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Robust Privacy-Preserving Gossip Averaging
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Abstract Decentralized solutions are emerging as promising candidates
to overcome the privacy risks associated with centralized data services.
Such solutions suffer however from their own range of privacy vulner-
abilities, arising from untrusted and malicious peers. In this paper, we
consider the emblematic problem of privacy-preserving decentralized av-
eraging, and propose a novel gossip protocol that exchanges noise for
several rounds before starting to exchange actual data. This makes it
hard for an honest but curious attacker to know whether a user is trans-
mitting noise or actual data. Our protocol and analysis do not assume
a lock-step execution, and demonstrate improved resilience to colluding
attackers. We prove the correctness of this protocol as well as several pri-
vacy results. Finally, we provide simulation results about the efficiency
of our averaging protocol.

1 Introduction

The recent evolution of applications like the Internet of Things has fostered
interest in protocols that enable large networks of devices to perform collabo-
rative computations on their own data. For these protocols, privacy protection
acquires paramount importance, since the data being processed may be personal
or otherwise confidential, e.g. location or medical data. While it is possible to
simply centralize data processing, centralization raises privacy and durability
issues. The provider of a centralized service has access to the personal data of
all users and may cut off the service at any time. To prevent these issues, several
authors have proposed decentralized solutions to the problem of data aggrega-
tion [8,20], including peer-to-peer protocols that compute the average of values
initially held by individual peers, an important topic in a range of statistical and
machine-learning applications [7].

These peer-to-peer solutions remove the need for a central server, and the
risk of being spied by the server’s operator or by third parties that may obtain
access to server-side data. While this goes in the direction of privacy protection,
these algorithms also have serious disadvantages for privacy. They require users
to send information to unknown peers, which may allow not only big companies
or governmental agencies, but also criminal organizations or “curious” people to
access personal data rather easily, without having to compromise heavily secured
servers and communications.

In order to overcome this central weakness of peer-to-peer averaging proto-
cols, several algorithms have been proposed that allow gossip averaging while



protecting their users’ privacy [1,2,8,26]. These algorithms unfortunately suffer
from a number of limitations that expose them to some eavesdropping attacks [1],
constrain how peers must coordinate their exchanges [8,23,26], or require the use
of costly cryptographic primitives such as homomorphic encryption [19].

In this paper, we propose to overcome these limitations with a novel peer-to-
peer protocol for decentralized averaging. Following earlier solutions [1,26,28],
our approach injects randomized values into the averaging process while ensur-
ing deterministic convergence to the exact wanted value. In contrast to earlier
attempts, the successive values exposed by an individual node in our protocol’s
early stage are independent of this node’s initial value. Contrary to [26], we also
do not assume a fully lock-step execution model to implement our protocol and
perform our analysis.

Our design relies on a random peer sampling (RPS) service [21]. For our
algorithm to attain its goals in a context where the RPS service itself may be
attacked, this RPS service need to be resilient to attacks, especially attacks
trying to isolate a specific peer, surrounding it by malicious peers. One example
of such an attack-resilient RPS protocol is Brahms [4].

Overall, the random injection we present combined with random peer sam-
pling removes the need for peers to tightly coordinate their actions, allows peers
to protect their privacy without having to make explicit privacy protection re-
quests to others, and improves resilience to attacks involving the use of numerous
malicious peers controlled by an attacker. We evaluate our protocol by first prov-
ing its correctness as well as several privacy properties. We present simulation
results in combination with two different peer sampling protocols.

2 System Model and Problem

System model. We consider an asynchronous decentralized system consisting of a
large number of peers {𝑝1, …, 𝑝𝑖, …, 𝑝𝑁} that can communicate through message
passing. We use the terms “node” and “peer” interchangeably throughout this
paper. We assume the network is reliable (messages do not get lost), but we
do not make any assumption regarding the synchrony of the network or of the
execution at different peers. Messages may take an arbitrary (albeit finite) time
to arrive, while the protocol’s execution evolves independently at each peer.
Peers synchronize only in pairs for the duration of a message exchange. A node
involved in a message exchange with another node simply waits for a response
or for a failure-detection timeout before engaging in other exchanges.

