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AN ASYMPTOTIC-PRESERVING ALL-SPEED SCHEME FOR1

FLUID DYNAMICS AND NONLINEAR ELASTICITY ∗2

EMANUELA ABBATE† , ANGELO IOLLO ‡ , AND GABRIELLA PUPPO §3

Abstract. An implicit relaxation scheme is derived for the simulation of multi-dimensional flows4
at all Mach numbers, ranging from very small to order unity. An analytical proof of the asymptotic5
preserving property is proposed and the divergence-free condition on the velocity in the incompress-6
ible regime is respected. The scheme possesses a general structure, which is independent of the7
considered state law and thus can be adopted to solve gas and fluid flows, but also deformations of8
elastic solids. This is achieved by adopting the Jin-Xin relaxation technique in order to get a linear9
transport operator. The spatial derivatives are thus independent of the EOS and an easy implemen-10
tation of fully implicit time discretizations is possible. Several validations on multi-dimensional tests11
are presented, showing that the correct numerical viscosity is recovered in both the fully compress-12
ible and the low Mach regimes. An algorithm to perform grid adaptivity is also proposed, via the13
computation of the entropy residual of the scheme.14

Key words. low Mach limit, all-speed schemes, asymptotic-preserving property, relaxation,15
non-linear elasticity, entropy production16

AMS subject classifications. 65M08, 65M99, 76T1517

1. Introduction. In the propagation of flows of gases and of other compressible18

materials, complex and non stationary phenomena are generated. The complexity19

is often related to the local stiffness of the involved media, to the geometry of the20

physical problem or to boundary and initial conditions. All these aspects can produce21

waves propagating at very different speeds inside the considered materials, giving rise22

to specific numerical problems.23

The accurate simulation of these phenomena requires the construction of numeri-24

cal schemes that are able to deal with different regimes. The Mach number M is given25

by the ratio between the flow velocity and the speed of sound, namely it measures26

how much the acoustic waves are faster with respect to the flow velocity. In gas and27

fluid dynamics, M is used to identify the regime of the considered flow, ranging from28

fully compressible (local Mach number of order unity or higher) to incompressible29

(very small local Mach number).30

Standard explicit-upwind codes developed for the simulation of compressible flows31

usually fail in approximating fluid flows or solid deformations at low speed. This is32

mainly due to the excessive numerical viscosity introduced on the slow waves by33

an upwind Godunov-like spatial discretization when the Mach number of the flow34

becomes small, as it has been proved in [23, 22, 15]. Specifically, an upwind scheme on35

a Cartesian grid leads to pressure fluctuations of order O (M), while in the continuous36

case the pressure fluctuations are of order O
(
M2
)
.37

Moreover, when explicit methods are used to solve low Mach number flows, the38

time step ∆t becomes extremely small due to the enforcement of the CFL stabil-39

ity condition. By imposing this constraint, ∆t is roughly proportional to the Mach40
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2 E. ABBATE, A. IOLLO, AND G. PUPPO

number M :41

(1.1) ∆t ≤ ∆x

λmax
=

∆x

max|u± c|
= M

∆x

max|u (M ± 1) |
,42

∆x being the space step and λmax the fastest characteristic speed. For the Euler43

system we have that λmax = u ± c, c being the sound speed and u the velocity.44

Consequently, compressible codes require an increasingly large computational time as45

the incompressible regime is reached.46

The derivation of all-speed solvers is motivated by all the above mentioned reasons.47

In general, the purpose of an all-speed scheme is to handle both the compressible48

regime and the incompressible one. To this end, the derivation of preconditioning49

methodologies has been triggered by Chorin [11] and by Turkel [42, 43], proposing50

a modification of the Roe matrix that moderates the numerical diffusion of upwind51

schemes, inside a fully implicit time discretization [45]. More recent methods falling52

in this category have been proposed in [32, 6, 44]. However, the main problem of53

these techniques is related to the difficulty in handling the non-linearities of classical54

upwind discretizations (e.g. approximate Riemann solvers) within the fully implicit55

time integration.56

Numerical schemes based on low Mach asymptotics have been proposed by Klain-57

erman and Majda [27, 28]. Klein adapted this technique to derive an operator splitting58

into convection and pressure waves [29]. These methods have been derived for the low59

Mach number regime, but they also have been the starting point for the development60

of different all-speeds schemes. These are mainly based on the separation of the fast61

and slow scales, that are respectively integrated in time explicitely and implicitely62

in an IMEX logic, producing stability conditions on ∆t that are independent of the63

Mach number. Some examples may be found in [8, 9, 14, 12, 36, 16].64

Klainerman and Majda have also shown that solutions of the compressible Euler65

equations converge to the solutions of the incompressible Euler equations as the Mach66

number tends to zero [27]. The asymptotic preserving (AP) property is a consistency67

criterion for numerical schemes that have to deal with these two regimes. This prop-68

erty was firstly introduced by Jin in [25]: a scheme is AP, if its lowest order multiscale69

expansion is a consistent discretization of the incompressible limit. Thus, an AP70

scheme for the Euler equations should provide a consistent and stable discretization71

independently of the Mach number. In the fully compressible regime, it should pos-72

sess the desirable features of a compressible solver (e. g. good resolution of shocks73

and discontinuities and non-oscillatory solution profiles). Moreover, it should provide74

a consistent discretization of the incompressible equations when M → 0.75

In the present work, our interest is the numerical simulation of flows with Mach76

numbers ranging from the incompressible limit to compressible regimes with M '77

O(1). To this end, we have derived in [2] an implicit all-speed scheme, which is78

here extended for the accurate solution of multi-dimensional flows. Moreover, its AP79

property is proved analytically and numerically. The scheme has a general formula-80

tion that can be adopted without any structural modification for the simulation of81

waves propagating inside materials with different behavior, such as fluids and elastic82

solids. The ability of the scheme in dealing with very general equations of state (EOS)83

is achieved by adopting the Jin-Xin relaxation technique [26]. With this method, the84

fluxes are relaxed at the continuous level and a linear transport operator is obtained:85

this avoids a direct dependence of the spatial derivatives on the specific EOS. The86

second advantage consists in the fact that Riemann solvers are not necessary and87

fully implicit time integrators are easily implemented. This allows to get rid of the88
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AN ASYMPTOTIC-PRESERVING ALL-SPEED SCHEME 3

acoustic stability constraint (1.1), avoiding the requirement of a time stepping de-89

creasing as M → 0, which would enormously increase the computational effort. The90

spatial discretization is built by a suitable combination of upwind and centered fluxes,91

in order to recover the correct viscosity at all speeds. The ability of the scheme in92

moderating the numerical viscosity with respect to standard explicit-upwind methods93

is here investigated by solving the Gresho vortex test and also different 2D Riemann94

problems involving material waves. Moreover, we propose an adaptive mesh refine-95

ment (AMR) algorithm, specifically designed for this all-speed scheme. We build a96

numerical estimate of the scheme entropy production and use it as an error indicator97

to drive the mesh refinement and coarsening. This estimate is also useful to assess the98

fact that the all-speed discretization is superior in approximating the different waves99

with respect to standard upwind-like schemes.100

The structure of the paper is the following: in Section 2 we briefly revise the101

asymptotic analysis of the Euler equations for fluid dynamics. The 2D all-speed102

relaxation scheme is presented in Section 3. Then, the AP property is analytically103

proved in Section 4. The scheme is validated on fluid dynamics tests in Section 5,104

where we also describe the adaptive mesh refinement algorithm based on the entropy105

residual for the all-speed scheme. Then, the scheme is extended to solve non-linear106

elasticity problems in Section 6, where two different limits occurring in elastic solids107

are analyzed. Conclusions are drawn in Section 7.108

2. Asymptotic analysis of the continuous Euler equations. Let us con-109

sider the two dimensional Euler system:110

(2.1)


∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu⊗ u + pI) = 0

∂t (ρe) +∇x · ((ρe+ p) u) = 0,

111

ρ being the density, u the velocity field, p the pressure, I the identity matrix and e112

the total energy per unit mass, which is given by the sum of the kinetic energy and113

the internal energy per unit mass ε:114

(2.2) e =
1

2
|u|2 + ε.115

For fluid dynamics problems, we consider the following state law, which extends the116

applicability of the ideal gas EOS:117

(2.3) ε (ρ, s) =
κ (s)

γ − 1
ργ−1 +

p∞
ρ

=
p+ γp∞
ρ (γ − 1)

.118

The internal energy is written as a function of the density and the entropy s and we119

have used the definition of the pressure for the second equality (see [46, 31]). Here,120

γ = cp/cv is the polytropic gas constant, κ (s) = exp ((s− s0) /cv) with s0 reference121

entropy and p∞ is a constant describing the intermolecular interaction, typical of122

stiffened gases, liquids and also some solids. The perfect gas EOS is recovered by123

setting p∞ = 0. The general formulation for the speed of sound reads as follows124

(2.4) c =

√
∂p

∂ρ

∣∣∣∣
s=const

=

√
γ (p+ p∞)

ρ
.125

We now briefly revise the analysis of the low Mach number regime in fluid dy-126

namics. For simplicity of notation, we consider a perfect gas, i. e. p∞ = 0.127
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4 E. ABBATE, A. IOLLO, AND G. PUPPO

2.1. Non-dimensional Euler system. To write the non-dimensional Euler128

system, we follow Klainerman and Majda’s works [27, 28], by decomposing each129

quantity into a product of a reference value (denoted with the subscript ∗) and a130

dimensionless number (denoted with ·̂ ), e.g. ρ = ρ∗ρ̂ for the density. The reference131

value is a “scaling” factor and it should be chosen in such a way that the dimensionless132

value is of order one. In this perspective, the reference pressure p∗ is defined with the133

reference sound speed c∗ =
√
p∗/ρ∗ (see definition (2.4)), which is also used in the134

scaling of the energy.135

After some simple algebraic manipulations, most of the reference quantities cancel
out, leading to the non-dimensional Euler system (we omit the hat notation ·̂ for the
sake of simplicity): 

∂tρ+ div (ρu) = 0(2.5)

∂t (ρu) + div (ρu⊗ u) +
1

M2
∇p = 0(2.6)

∂t (ρe) + div ((ρe+ p) u) = 0.(2.7)

The non-dimensional Euler system depends only on a single non-dimensional refer-136

ence quantity. This is the reference Mach number, defined as the ratio between the137

reference flow velocity and the reference sound speed as follows:138

(2.8) M =
u∗

c∗
.139

The non-dimensional state law takes the following formulation:140

(2.9) p = (γ − 1)

[
ρe− M2

2
ρ|u|2

]
.141

2.2. Low Mach number asymptotics. In order to analyze the asymptotic142

behaviour of the Euler equations in the zero Mach number limit, we perform an143

expansion of the scaled variables in terms of the Mach number [23]. The density is144

expanded as follows:145

(2.10) ρ = ρ0 +Mρ1 +M2ρ2 +O
(
M3
)
,146

and all other variables are developed in the same way. The terms of zeroth order147

(subscript ·0) represent the zero Mach number limit. By inserting this expansion in148

the scaled system (2.5)-(2.6)-(2.7) and collecting terms with equal powers of M , one149

obtains:150

• order O
(
1/M2

)
:151

(2.11) ∇p0 = 0152

• order O (1/M):153

(2.12) ∇p1 = 0154

• order O (1): 
∂tρ0 +∇ · (ρ0u0) = 0(2.13)

∂t (ρ0u0) +∇ · (ρ0u0 ⊗ u0) +∇p2 = 0(2.14)

∂t (ρe)0 +∇ · ((ρe)0 u0 + p0u0) = 0,(2.15)

with the first order of the state law155

(2.16) p0 = (γ − 1) (ρe)0 .156

This manuscript is for review purposes only.



AN ASYMPTOTIC-PRESERVING ALL-SPEED SCHEME 5

Relations (2.11) and (2.12) prove that the pressure is constant in space up to157

fluctuations of order M2. Hence, we can write the following pressure asymptotic:158

(2.17) p (x, t) = P0 (t) +M2p2 (x, t) ,159

where P0 (t) is a thermodynamic pressure constant in space. In presence of open160

boundaries, the thermodynamic pressure P0 is imposed to be equal to the exterior161

pressure Pext. For the sake of simplicity, we assume that the exterior pressure does162

not change in time, i. e. P0 is constant in both space and time. From (2.16), we163

deduce that also the energy is constant in space and time and the incompressibility164

constraint ∇ · u0 = 0 is easily derived.165

Introducing this constraint into the continuity equation (2.13), the material deriva-166

tive of the density is zero Dρ
Dt = 0. This means that the density is constant along a167

trajectory of any fluid element. Therefore, when the incompressibility constraint is168

respected, the density of the fluid is constant in time and space, i. e. ρ0 = const, in169

the case where the initial density of the fluid is constant in space.170

With the study of the asymptotics carried out above, system (2.13)-(2.14)-(2.15)171

reduces to the incompressible Euler system in its non-dimensional form. This system172

is the zero Mach number limit of the compressible Euler system and reads as follows173

(2.18)


ρ0 = const

ρ0 (∂tu0 + (u0 · ∇) u0) +∇p2 = 0

∇ · u0 = 0.

