(vj) = 0,

∂tvj − c2jv′′j − ujϕj(vj) = 0

where u := (u1, . . . , um), v := (v1, . . . , vm) are continuous on the graph and where
Kirchhoff conditions and, optionally, Dirichlet condition at vertex vn hold. It is
proposed to prove that the problem thus posed has global solutions. This will
extend to networks the existence result by Haraux and Youkana ([17]). We will
also include the analysis of the asymptotic behavior of these solutions.

We will write uj,0 := uj(t = 0) and vj,0 := vj(t = 0). In the sequel, we assume
that uj,0 ≥ 0 and vj,0 ≥ 0. Recall that Ω denotes the open interval (0, 1). For

T ≥ 0, we recall that QT := (0, T )× Ω. Let CB((0,+∞)× Ω) denote the space of
real, continuous and bounded functions on (0,+∞)× Ω.

5.1. Global existence. According to Theorem 2.25 and Proposition 2.29, we know
that (35) has a maximal solution (in the sense of definition 2.23) on [0, T ∗). To
prove that the solution (u, v) is global, we need to verify that (u, v) is uniformly
bounded on every QmT , 0 ≤ T ≤ T ∗, T < +∞.

Lemma 5.1. Let (u, v) be a solution of (35) on (0, T ). Then, for all j, uj ≥ 0.

Proof. The right-hand side (i.e. the nonlinearities) clearly satisfy the quasi-positivity
Property (P) (see(15)). The conclusion follows. �

Lemma 5.2. Let u = (u1, . . . , um), v = (v1, . . . , vm) be a solution of (35) on (0, T )
Then, there exist two real positive numbers ε and δ, depending only on the data
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such that

t 7→
m∑
j=1

∫
Ω

{
1 + δ

[
uj(t, x) + u2

j (t, x)
]}

eεvj(t,x) dx is nonincreasing on (0, T ).

Proof. This is exactly the same proof as in [17, Theorem 1, p. 160], the vertices
terms vanishing by Kirchhoff conditions. �

Theorem 5.3. Let ϕj ∈ C1(R+,R) be m nonnegative functions. Let us consider
the reaction-diffusion system

(36)

{
∂tuj − c1ju′′j + ujϕj(vj) = 0,

∂tvj − c2jv′′j − ujϕj(vj) = 0

where u = (u1, . . . , um), v = (v1, . . . , vm) are continuous on the graph and satisfy
Kirchhoff condition, with nonnegative initial conditions (uj,0)1≤j≤m in L∞(Ω).
Moreover, assume that

∀j ∈ [[1,m]] ,
ln(1 + ϕj(r))

r
−→
r→+∞

0.

Then, the solutions of (36) are global.
If in addition we assume a Dirichlet condition at vertex vn, then the solution is
uniformly bounded for t ≥ 0.

Proof. Let T ≤ T ∗, T < +∞. Set any p > 1. Take δ, ε > 0 as in Lemma 5.2. Since

∀j ∈ [[1,m]] ,
ln(1 + ϕj(r))

r
−→
r→+∞

0,

we have, for r ≥ V sufficiently large:

ln(1 + ϕj(r))

r
≤ ε

p
i.e. 1 + ϕj(r) ≤ e

ε
p r.

Let K := max1≤j≤m sup0≤r≤V (1 + ϕj(r)). Then

∀r ≥ 0, 1 + ϕj(r) ≤ Ke
ε
p r and then ∀r ≥ 0, ϕj(r) ≤ Ke

ε
p r.

It is deduced that

Φ :=

m∑
j=1

∫
Ω

(ϕj(vj(t, x)))
p

dx ≤ Kp
m∑
j=1

∫
Ω

eεvj(t,x).

Since 1 + δ
[
uj(t, x) + u2

j (t, x)
]
≥ 1, we have

Φ ≤ Kp
m∑
j=1

∫
Ω

{
1 + δ

[
uj(t, x) + u2

j (t, x)
]}

eεvj(t,x) dx.

Finally, since t 7→
∑m
j=1

∫
Ω

{
1 + δ

[
uj(t, x) + u2

j (t, x)
]}

eεvj(t,x) dx is nonincreasing

on (0, T ),

Φ ≤ Kp
m∑
j=1

∫
Ω

{
1 + δ

[
uj(0, x) + u2

j (0, x)
]}

eεvj(0,x) dx

= Kp
m∑
j=1

∫
Ω

{
1 + δ

[
uj,0(x) + u2

j,0(x)
]}

eεvj,0(x) dx =: C,
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the constant C being independent of t. Since T is finite, an integration from 0 to
T shows that the functions ϕj(vj) belong to Lp(QT ) (recall that QT = (0, T )×Ω).
Since the functions uj are uniformly bounded (by maximum principle, ‖uj‖L∞(Ω) ≤
‖uj,0‖L∞(Ω)), the functions ujϕj(vj) belong to Lp(QT ). The previous computations

being valid for all p > 1 , Property 3.14 asserts that v ∈ L∞(QT )m. Finally, the
solution is global.
Assume in addition a Dirichlet condition at vertex vn. So, the semigroup

(
e−tA

)
t≥0

is ultracontractive. The previous computations show that ‖uϕ(v)‖Xp ≤ C, where

the constant C does not depend on t. Consequently, ujϕ(vj) ∈ L∞(0,+∞;Lp(Ω)).
We are in position to apply Property A.34 which claims that vj ∈ L∞(0,+∞;L∞(Ω)).

�

5.2. Asymptotic behavior.

Property 5.4. Let (u, v) be a nonnegative solution of (35), continuous on the graph
and satisfying Kirchhoff conditions. Suppose, in addition, that for all j ∈ [[1,m]],
we have5 uj , vj ∈ CB((0,+∞) × Ω) , where CB((0,+∞) × Ω) denotes the vector

space of continuous functions ϕ : (0,+∞)×Ω→ R bounded on (0,+∞)×Ω. Then

‖u(t)− u∗‖X∞ −→
t→+∞

0,

‖v(t)− v∗‖X∞ −→
t→+∞

0,

where u∗, v∗ are two nonnegative real numbers such that ∀j ∈ [[1,m]] , u∗ϕj(v
∗) = 0.

Proof. In the remainder of the proof, as a convenience, ‖·‖p , 1 ≤ p ≤ ∞, will denote

(if there is no possibility of confusion), interchangeably the norms ‖·‖Lp(Ω), ‖·‖Xp .

• Integrate the first equation of (35), namely ∂tuj − c1ju′′j + ujϕj(vj) = 0.
After summing with respect to j, we obtain

(37)
d

dt

m∑
j=1

∫
Ω

uj dx = −
m∑
j=1

∫
Ω

ujϕj(vj) dx ≤ 0.

Then, integrate the equality (37) between 0 and t, getting

m∑
j=1

∫
Ω

uj(t, x) dx−
m∑
j=1

∫
Ω

uj,0(x) dx = −
m∑
j=1

∫ t

0

∫
Ω

ujϕj(vj) dx ds

hence

0 ≤
m∑
j=1

∫ t

0

∫
Ω

ujϕj(vj)︸ ︷︷ ︸
≥0

dx ds

= −
m∑
j=1

∫
Ω

uj(t, x)︸ ︷︷ ︸
≥0

dx+

m∑
j=1

∫
Ω

uj,0(x) dx ≤
m∑
j=1

∫
Ω

uj,0(x) dx,

which proves that for all j, t 7→
∫

Ω
ujϕj(vj) dx ∈ L1(R+).

Identify (37) also shows that the function t 7→
∑m
j=1

∫
Ω
uj(t, x) dx is non-

negative nonincreasing; so, it has a limit as t → +∞. Let u∗ denote the

5This is the case, in particular, if in addition we assume a Dirichlet condition at vertex vn.
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real number such that

mu∗ = lim
t→+∞

m∑
j=1

∫
Ω

uj(t, x) dx.

• Moreover

1

2

d

dt

m∑
j=1

∫
Ω

u2
j dx =

m∑
j=1

∫
Ω

uj
∂uj
∂t

dx =

m∑
j=1

c1j

∫
Ω

uju
′′
j dx−

∫
Ω

u2
jϕj(vj) dx

= −
m∑
j=1

c1j

∫
Ω

u′j
2

dx−
∫

Ω

u2
jϕj(vj) dx.

Integrating between 0 and t, we get

m∑
j=1

c1j

∫ t

0

∫
Ω

u′j
2

dxds+

m∑
j=1

∫ t

0

∫
Ω

u2
jϕj(vj) dxds

=
1

2

m∑
j=1

∫
Ω

u2
j,0(t, x) dx− 1

2

m∑
j=1

∫
Ω

u2
j (t, x) dx

≤ 1

2

m∑
j=1

∫
Ω

u2
j,0(t, x) dx.

This shows that for all j, the function t 7→
∫

Ω
u′j

2
dx is integrable on R+.

• To study integrability of t 7→
∫

Ω
v′j

2
dx, we write

1

2

d

dt

m∑
j=1

∫
Ω

v2
j dx =

m∑
j=1

∫
Ω

vj
∂

∂t
vj dx =

m∑
j=1

c2j

∫
Ω

vjv
′′
j dx+

m∑
j=1

∫
Ω

ujvjϕj(vj) dx

= −
m∑
j=1

c2j

∫
Ω

v′j
2

dx+

m∑
j=1

∫
Ω

ujvjϕj(vj) dx.

Integrate between 0 and t and then estimate:

m∑
j=1

c2j

∫ t

0

∫
Ω

v′j
2

dx ds

=
1

2

m∑
j=1

∫
Ω

v2
j,0 dx− 1

2

m∑
j=1

∫
Ω

v2
j (t, x) dx

+

m∑
j=1

∫ t

0

∫
Ω

uj(s, x)vj(s, x)ϕj(vj(s, x)) dxds

≤ 1

2

m∑
j=1

∫
Ω

v2
j,0 dx+

m∑
j=1

∫ +∞

0

∫
Ω

uj(s, x)vj(s, x)ϕj(vj(s, x)) dxds

≤ 1

2

m∑
j=1

∫
Ω

v2
j,0 dx+

m∑
j=1

‖vj‖∞
∫ +∞

0

∫
Ω

uj(s, x)ϕj(vj(s, x)) dxds︸ ︷︷ ︸
<+∞

< +∞.

Hence the integrability on R+ of the function t 7→
∫

Ω
v′j

2
dx.
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• By summation of the two equations of (35), integration on Ω and summa-
tion with respect to j, we find

d

dt

m∑
j=1

∫
Ω

(uj + vj) dx =

m∑
j=1

c1j

∫
Ω

u′′j dx+

m∑
j=1

c2j

∫
Ω

v′′j dx = 0.