We assume peers have access to a random peer sampling service (RPS for
short) [21] that provides each individual peer with a sample stream of other
peers present in the network. For our analysis, we assume this RPS protocol is
resilient to attempts to bias its results by individual peers [4].

The private averaging problem Each peer 𝑝𝑖 possesses a local initial value val𝑖
and wants to compute the average value of all the peers in the system 1

𝑁 ∑𝑖 val𝑖,
while giving other peers as little information as possible regarding its own local



1 Function gAvg(val):
2 while true do
3 𝑝𝑒𝑒𝑟 ← randomPeer()
4 sendTo(𝑝𝑒𝑒𝑟, val)
5 rcv ← recvFrom(𝑝𝑒𝑒𝑟)
6 val ← val+rcv

2
7 Function answer():
8 rcv ← recvFrom(𝑝𝑒𝑒𝑟)
9 sendTo(𝑝𝑒𝑒𝑟, val)

10 val ← val+rcv
2
Algorithm 1: Non-private Gossip Averaging

value. We consider honest but curious attackers in the sense that they observe
exchanged values, but they do not inject fake values or try to prevent the algo-
rithm from computing a correct result.

We consider the two kinds of attackers defined in [1], possibly coexisting in a
single entity. Edge attackers eavesdrop on data exchanged by other peers; they
may, for example, try to obtain a user’s value by retrieving all the values s/he
exchanges with other users. Node attackers use a set of peers under their control
to get information from other peers.

Algorithm 1 [20] describes the classical approach to decentralized averaging
(which does not protect privacy). Each peer starts with an initial value. Pairs of
peers regularly exchange their local values (lines 4-5) and replace them with their
average (line 6)—the function answer is invoked when receiving a message sent
using sendTo. While this method ensures eventual convergence of all values
to their average, provided that the network’s graph is connected, peers have to
expose their local values to potential strangers, thus raising critical privacy issues
if this value is sensitive and other peers cannot be fully trusted. Our private-
averaging problem consists in computing the same average while hiding initial
values from edge and node attackers.

3 Privacy-Preserving Averaging

We address private averaging with a protocol that uses random values to protect
the initial values of peers. Unlike some existing work [26], our protocol does not
require synchronous lock-step rounds. Moreover, a peer can protect its value
without any of its neighbors doing so and without explicitly informing anyone.
In particular, we can have a mix of peers using privacy protection and peers not
using it.

3.1 The Algorithm

The solution we proposed is described in Algorithm 2. (As in Algorithm 1 the
function answer is called upon receiving a message.)



1 Function privGAvg(val, 𝑝𝑟𝑖𝑣𝐿𝑣𝑙):
2 𝑒𝑟𝑟 ← 0
3 for 𝑖 = 0 to 𝑖 = 𝑝𝑟𝑖𝑣𝐿𝑣𝑙 − 1 do
4 𝑝𝑒𝑒𝑟 ← randomPeer()
5 fakeVal ← rand()
6 𝑒𝑟𝑟+ = val − fakeVal
7 sendTo(𝑝𝑒𝑒𝑟, fakeVal)
8 rcv ← recvFrom(𝑝𝑒𝑒𝑟)
9 val ← fakeVal+rcv

2
10 val+ = 𝑒𝑟𝑟
11 while true do
12 𝑝𝑒𝑒𝑟 ← randomPeer()
13 sendTo(𝑝𝑒𝑒𝑟, val)
14 rcv ← recvFrom(𝑝𝑒𝑒𝑟)
15 val ← val+rcv

2
16 Function answer():
17 rcv ← recvFrom(𝑝𝑒𝑒𝑟)
18 if 𝑖 < 𝑝𝑟𝑖𝑣𝐿𝑣𝑙 then
19 fakeVal ← rand()
20 𝑒𝑟𝑟+ = val − fakeVal
21 sendTo(𝑝𝑒𝑒𝑟, fakeVal)
22 val ← fakeVal+rcv

2
23 else
24 sendTo(𝑝𝑒𝑒𝑟, val)
25 val ← val+rcv

2
Algorithm 2: Private Gossip Averaging

Our proposal consists in adding a simple privacy-generation phase to the
averaging algorithm. The privacy-generation phase (lines 2-10) behaves exactly
in the same way as the averaging protocol. However, a peer performing this phase
sends a random value fakeVal (line 7) instead of its current value to the selected
peer. The difference between its current value and the sent random value being
accumulated in a local error variable 𝑒𝑟𝑟 (line 6).