174

3. Implicit relaxation all-speed scheme. To allow for an efficient and robust175

numerical procedure, we adopt the multi-dimensional Jin-Xin relaxation approach176

[26]: a linear hyperbolic relaxation system is built to approximate the original system177

(here the Euler system (2.1)) with a small dissipative correction. Thanks to the178

linearity of the advection terms, the spatial derivatives lose their dependence on the179

state law. Numerical schemes are then derived in a general formulation that is not180

related to the EOS of a given material. Nonlinear terms appear only in the right hand181

side of the relaxation system, thus only diagonal terms are interested by the need of182

a linearization in the discretization process.183

A fully implicit time integration of the relaxation system is proposed. Thus,184

acoustic CFL constraints are not required and a centered spatial discretization of the185

stiff parts when the M → 0 can be adopted, without stability issues. This is crucial186

to get the correct numerical viscosity in the low Mach number regime.187

3.1. The Jin-Xin relaxation. Letting x = (x1, x2) be the coordinates in the188

canonical basis of R2, u = (u1, u2) the velocity components, system (2.1) may be189

rewritten in a general compact form in the following way:190

(3.1) ∂tψ + ∂x1
F (ψ) + ∂x2

G (ψ) = 0,191

where we have adopted the directional splitting of the flux function, with ψ ∈ Rn and192

F (ψ) , G (ψ) ∈ Rn. This is a system of n equations, with (x, t) ∈
(
Rd,R+

)
, with193

d = 2. In our case, we have n = 4 and the conservation variables and the fluxes along194

the two directions read as follows:195

(3.2) ψ =


ρ
ρu1

ρu2

ρe

 , F (ψ) =


ρu1

ρu2
1 + p

ρu1u2

(ρe+ p)u1

 , G (ψ) =


ρu2

ρu1u2

ρu2
2 + p

(ρe+ p)u2

 .196
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6 E. ABBATE, A. IOLLO, AND G. PUPPO

The corresponding Jin-Xin relaxation system is constructed by introducing two197

vectors containing the relaxation variables v ∈ Rn and w ∈ Rn in the two directions,198

approximating the fluxes F (ψ) and G (ψ) respectively. The relaxation system of199

dimension n× (d+ 1) takes the following formulation:200

(3.3)


∂tψ + ∂x1

v + ∂x2
w = 0

∂tv + A1∂x1
ψ =

1

η
(F (ψ)− v)

∂tw + A2∂x2ψ =
1

η
(G (ψ)−w) .

201

The small positive parameter η is called relaxation rate. The right hand sides of the202

second and third equations are stiff source terms and are the only non-linear parts of203

the system. The state law dependence is given by the fluxes in the sources, thus the204

EOS expression does not enter in the resulting linear transport operator.205

The relaxation matrices A1 and A2 are positive diagonal matrices and are chosen206

by enforcing the subcharacteristic condition [34, 46]:207

(3.4) A1 − F′ (ψ)
2 ≥ 0 and A2 −G′ (ψ)

2 ≥ 0 ∀ψ.208

Specifically, we construct these matrices by a-priori estimating the wave speeds λi of209

the original system (2.1). In the simplified case of A = A1 = A2 = diag{ai}, the210

eigenvalues of the relaxation system are computed as follows211

(3.5) µj = ±
√
ai, i = 1, ..n, j = 1, ..2n,212

thus having µ1 ≥ max|u − c|, µ2 = µ3 ≥ max|u| and µ4 ≥ max|u + c| for the Euler213

system (for more details on the construction of the relaxation matrices see [2]). We214

remark that the relaxation is performed direction by direction, namely the equations215

on the relaxation variables are one dimensional problems.216

The relaxation system (3.3) approximates the original system (3.1). This can be217

shown by applying the Chapman-Enskog expansion of the variables for small η [10]:218

(3.6)

{
v = v0 + ηv1 +O

(
η2
)

w = w0 + ηw1 +O
(
η2
)219

At leading order Oη (1) (zero relaxation limit η → 0), the original system is easily220

recovered, with the relaxation variables identically equal to the fluxes:221

(3.7)


v0 = F (ψ)

w0 = G (ψ)

∂tψ + ∂x1F (ψ) + ∂x2G (ψ) = 0.

222

The state satisfying (3.7) is called local equilibrium. Then, after some manipulations,223

the following first order approximation in expansion (3.6) is obtained224

(3.8)
v1 = −

(
A1 − F′ (ψ)

2
)
∂x1
ψ

w1 = −
(
A2 −G′ (ψ)

2
)
∂x2ψ

∂tψ + ∂x1F (ψ) + ∂x2G (ψ) = η
[
∂x1

((
A1 − F′ (ψ)

2
)
∂x1ψ

)
+ ∂x2

((
A2 −G′ (ψ)

2
)
∂x2ψ

)]
,

225

where F′ (ψ) and G′ (ψ) are the Jacobian matrices of the flux functions. It is ev-226

ident that satisfying the subcharacteristic condition (3.4) amounts to ensuring the227

dissipative nature of system (3.8).228
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3.2. Numerical discretization. The derivation of the scheme is here extended229

to solve two-dimensional problems. System (3.3) is discretized with finite volumes on a230

Cartesian mesh. The first reason of this choice is due to the fact that the parallelization231

is very efficient on this kind of grids. Moreover, on a Cartesian grid, the direction-by-232

direction relaxation approximation (3.3) is easily discretized. As pointed out above,233

this produces one dimensional problems on the relaxation variables.234

3.2.1. Implicit time discretization. We adopt a fully implicit integration in235

time with the aim of avoiding the acoustic CFL constraint (1.1). The resulting scheme236

possesses a general structure, with a time integrator that is not based on the specific237

EOS. Letting ∆t = tn+1 − tn be the time stepping, the implicit discretization at first238

order is a simple backward Euler scheme and reads:239

(3.9)



ψn+1 −ψn

∆t
+ ∂x1v

n+1 + ∂x2w
n+1 = 0

vn+1 − vn

∆t
+ A1∂x1

ψn+1 =
1

η

(
F
(
ψn+1

)
− vn+1

)
wn+1 −wn

∆t
+ A2∂x2

ψn+1 =
1

η

(
G
(
ψn+1

)
−wn+1

)240

The non-linear fluxes in the right hand sides are solved with one iteration of the241

Newton’s method, which is enough to obtain convergence for the proposed first order242

scheme. The resulting approximation consists in a Taylor expansion:243

(3.10) F
(
ψn+1

)
' F (ψn) + F′ (ψn)

(
ψn+1 −ψn

)
244

and the same holds for G (ψ). F′ (ψn) and G′ (ψn) are the Jacobians of the fluxes in245

the two directions and can be computed analytically. Linearization (3.10) introduces246

a coupling among all the equations and the following linear system is obtained:247

(3.11)


LΨn+1 + MVn+1 + NWn+1 = r

PΨn+1 + QVn+1 = s1

TΨn+1 + UWn+1 = s2

248

where Ψn+1, Vn+1 and Wn+1 are the vectors containing the grid point values of249

the conservative and relaxation variables and the matrices structure is given by the250

spatial discretization (see Sec. 3.2.2). Relation (3.10) implies that the Jacobians enter251

only on the diagonal terms of the sub-matrices of P and T. The full linear system is252

solved with the GMRES iterative solver implemented in the PETSc library [5].253

Scheme (3.9) is fully implicit, thus unconditionally stable (see [2]). Nevertheless,254