We lastly integrate between 0 and t, which gives

m∑
j=1

∫
Ω

(uj(t, x) + vj(t, x)) dx =

m∑
j=1

∫
Ω

(uj,0 + vj,0) dx.

Since
∑m
j=1

∫
Ω
uj(t, x) dx has a finite limit as t → +∞, it is the same for∑m

j=1

∫
Ω
vj(t, x) dx. Let v∗ be such that

mv∗ = lim
t→+∞

m∑
j=1

∫
Ω

vj(t, x) dx

.
• In appendix C, we show that techniques used in [16] apply and then, for

all δ > 0, we have uj , vj ∈ CB(δ,+∞;C1(Ω)). According to the Ascoli

Theorem, the family (uj(t))t≥1 is relatively compact in C(Ω). Conse-
quently, there exists a nondecreasing sequence (τn) of [1,+∞[ converging
to +∞ such that (uj(τn))n≥0 is uniformly convergent on Ω. Let ūj :=
limn→+∞ uj(τn) and let ū := (ū1, . . . , ūm).
• Letmu(t) denote the average of u on the graph i.e. mu(t) = 1

m

∑m
j=1

∫
Ω
uj(t, ·) dx.

According to the Poincaré-Wirtinger inequality for networks (see Property
3.11), we have, for all p ∈ (1,+∞):

‖u(t)−mu(t)‖p ≤ C ‖Du‖p .

Then, for p = 2 and taking the square power, we get

(38) ‖u(t)−mu(t)‖22 ≤ C ‖Du(t)‖22 .

But

‖u(t)−mu(t)‖22 =

m∑
j=1

∫
Ω

(uj(t, ·)−mu(t))
2

dx

=

m∑
j=1

∫
Ω

uj(t, ·)2 dx+

m∑
j=1

∫
Ω

m2
u(t) dx− 2mu(t)

m∑
j=1

∫
Ω

uj(t, ·) dx

=

m∑
j=1

∫
Ω

uj(t, ·)2 dx+m ·m2
u(t)− 2m ·m2

u(t)

=

m∑
j=1

∫
Ω

uj(t, ·)2 dx−m ·m2
u(t).

Now, the function t 7→
∑m
j=1

∫
Ω
uj(t, ·)2 dx is nonincreasing, and so it has

a finite limit.

Likewise, the function t 7→ m2
u(t) = 1

m2

(∑m
j=1

∫
Ω
uj(t, ·) dx

)2

is nonin-

creasing, and so it has a finite limit. Consequently t 7→ ‖u(t)−mu(t)‖22
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has a finite limit as t → +∞. Let ` := limt→+∞ ‖u(t)−mu(t)‖22. Accord-
ing to (38)

‖u(t)−mu(t)‖22 ≤ C ‖Du‖
2
2

with t 7→ ‖Du(t)‖22 =
∑m
j=1

∫
Ω
u′j

2
dx integrable on R+. It is deduced that

` = 0 and ‖u(t)−mu(t)‖2 −→t→+∞
0. Since mu(t) −→

t→+∞
u∗, it follows that

u(t) −→
t→+∞

u∗ in L2(Ω)m.

• To obtain a contradiction, suppose that (u(t))t≥0 does not converge uni-
formly on Ω toward u∗ as t→ +∞, i.e. that ‖u(t)− u∗‖∞ 6→

n→+∞
0. In this

case, there exists ε > 0 and a nondecreasing sequence (τn) of nonnegative
numbers which converge to +∞ such that

∀n, ‖u(τn)− u∗‖∞ ≥ ε.

By the relative compactness of the family (u(t)), and according to the Ascoli
Theorem, there exists a subsequence (τθ(n)) such that (u(τθ(n))) converge

uniformly on Ω. Since uniform convergence on Ω imply L2-convergence
(because Ω is bounded), and by uniqueness of the limit, u(τθ(n)) −→

n→+∞
u∗

uniformly on Ω. Hence, we get a contradiction.
• Now, we have to deal with v. To this end, come back to the second equation,

namely
∂vj
∂t

= c2jv
′′
j + ujϕj(vj), ∀j ∈ [[1,m]] .

Multiply by vj , sum with respect to j and integrate by parts; we obtain:

1

2

d

dt

m∑
j=1

∫
Ω

v2
j dx = −

m∑
j=1

c2j

∫
Ω

v′j
2

dx+

m∑
j=1

∫
Ω

ujvjϕj(vj) dx.

Let us integrate between 0 and t:

1

2

m∑
j=1

∫
Ω

vj(t)
2 dx−1

2

m∑
j=1

∫
Ω

v2
j,0 dx = −

m∑
j=1

c2j

∫ t

0

∫
Ω

v′j
2

dxds+

m∑
j=1

∫ t

0

∫
Ω

ujvjϕj(vj) dxds.

Now, by assumption, v is uniformly bounded on R+. Consequently∫ t

0

∫
Ω

|ujvjϕj(vj)|dxds ≤ ‖vj‖∞
∫ t

0

∫
Ω

ujϕj(vj) dx ds.

In addition, we know that the function t 7→
∫

Ω
ujϕj(vj) dx is integrable on

R+. Therefore, the function t 7→
∑m
j=1

∫ t
0

∫
Ω
ujvjϕj(vj) dxds has a finite

limit as t→ +∞.
Likewise, the function t 7→

∫
Ω
v′j

2
dx is integrable on R+. Consequently,

the function t 7→
∑m
j=1 c

2
j

∫ t
0

∫
Ω
v′j

2
dxds has a finite limit as t → +∞. It

is deduced that the function t 7→
∑m
j=1

∫
Ω
vj(t)

2 dx has a finite limit as
t→ +∞.
Moreover, we have seen that t 7→

∑m
j=1

∫
Ω
vj(t, x) dx has a finite limit as

t → +∞. So, we are allowed to reiterate the method used for u, which
leads to

v(t) −→
t→+∞

v∗ in L2(Ω)m.
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• The compactness argument used for u is valid also for v and it shows that
v(t) −→

t→+∞
v∗ uniformly.

• For all j ∈ [[1,m]], uj −→
t→+∞

u∗ and vj −→
t→+∞

v∗ uniformly on Ω. Con-

sequently, since ϕj is continuous, ujϕj(vj) −→
t→+∞

u∗ϕj(v
∗) uniformly and

then
∫

Ω
ujϕj(vj) dx −→

t→+∞

∫
Ω
u∗ϕj(v

∗) dx = u∗ϕj(v
∗). But, the function

t 7→
∫

Ω
ujϕj(vj) dx is integrable on R+. Necessarily,

∫
Ω
ujϕj(vj) dx −→

t→+∞
0. Finally, we obtain

∀j ∈ [[1,m]] , u∗ϕj(v
∗) = 0,

which is the desired result.

�

Remark 5.5. Assume we imposed a Dirichlet condition at vertex vn. Then, we
necessarily have u∗ = v∗ = 0.

5.3. A partial extension in the manner of Barabanova. Following Bara-
banova (see [8]), we can partially generalize the result of Haraux-Youkana, assum-
ing an exponential growth of ϕj (recall that the exponential growth is not attained
in the hypothesis of Haraux-Youkana). In this case, and provided that the initial
condition is small enough, the solutions are global. This additional assumption may
seem rather surprising. The point is that the Lyapunov functional of Barabanova
depends on the L∞-norm of the initial condition u0 whereas that of Haraux and
Youkana does not. More precisely, the following properties hold.

Property 5.6. Assume that

∃α > 0 : ∀r ≥ 0, ϕj(r) ≤ eαr.

Let u = (u1, . . . , um) and v = (v1, . . . , vm) be solutions of (21) on [0, T ). For
C, β > 0, consider the function

g : u 7→ g(u) =

(
C

C − u

)β
where β = min

1≤j≤m

4c1jc
2
j

(c1j − c2j )2
.

Then, there exist β > 0, C > ‖u0‖X∞ and p > 1 such that the function

t 7→
m∑
j=1

∫
Ω

g(uj)e
αpvj dx

is nonincreasing on [0, T ).

The previous property yields the following global existence result.

Theorem 5.7. Assume exists α > 0 such that

∀j ∈ [[1,m]] ,∀r ≥ 0, ϕj(r) ≤ eαr.

Let (u, v) be a solution of (21), with u0, v0 ∈ X∞ nonnegative satisfying

‖u0‖X∞ <
β

α
with β = min

1≤j≤m

4c1jc
2
j

(c1j − c2j )2
.

Then, the solution (u, v) is global. Moreover, if in addition we assume a Dirichlet
condition at vertex vn, then the solution is uniformly bounded.
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We previously prove that,

‖u(t)− u∗‖X∞ −→
t→+∞

0 and ‖v(t)− v∗‖X∞ −→
t→+∞

0

where u∗, v∗ are two nonnegative numbers such that ∀j ∈ [[1,m]] , u∗ϕj(v
∗) = 0.

In the sequel, a Dirichlet condition at vertex vn is required. Consequently, as
seen before, u∗ = v∗ = 0. It is also assumed that the functions ϕj are given by
ϕj(r) = eαjr, where αj denote nonnegative real numbers.
Let (T 1

p (t))t≥0 (respectively (T 2
p (t))t≥0) denote the semigroup on Xp governing the

equation ∂tuj − c1ju
′′
j = 0 (respectively ∂tvj − c2jv

′′
j = 0) with continuity on the

graph, Kirchhoff conditions and Dirichlet condition at vertex vn.
Let−Akp (k ∈ {1, 2}, p ∈ [1,+∞]) denote the infinitesimal generator of (T kp (t))t≥0.

Lastly, for 1 < p < +∞, λk will denote the smallest eigenvalue of Ak (recall that
σ(Akp) does not depend on p and that λk is nonnegative since Ak is accretive). The
following property describes the asymptotic behavior of u(t) and v(t) as t converges
to +∞.

Property 5.8. Let (u, v) be a global nonnegative solution of (21), continuous on
the graph, with Kirchhoff conditions and Dirichlet condition at vertex vn. Then

∀t ≥ 0, ‖u(t)‖X∞ ≤ Ce−(1+λ1)t

and

∀t ≥ 0, ‖v(t)‖X∞ ≤

{
Ce−min(λ1+1,λ2)t if λ1 + 1 6= λ2,

C(1 + t)e−λ
2t if λ1 + 1 = λ2.

Appendix A. The abstract setting underlying the analysis

A.1. A few remainders about semigroups. For the sake or readability, we
include some essential facts about semigroups of linear operators on Banach spaces.
We mainly refer to [27] (but also to [5],[11]) for details and further results. We pay
particular attention to extrapolation of semigroups, to operator defined by bilinear
forms (see [26]), to their ultracontractivity and L∞-bounds, and finally to maximal
regularity (see [24]). Indeed, these are the key arguments of the analysis developed
in sections 2, 3, 4 and 5.