After having initiated and completed the desired number of random ex-
changes (determined by the protocol parameter 𝑝𝑟𝑖𝑣𝐿𝑣𝑙 at line 3), the peer
sums its accumulated error variable and its original value (line 10), and then
it continues with the original averaging protocol by using this sum as its value
(lines 11-15). Furthermore, all communication between peers is encrypted using
standard techniques. So we assume that an eavesdropper may only know the
time, the sender and the receiver of any communication, not its content.

Different termination conditions can be used with this algorithm: time based,
communication-round based, value-change based, etc. The best termination con-
dition being dependent on the considered use-case, and this paper being about
private gossip averaging in general, we do not suggest any specific condition for
our algorithm.
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Figure 1: Four peers executing our algorithm

An example of the execution of the algorithm is shown in Figure 1 on a toy
example of four peers with 𝑝𝑟𝑖𝑣𝐿𝑣𝑙 = 1, assuming a static synchronous network
for simplicity’s sake. Each peer is represented by a circle with two numbers. The
top number is the current value val held by the peer: its initial value at the start
of the protocol (Step 1, top-left corner), which should converge arbitrarily close
to the network’s average (here 6) as the protocol progresses. (In this particular
example, peers do converge to the exact average value at Step 6, bottom-right
corner.) The bottom number if the error 𝑒𝑟𝑟 progressively accumulated by each
peer.

During the first two rounds (shown at Steps 2 and 3), the peers execute the
privacy-generation phase of Algorithm 2. During this phase, peers exchange fully
random values, while accumulating the resulting error in their local 𝑒𝑟𝑟 variable.
At Step 4, each peer executes line 10 of Algorithm 2 and corrects its initial value
val with the error accumulated so far. Note how at each step the overall average
value of the network remains 6. Finally, at Steps 5 and 6, our protocol executes
a standard decentralized averaging protocol with the corrected values.

3.2 Peer-Sampling Adjustments

As mentioned above, we assume a Byzantine-resilient peer sampling protocol [4].
This ensures that peers can select their communication partner from a uniformly
random sample of the network. However, a malicious peer could still try to
contact and exchange information with a target peer by bypassing the peer
sampling mechanism. For this reason, we introduce an adjustment to connection
establishment. When a peer receives a connection request from another one, 𝐴, it
never answers directly. Rather, it waits for another peer 𝐵’s contact and forwards
to it the information received from 𝐴. Then it replies to 𝐴 with the response
received from 𝐵. This simple mechanism makes it difficult for an attacker to
target a peer in order to monitor its exchanges.



4 Evaluation

We evaluate the performance of our averaging algorithm by means of a theoret-
ical analysis and an experimental evaluation of its performances in conjunction
with different peer sampling protocols.

4.1 Averaging Correctness

We start by proving that, in a classical gossip averaging algorithm as proposed
in [20], if some of the values exchanged by peers are replaced by random val-
ues and, if later, an appropriate correction is done on the value of peers, then,
the algorithm will converge the same way as without these operations. Let us
consider a classical theoretical continuous-time model of gossip averaging where
each peer is a vertex of a complete graph 𝐾(𝑉 ) (which we use to capture the
RPS protocol we rely on). For conciseness, we note in the following 𝑥𝑖(𝑡) the
value of the variable val𝑖 of peer 𝑝𝑖 at time 𝑡, and 𝑦𝑖,𝑘 is the 𝑘th value fakeVal
used by peer 𝑝𝑖.

Theorem 1 (Correctness Theorem) Let 𝑝𝑖 ∈ {𝑝0, …, 𝑝𝑘} ⊆ 𝑉 be a peer, and
let us replace its value, 𝑥𝑖(𝑡), by the values 𝑦𝑖,0; …; 𝑦𝑖,𝑟𝑖

at times 𝑡𝑖,0; …; 𝑡𝑖,𝑟𝑖
(i.e.