∆t has to be chosen accordingly to the desired accuracy. If the aim is the accurate255

resolution of material waves, the enforcement a material CFL condition is recom-256

mended. The material Courant number is defined on the speed of the material wave257

as νmat = µmat∆t/∆x, where we use the “material” eigenvalue of the relaxation sys-258

tem µmat =
√
amat ≥ max|u|, with µj defined in (3.5). A material CFL condition is259

enforced by setting νmat ≤ 1. This way the problem of a Mach-dependent ∆t shown260

by relation (1.1) is avoided. On the other hand, since the material CFL does not261

depend on the speed of the fast waves, these waves are not captured in the low Mach262

limit. If an accurate resolution also of the acoustic waves is required, a standard263

acoustic CFL has to be enforced, adapting relation (1.1) to the relaxation system.264

This gives νac = µmax∆t/∆x, where µmax =
√
amax ≥ max|u+ c|.265
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8 E. ABBATE, A. IOLLO, AND G. PUPPO

3.2.2. All-speed spatial discretization. Let ∆xl be the grid spacing in the266

xl direction and Ωij the control volume centered in the node (i∆x1, j∆x2). For a267

generic variable h, hij denotes the approximate cell average of the variable in the cell268

Cij =
[
xi−1/2,j , xi+1/2,j

]
×
[
xi,j−1/2, xi,j+1/2

]
and hi+1/2,j denotes the approximate269

point value at the cell interface xi+1/2,j . The spatial discretization of (3.3) reads270

(3.12)


∂tψij +

vi+1/2,j − vi−1/2,j

∆x1
+

wi,j+1/2 −wi,j−1/2

∆x2
= 0

∂tvij + A1

ψi+1/2,j −ψi−1/2,j

∆x1
=

1

η

(
F
(
ψij
)
− vij

)
∂twij + A2

ψi,j+1/2 −ψi,j−1/2

∆x2
=

1

η

(
G
(
ψij
)
−wij

)
.

271

The numerical fluxes in (3.12) are computed by constructing a convex combination272

of upwind and centered schemes. This is based on the local Mach number of the flow273

Mloc. For a generic variable h this yields274

(3.13) hi+1/2,j = f (Mloc)
(
hi+1/2,j

)
upw

+ (1− f (Mloc))
(
hi+1/2,j

)
cent

.275

The same holds for direction x2. The function f (Mloc) has to satisfy 0 ≤ f (Mloc) ≤276

1 (in the numerical experiments we choose f (Mloc) = min{1,Mloc}) and Mloc is277

computed at the previous time step at the numerical interface xi+1/2,j . This allows278

to recover the correct numerical viscosity for each considered regime [2, 3].279

The numerical fluxes with the centered scheme are computed as follows:280

(3.14)
(
hi+1/2,j

)
cent

=
1

2
(hi+1,j + hij) .281

This discretization is stable inside the adopted fully implicit framework. Since we282

are centering all conservative and relaxation variables, the pressure gradients result283

to be discretized with central differencing, thus providing the correct Mach scaling284

[15]. The upwind scheme is built along the characteristic variables of the relaxation285

system, as in [26], getting the following numerical fluxes along direction x1:286

(3.15)


(
ψi+1/2,j

)
upw

= 1
2

(
ψi+1,j +ψij

)
− 1

2A
−1/2
1 (vi+1,j − vij)(

vi+1/2,j

)
upw

= 1
2 (vi+1,j + vij)− 1

2A
1/2
1

(
ψi+1,j −ψij

)
.

287

The full 2D implicit all-speed scheme then reads:288

(3.16)

ψn+1
ij −ψnij

∆t
+

1

2∆x1

(
vn+1
i+1,j − vn+1

i−1,j

)
− f (Mloc) A

1/2
1

2∆x1

(
ψn+1
i+1,j − 2ψn+1

ij +ψn+1
i−1,j

)
+

1

2∆x2

(
wn+1
i,j+1 −wn+1

i,j−1

)
− f (Mloc) A

1/2
2

2∆x2

(
ψn+1
i,j+1 − 2ψn+1

ij +ψn+1
i,j−1

)
= 0

vn+1
ij − vnij

∆t
+

A1

2∆x1

(
ψn+1
i+1,j −ψ

n+1
i−1,j

)
− f (Mloc) A1

1/2

2∆x1

(
vn+1
i+1,j − 2vn+1

ij + vn+1
i−1,j

)
=

1

η

(
F
(
ψn+1
ij

)
− vn+1

ij

)
wn+1
ij −wn

ij

∆t
+

A2

2∆x2

(
ψn+1
i,j+1 −ψ

n+1
j,i−1

)
− f (Mloc) A

1/2
2

2∆x2

(
wn+1
i,j+1 − 2wn+1

ij + wn+1
i,j−1

)
=

1

η

(
G
(
ψn+1
ij

)
−wn+1

ij

)
.

289
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4. The asymptotic preserving property. The Asymptotic-Preserving (AP)290

property is defined considering a continuous physical model SM (in our case the com-291

pressible Euler system (2.1)) that involves a perturbation parameter M (the acoustic292

Mach number). The perturbation parameter can range from M ' 1 to M � 1 values.293

In the Euler case, there exists a reduced system S0, which is the limit system of SM294

as M → 0, i. e. S0 is the incompressible system (2.18). Then, let S∆
M be a numerical295

scheme providing a consistent discretization of SM , with discrete time and space steps296

∆ = (∆t,∆x). The scheme S∆
M is said to be AP if the two following properties are297

verified [25]:298

1. its stability condition is independent of M , namely the time step ∆t does not299

depend on the Mach number of the flow;300

2. as M goes to zero, there exists the limit discrete S∆
0 , which provides a con-301

sistent discretization of the continuous limit system S0.302

Here we show that scheme (3.16) is AP. Property 1 is satisfied, since the scheme303

is fully implicit, thus unconditionally stable. In order to prove that property 2 is304

respected, we write the limit discrete scheme S∆
0 as M → 0 of the implicit relaxation305

scheme and show that it is consistent with the continuous limit model S0.306

In what follows, we begin with the non-dimensionalization of the scheme and then307

we carry out the analysis of its asymptotics. We expose the reasoning on the time308

semi-discrete scheme (3.9) for readability. The extension to the full time and space309

discretization is straightforward.310

4.1. Non-dimensional implicit relaxation scheme. In deriving the non-311

dimensional implicit relaxation scheme, we adopt the same notation of Section 2.1.312

Here, we also have to scale the relaxation variables v and w: due to the relaxation313

leading order (3.7), these variables have the same physical dimensions of the fluxes314

F (ψ) and G (ψ) defined in (3.2). By considering the pressure as predominant, we315

choose to scale v2 and w3 using the speed of sound. Thus, we obtain the following316

non-dimensional formulation of the semi-discrete scheme (3.9) (we omit from now on317

the subscript ·̂ for simplicity of notation):318

1. the non-dimensional conservation of mass, setting z1 = [v1, w1]
T

, reads319

(4.1)


ρn+1 − ρn + ∆t∇ · zn+1

1 = 0

zn+1
1 − zn1 + a1∆t∇ρn+1 =

∆t

η

(
(ρu)

n+1 − zn+1
1

)
.