A.1.1. Semigroups; strongly continuous semigroups.

Definition A.1. Let X be a Banach space.

(1) A semigroup (T (t))t≥0 is as family of bounded linear operators T (t) : X →
X such that

T (0) = IdX and ∀s, t ≥ 0, T (s+ T ) = T (s)T (t).

(2) The semigroup (T (t))t≥0 is strongly continuous if

∀x ∈ X,T (t)x −→
t→0+

x.

It is also said that (T (t))t≥0 is a C0-semigroup.
(3) (T (t))t≥0 is a semigroup of contractions if for all t ≥ 0, T (t) is a contrac-

tion, i.e.
∀x ∈ X, ‖T (t)x‖X ≤ ‖x‖X .

Definition A.2. Let (T (t))t≥0 be a C0-semigroup on the Banach space X. We
call infinitesimal generator of (T (t))t≥0 the unbounded operator A on X defined by
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• D(A) :=
{
x ∈ X : limt→0+

T (t)x−x
t exists

}
,

• ∀x ∈ D(A), Ax = limt→0+
T (t)x−x

t .

T (t) is also denoted by etA.

Remark A.3. The notion of semigroup is particularly powerful to study the exis-
tence and the uniqueness of solutions of abstract Cauchy problems. More precisely,
let X be a Banach space and let A be an unbounded linear operator on X. Consider
the following abstract Cauchy problem:

(39) (ACP) :

{
du
dt (t) = Au(t), t > 0

u(0) = x
.

We say that a function u : [0, T [→ X is a classical solution of abstract evolution
problem6 (ACP) if

• u is continuous on [0, T ), continuously differentiable on (0, T ),
• ∀t ∈ (0, T ), u(t) ∈ D(A) and (39) is satisfied on (0, T ).

It is shown that (see [27, Theorem I.2.4, p. 4]) if A is the infinitesimal generator
of a C0-semigroup

(
etA
)
t≥0

, then, for all x ∈ D(A), (ACP) has a unique solution,

given by u(t) = etAx. We say that the problem (ACP) is well posed.

Property A.4. Let
(
etA
)
t≥0

be a C0-semigroup. Then, there exists ω ∈ R and

M ≥ 1 such that

∀t ≥ 0, |||T (t)||| ≤Meωt.

Definition A.5. Let X be a Banach space and A an unbounded operator on X.

• The resolvent set of A is the set ρ(A) of all λ ∈ C such that λI − A is
invertible, i.e. (λI−A)−1 is a bounded operator on X.

• The spectrum of A is the set σ(A) = C\ρ(A).
• The numbers λ ∈ σ(A) such that λI−A is not one-to-one are the eigenvalues

of A; the collection, denoted σp(A), of such elements is the point spectrum
of A.

Theorem A.6 (Hille-Yosida). Let X a Banach space and A an unbounded lin-
ear operator on X. Then, A is the infinitesimal generator of a C0-semigroup of
contractions if and only if

� A is closed, densely defined i.e. D(A) = X,
� The resolvent set ρ(A) of A contains (0,+∞) and

∀λ > 0, |||R(λ,A)||| ≤ 1

λ
.

Definition A.7. Let X be a Banach space and let A be an unbounded linear oper-
ator on X. We say that A is accretive when

∀x ∈ D(A),∀λ > 0, ‖(λI +A)x‖ ≥ λ ‖x‖ .

Remark A.8. Let X be a Hilbert space. It is shown that A is accretive if and only
if

∀x ∈ D(A), (Ax|x) ≥ 0,

6 Not to be confused with the classical solution in the meaning of the partial differential
equations for the partial differential equation underlying (ACP).
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where (·|·) denotes the inner product on X. Roughly speaking, A is accretive means
that for all x ∈ D(A), x and Ax point to the same direction.

Theorem A.9 (Lumer-Phillips). Let X be a Banach space and A an unbounded
linear densely defined operator on X. Then, the following properties are equivalent:

� −A is the infinitesimal generator of a C0-semigroup of contractions in X,
� A is accretive and ∃λ0 > 0 : R(λ0I +A) = X,
� A is accretive and ∀λ > 0, R(λI +A) = X.

A.1.2. Differentiable semigroups.

Definition A.10. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X.
We say that (T (t))t≥0 is differentiable when for all x ∈ X, the function t 7→ T (t)x
is differentiable on (0,+∞).

Property A.11. Let (T (t))t≥0 be a differentiable C0-semigroup on the Banach
space X. Then

• ∀x ∈ X,∀t > 0, T (t)x ∈
⋂
n∈N

D (An).

• The function t 7→ T (t) is a C∞-function on (0,+∞) in the uniform operator
topology.

Remark A.12. Let us consider once again the abstract Cauchy problem (ACP).
Assume also that

(
etA
)
t≥0

is differentiable on (0,+∞). Then, for all x ∈ X,

(ACP) has a unique solution (see [27, p. 104]). Note that the differentiability
removes the need x ∈ D(A).

Property A.13. If (T (t))t≥0 is a differentiable C0-semigroup then (T (t))t≥0 is
infinitely many times differentiable in the norm operator topology, for t > 0.

A.1.3. Analytic semigroups.

Definition A.14. Let (T (t))t≥0 be a C0-semigroup on the Banach space X.

• For ψ ∈
(
0, π2

]
, ∆ψ denotes the angular sector

∆ψ := {z ∈ C\{0} : | arg z| < ψ} .

• We say that the semigroup (T (t))t≥0 is analytic if there exists ψ ∈
(
0, π2

]
and an extension (T (z))z∈∆ψ

such that
– The function z 7→ T (z) is analytic on ∆ψ,
– ∀(z1, z2) ∈ ∆2

ψ, T (z1 + z2) = T (z1)T (z2),

– ∀x ∈ X, limz→0,z∈∆ T (z)x = x : in other words, (T (z))z∈∆ψ
is strongly

continuous at 0.

Definition A.15. Let us now consider the inhomogeneous abstract Cauchy problem

(40) (ACPi) :

{
du
dt (t) = Au(t) + f(t), t > 0

u(0) = x

where f : [0, T [→ X. We say that the function u : [0, T [→ X is a classical solution
of (ACPi) when

• u is continuous on [0, T ), continuously differentiable on (0, T ),
• ∀t ∈ (0, T ), u(t) ∈ D(A) and (40) is satisfied on (0, T ).
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Remark A.16. The analyticity assumption allows, under certain conditions on f ,
to ensure the existence of solutions of the problem (ACPi), and that, for all x ∈ X.
For example (see [27, p. 113]), assume that A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0. Let f ∈ L1(0, T ;X) be locally Hölder continuous on
(0, T ). Then, for all x ∈ X, the problem (ACPi) has a unique solution.

A.2. Extrapolating semigroups. We refer to [5] for more details about extrap-
olating semigroups. From now on, all the measures are supposed σ-finite.
Let (Ω,A, µ) be a measure space. For S ∈ L(L2(Ω)) and 1 ≤ p, q ≤ ∞, we define
|||S|||L(Lp(Ω),Lq(Ω)) by

|||S|||L(Lp(Ω),Lq(Ω)) := sup
{
‖S(f)‖Lq(Ω) : f ∈ Lp(Ω) ∩ L2(Ω), ‖f‖Lp(Ω) ≤ 1

}
.

We will assume that for p ∈ {1;∞}, we have

(41) ∃M : ∀t ∈ [0, 1], |||T (t)|||L(Lp(Ω)) ≤M.

By interpolation, this inequality is always true for all7 p ∈ [1,∞]. From (41) we
deduce the existence of a real number ω such that (see [27, Theorem 2.2, p. 4])

∀p ∈ [1,∞],∀t ≥ 0, |||T (t)|||L(Lp(Ω)) ≤Meωt.

Indeed, if 0 ≤ t ≤ 1, we have

• T (t) : L1(Ω) ∩ L2(Ω) → L1(Ω) ∩ L2(Ω) is continuous with respect to the
norm L1, with

∀t ∈ [0, 1], |||T (t)|||L(L1(Ω)) ≤M.

• T (t) : L∞(Ω) ∩ L2(Ω)→ L∞(Ω) ∩ L2(Ω) is continuous with respect to the
norm L∞, with

∀t ∈ [0, 1], |||T (t)|||L(L∞(Ω)) ≤M.

• By interpolation, for all p ∈ [1,∞], T (t) : Lp(Ω) ∩ L2(Ω)→ Lp(Ω) ∩ L2(Ω)
is continuous with respect to the norm Lp, with

∀t ∈ [0, 1], |||T (t)|||L(Lp(Ω)) ≤M.

Now, for t ≥ 0, p ∈ [1,+∞] and f ∈ Lp(Ω), we have, with n = [t] and t = n+ δ, δ ∈
[0, 1[:

‖T (t)f‖Lp(Ω) = ‖T (n+ δ)f‖Lp(Ω) = ‖T (1)nT (δ)f‖Lp(Ω) ≤M
n+1 ‖f‖Lp(Ω) = MMn ‖f‖Lp(Ω)

= Men lnM ‖f‖Lp(Ω) ≤Met lnM ‖f‖Lp(Ω) = Meωt ‖f‖Lp(Ω)

and then |||T (t)|||Lp(Ω) ≤Meωt where ω = lnM .

For 1 ≤ p < ∞, and by density of Lp(Ω) ∩ L2(Ω) in Lp(Ω) (hence the hypothesis
p < ∞), we deduce the existence of continuous linear operators Tp(t) ∈ L(Lp(Ω))
which are consistent i.e. such that

∀t ≥ 0,∀p, q ∈ [1,∞[,∀f ∈ Lp(Ω) ∩ Lq(Ω), Tp(t)f = Tq(t)f

and such that
∀t ≥ 0, T2(t) = T (t).

7Strictly speaking, this inequality is true only for complex-valued functions. For real-valued

functions, we have to double the coefficient M . See [30]. Nevertheless, the operators we will
consider will be associated to a real bilinear form. Consequently, we can get rid of this coefficient

considering complex spaces; the sesquilinear forms, with real coefficients, will be in fact real.
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Property A.17. [5, p. 61]

• For 1 < p <∞, (Tp(t))t≥0 is a C0-semigroup.
• If Ω has finite measure, then (T1(t))t≥0 is also a C0-semigroup.

A.3. Ultracontractivity. In the following, we define ultracontractivity for general
semigroups. In practice, for one-dimensional networks, we will allways have d = 1.
However, in the forthcoming work [3], we will use general d ∈ N∗.

Property A.18. [5, p. 65]
Let d > 0 be a positive number. Let (Ω,A, µ) be a measure space and (T (t))t≥0 a
C0-semigroup on L2(Ω). Then, the two following properties are equivalent:

• ∃c > 0, 1 ≤ p < q ≤ ∞ : ∀t ∈ (0; 1], |||T (t)|||L(Lp(Ω),Lq(Ω)) ≤ ct
− d2 ( 1

p−
1
q ).