∀0⩽𝑖⩽𝑘𝑥𝑖(𝑡𝑖,𝑗+𝜀) = 𝑦𝑖,𝑗). If we later add (at time 𝑡∗) the value ∑𝑟𝑖
𝑗=0(𝑥𝑖(𝑡𝑖,𝑗)−𝑦𝑖,𝑗)

to 𝑥𝑖(𝑡∗) (i.e. ∀0⩽𝑖⩽𝑘𝑥𝑖(𝑡∗ + 𝜀) = 𝑥𝑖(𝑡∗) + ∑𝑟𝑖
𝑗=0(𝑥𝑖(𝑡𝑖,𝑗) − 𝑦𝑖,𝑗)), then, executing

a classical gossip averaging algorithm on this graph will ultimately make every
vertex’s value converge to the average of all initial values.

Proof. Let us consider a single peer 𝑝𝑖 and a single replacement occurring at
time 𝑡𝑖,𝑗 , 𝑗 ∈ [0, 𝑟𝑖]. In this transformation, we remove 𝑥𝑖(𝑡) − 𝑦𝑖,𝑗 from the value
of 𝑥𝑖. This modifies the average of all values into avg(𝑡 + 𝜀) = avg(𝑡) − 𝑥𝑖(𝑡)−𝑦𝑖,𝑗

|𝑉 | .
Since averaging operations have no effect on the average value, if we later, at
time 𝑡′, add 𝑥𝑖(𝑡) − 𝑦𝑖,𝑗 to the value of any peer, we restore the original value of
avg. Iterating this reasoning over all values of 𝑖 and 𝑗 proves the theorem. ⊓⊔

Now we know that we can replace the value of a peer by a random value
an arbitrary number of times. The averaging algorithm will still work, provided
that we later add to the value of our peer the sum of all the differences between
the value our peer had at the time of replacement and the random value. The
correctness of our algorithm follows trivially.

Property 1 (Correctness property) If the Gossip Privacy Protector algo-
rithm is applied by any number of peers at the start of a classical gossip averaging
algorithm, this does not change the value to which all peers will converge.

The proof is a simple application of our Correctness Theorem.



4.2 Attack Resilience

We now show that our protocol has good privacy properties. We start by ob-
serving that by definition, all the random values sent by peers are independent
of each other and of the original value of the peer. We then distinguish two
types of attack: direct and indirect. Throughout the analysis, we let 𝑙 (instead
of 𝑝𝑟𝑖𝑣𝐿𝑣𝑙) denote the privacy level chosen by the considered peer. In addition,
we let 𝜏 = #corrupted peers

#peers represent the fraction of corrupted peers. Other than
that, we use the same notation as in the algorithm (with time indexes added).

Direct Attacks In direct attacks, the attacker tries to learn the value of a peer
by communicating directly with it. We prove two properties in this context.

Property 2 (Deterministic Privacy Property)
An attacker needs to get all the random values sent to compute the exact original
value of the peer.

Proof. We will use the same notation as in the algorithm (with time indexes
added, and 𝑙 instead of 𝑝𝑟𝑖𝑣𝐿𝑣𝑙). The first non-random value is exactly the value
exchanged at the 𝑙-th round, val𝑙.

val𝑙 = val𝑙−1 + err𝑙−1 =
fakeVal𝑙−1 + rcv𝑙−1

2
+

𝑙−1
∑
𝑖=0

(val𝑖 − fakeVal𝑖)

val𝑙 =
fakeVal𝑙−1 + rcv𝑙−1

2
+

𝑙−1
∑
𝑖=1

(
fakeVal𝑖−1 + rcv𝑖−1

2
− fakeVal𝑖) + val0 − fakeVal0

val𝑙 =
𝑙−1
∑
𝑖=0

(
𝑟𝑐𝑣𝑖 − fakeVal𝑖

2
) + val0 ⟹ val0 = val𝑙 −

𝑙−1
∑
𝑖=0

(
rcv𝑖 − fakeVal𝑖

2
)

We see that computing the original value from the first non-random value re-
quires knowledge of all the random values (and of the answers from contacted
peers). All later non-random values having even more noise from other peers and
no non-random values being transmitted before, this proves the property. ⊓⊔

Property 3 (Probabilistic Privacy Property)
If the attacker lacks 𝑘 random values (but not necessarily the associated answers),
the best s/he can do is take their expected values (if known), with a level of
uncertainty at least as large as that of guessing the value of ∑𝑘

𝑖=0 fakeVal𝑖
2 .