320

2. the non-dimensional conservation of momentum is given by the two parts:321

(4.2)

(ρu1)
n+1 − (ρu1)

n
+ ∆t

(
∂x1

vn+1
2

M2
+ ∂x2

wn+1
2

)
= 0

vn+1
2 − vn2
M2

+ a2∆t∂x1
(ρu1)

n+1
=

∆t

η

((
ρu2

1

)n+1
+
pn+1

M2
− vn+1

2

M2

)
wn+1

2 − wn2 + a2∆t∂x2 (ρu1)
n+1

=
∆t

η

(
(ρu1u2)

n+1 − wn+1
2

)322
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323
(4.3)

(ρu2)
n+1 − (ρu2)

n
+ ∆t

(
∂x1

vn+1
3 +

∂x2
wn+1

3

M2

)
= 0

vn+1
3 − vn3 + a3∆t∂x1

(ρu2)
n+1

=
∆t

η

(
(ρu1u2)

n+1 − vn+1
3

)
wn+1

3 − wn3
M2

+ a3∆t∂x2
(ρu2)

n+1
=

∆t

η

((
ρu2

2

)n+1
+
pn+1

M2
− wn+1

3

M2

)
.

324

3. setting z4 = [v4, w4]
T

, the non-dimensional conservation of energy is given by325

(4.4)
(ρe)

n+1 − (ρe)
n

+ ∆t∇ · zn+1
4 = 0

zn+1
4 − zn4 + a4∆t∇ (ρe)

n+1
=

∆t

η

((
(ρe)

n+1
+ pn+1

)
un+1 − zn+1

4

)
,

326

with the scaled state law327

(4.5) pn+1 = (γ − 1)

(
(ρe)

n+1 − M2

2
ρn+1|u|n+1

)
.328

4.2. Asymptotics of the implicit relaxation scheme. In the spirit of study-329

ing the low Mach number asymptotics, we develop all scaled variables, i. e. both330

conservative and relaxation variables, in powers of the Mach number, as done in Eq.331

(2.10). The expansion of the scaled relaxation variable v1 reads as follows332

(4.6) (v1)
n+1

=
(
v0,η̄

1

)n+1

+M
(
v1,η̄

1

)n+1

+M2
(
v2,η̄

1

)n+1

+O
(
M3
)
,333

where we have introduced the notation with two superscripts, the first one indicating334

the order in the power of M and the second one indicating the order in the power of η.335

Here, we are keeping η = η̄ fixed. Terms of zero-th order (superscript ·0,η=0) represent336

the zero Mach number limit in the zero relaxation limit. Relaxation variables may be337

expanded also in powers of η, as in a Chapman-Enskog expansion (3.6). One could338

then combine expansions (4.6) and (3.6) and write a full expansion for v and w in339

powers of both M and η. The expansion for v1 reads340

(v1)
n+1

=
(
v0,0

1

)n+1

+ η
(
v0,1

1

)n+1

+M

((
v1,0

1

)n+1

+ η
(
v1,1

1

)n+1
)

+M2

((
v2,0

1

)n+1

+ η
(
v2,1

1

)n+1
)

+O
(
M3
)

+O
(
η2
)
.

(4.7)341

By setting M = 0 and η = 0, the incompressible Euler system can be recovered.342

Since we need to preserve the low Mach number behaviour in the expansions343

introduced above, we require that η � M . This is necessary to recover the correct344

zero relaxation limit (i. e. v = F (ψ) +O (η) and w = G (ψ) +O (η) as presented in345

Section 3.1) also in the case of M → 0. More precisely, we require that η < M2, in346

order to preserve the terms of order O
(
M2
)

and O (M) when substituting expansion347

(4.7) in the non dimensional scheme. These terms cannot be canceled if we want to348

analyze the low Mach number regime.349

We begin by substituting expansion (4.6) in powers of M in the scaled relaxation350

scheme (4.1)-(4.2)-(4.3)-(4.4) and we collect terms of equal power of M :351
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1. order OM
(
1/M2

)
:352

(4.8)


∂x1

(
v0,η̄

2

)n+1

= 0(
v0,η̄

2

)n+1

−
(
v0,η̄

2

)n
=

∆t

η

(
pn+1

0 −
(
v0,η̄

2

)n+1
)

353

and the same holds for w0,η̄
3 . At this point, we substitute expansion (3.6) in354

powers of η in (4.8) (once again, the same holds for variable w3):355 
∂x

((
v0,0

2

)n+1

+ η
(
v0,1

2

)n+1
)

= 0(
v0,0

2

)n+1

+ η
(
v0,1

2

)n+1

−
(
v0,0

2

)n
− η

(
v0,1

2

)n
=

∆t

η

(
pn+1

0 −
(
v0,0

2

)n+1

− η
(
v0,1

2

)n+1
)
.

356

We are interested in the zero relaxation limit η → 0, hence we collect the terms357

Oη (1/η) in the last equation, obtaining (v0,0
2 )n+1 = pn+1

0 and (w0,0
3 )n+1 =358

pn+1
0 . This is plugged in (4.8), obtaining:359 

(
v0,0

2

)n+1

= pn+1
0

∂x1
pn+1

0 = 0


(
w0,0

3

)n+1

= pn+1
0

∂x2
pn+1

0 = 0.
360

It is clear then that ∇pn+1
0 = 0 is respected.361

2. order OM (1/M):362

(4.9)


∂x1

(
v1,η̄

2

)n+1

= 0(
v1,η̄

2

)n+1

−
(
v1,η̄

2

)n
=

∆t

η

(
pn+1

1 −
(
v1,η̄

2

)n+1
)

363

and the same holds for w1,η̄
3 . After inserting the expansion in powers of η,364

taking the zero relaxation limit η → 0 and collecting the terms Oη (1/η), we365

obtain the following relations:366 
(
v1,0

2

)n+1

= pn+1
1

∂x1
pn+1

1 = 0


(
w1,0

3

)n+1

= pn+1
1

∂x2
pn+1

1 = 0.
367

This means that also ∇pn+1
1 = 0 is respected.368

3. order OM (1):369

• for the conservation of mass we have:370

(4.10)
ρn+1

0 − ρn0 + ∆t∇ ·
(
z0,η̄

1

)n+1

= 0(
z0,η̄

1

)n+1

−
(
z0,η̄

1

)n
+ a1∆t∇ρn+1

0 =
∆t

η

(
(ρu)

n+1
0 −

(
z0,η̄

1

)n+1
)
.