• ∃c > 0/∀1 ≤ p < q ≤ ∞ : ∀t ∈ (0; 1], |||T (t)|||L(Lp(Ω),Lq(Ω)) ≤ ct
− d2 ( 1

p−
1
q ).

Definition A.19. Let (Ω,A, µ) a measure space and let (T (t))t≥0 be C0-semigroup
on L2(Ω). (T (t))t≥0 is called ultracontractive when one of the two equivalent pre-
vious properties holds. The real

dim(T ) := inf
{
d > 0 : ∃c > 0, 1 ≤ p < q ≤ ∞,∀t ∈ (0; 1], |||T (t)|||L(Lp(Ω),Lq(Ω)) ≤ ct

− d2 ( 1
p−

1
q )
}

is called the dimension of the semigroup (T (t))t≥0 (See [5, p. 65]).

A.4. Compactness.

Property A.20. [5, p. 15]
Let A be a unbounded linear operator on the Banach space X and assume that
ρ(A) 6= ∅. We say that A has compact resolvent if one of the three following
equivalent properties holds:

• For all λ ∈ ρ(A), R(λ,A) is compact,
• There exists λ ∈ ρ(A) such that R(λ,A) is compact,
• The embedding D(A) ↪→ X is compact, D(A) provided with the graph norm.

In this case, σ(A) = σp(A) and σp(A) is a sequence converging to +∞ (or a finite
sequence if dimX < +∞).

Property A.21. [27, Theorem 3.3, p. 48]
Let (T (t))t≥0 be a C0-semigroup with infinitesimal generator A. Then, (T (t))t≥0

is a compact semigroup if and only if (T (t))t≥0 is continuous in the norm operator
topology for t > 0 and R(λ,A) is compact for λ ∈ ρ(A).

A.5. Spectral bound and growth bound; exponential stability. Following
[5, p. 12], we define the spectral bound and the growth bound as follows.

Definition A.22. Let (T (t))t≥0 be a C0-semigroup with infinitesimal generator A.

• We call spectral bound of A

s(A) = sup {<(λ), λ ∈ σ(A)} .
• We say that (T (t))t≥0 is exponentially stable when

∃ε > 0,∃M ≥ 1 : ∀t ≥ 0, |||T (t)||| ≤Me−εt.

• We define the growth bound of (T (t))t≥0 by:

ω(T ) = inf

{
w : sup

t>0
e−wt |||T (t)||| < +∞

}
.
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Remark A.23. (T (t))t≥0 is exponentially stable if and only if ω(T ) < 0.

The inequality s(A) ≤ ω(T ) always holds ([11, Proposition 2.2, p.251]). Some-
times, the previous inequality is in fact an equality. This is the object of the
following proposition.

Property A.24. [11, Corollary 3.12, p. 281]
Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0. Then, ω(T ) =
s(A) in the following cases:

• if (T (t))t≥0 is a compact semigroup,
• if (T (t))t≥0 is differentiable and, in particular, if (T (t))t≥0 is analytic.

A.6. Bilinear forms; associated operators. Let X be a real Hilbert space pro-
vided with its inner product (·|·)X and its norm ‖·‖X . Consider a bilinear form
a : H ×H → R defined on a subspace H of X. H is called the domain of a and is
denoted D(a). Throughout this paragraph, we suppose that a is

• densely defined, i.e. H is dense in X,
• accretive, i.e.

∀u ∈ H, a(u, u) ≥ 0,

• continuous on H, i.e. such that

∃M ≥ 0 : ∀(u, v) ∈ H ×H, |a(u, v)| ≤M ‖u‖a ‖v‖a ,

with: ∀u ∈ D(a), ‖u‖a :=
√
‖u‖2X + a(u, u),

• closed, i.e. (H, ‖·‖a) is a complete space.

So, we can consider a as an unbounded bilinear form on X × X, with domain
D(a) = H.

With the bilinear form a is associated the unbounded linear operator A on X
defined by

• D(A) := {u ∈ H : ∃φ ∈ X,∀v ∈ D(a), a(u, v) = (φ|v)H},
• Au := φ.

Later, we will need the following properties. Recall that X is a real Hilbert
space, a is a bilinear form defined on a subspace H ⊂ X. Let us assume that a is
densely defined, accretive, continuous on H and closed.

Property A.25. [26, Proposition 1.51, Theorem 1.52, p. 29]
−A is the infinitesimal generator of an analytic semigroup of contractions on X.

From now on,
(
e−tA

)
t≥0

or (T (t))t≥0 will denote indistinctly the semigroup

generated by −A.

Property A.26. [26, Proposition 1.24, p. 15]
Suppose further that a is symmetric. Then, A is a self-adjoint operator.

Definition A.27. Let u : Ω→ R.

• sign (u) is defined by: sign (u) =


1 if u(x) > 0,

0 if u(x) = 0,

−1 if u(x) < 0.
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• Let Tu denote the function (1∧|u|)sign (u). Tu is a truncation of u. Indeed:

((1 ∧ |u|)sign (u)) (x) =

u(x) if |u(x)| ≤ 1,
u(x)

|u(x)|
if |u(x)| ≥ 1,

=


u(x) if |u(x)| < 1,

1 if u(x) ≥ 1,

−1 if u(x) ≤ −1.

• Suppose now that u = (u1, . . . , un) : Ω→ Rn. We define sign (u) and Tu as
follows: sign (u) := (sign (u1) , . . . , sign (un)) and Tu := (Tu1, . . . , Tun).

Theorem A.28. [26, Theorem 2.14 page 55]
Let a be a bilinear form defined on the measure space X := L2(Ω, µ,R) and assume
that a is symmetric. The two following properties are equivalent:

• The semigroup
(
e−tA

)
t≥0

is L∞-contractive,

• ∀u ∈ D(a), Tu ∈ D(a) and a(Tu, Tu) ≤ a(u, u).

Theorem A.29. [26, Theorem 6.3, p. 158]
Let a defined on the measure space X := L2(Ω, µ,R). Assume, in addition, that a
is symmetric and that the semigroup

(
e−tA

)
t≥0

is L∞-contractive. The following

properties are equivalent:

• The semigroup
(
e−tA

)
t≥0

is ultracontractive,

• ∃c, d > 0 : ∀t > 0,
∣∣∣∣∣∣e−tA∣∣∣∣∣∣L(L1(Ω),L2(Ω))

≤ ct− d4 ,

• ∃c′, d > 0 : ∀u ∈ D(a) ∩ L1(Ω), ‖u‖2+ 4
d

L2(Ω) ≤ c
′a(u, u) ‖u‖

4
d

L1(Ω).

A.7. L∞-bounds and ultracontractivity. Let (Ω,A, µ) be a real measure space
and let X := L2(Ω) provided with its natural inner product (·|·)L2(Ω) and the
associated norm ‖·‖L2(Ω). Consider a bilinear form a : H × H → R defined on a

subspace H of X. Throughout this paragraph, we suppose that the form a is densely
defined, accretive, continuous on H and closed. Let A be the unbounded linear
operator associated with a. We are interested in the following abstract Cauchy
problem

(ACP) :
du

dt
+Au = f(t) , u(0) = u0

where u0 ∈ L∞(Ω) and f ∈ L1(0, T ;L2(Ω)). Let u be the solution of (ACP) on
(0, T ) (for example, sufficient hypothesis to insure such an existence is that f is
locally Hölder continuous on (0, T ): see [27]).

Property A.30. Assume that 0 < T < +∞ and that

• ∀q ∈ [1,+∞],∀t ∈ [0, T ),∀v ∈ L2(Ω) ∩ Lq(Ω),
∥∥e−tAv

∥∥
Lq(Ω)

≤ ‖v‖Lq(Ω),

• ∃p > 1 : f ∈ Lp(0, T ;Lp(Ω)).

Then: u ∈ Lp(0, T ;Lp(Ω)).

Proof. According to Duhamel formula, we have

∀t ∈ [0, T [, u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(s) ds.

Then, for all t ∈ [0, T [, we have

‖u(t)‖Lp(Ω) ≤
∥∥e−tAu0

∥∥
Lp(Ω)

+

∫ t

0

∥∥∥e−(t−s)Af(s)
∥∥∥
Lp(Ω)

ds ≤ ‖u0‖Lp(Ω)+

∫ t

0

‖f(s)‖Lp(Ω) ds
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because
(
e−tA

)
Lq(Ω)

is a semigroup of contractions. Consequently, thanks to Hölder

inequality (here, p′ denotes the conjugate of p):

‖u(t)‖Lp(Ω) ≤ ‖u0‖Lp(Ω)+

(∫ t

0

‖f(s)‖pLp(Ω)

) 1
p

︸ ︷︷ ︸
=‖f‖Lp(0,t;Lp(Ω))

t
1
p′ ≤ ‖u0‖Lp(Ω)+‖f‖Lp(0,T ;Lp(Ω)) T

1
p′ .

It remains to integrate with respect to t between 0 and T . �

More interesting is to deduce L∞-bounds of u from Lp-bounds of f . The two
following properties are very classical for open subsets Ω ⊂ Rn. Much more general
results can be found in the literature (see [21, Theorem 7.1, p. 181]). Nevertheless,
based on semigroups techniques, our proofs permit to expand much partially but
sufficiently such results to networks, including multidimensional networks, studied
in the forthcoming work [3].

Property A.31. For T < +∞, suppose in addition that the semigroup
(
e−tA

)
t≥0

is ultracontractive and that

∀p > 1, f ∈ Lp(0, T ;Lp(Ω)).

Then, u ∈ L∞(0, T ;L∞(Ω)). The conclusion is not affected if we only suppose that
f ∈ Lp(0, T ;Lp(Ω)), where p > d+2

2 , d denoting the dimension of the semigroup(
e−tA

)
t≥0

.

Proof. Duhamel formula asserts that u is given by

∀t ∈ [0, T ), u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(s) ds = e−tAu0 +

∫ t

0

e−sAf(t− s) ds.

Since
∥∥e−tAu0

∥∥
L∞(Ω)

≤ ‖u0‖L∞(Ω) (because
(
e−tA

)
t≥0

is a semigroup of contrac-

tions), we only have to estimate
∥∥e−sAf(t− s)

∥∥
L∞(Ω)

.