Proof. Since peers generate independent random values, it is impossible to guess
anything from them, except by using their relation to val𝑙.
Since val0 = val𝑙−∑𝑙−1

𝑖=0 ( rcv𝑖−fakeVal𝑖
2 ), if the attacker lacks 𝑘 values, s/he has to

guess them without any hint. Therefore, the best s/he can do consists in taking
their expected values and nothing will give her a lower level of uncertainty than
the natural level of uncertainty of these random variables. ⊓⊔

From the Deterministic Privacy Property, we can derive that, if the peer
sampling is effectively random, the chance that an attacker will get the exact
original value of a peer is ⩽ 𝜏 𝑙. See Figure 2a for a plot.



(a) Direct attack (b) First Order Indirect attack

Figure 2: Success probabilities for direct and indirect attacks (upper bounds). 𝑙:
privacy level, 𝜏: fraction of corrupted peers

Indirect Attacks In indirect attacks, the attacker exploits information ex-
changed between the target and other peers. For example, the attacker may
guess the value of a peer 𝑝 by observing that 𝑝 communicates with another peer
𝑞 whose value changes from val′

𝑞 to val″
𝑞 as a result of the exchange. This is

only possible if the attacker is both a node and an edge attacker. The attacker
requires fake peers to obtain the values of nodes, and eavesdroppers to know
which values s/he needs. Also, note that the attacker needs to get values older
than the ones s/he wants to obtain. Moreover, the attack will only work if all
involved peers, but the target, have ended their privacy-generation phases since
values sent by a peer generating privacy are all independent of each other. This
implies that, if all peers start the process at the same time, it is unlikely that
these attacks will be possible. Except for the very simple case of spying the tar-
get peer’s neighbors, this kind of attack will probably be very impractical for
most, if not all, cases on a real network.

Indirect attacks rely on the following principle: if peer 𝑖 exchanges values
with peer 𝑗 at time 𝑡, it is possible to compute the exchanged values by knowing
𝑣𝑗(𝑡) (the value sent by 𝑗) and 𝑣𝑗(𝑡+1) = 𝑣𝑖(𝑡)+𝑣𝑗(𝑡)

2 . This attack can be iterated:
if the attacker lacks one, or both, of 𝑣𝑗(𝑡) and 𝑣𝑗(𝑡+1), s/he may get it using the
same attack. We call this a Higher Order Indirect Attack, the base case being a
First Order Indirect Attack.

First order indirect attacks give the attacker a second chance to get a value
with respect to a direct attack, but require two contacts instead of one. This
increases the upper bound of the probability of an exact evaluation from ⩽ 𝜏 𝑙

to ⩽ (𝜏 + (1 − 𝜏)𝜏2))𝑙 = (𝜏 + 𝜏2 − 𝜏3))𝑙. See Figure 2b for a plot.
Higher-order indirect attacks are very unlikely in practice. But from a theo-

retical point of view, they can be very powerful. We will prove two results show-
ing the limitations of these attacks. We consider a node-edge attacker which
is a universal eavesdropper (s/he can see all messages). The attacker may take
an arbitrarily long (finite) time to get the desired information and may have
to use arbitrarily old information. We state our first theorem under Assump-
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Figure 3: Lower bounds on survival and escape probabilities. 𝜏: fraction of cor-
rupted peers, 𝜃 fraction or unsafe edges

tion 1, which holds with high probability in the presence of a uniform random
peer sampling over an infinite set of peers. The theorem states that as long
as the assumption holds, the target can survive a higher-order indirect attack
from a universal eavesdropper. We therefore refer to it as Higher Order Survival
Theorem. We plot the theorem result in Figure 3a.