371

Once again, we expand in powers of η and take the zero relaxation limit372

by collecting terms of order Oη (1/η), obtaining373

(4.11)


(
z0,0

1

)n+1

= (ρu)
n+1
0

ρn+1
0 − ρn0 + ∆t∇ · (ρu)

n+1
0 = 0.

374
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• for the conservation of momentum we have:375

(4.12)

(ρu1)
n+1
0 − (ρu1)

n
0 + ∆t

(
∂x1

(
v2,η̄

2

)n+1

+ ∂x2

(
w0,η̄

2

)n+1
)

= 0(
v2,η̄

2

)n+1

−
(
v2,η̄

2

)n
+ a2∆t∂x1 (ρu1)

n+1
0 =

∆t

η

((
ρu2

1

)n+1

0
+ pn+1

2 −
(
v2,η̄

2

)n+1
)

(
w0,η̄

2

)n+1

−
(
w0,η̄

2

)n
+ a2∆t∂x2

(ρu1)
n+1
0 =

∆t

η

(
(ρu1u2)

n+1
0 −

(
w0,η̄

2

)n+1
)
,

376

377
(4.13)

(ρu2)
n+1
0 − (ρu2)

n
0 + ∆t

(
∂x1

(
v0,η̄

3

)n+1

+ ∂x2

(
w2,η̄

3

)n+1
)

= 0(
v0,η̄

3

)n+1

−
(
v0,η̄

3

)n
+ a3∆t∂x1

(ρu2)
n+1
0 =

∆t

η

(
(ρu1u2)

n+1
0 −

(
v0,η̄

3

)n+1
)

(
w2,η̄

3

)n+1

+
(
w2,η̄

3

)n
+ a3∆t∂x2 (ρu2)

n+1
0 =

∆t

η

((
ρu2

2

)n+1

0
+ pn+1

2 −
(
w2,η̄

3

)n+1
)378

In the expansion in powers of η, terms of order Oη (1/η) give expressions379

for (v2,0
2 )n+1, (v0,0

3 )n+1, (w0,0
2 )n+1 and (w2,0

3 )n+1. This yields380

(4.14)

(
v2,0

2

)n+1

=
(
ρu2

1

)n+1

0
+ pn+1

2(
w0,0

2

)n+1

= (ρu1u2)
n+1
0(

v0,0
3

)n+1

= (ρu1u2)
n+1
0 ,(

w2,0
3

)n+1

=
(
ρu2

2

)n+1

0
+ pn+1

2

(ρu)
n+1
0 − (ρu)

n+1
0 + ∆t∇ · (ρ0u0 ⊗ u0)

n+1
+ ∆t∇pn+1

2 = 0.

381

• for the conservation of energy we adopt the same procedure of the con-382

servation of mass, getting383

(4.15)


(
z0,0

4

)n+1

=
(

(ρe)
n+1
0 + pn+1

0

)
un+1

0

(ρe)
n+1
0 − (ρe)

n+1
0 + ∆t∇ ·

((
ρe)n+1

0 + pn+1
0

)
un+1

0

)
= 0.

384

This goes with the OM (1) state law385

(4.16) pn+1
0 = (γ − 1) (ρe)

n+1
0 .386

Scheme (4.11)-(4.14)-(4.15) is clearly a consistent discretization of the Euler system in387

its incompressible limit, derived in (2.13)-(2.14)-(2.15). This means that the scheme388

is asymptotic preserving. Nevertheless, in what follows, we show that the incompress-389

ibility constraint ∇ · un+1
0 = 0 is respected.390

Relations ∇pn+1
0 = 0 and ∇pn+1

1 = 0 imply that pn+1 is constant in space up391

to fluctuations of order M2. From the state law (4.16), we get that also (ρe)
n+1
0 is392

independent of space. We can rewrite the conservation of energy (4.15) as follows:393

(ρe)
n+1
0 −(ρe)

n
0 +∆t

(
un+1

0 ∇ (ρe)
n+1
0 + (ρe)

n+1
0 ∇ · un+1

0 + un+1
0 ∇pn+1

0 + pn+1
0 ∇ · un+1

0

)
= 0394

which becomes, due to the previous considerations on pn+1
0 and (ρe)

n+1
0 :395

(4.17) (ρe)
n+1
0 − (ρe)

n
0 + ∆t

(
(ρe)

n+1
0 + pn+1

0

)
∇ · un+1

0 = 0.396

This manuscript is for review purposes only.



AN ASYMPTOTIC-PRESERVING ALL-SPEED SCHEME 13

We now assume that the boundary conditions are such that pn+1
0 is independent of n397

too, i. e. pn+1
0 = pn0 = ... = p1

0 = p0
0 and the same for pn+1

1 . Of course, this means that398

also the energy is independent of n, namely (ρe)
n+1
0 − (ρe)

n
0 = 0. Inserting this inside399

equation (4.17), one obtains directly the incompressibility constraint ∇ · un+1
0 = 0.400

The proof of the AP property for the fully discrete scheme (3.16) easily follows by401

introducing discretization (3.13) into the spatial derivatives of (4.11)-(4.14)-(4.15), in402

the limit M → 0. This implies that a fully centered discretization is adopted in the403

incompressible limit, i. e. the numerical viscosity is consistent with the incompressible404

regime.405

5. Numerical validations on fluid dynamics problems. At first, the Gresho406

vortex test case is analyzed, in order to verify that the scheme possesses the correct407

numerical viscosity in the low Mach number regime. This test verifies that the pro-408

posed scheme is able to preserve the incompressible regime at all times, after setting409

an incompressible initial flow. The vortex is solved for both perfect and stiffened410

gases. Then, we introduce an estimate of the numerical entropy production of the411

scheme. We use this indicator to show that the all-speed discretization in more pre-412

cise with respect to an upwind one and also to perform grid adaptivity. Due to the413

AP estimates derived in Sec. 4.2, we set η = 10−8 in all the proposed computational414

experiments.415

5.1. The Gresho vortex. We test the relaxation all-speed scheme (3.16) on416

the classical Gresho vortex test case [21, 33]. This vortex is a stationary solution417

of the incompressible Euler equations, where centrifugal forces are exactly balanced418

by pressure gradients. A rotating vortex is positioned at the center (0.5, 0.5) of the419

computational domain [0, 1] × [0, 1]. The initial conditions are specified in terms of420

the radial distance r =

√
(x− 0.5)

2
+ (y − 0.5)

2
in the form421 

ρ (x, y, 0) = 1

u1 (x, y, 0) = −uφ (r) sinφ

u2 (x, y, 0) = uφ (r) cosφ

422

The rotation is initiated by imposing a simple angular velocity distribution of423

uφ (x, y, 0) =


5r 0 ≤ r ≤ 0.2

2− 5r 0.2 ≤ r ≤ 0.4

0 r ≥ 0.4,

p (x, y, 0) =


p0 + 25

2 r
2 0 ≤ r ≤ 0.2

p0 + 25
2 r

2 + 4 (1− 5r − ln 0.2 + ln r) 0.2 ≤ r ≤ 0.4

p0 − 2 + 4 ln 2 r ≥ 0.4.