Recall that the semigroup
(
e−tA

)
t≥0

is ultracontractive, which means that

∃C > 0 : ∀s ∈ (0, T ),∀1 ≤ p ≤ q ≤ +∞,
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),Lq(Ω))

≤ Cs−
d
2 ( 1

p−
1
q )

Choosing q = +∞, we have

∃C > 0 : ∀s ∈ (0, T ),
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

≤ Cs−
d
2p

and then∥∥e−sAf(t− s)
∥∥
L∞(Ω)

≤
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

·‖f(t− s)‖Lp(Ω) ≤ Cs
− d

2p ‖f(t− s)‖Lp(Ω)

Then, integrate between 0 and t; The Hölder inequality shows that

∫ t

0

∥∥e−sAf(t− s)
∥∥
L∞(Ω)

ds ≤ C
(∫ t

0

‖f(t− s)‖pLp(Ω) ds

) 1
p

︸ ︷︷ ︸
=‖f‖Lp(0,t;Lp(Ω))

(∫ t

0

ds

s
dp′
2p

) 1
p′

,
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where p′ denotes the conjugate of p, defined by: 1
p + 1

p′ = 1. Choosing p > d+2
2 , in

such as way as dp′

2p < 1, and by triangle inequality, we obtain

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + C ‖f‖Lp(0,t;Lp(Ω))

(∫ t

0

ds

s
dp′
2p

) 1
p′

≤ ‖u0‖L∞(Ω) + C ‖f‖Lp(0,T ;Lp(Ω))

(∫ T

0

ds

s
dp′
2p

) 1
p′

= ‖u0‖L∞(Ω) + CI ‖f‖Lp(0,T ;Lp(Ω))

where I :=

(∫ T
0

ds

s
dp′
2p

) 1
p′

. This completes the proof in the case T < +∞. �

Property A.32. Property A.31 is still valid for T = +∞.

Proof. Let (tn)n≥0 denote an increasing sequence of real numbers such that t0 = 0.
For n ∈ N, we define δn := tn+1 − tn in such a way as tn = δ0 + δ1 + · · · + δn−1.
Moreover, we assume that the sequence (δn) is bounded above by a positive real
number. By Duhamel formula, we have

u(t1) = e−t1Au0 +

∫ t1

0

e−sAf(t1 − s) ds.

Consequently

(42) ‖u(t1)‖L∞(Ω) ≤
∥∥e−t1Au0

∥∥
L∞(Ω)

+

∫ t1

0

∥∥e−sAf(t1 − s)
∥∥
L∞(Ω)

ds.

But we know that

∃K ≥ 0 : ∀t ≥ 0,
∣∣∣∣∣∣e−tA∣∣∣∣∣∣L∞(Ω)

≤ Ke−λt

where λ denotes the smallest eigenvalue of A (λ > 0 by positivity and ultracontrac-
tivity). Moreover, by ultracontractivity (with q = +∞), we have

∃C > 0 : ∀s ∈ [0, t1],
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

≤ Cs−
d
2p

Then, (42) becomes

‖u(t1)‖L∞(Ω) ≤ Ke−λt1 ‖u0‖L∞(Ω) + C

∫ t1

0

s−
d
2p ‖f(t1 − s)‖Lp(Ω) ds.

Hölder inequality shows that

‖u(t1)‖L∞(Ω) ≤ Ke−λt1 ‖u0‖L∞(Ω) + C

(∫ t1

0

‖f(t− s)‖pLp(Ω) ds

) 1
p

︸ ︷︷ ︸
=‖f‖Lp(0,t1;Lp(Ω))

(∫ t1

0

ds

s
dp′
2p

) 1
p′

where p′ denotes the conjugate of p, defined by: 1
p + 1

p′ = 1. Recall that t1 = δ0

and let I1 :=
∫ t1

0
ds

s
dp′
2p

=
∫ δ0

0
ds

s
dp′
2p

. Then, we have

(43) ‖u(t1)‖L∞(Ω) ≤ Ke−δ0λ ‖u0‖L∞(Ω) + CI
1
p′

1 ‖f‖Lp(0,t1;Lp(Ω)) .
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Likewise,

‖u(t2)‖L∞(Ω) =

∥∥∥∥∥e−δ1Au(t1) +

∫ δ1

0

e−sAf(t2 − s) ds

∥∥∥∥∥
L∞(Ω)

≤
∥∥e−δ1Au(t1)

∥∥
L∞(Ω)

+

∫ δ1

0

∥∥e−sAf(t2 − s)
∥∥
L∞(Ω)

ds

≤ Ke−δ1λ ‖u(t1)‖L∞(Ω) + C

∫ δ1

0

s−
d
2p ‖f(t2 − s)‖Lp(Ω) ds

≤ Ke−δ1λ ‖u(t1)‖L∞(Ω) + CI
1
p′

2 ‖f‖Lp(t1,t2;Lp(Ω))

where I2 :=
∫ δ1

0
ds

s
dp′
2p

. Combining (43) and the previous inequality leads to

‖u(t2)‖L∞(Ω) ≤ Ke−δ1λ
[
Ke−δ0λ ‖u0‖L∞(Ω) + CI

1
p′

1 ‖f‖Lp(0,t1;Lp(Ω))

]
+ CI

1
p′

2 ‖f‖Lp(t1,t2;Lp(Ω))

= K2e−(δ0+δ1)λ ‖u0‖L∞(Ω) + C

[
Ke−δ1λI

1
p′

1 ‖f‖Lp(t0,t1;Lp(Ω)) + I
1
p′

2 ‖f‖Lp(t1,t2;Lp(Ω))

]
Let In :=

∫ δn−1

0
ds

s
dp′
2p

. By induction, we have

‖u(tn)‖L∞(Ω) ≤ K
ne−λtn ‖u0‖L∞(Ω)+C

n∑
j=1

Kn−je−λ(δj+···+δn−1)I
1
p′

j ‖f‖Lp(tj−1,tj ;Lp(Ω)) .

Indeed, assume that the previous equality is true. Then,

‖u(tn+1)‖L∞(Ω)

=

∥∥∥∥∥e−δnAu(tn) +

∫ δn

0

e−sAf(tn+1 − s) ds

∥∥∥∥∥
L∞(Ω)

≤ Ke−δnλ ‖u(tn)‖L∞(Ω) + CI
1
p′

n+1 ‖f‖Lp(tn,tn+1;Lp(Ω))

≤ Ke−δnλ

Kne−λtn ‖u0‖L∞(Ω) + C

n∑
j=1

Kn−je−λ(δj+···+δn−1)I
1
p′

j ‖f‖Lp(tj−1,tj ;Lp(Ω))


+ CI

1
p′

n+1 ‖f‖Lp(tn,tn+1;Lp(Ω))

= Kn+1e−λ(tn+δn) ‖u0‖L∞(Ω) + C

n∑
j=1

Kn+1−je−λ(δj+···+δn−1+δn)I
1
p′

j ‖f‖Lp(tj−1,tj ;Lp(Ω))

+ CI
1
p′

n+1 ‖f‖Lp(tn,tn+1;Lp(Ω))

= Kn+1e−λtn+1 ‖u0‖L∞(Ω) + C

n+1∑
j=1

Kn+1−je−λ(δj+···+δn−1+δn)I
1
p′

j ‖f‖Lp(tj−1,tj ;Lp(Ω)) .

Then
(44)

‖u(tn)‖L∞(Ω) ≤ K
ne−λtn ‖u0‖L∞(Ω)+CI

n∑
j=1

Kn−je−λ(δj+···+δn−1) ‖f‖Lp(tj−1,tj ;Lp(Ω))
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where I := supj≥1 I
1
p′

j (recall that the sequence (δn) is bounded above, and so is

the sequence

(
I

1
p′

j

)
). By the Hölder inequality, we have

(45)

n∑
j=1

Kn−je−λ(δj+···+δn−1) ‖f‖Lp(tj−1,tj ;Lp(Ω))

≤

 n∑
j=1

Kn−je−λ(δj+···+δn−1)p′

 1
p′
 n∑
j=1

‖f‖pLp(tj−1,tj ;Lp(Ω))

 1
p

.

Now, assume that δj = r, where r denotes a positive integer. (44) combined with
(45) becomes

‖u(tn)‖L∞(Ω) ≤ K
ne−λrn ‖u0‖L∞(Ω)+CI

 n∑
j=1

Kn−je−λ(n−j)rp′

 1
p′

‖f‖Lp(t0,tn;Lp(Ω)) ,

i.e.

‖u(tn)‖L∞(Ω) ≤ K
ne−λrn ‖u0‖L∞(Ω) + CI

n−1∑
j=0

Kje−λjrp
′

 1
p′

‖f‖Lp(t0,tn;Lp(Ω)) ,

and then

‖u(tn)‖L∞(Ω) ≤
(
Ke−λr

)n ‖u0‖L∞(Ω)+CI

n−1∑
j=0

(
Ke−λrp

′
)j 1

p′

‖f‖Lp(0,+∞;Lp(Ω)) .

Now, choose r sufficiently large such that Ke−λr < 1 and Ke−λrp
′
< 1. From the

previous inequality, we deduce that

∀n ∈ N, ‖u(tn)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + CI

+∞∑
j=0

(
Ke−λrp

′
)j 1

p′

‖f‖Lp(0,+∞;Lp(Ω))

Considering t ∈ [tn, tn+1] and applying once again Duhamel formula, it follows that

sup
t≥0
‖u(t)‖L∞(Ω) < +∞,

which ends the proof. �

In the same way, we can derive L∞ bounds from uniform Lp bounds.

Property A.33. For 0 < T < +∞, assume that the semigroup
(
e−tA

)
t≥0

is

ultracontractive and that

∃p > d

2
: f ∈ L∞(0, T ;Lp(Ω)),

d denoting the dimension of the semigroup
(
e−tA

)
t≥0

. Then, u ∈ L∞(0, T ;L∞(Ω)).

Proof. Duhamel formula asserts that u is given by

∀t ∈ [0, T ), u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(s) ds = e−tAu0 +

∫ t

0

e−sAf(t− s) ds.
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Since
∥∥e−tAu0

∥∥
L∞(Ω)

≤ ‖u0‖L∞(Ω) (because
(
e−tA

)
t≥0

is a semigroup of contrac-

tions), we only have to estimate
∥∥e−sAf(t− s)

∥∥
L∞(Ω)

.

Recall that the semigroup
(
e−tA

)
t≥0

is ultracontractive, which means that

∃C > 0 : ∀s ∈ (0, T ),∀1 ≤ p ≤ q ≤ +∞,
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),Lq(Ω))

≤ Cs−
d
2 ( 1

p−
1
q ).

Choosing q = +∞, we have

∃C > 0 : ∀s ∈ (0, T ),
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

≤ Cs−
d
2p ,

and then∥∥e−sAf(t− s)
∥∥
L∞(Ω)

≤
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

·‖f(t− s)‖Lp(Ω) ≤ Cs
− d

2p ‖f(t− s)‖Lp(Ω) .

Then, integrate between 0 and t and obtain∫ t

0

∥∥e−sAf(t− s)
∥∥
L∞(Ω)

ds ≤ C ‖f‖L∞(0,T ;Lp(Ω))

(∫ t

0

ds

s
d
2p

)
.