Assumption 1 There is neither a pair of consecutive exchanges between the
same two peers, nor a pair of exchanges with one (or both) peer(s) in common
separated by only one exchange.

Theorem 2 (Higher Order Survival Theorem)
As long as Assumption 1 holds, and 𝜏 < 1/2, a universal attacker will never
obtain the value of the target peer with probability ⩾ 1 − 1−2𝜏(1−𝜏)−√1−4𝜏(1−𝜏)

2(1−𝜏)2 .

Proof. We model the tree of exchanges induced by the higher order attack by
a Galton–Watson process. The number of descendants of an individual is the
number of exchanges made just before and after the exchange corresponding to
the individual which are not made with a corrupted peer. This gives the following
probabilities: 𝑝0 = 𝜏2, 𝑝1 = 2𝜏(1 − 𝜏), 𝑝2 = (1 − 𝜏)2. The average number of
descendants is 𝑚 = 𝑝1 +2𝑝2 = 2𝜏(1−𝜏)+2(1−𝜏)2. Let us analyze the branching
process’ behavior as a function of 𝜏.

𝑚 = 2𝜏(1 − 𝜏) + 2(1 − 𝜏)2 = 2𝜏 − 2𝜏2 + 2 − 4𝜏 + 2𝜏2 = 2 − 2𝜏

So 𝑚 = 1 ⇔ 2𝜏 = 1 ⇔ 𝜏 = 1/2. Since 𝑝1 = 2𝜏(1 − 𝜏) = 21/2
2 = 1/2 < 1, the

probability of extinction in the critical case is 1.
For the super-critical case, 𝑚 > 1, let us analyze the generating function.

𝜑(𝑠) = ∑
𝑛⩾0

𝑝𝑛𝑠𝑛 = 𝑝2𝑠2 + 𝑝1𝑠 + 𝑝0 = (1 − 𝜏)2𝑠2 + 2𝜏(1 − 𝜏)𝑠 + 𝜏2



To solve 𝜑(𝑠) = 𝑠, we search for the roots 𝑟 of the polynomial 𝜑(𝑠) − 𝑠.

𝜑(𝑠) − 𝑠 = (1 − 𝜏)2𝑠2 + (2𝜏(1 − 𝜏) − 1)𝑠 + 𝜏2

𝑟 =
1 − 2𝜏(1 − 𝜏) ± √1 − 4𝜏(1 − 𝜏)

2(1 − 𝜏)2 , (0 ⩽ 𝜏 < 1/2, 1 − 4𝜏(1 − 𝜏) > 0)

Of the two solutions, the lower one living in [0, 1] is always
𝑟 = 1−2𝜏(1−𝜏)−√1−4𝜏(1−𝜏)

2(1−𝜏)2 (the other being always 1 for 0 ⩽ 𝜏 < 1/2). The prob-
ability of extinction (the attacker obtains the information) in the super-critical
case is 1−2𝜏(1−𝜏)−√1−4𝜏(1−𝜏)

2(1−𝜏)2 , so, the probability of survival (the attacker does not

obtain the information) is: 1 − 1−2𝜏(1−𝜏)−√1−4𝜏(1−𝜏)
2(1−𝜏)2 . ⊓⊔

The above theorem relies on a major assumption (Assumption 1) and does not
provide anything for 𝜏 ⩾ 1/2. We therefore introduce a second theorem that does
not have these limitations but that is not applicable to universal eavesdroppers.
Let 𝜃 = #unsafe edges

#edges in the sub-graph from which all corrupted peers have been
removed. We assume 0 < 𝜏 < 1 (if not, there is either no attacker or the attacker
controls the whole network) and 0 < 𝜃 < 1 (if not, we have either a universal
eavesdropper or no eavesdropper at all). In this case we have no assumption that
needs to remain valid for an extended period. Rather, the theorem states the
probability that the target will escape from the attack. We therefore refer to this
theorem as Higher Order Escape Theorem as opposed to survival. We plot the
result in Figure 3b.