424

and the background pressure is adjusted such that it matches the maximum Mach425

number Mmax:426

(5.1) p0 =
ρ (uφ)

2
max

(γM2
max)

=
ρ

(γM2
max)

427

since the maximum velocity (uφ)max = 1, which is reached in r = 0.2428

We follow the flow over one full rotation of the vortex with different Mmax in a429

perfect gas, which is completed at time t = 1. We compare the results obtained with430

the relaxation all-speed scheme (3.16) with the results of a standard explicit-upwind431

discretization of the relaxation system. All the Gresho vortex tests are performed on432

a uniform grid of 128×128 cells and a material CFL constraint of νmat = 0.2. In test 1433

we set Mmax = 10−1: the initial condition in t = 0 is presented in Fig. 1(a). In Figs.434
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(a) Initial (b) All-speed (c) Explicit-upwind

Fig. 1. Test 1: Gresho vortex with Mmax = 10−1 (initial condition and results at time t = 1
of the relaxation all-speed scheme and with an explicit-upwind scheme).

(a) t = 2 (b) t = 3

Fig. 2. Test 1: Gresho vortex with Mmax = 10−1, results at time t = 2 and t = 3 obtained
with the relaxation all-speed scheme.

1(b) and 1(c), we compare the results of the relaxation all-speed scheme (3.16) and435

of the explicit-upwind scheme of [26]. A comparison with the initial Mach number436

distribution shows that the all-speed spatial discretization accurately preserves the437

shape of the vortex, due to the convex combination of upwind and centered fluxes.438

Instead, an upwind scheme is too diffusive for the targeted regime and thus the shape439

of the vortex is lost. We also plot the results obtained after 2 and 3 rotations of the440

vortex in Fig. 2, confirming that the all-speed scheme is able to recover the correct441

weakly incompressible solution also after long times.442

For tests 2 and 3 we set Mmax = 10−2 and Mmax = 10−3 respectively. The results443

after one full rotation are reported in Fig. 3, for the relaxation all-speed scheme444

and the explicit-upwind scheme [26]. The shape of the two vortices is completely445

diffused when adopting an upwind flux discretization, whereas the all-speed convex446

combination accurately preserves the initial vortex shape for both cases, besides a447

small noise probably due to directional splitting.448

In Table 1, we report the total kinetic energy in the simulation domain at time449

t = 1 relative to the total kinetic energy at time t = 0 for the three tests. With the450

all-speed scheme, the kinetic energy reduces by about 1.5 per cent over one rotation of451

the vortex. However, this loss is clearly independent of the Mach number of the flow.452

On the contrary, when adopting conventional upwind discretizations the dissipation453

rate of kinetic energy consistently increases as the Mach number decreases.454

We also perform a study on the pressure fluctuations pfl = (pmax − pmin) /pmax,455

computed on the same grid at time t = 1 for the three considered Mach numbers.456
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(a) Initial (b) All-speed (c) Explicit-upwind

(d) Initial (e) All-speed (f) Explicit-upwind

Fig. 3. Tests 2 and 3: Gresho vortex with Mmax = 10−2 (first row) and with Mmax = 10−3

(second row). Initial condition and results at time t = 1 with the relaxation all-speed scheme and
with an explicit-upwind scheme.

Mmax = 10−1 Mmax = 10−2 Mmax = 10−3

all-speed 0.985 0.987 0.984
explicit-upwind 0.652 0.355 0.273

Table 1
Total kinetic energy Ekin,tot (t = 1) after one full rotation of the Gresho vortex relative to its

initial value Ekin,tot (t = 0) for different maximum Mach numbers.

These results are reported in Table 2 and they show that pressure fluctuations scale457

exactly with M2 when adopting the all-speed convex combination. We can thus infer458

that the simulated flow is kept in the incompressible regime by the proposed numerical459

scheme. This is clearly not the case with an upwind spatial discretization. The scaling460

of pfl as M , theoretically expected for this latter scheme, can be asymptotically461

reached for small Mach numbers (it can be seen by comparing the simulations with462

Mmax = 10−2 and Mmax = 10−3).

Mmax = 10−1 Mmax = 10−2 Mmax = 10−3

all-speed 1.02 · 10−2 1.06 · 10−4 1.15 · 10−6

explicit-upwind 3.37 · 10−3 3.43 · 10−5 1.86 · 10−6

Table 2
Global pressure fluctuations pfl after one full rotation of the Gresho vortex for different maxi-

mum Mach numbers.

463
We here adapt the standard Gresho vortex test case to a water flow. It suffices464
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(a) Initial (b) All-speed (c) Explicit-upwind

Fig. 4. Water Gresho vortex with Mmax = 10−2 (initial condition and results at time t = 1 of
the relaxation all-speed scheme and with the explicit-upwind relaxation scheme).

to adjust the background pressure (5.1) with the stiffened gas state law as follows:465

p0 =
ρ (uφ)

2
max

(γM2
max)

− p∞.466

The initial density is set to ρ = 1000Kg/m3 and the water parameters γ = 4.4 and467

p∞ = 6.8 · 108 are given with state law (2.3). The results for Mmax = 10−2 obtained468

with the two schemes are reported in Figs. 4 at time t = 1. The all-speed scheme is469

preserving the vortex shape also in the case of water.470

5.2. Numerical entropy production. The behaviour of the all-speed dis-471

cretization on the different waves can be assessed by studying an a-posteriori error472

indicator. We adopt the numerical entropy production introduced in [38, 39], since473

the entropy is naturally available for any system of conservation laws with an entropy474

inequality and has a well defined physical meaning. Moreover, the entropy produc-475

tion of a scheme scales as the truncation error in the regular regions and its behavior476

allows to distinguish between contact discontinuities and shocks. In [39] it has been477

shown that, if the solution is locally smooth, Sn+1
ij = O (hr) with r equal to the order478

of the scheme. On the other hand, Sn+1
ij = O (1) if there is a contact discontinuity479

and Sn+1
ij = O (1/h) if there is a shock in the considered cell.480

Let us consider the entropy pair (η, ζ). The entropy inequality ∂tη+∇x ·ζ ≤ 0 has481

to be integrated with the finite volume scheme used to integrate the hyperbolic system482

that we are interested in solving. Coherently with discretizations (3.9)-(3.12), we483

employ a first order implicit scheme for time integration in a finite volume framework.484