By triangle inequality, we have

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + C ‖f‖L∞(0,T ;Lp(Ω))

(∫ t

0

ds

s
d
2p

)
≤ ‖u0‖L∞(Ω) + C ‖f‖L∞(0,T ;Lp(Ω))

(∫ T

0

ds

s
d
2p

)
= ‖u0‖L∞(Ω) + CI ‖f‖L∞(0,T ;Lp(Ω))

where I :=
∫ T

0
ds

s
d
2p

. This completes the proof in the case T < +∞. �

Property A.34. Property A.33 is still valid for T = +∞.

Proof. Let (tn)n≥0 denote an increasing sequence of real numbers such that t0 = 0.
For n ∈ N, we define δn := tn+1 − tn in such a way that tn = δ0 + δ1 + · · ·+ δn−1.
Moreover, we assume that the sequence (δn) is bounded above by a positive real
number. By Duhamel formula, we have

u(t1) = e−t1Au0 +

∫ t1

0

e−sAf(t1 − s) ds.

Consequently

(46) ‖u(t1)‖L∞(Ω) ≤
∥∥e−t1Au0

∥∥
L∞(Ω)

+

∫ t1

0

∥∥e−sAf(t1 − s)
∥∥
L∞(Ω)

ds.

We also have

∃K ≥ 0 : ∀t ≥ 0,
∣∣∣∣∣∣e−tA∣∣∣∣∣∣L∞(Ω)

≤ Ke−λt

where λ denotes the smallest eigenvalue of A (λ > 0 by positivity and ultracontrac-
tivity). Moreover, by ultracontractivity (with q = +∞), we have

∃C > 0 : ∀s ∈ [0, t1],
∣∣∣∣∣∣e−sA∣∣∣∣∣∣L(Lp(Ω),L∞(Ω))

≤ Cs−
d
2p .

Then, (46) becomes

‖u(t1)‖L∞(Ω) ≤ Ke−λt1 ‖u0‖L∞(Ω) + C

∫ t1

0

s−
d
2p ‖f(t1 − s)‖Lp(Ω) ds.
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Recall that t1 = δ0 and let I1 :=
∫ t1

0
ds

s
d
2p

=
∫ δ0

0
ds

s
d
2p

. Then, we have

(47) ‖u(t1)‖L∞(Ω) ≤ Ke−δ0λ ‖u0‖L∞(Ω) + CI1 ‖f‖L∞(0,∞;Lp(Ω)) .

Likewise,

‖u(t2)‖L∞(Ω) =

∥∥∥∥∥e−δ1Au(t1) +

∫ δ1

0

e−sAf(t2 − s) ds

∥∥∥∥∥
L∞(Ω)

≤
∥∥e−δ1Au(t1)

∥∥
L∞(Ω)

+

∫ δ1

0

∥∥e−sAf(t2 − s)
∥∥
L∞(Ω)

ds

≤ Ke−δ1λ ‖u(t1)‖L∞(Ω) + C

∫ δ1

0

s−
d
2p ‖f(t2 − s)‖Lp(Ω) ds

≤ Ke−δ1λ ‖u(t1)‖L∞(Ω) + CI2 ‖f‖L∞(0,∞;Lp(Ω))

where I2 :=
∫ δ1

0
ds

s
d
2p

. Combining (47) and the previous inequality leads to

‖u(t2)‖L∞(Ω) ≤ Ke−δ1λ
[
Ke−δ0λ ‖u0‖L∞(Ω) + CI1 ‖f‖L∞(0,∞;Lp(Ω))

]
+ CI2 ‖f‖Lp(0,∞;Lp(Ω))

= K2e−(δ0+δ1)λ ‖u0‖L∞(Ω) + C
[
Ke−δ1λI1 + I2

]
‖f‖L∞(0,∞;Lp(Ω)) .

Let In :=
∫ δn−1

0
ds

s
d
2p

. By induction, we have

‖u(tn)‖L∞(Ω) ≤ K
ne−λtn ‖u0‖L∞(Ω)+C

 n∑
j=1

Kn−je−λ(δj+···+δn−1)Ij

 ‖f‖L∞(0,∞;Lp(Ω)) .

Indeed, assume that the previous equality is true. Then,

‖u(tn+1)‖L∞(Ω) =

∥∥∥∥∥e−δnAu(tn) +

∫ δn

0

e−sAf(tn+1 − s) ds

∥∥∥∥∥
L∞(Ω)

≤ Ke−δnλ ‖u(tn)‖L∞(Ω) + CIn+1 ‖f‖L∞(0,∞;Lp(Ω))

≤ Ke−δnλ

Kne−λtn ‖u0‖L∞(Ω) + C

 n∑
j=1

Kn−je−λ(δj+···+δn−1)Ij

 ‖f‖L∞(0,∞;Lp(Ω))


+ CIn+1 ‖f‖L∞(0,∞;Lp(Ω))

= Kn+1e−λ(tn+δn) ‖u0‖L∞(Ω) + C

 n∑
j=1

Kn+1−je−λ(δj+···+δn−1+δn)Ij

 ‖f‖L∞(0,∞;Lp(Ω))

+ CIn+1 ‖f‖L∞(0,∞;Lp(Ω))

= Kn+1e−λtn+1 ‖u0‖L∞(Ω) + C

n+1∑
j=1

Kn+1−je−λ(δj+···+δn−1+δn)Ij

 ‖f‖L∞(0,∞;Lp(Ω)) .

Then
(48)

‖u(tn)‖L∞(Ω) ≤ K
ne−λtn ‖u0‖L∞(Ω)+CI

 n∑
j=1

Kn−je−λ(δj+···+δn−1)

 ‖f‖L∞(0,∞;Lp(Ω))



58 FRÉDÉRIC KUCZMA

where I := supj≥1 Ij (recall that the sequence (δn) is bounded above, and so is the
sequence (Ij)). Now, assume that δj = r, where r denotes a positive integer. (48)
becomes

‖u(tn)‖L∞(Ω) ≤ K
ne−λrn ‖u0‖L∞(Ω)+CI

 n∑
j=1

Kn−je−λ(n−j)r

 ‖f‖L∞(0,∞;Lp(Ω)) ,

i.e.

‖u(tn)‖L∞(Ω) ≤ K
ne−λrn ‖u0‖L∞(Ω) + CI

n−1∑
j=0

Kje−λjr

 ‖f‖L∞(0,∞;Lp(Ω)) ,

and then

‖u(tn)‖L∞(Ω) ≤
(
Ke−λr

)n ‖u0‖L∞(Ω) + CI

n−1∑
j=0

(
Ke−λr

)j ‖f‖L∞(0,+∞;Lp(Ω)) .

Now, choose r sufficiently large such that Ke−λr < 1. From the previous inequality,
we deduce that

∀n ∈ N, ‖u(tn)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + CI

+∞∑
j=0

(
Ke−λr

)j ‖f‖L∞(0,+∞;Lp(Ω)) .

Considering t ∈ [tn, tn+1] and applying once again Duhamel formula, it follows that

sup
t≥0
‖u(t)‖L∞(Ω) < +∞,

and the proof is complete. �

A.8. Positive semigroups. As in [5, p. 13], we have the following definition.

Definition A.35. Let (Ω,A, µ) be a measure space, p ∈ [1,+∞) and let (T (t))t≥0

be a C0-semigroup on X := Lp(Ω,A, µ).

• We call positive cone of X the set

X+ := {u ∈ X : u(x) ≥ 0 µ− a.e. x ∈ Ω}.

• We say that the semigroup (T (t))t≥0 is positive when

∀t ≥ 0, e−tAX+ ⊂ X+.

Theorem A.36. [26, Theorem 2.6, p. 50]
Let us assume that the bilinear form a is defined on the measure space L2(Ω, µ,R).
The two following properties are equivalent:

• The semigroup
(
e−tA

)
t≥0

is positive,

• ∀u ∈ D(a), u+ ∈ D(a) and a(u+, u−) ≤ 0.

A.9. Maximal regularity. Let X be a Banach space and let A be an unbounded,
closed, and densely defined linear operator on X. Let f : [0,+∞) → X be a
measurable function. We consider the existence and regularity problem:

∀t ≥ 0, u′(t) +Au(t) = f(t) , u(0) = 0.
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Definition A.37. Let p ∈ (1,+∞). We say that A has the maximal Lp-regularity
Property (see [24]) if there exists a constant C > 0 such that for all f ∈ Lp(0,+∞;X),
there exists a unique function u ∈ Lp(0,+∞;D(A)) with u′ ∈ Lp(0,+∞;X) satis-
fying the previous equation for almost every t > 0 and

‖u‖Lp(0,+∞;X) + ‖u′‖Lp(0,+∞;X) + ‖Au‖Lp(0,+∞;X) ≤ C‖f‖Lp(0,+∞;X).

Remark A.38. We can naturally consider (0, T ), T > 0, instead of (0,+∞). In
this case, we say that A has the maximal Lp-regularity Property on (0, T ).

Property A.39. [24, Proposition 2.4, p. 6]
Let A be an unbounded operator on a Banach space X and assume that there exists
p ∈ (1,+∞) such that A has the maximal Lp-regularity Property. Then, A has the
maximal Lq-regularity Property for all q ∈ (1,+∞).

Property A.40. [24, Theorem 2.6, p. 9]
Let −A be the infinitesimal generator of an analytic semigroup on an Hilbert space
H. Then, A has the maximal Lp-regularity Property for all p ∈ (0,+∞).

Theorem A.41. [24, Theorem 3.1, p. 14]
Let (Ω, µ) be a measure space and let −A be the infinitesimal generator of an
analytic semigroup of contractions (T (t))t≥0 on L2(Ω, µ). Assume that for all
q ∈ [1,+∞], the inequality

∀t ≥ 0,∀u ∈ L2(Ω) ∩ Lq(Ω), ‖T (t)u‖q ≤ ‖u‖q
holds. Then, for all p ∈ (1,+∞), the operator A has the maximal Lp-regularity
Property on Lq(Ω), A being extrapolated to Lq(Ω) in the way of paragraph 2.

Appendix B. Auxiliary results

B.1. An interpolation inequality for intermediate derivatives.

Lemma B.1. [1, Lemma 4.10, p. 70]
Let −∞ < a < b < +∞, 1 < p < ∞, and 0 < ε0 < +∞. Then, there exists
K = K(ε0, p, b − a) such that for every ε satisfying 0 < ε ≤ ε0, and for every
function f twice continuously differentiable on the open interval (a, b), we have∫ b

a

|f ′(t)|p dt ≤ Kε
∫ b

a

|f ′′(t)|p dt+
K

ε

∫ b

a

|f(t)|p dt.