Theorem 3 (Higher Order Escape Theorem)
There is a ⩾ 1 − 𝜏

1−𝜃(1−𝜏) probability that the attacker will never get the value of
an exchange.

Proof. This theorem relies on the fact that, if, at some time, a communication
is made via a safe edge (which the eavesdropper cannot spy), then, the attacker
will never know which peer to spy for the next step of the indirect attack. Since
we do not assume that the same peer will not be randomly selected several times,
and we only want a lower bound on the probability of success of an attack, we
will consider a worst case, where only one new exchange needs to be captured
at each step.

For the first step, the probability of the exchange not being captured is 1 − 𝜏
and then, its probability of happening on a safe edge is 1 − 𝜃, which gives a
(1 − 𝜏)(1 − 𝜃) probability that the attacker will never learn the value of the
exchange. If the communication happens on an unsafe edge, then, at each step,
the chance of reaching a safe edge is multiplied by 𝜃(1 − 𝜏) (the previous edge
was not safe and the next peer is not corrupted). So, at step 𝑘 (assuming that
the first step is 0), the probability of not having reached a corrupted peer and
reaching a safe edge for the first time at this step is 𝜃𝑘(1 − 𝜏)𝑘+1(1 − 𝜃). This is
a geometric series, so we can compute its sum.

𝐸𝑛 =
𝑛

∑
𝑘=0

𝜃𝑘(1 − 𝜏)𝑘+1(1 − 𝜃) = (1 − 𝜏)(1 − 𝜃)1 − 𝜃𝑘+1(1 − 𝜏)𝑘+1

1 − 𝜃(1 − 𝜏)
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(b) Req-Pull Peer Sampling

Figure 4: Value convergence with different peer sampling protocols.

Since 𝜃(1 − 𝜏) < 1, we have 𝐸+∞ = (1 − 𝜏)(1 − 𝜃) 1
1 − 𝜃(1 − 𝜏)

= (1 − 𝜏)(1 − 𝜃)
1 − 𝜃(1 − 𝜏)

𝐸+∞ = 1 − 𝜃 − 𝜏 + 𝜃𝜏
1 − 𝜃 + 𝜃𝜏

= 1 − 𝜏
1 − 𝜃 + 𝜃𝜏

= 1 − 𝜏
1 − 𝜃(1 − 𝜏)

⊓⊔

4.3 Averaging Performance
We now report on our simulations3 of a system consisting of 1000 peers with
uniformly distributed values between −100 and 100. We first evaluate the conver-
gence speed of the averaging protocol when running with a perfect peer sampling
(complete graph, Figure 4a) and a Req-Pull peer sampling [3] (Figure 4b) in a
simulator. To this end, we plot the values of 40 peers for each case omitting the
privacy-generation phase. We first let the peer sampling construct local views be-
fore starting the averaging process. The time unit is a tick of c++ steady_clock
(10−9 second here). Each peer performed ∼ 40 exchanges per second.

Figure 5 shows instead the convergence time (no peers with >1% error) of the
averaging process depending on the required privacy level, with different peer
sampling protocols and network sizes. We observe that neither the peer sampling
used nor the number of nodes has great influence on the convergence time. We
see that the convergence time grows linearly with the privacy level. It is worth
noting that, in our theoretical analysis, we proved that the probability of success
of a direct attack decreases exponentially with the privacy level, compared to
the linear growth of the convergence time.

5 Related work

Several authors have tackled the problem of privacy-preserving averaging in a
decentralized setting, mostly within the automatic control community, where
3 The code used for these experiments is available at https://github.com/ALRBP/

Private_Gossip_Average

https://github.com/ALRBP/Private_Gossip_Average
https://github.com/ALRBP/Private_Gossip_Average
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Figure 5: Convergence time versus privacy level.

this problem is known as average consensus [13,16,18,5,31,19]. But most of these
algorithms either rely on central components or assume static networks that
operate in synchronous rounds with a lock-step execution model.