B.2. Lipschitz continuous functions and Sobolev spaces.

Theorem B.2. [31, Theorem 2.1.11, p. 48]
Let Ω ⊂ Rn be an open subset of Rn, f : R→ R be a Lipschitz continuous function
and u ∈W 1,p(Ω), p > 1. If f ◦ u ∈ Lp(Ω), then f ◦ u ∈W 1,p(Ω) and for almost all
x ∈ Ω, we have:

D(f ◦ u)(x) = f ′(u(x)) ·Du(x).

Corollary B.3. Let Ω be an open subset of Rn and let u ∈ H1(Ω) (with u real
valued). Then, u+ := u ∨ 0 ∈ H1(Ω) and

∀i ∈ [[1, n]] , ∂xiu
+ = 1u>0∂xiu almost everywhere on Ω.

Consequently, u− := (−u)+ ∈ H1(Ω) and |u| = u+ + u− ∈ H1(Ω) and

∀i ∈ [[1, n]] , ∂xi |u| = sign (u) ∂xiu almost everywhere on Ω
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where sign (u) is defined by

sign (u) =


1 if u(x) > 0,

0 if u(x) = 0,

−1 if u(x) < 0.

Moreover,

∀i ∈ [[1, n]] , ∂xiu = 0 almost everywhere on {x ∈ Ω : u(x) = 0}.

Proof. It is a straightforward consequence of the previous theorem. See also [7,
Lemma 2.2, p. 91] and [15, Lemma 7.6, p. 152]. �

Corollary B.4. Let Ω be an open subset (eventually unbounded) of Rn and u ∈
H1(Ω) (real valued). Recall that Tu = (1∧|u|)sign (u). Then, we have Tu ∈ H1(Ω).
Furthermore

∀i ∈ [[1, n]] , ∂xiTu = 1−1<u<1∂xiu.

Proof. It is enough to recall that Tu is obtained from u truncating the values of u
greater than 1 or smaller than -1, i.e. that

Tu(x) =

u(x) if |u(x)| ≤ 1,
u(x)

|u(x)|
if |u(x)| ≥ 1

=


u(x) if |u(x)| < 1,

1 if u(x) ≥ 1,

−1 if u(x) ≤ −1.

Note that this property holds true by replacing H1(Ω) by W 1,p(Ω), for all p ∈
[1,+∞[. �

B.3. Maximum principle on networks. According to the Mignot Lemma, and
doing exactly the same computations as in subsection 2.7, we obtain the following
property:

Property B.5 (Maximum principle). Let u = (u1, . . . , um) continuous on the
graph, satisfying Kirchhoff conditions and such that

(49) ∀t ∈ (0, T ),∀j ∈ [[1,m]] , ∂tuj − cju′′j = fj

Assume that

• ∀j ∈ [[1,m]] , fj ≤ 0,
• u(0) = u0 ≥ 0.

Then
∀p ∈ [1,+∞],∀t, ‖u(t)‖Xp ≤ ‖u(0)‖Xp .

B.4. Comparison Lemma.

Lemma B.6 (Comparison Lemma). Let u = (u1, . . . , um) and v = (v1, . . . , vm)
continuous on the graph, satisfying Kirchhoff conditions and such that

∀j ∈ [[1,m]] , ∂tuj − cju′′j = fj and ∂tvj − cjv′′j = gj .

Assume in addition that

• ∀j ∈ [[1,m]] , fj ≤ gj,
• uj(t = 0) = vj(t = 0).

Then, for all j, uj ≤ vj.

Once again, the same computations as in subsection 2.7 yield the result.
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Appendix C. A summary of Haraux-Kirane techniques

In [16], A. Haraux and M. Kirane developed a method which yields estimates
in the C1-norm of solutions of a semi-linear evolution equation on open subsets
Ω ⊂ Rn. We need such estimates in subsection 5.2 to study the asymptotic behavior
of the solution of a reaction-diffusion system on networks. So, the purpose of this
appendix is to make sure that these techniques transfer to networks. There are
two key points. The first important result is given by [16, Theorem 1.1, p. 15]. In
terms of networks, this is Theorem C.1. The proof involves the Gagliardo-Nirenberg
inequalities and the passage to networks consists in a straightforward adaptation
of the Haraux-Kirane computations. The second key point is given by Theorem
C.2. This is a general result concerning semigroups and the analysis of Section C.3
ensures that it applies to networks. Finally, combining Theorems C.1 and C.2, we
obtain the desired estimates.

C.1. Introductory remarks. For the sake of readability, we now recall some gen-
eral results which will be useful in the sequel.

• As usual, Ω denotes the open interval (0, 1).
• Recall that we are interested in the reaction-diffusion system (35); Xp de-

notes the space (Lp(Ω))
mN

(1 ≤ p ≤ +∞) and for all p ∈ [1; +∞[, −Ap
denotes the infinitesimal generator of the semigroup (Tp(t))t≥0. (Tp(t))t≥0

is also denoted by
(
e−tAp

)
t≥0

.

• Since there is no possibility of confusion, let A denote Ap.

• ∀p ≥ 2, D(Ap) ↪→
(
W 2,p(Ω)

)mN
, D(Ap) provided with the graph norm

defined by

∀u ∈ D(Ap), ‖u‖D(Ap) = ‖u‖p + ‖Au‖p .

The embedding D(Ap) ↪→
(
W 2,p(Ω)

)mN
is continuous, due to Lemma B.1.

• In the proof of Property 2.30, we saw that

∀p > 1, D(Ap) ⊂W 2,p(Ω) ⊂ C1(Ω).

Consequently, we have

D∞(A) :=
⋂
p≥1

D(Ap) ⊂
(
C1(Ω)

)mN
.

C.2. A linear estimate.

Theorem C.1. For all u0 ∈ X∞ and all t > 0, the following estimates

∀ε ≥ 1

2
,∃C ≥ 0 : ∀t ∈ (0, 1],

∥∥e−tAu0

∥∥
X∞
≤ Ct−

1
1+ε ‖u0‖X 1

2
+ε

and

∀ε ∈
(

0,
1

2

)
,∃D ≥ 0 : ∀t ∈ (0, 1],

∥∥e−tAu0

∥∥
(W 1,∞(Ω))mN

≤ Dt− 1
2−ε ‖u0‖X∞

hold.

Proof. We closely follow [16, Theorem 1.1].
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• Let u0 ∈ X∞. Since Ω is bounded, we have

∀p ≥ 1, u0 ∈ Xp.

Then

∀p ≥ 1,∀t > 0, e−tApu0 ∈ D(Ap)

and:

∀t > 0, e−tApu0 ∈ D∞(A) =
⋂
p≥1

D(Ap) ⊂
(
C1(Ω)

)mN
.

• According to [27, p. 62]

(50) ∀p ≥ 2,∃C(p) ≥ 0 : ∀t > 0,
∥∥Ape−tApu0

∥∥
Xp
≤ C(p)

t
‖u0‖Xp .

Indeed, we need to verify that
–
(
e−tAp

)
is a uniformly bounded semigroup: this is the case because(

e−tAp
)
t≥0

is a semigroup of contractions (see Theorem 2.13).

– 0 ∈ ρ(A). Indeed, since A has compact resolvent, the spectrum of A
contains only eigenvalues. So, we are reduced to verify that 0 is not
an eigenvalue of A. Let u such that Au = 0. Then, a(u, u) = 0, i.e.

m∑
j=1

N∑
k=1

ckj

∫
Ω

(
ukj
)′

= 0.

By continuity of u and connectedness of the graph, u is constant. By
Dirichlet condition at vn, u = 0.

Moreover, since the embedding D(Ap) ↪→
(
W 2,p(Ω)

)mN
is continuous, we

have

∀u ∈ D(Ap), ‖u‖(W 2,p(Ω))mN ≤ C ‖u‖D(Ap) = C(‖u‖Xp + ‖Au‖Xp),

where C denotes a constant depending only on the data. Now, we substitute
e−tApu0 for u, which gives∥∥e−tApu0

∥∥
(W 2,p(Ω))mN

≤ C
[∥∥e−tApu0

∥∥
Xp

+
∥∥Ape−tApu0

∥∥
Xp

]
≤ C

[
‖u0‖Xp +

∥∥Ape−tApu0

∥∥
Xp

]
because e−tAp is a contraction

≤ C
[
‖u0‖Xp +

C(p)

t
‖u0‖Xp

]
according to (50)

= C
1 + C(p)

t
‖u0‖Xp ≤

C1(p)

t
‖u0‖Xp

for t ∈ (0, 1]. Hence the estimate

(51) ∀t ∈ (0, 1],
∥∥e−tApu0

∥∥
(W 2,p(Ω))mN

≤ C1(p)

t
‖u0‖Xp .

• Recall the Gagliardo-Nirenberg inequalities (see, for example, [18, p. 37]).
Let Ω be an open bounded subset of Rn with Lipschitz continuous bound-
ary8. Let m ∈ N and p, q ≥ 1 two real numbers. If u ∈ Wm,p(Ω) and if

8 See, for example, [1, Theorem 4.17, p.79], [18, p. 37]
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ν ≥ 0 satisfies ν < m− n
p , then9 u ∈ Cν

(
Ω
)
. Moreover, if θ ∈ [0, 1] satisfies

ν < θ

(
m− n

p

)
− (1− θ)n

r
,

we have

‖u‖W ν,∞(Ω) ≤ C(θ) ‖u‖θWm,p(Ω) ‖u‖
1−θ
Lr(Ω) .

Concerning networks, applying these inequalities at every function ukj , we
find∥∥ukj∥∥W ν,∞(Ω)

≤ Ckj (θ)
∥∥ukj∥∥θWm,p(Ω)

∥∥ukj∥∥1−θ
Lr(Ω)

≤ Ckj (θ) ‖u‖θ(Wm,p(Ω))mN ‖u‖
1−θ
(Lr(Ω))mN

,

which gives, after summing

(52) ‖u‖(W ν,∞(Ω))mN ≤ C(θ) ‖u‖θ(Wm,p(Ω))mN ‖u‖
1−θ
(Lr(Ω))mN

.

• Let apply (52) with ν = 0, r = p and m = 2. Substituting e−tAu0 for u
yields:∥∥e−tAu0

∥∥
X∞
≤ C(θ)

∥∥e−tAu0

∥∥θ
(W 2,p(Ω))mN

∥∥e−tAu0

∥∥1−θ
Xp

≤ C(θ)
∥∥e−tAu0

∥∥θ
(W 2,p(Ω))mN

‖u0‖1−θXp because e−tAp is a contraction

≤ C(θ)
Cθ1 (p)

tθ
‖u0‖θXp ‖u0‖1−θXp = C(θ)

Cθ1 (p)

tθ
‖u0‖Xp according to (51).