For example, [13] requires a central authority that distributes concealing
factors before the beginning of the computation. Nodes then use this information
to perturb the values sent during the averaging algorithm. Similarly, [27] assumes
synchronous lock-step rounds and proposes a solution in which nodes exchange
values together with a decaying noise. Moreover, due to the nature of this noise,
the algorithm does not converge to the average in an exact sense but only in a
mean-square sense. The work in [16] considers an ad hoc network setting, and
thus also relies on an update rule that reaches all neighbors at the same time.
But unlike [27] it provides deterministic convergence to the average value.

The work in [26] presents close similarities to our approach. Each node adds
a zero-average noise to message exchanges for an independently chosen number
of steps. The paper establishes topological conditions for the effectiveness of its
privacy preservation, but this relies on the assumption that nodes communicate
with all their neighbors at each communication step. Moreover, like in most other
protocols, nodes start by exchanging their value plus some noise, whereas our
protocol only exchanges noise for several rounds and adds the actual value only
later in the process.

The work in [12] adopts an approach similar to [26] in the context of a
push-sum averaging protocol [22] but still assumes that the network evolves in
synchronous lock-step rounds. The authors of [38] further shows that [26] is
vulnerable to attacks on some topologies (for example on a ring). Our approach
does not suffer from the same vulnerability thanks to its dynamic topology and
the use of encrypted communication for all exchanges.

Some authors [37,24,14] have combined noise addition with homomorphic
cryptography [11]. For example, [24] improves [27] by using homomorphic en-
cryption in order to establish a confidential interaction protocol between nodes,
while [30] proposes an averaging protocol that exploits partial homomorphic en-
cryption in pairwise interactions. The work in [8] applies homomorphic encryp-



tion in an asynchronous setting, but it requires random noise to be generated
by pairs of peers, which implies that a peer cannot protect its value without
collaborating with another peer that is also protecting its value. Overall, even if
partially homomorphic cryptographic starts to be viable, these approaches still
incur a computational cost that appears unsuitable for small, battery-operated,
devices. Moreover, in the case of our protocol, simple public-key encryption is
enough to protect communication against eavesdroppers.

Other authors have combined the idea of adding noise with that of state
decomposition. [35] divides each node into two virtual nodes, one that talks to
the original node’s neighbors and the other that only talks to the first virtual
node. The approach has the advantage that the attacker cannot estimate the
value with any guaranteed accuracy, but only if the target has at least one
neighbor which is not under the influence of or observable by the attacker. [1]
creates instead virtual nodes to divide the node’s original value into random
shares. But this allows attackers that control a sufficiently large sample of the
network to guess the actual value of the peer with a low level of uncertainty.
Finally, [32] considers a random-share protocol incorporating wiretap codes [36]
to reduce message overhead. This yields low message complexity but only thanks
to the use of a broadcast channel that is not available in large-scale networks.

Another recent contribution [34] proposes a hybrid architecture where a set
of servers collect data from a set of nodes and compute the average. The paper
focuses on providing nodes with heterogeneous privacy guarantees with respect
to different privacy violators. It uses noise addition and employs KL divergence
to measure a privacy preserving degree (PPD). However, it cannot compute the
precise average but just an approximation.

This is similar to what happens with differential privacy [10,9]. Converging to
a perturbed value guarantees that attacker cannot guess information about the
original data distribution from the value of the final average. But this comes at
the cost of being unable to converge to the exact average value, as proven in [29]
and in [15]. As a further example, [33] proposes a differentially private averaging
protocol with an optimization that groups node interactions to minimize network
usage, while [2] proposes a differentially private protocol that uses homomorphic
encryption in the context of k-means computation. Finally, some authors have
started to tackle the problem of dealing with dishonest nodes that lie on their
values [17]. This could be an interesting improvement for our work.

6 Conclusion

We proposed a novel protocol for privacy-preserving gossip averaging that ad-
dresses several limitations of previous approaches. While our protocol cannot be
completely immune to attacks, we characterized its guarantees by formally prov-
ing several privacy properties. Now that we have a working averaging protocol,
we plan to apply it in the context of higher-level applications such as decentral-
ized machine-learning. Another direction consists in exploring its relations with
recent work in the context of multi-party computation [6,25].
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