Taking r = p = 1
2 + ε (recall that ε ≥ 1

2 , in such a way that p = r ≥ 1), we
have

∀t ∈ (0, 1],
∥∥e−tAu0

∥∥
X∞
≤ C(θ)

Cθ1 (p)

tθ
‖u0‖X 1

2
+ε
.

Here, θ must satisfy

0 = ν < θ

(
m− 1

p

)
− (1− θ)1

r
.

Since ν = 0 and p = r = 1
2 + ε, this inequality is equivalent to θ > 1

1+2ε .
Taking

θ >
1

1 + ε
,

we have

∀t ∈ (0, 1],
∥∥e−tAu0

∥∥
X∞
≤ C(ε)

t
1

1+ε

‖u0‖X 1
2

+ε
.

• We now turn to the second property. Choose ν = 1, m = 2 (p and r will
be later determined) and apply (52), substituting e−tAu0 for u:∥∥e−tAu0

∥∥
(W 1,∞(Ω))mN

≤ C(θ)
∥∥e−tAu0

∥∥θ
(W 2,p(Ω))mN

∥∥e−tAu0

∥∥1−θ
(Lr(Ω))mN

≤ C(θ)
∥∥e−tAu0

∥∥θ
(W 2,p(Ω))mN

‖u0‖1−θ(Lr(Ω))mN
because e−tAp is a contraction

≤ C(θ)
Cθ1 (p)

tθ
‖u0‖θXp ‖u0‖1−θXr according to (51).

9 Following [18, p. 7], if ν ≥ 0 is not an integer, Cν
(
Ω
)

denotes the space of [ν] times

continuously differentiable functions on Ω where the [ν]-order derivative satisfies a Hölder condition
with exponent ν − [ν].
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Now, we need to choose p, r and θ such that:{
ν < m− 1

p I

ν < θ
(
m− 1

p

)
− (1− θ) 1

r II

Taking account of ν = 1 and m = 2, the inequality I is equivalent to p > 1. Then,
inequality II amounts to

θ >
1 + 1

r

2− 1
p + 1

r

.

Since 1
p < 1, we have

1 + 1
r

2− 1
p + 1

r

<
1 + 1

r

2− 1 + 1
r

=
1 + 1

r

1 + 1
r

= 1.

Then, for every choice of p > 1, we can determine a suitable θ. Since Ω is bounded,
we have

‖u0‖Xp , ‖u0‖Xr ≤ C ‖u0‖X∞
and the inequality∥∥e−tAu0

∥∥
(W 1,∞(Ω))mN

≤ C(θ)
Cθ1 (p)

tθ
‖u0‖θXp ‖u0‖1−θXr

leads to ∥∥e−tAu0

∥∥
(W 1,∞(Ω))mN

≤ C(p, r, θ)
1

tθ
‖u0‖X∞

and this, for every θ ∈
(

1+ 1
r

2− 1
p+ 1

r

, 1
]
. A quick study on [0, 1] of the function f : x 7→

f(x) = 1+x
2− 1

p+x
shows that f is nondecreasing on [0, 1] and that f(0) = 1

2− 1
p

< 1.

Let θ ∈
(

1
2 , 1
)

fixed. Since f(0) = 1
2− 1

p

−→
p→+∞

1
2 , we can take p sufficiently large so

that f(0) < θ. Then, we choose r such that θ > f
(

1
r

)
=

1+ 1
r

2− 1
p+ 1

r

. So we have found

p, r and θ = 1
2 + ε with ε ∈

(
0, 1

2

)
such that

∀t ∈ (0, 1],
∥∥e−tAu0

∥∥
(W 1,∞(Ω))mN

≤ C(ε) 1

t
1
2

+ε
‖u0‖X∞ ,

and the proof is complete. �

C.3. A result about semi-linear evolution equations. Let E be a Banach
space and let a ∈ R. Let CB([a,+∞), E) denote the vector space of continuous
functions ϕ : [a,+∞[→ E bounded on [a,+∞). For p ∈ [1,+∞[, let Sp(R+, E)
denote the vector space of functions f ∈ Lploc(R+, E) such that

sup
t≥0

∫ t+1

t

‖f(s)‖pE ds < +∞.

Theorem C.2. [16, Theorem 2.1] Let E,F two real Banach spaces, respectively
provided with the norms ‖·‖E and ‖·‖F . Assume that F ↪→ E. We consider an
unbounded linear operator L on E which generates a strongly continuous semigroup
(T (t))t≥0 on E such that

• ∀t > 0, T (t)E ⊂ F ,
• ∃α ∈ [0, 1[,∃C ≥ 0 : ∀t ∈ (0, 1],∀x ∈ E, ‖T (t)x‖F ≤

C
tα ‖x‖E.
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Lastly, let p > 1
1−α , f ∈ Sp(R+, E) and let u be a solution on R+ of the equation

(53)
du

dt
(t) = Lu(t) + f(t),

in the sense of Definition (2.23), i.e. u is continuous on [0,+∞), has continuous
derivative on (0,+∞), u(t) ∈ D(L) for all t > 0 and (53) holds on (0,+∞). Then,
if u : [0,+∞)→ E is bounded, actually

• ∀t > 0, u(t) ∈ F ,
• ∀δ > 0, u ∈ CB([δ,+∞);F ).

C.4. Application to networks. Let (u, v) be a global nonnegative solution of the
reaction-diffusion system{

∂tuj − c1ju′′j + ujϕj(vj) = 0,

∂tvj − c2jv′′j − ujϕj(vj) = 0

where u = (u1, . . . , um), v = (v1, . . . , vm) are continuous on the graph and sat-
isfy the Kirchhoff conditions. Assume moreover that for all j ∈ [[1,m]], uj , vj ∈
CB((0,+∞) × Ω). Our intention is to show that for all j ∈ [[1,m]], uj , vj ∈
CB([1,+∞), C1(Ω)). This is precisely the purpose of Theorem C.2.

The initial system becomes an abstract Cauchy problem, namely

(ACP) :


dX

dt
(t) +AX(t) = f(t), t > 0,

X(0) = X0

with X = (u, v) = (u1, . . . , um, v1, . . . , um), X0 = (u0, v0) and

f(t) = (−u1(t, ·)ϕ1(v1(t, ·)), . . . ,−um(t, ·)ϕm(vm(t, ·)), u1(t, ·)ϕ1(v1(t, ·)), . . . , um(t, ·)ϕm(vm(t, ·))).

In view to apply Theorem C.2, take E = X∞ and F =
(
C1(Ω)

)mN
equipped with

their natural norms. Let us verify assumptions of Theorem C.2.

• ∀t > 0, T (t)E ⊂ F : see Theorem C.1.

• ∃α ∈ [0, 1[,∃C ≥ 0 : ∀t ∈ (0, 1],∀X ∈ E, ‖T (t)X‖1,∞ ≤
C

tα
‖X‖∞: this is

precisely the purpose of Theorem C.1, taking ε < 1
2 .

• f ∈ Sp(R+, E), for a particular p >
1

1− α
. Indeed, consider such a p.

We want to make sure that supt≥0 ‖f‖Lp(t,t+1;E) < +∞, i.e. that for all
j, 1 ≤ j ≤ m

sup
t≥0

∫ t+1

t

‖uj(s, ·)ϕj(uj(s, ·))‖p∞ ds < +∞.

But, by assumption

∃M ≥ 0 : ∀t ≥ 0,∀x ∈ Ω, 0 ≤ uj(t, x), vj(t, x) ≤M.

Since the functions ϕj continuous, we have similar estimates for the func-
tions ujϕj(vj). Hence

∃C ≥ 0 : ∀t ≥ 0,∀x ∈ Ω, 0 ≤ uj(t, x)ϕj(vj(t, x)) ≤ C,
and ∫ t+1

t

sup
t≥0
‖f‖Lp(t,t+1;E) ≤ C,
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where C denotes a generic constant depending only on the data.

So, Theorem C.2 applies and u, v ∈ CB([δ,+∞[, F ) for all δ > 0.
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la mâıtrise, Masson, 1986.
10. E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, Cambridge

University Press, 1989.

11. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equa-
tions, Graduate Texts in Mathematics, vol. 194, Springer, 2000.

12. Lawrence C. Evans, Partial differential equations, 2 ed., Graduate Studies in Mathematics,
vol. 19, American Mathematical Society, 2010.

13. Wei Feng, Global existence and boundedness of the solution for a blood oxygenation model,

Journal of Mathematical Analysis and Applications 181 (1994), 462–472.
14. Gérard Gagneux and Monique Madaune-Tort, Analyse mathématique de modèles non linéaires
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E-mail address, F. Kuczma: frederic.kuczma@lmpt.univ-tours.fr


	0. Introduction
	1. Networks and graphs
	1.1. Framework
	1.2. Continuity at vertices
	1.3. Diffusion on network
	1.4. Reaction-diffusion on network

	2. General results about one-dimensional networks
	2.1. Stating the problem
	2.2. Functional framework: Hilbert spaces case
	2.3. Extrapolation; ultracontractivity
	2.4. Compactness
	2.5. Exponential stability
	2.6. Local existence in Xp, 1<p<+
	2.7. Positivity
	2.8. Maximal regularity on network
	2.9. Poincaré inequality on network

	3. The case of globally conservative boundary conditions
	3.1. New problem
	3.2. Similarities 
	3.3. But also some differences
	3.4. The bilinear form of the globally conservative operator

	4. Application I to reaction-diffusion: a result by Martin and Pierre
	4.1. Estimates in Lp (1<p<+)
	4.2. Main statement
	4.3. Generalization to linearly growing source f
	4.4. Application to one-dimensional domain with piecewise constant diffusion coefficients
	4.5. Extension to NN systems; example of the bloodstream oxygenation

	5. Application II to reaction-diffusion: a result by Haraux and Youkana
	5.1. Global existence
	5.2. Asymptotic behavior
	5.3. A partial extension in the manner of Barabanova

	Appendix A. The abstract setting underlying the analysis
	A.1. A few remainders about semigroups
	A.2. Extrapolating semigroups
	A.3. Ultracontractivity
	A.4. Compactness
	A.5. Spectral bound and growth bound; exponential stability
	A.6. Bilinear forms; associated operators
	A.7. L-bounds and ultracontractivity
	A.8. Positive semigroups
	A.9. Maximal regularity

	Appendix B. Auxiliary results
	B.1. An interpolation inequality for intermediate derivatives
	B.2. Lipschitz continuous functions and Sobolev spaces
	B.3. Maximum principle on networks
	B.4. Comparison Lemma

	Appendix C. A summary of Haraux-Kirane techniques
	C.1. Introductory remarks
	C.2. A linear estimate
	C.3. A result about semi-linear evolution equations
	C.4. Application to networks

	References