We get the following numerical entropy production in every cell:485

(5.2)

Sn+1
ij = η

(
ψn+1
ij

)
−η
(
ψnij
)
+

∆t

∆x1

(
ζn+1
1;i+1/2,j − ζ

n+1
1;i−1/2,j

)
+

∆t

∆x2

(
ζn+1
2;i,j+1/2 − ζ

n+1
2;i,j−1/2

)
,486

where we are considering the spatial discretization of the two components of the nu-487

merical entropy flux ζ = (ζ1, ζ2). The interface values have to be computed according488

to the all-speed convex combination (3.13). This is equivalent to a Lax-Friedrichs489

scheme with a numerical viscosity modulated by the local Mach number, namely:490

(5.3) ζn+1
1;i+1/2,j =

1

2

(
ζn+1
1;i+1,j + ζn+1

1;i,j

)
−
√
amaxf (Mloc)

2

(
ηn+1
i+1,j − η

n+1
i,j

)
.491

In the numerical experiments, we build the entropy pair on the physical entropy of492
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the Euler system, as follows:493

η (ψ) = −ρ log

(
p+ p∞
ργ

)
, ζ (ψ) = η (ψ) u.494

The proposed estimate can also be adopted as a criterion that is able to pivot495

mesh adaptivity. An effective adaptive algorithm has to be driven by an indicator496

able to provide a robust a-posteriori measure of the local error and also to recognize497

the qualitative structure of the flow. This will be the focus of Section 5.2.2.498

(a) Density: explicit-upwind (b) Density: all-speed

(c) Entropy: explicit-upwind (d) Entropy: all-speed

Fig. 5. 2D Riemann problem at time t = 0.3: comparison between the explicit-upwind relaxation
scheme and the relaxation all-speed scheme. Density plots (30 contours: from 0.53 to 1.98) and
numerical entropy production. In panel (a) R indicates a rarefaction, S a shock and C a contact
wave.

5.2.1. 2D Riemann problem. We use the entropy production to compare the499

behaviour of the all-speed and of the upwind discretizations on contact waves. We500

study a Riemann problem in the squared domain [0, 1] × [0, 1], with the following501

initial conditions [30, 41]:502

(p, ρ, u1, u2) (x1, x2, t = 0) =


(1, 1, 0,−0.4) , Ω1

(1, 2, 0,−0.3) , Ω2

(0.4, 1.0625, 0, 0.2145) , Ω3

(0.4, 0.5197, 0,−1.1259) , Ω4,

503
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where we have introduced the subdomains Ω1 = [0.5, 1]×[0.5, 1], Ω2 = [0, 0.5]×[0.5, 1],504

Ω3 = [0, 0.5] × [0, 0.5] and Ω4 = [0.5, 1] × [0, 0.5]. This test is characterized by the505

following wave pattern: two contact waves, one left moving shock and one right moving506

rarefaction: C21,
←−
S 32, C34,

−→
R 41.507

We adopt a grid of 256 × 256 cells and we enforce an acoustic constraint on the508

time step νac = 0.9, in order to have stability for the explicit-upwind scheme and in509

order to have a good resolution of all the propagating waves. In Fig. 5 we compare510

the density contours and the numerical entropy production for the two schemes. It is511

evident from the density contours that the all-speed property helps in keeping sharp512

the two contact waves and the shock. The contact wave at the bottom of the domain513

is in the low Mach number regime, since M ' 8 · 10−3. Also the small vortex in the514

center is more accurately captured by the all-speed scheme. The entropy plots confirm515

that the all-speed discretization is superior in capturing the solution structure. For516

both schemes, the entropy production is higher in the shock wave region, as expected517

by the theory of [39]. The all-speed discretization produces more entropy than the518

explicit-upwind one, confirming that this region is more accurately resolved by the519

proposed scheme.520

5.2.2. Adaptive mesh refinement. As anticipated above, the numerical en-521

tropy production can be exploited to decide where to locally refine or coarsen the522

mesh. In order to reduce the computational costs, the discretization of the solution523

can be done by using non-conforming hierarchical meshes. Specifically, we use the524

adpative mesh refinement (AMR) techinque [7].

Fig. 6. Decomposition of a squared domain and corresponding quadtree [40].

525
Octree-meshes allow for a strong reduction of the number of degrees of freedom526

where the problem exhibits smooth behavior and also a strongly localized increase of527

information in areas needing more accuracy. Octrees are a hierarchical data structure528

based on the principle of recursive decomposition of space. Each internal node has529

exactly four children (quadtree) for 2D problems, and eight children (octree) for 3D530

problems. Here we focus on quadtree meshes, that are non-conforming hierarchical531

meshes defined in a square as shown in Fig. 6. We use the Bitpit library [17] for532

the efficient implementation of our computational grid. The hierarchical nature of533

the grid makes mesh generation, adaptivity and partitioning very efficient and with a534

low-memory footprint. The data structure is based on a linear quadtree [18], namely535

only the leafs of the tree structure are stored. This structure is easily dispatched to a536

distributed memory architecture and parallel communications are limited to only the537

first layer of neighboring cells. This constraint is perfectly in line with the stencil of538

the proposed numerical scheme (3.16). A Z-order index is assigned to every cell [35].539

More details on the library can be found in [17, 40].540

We design an AMR algorithm based on the entropy production (5.2). We start541
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(a) Lmax = 6 (b) Lmax = 7

(c) Lmax = 8 (d) Lmax = 9

Fig. 7. Grids for the 2D Riemann problem at time t = 0.3, obtained with a Lmin = 5 and with
different Lmax (Lmax = 6: 3916 cells, Lmax = 7: 10030 cells, Lmax = 8: 22918 cells, Lmax = 9:
68251 cells).

from a uniform coarse grid of 2d × 2d grid points. This grid is associated to the542

minimum level Lmin = d of the quadtree data structure. At every refinement, each cell543

of the grid may be replaced by four children. Let Lmax be the maximum refinement544

level allowed for a grid. At the end of every time step, the following procedure is545

implemented:546

1. the quantity Snij is computed in every cell with (5.2);547

2. if |Snij | > Sref and if the level of refinement of cell Cij does not equal Lmax,548

then the cell is marked for refinement; this cell is thus split into four children549

and cell averages in the newly created cells are set by taking the cell average550

of the “ancestor”;551

3. if |Snij | < Scoa for all four children and if the level of refinement of cell Cij552

does not equal Lmin then the cell is marked for coarsening; the four children553

are replaced by the ancestor cell and the cell average in the ancestor is set by554

taking the mean of the cell averages of the four children;555

4. the time step ∆t is computed with the chosen CFL constraint using the556

smallest cell size of the grid.557
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(a) Uniform (Lmin = Lmax = 10) (b) AMR (Lmin = 5, Lmax = 10)

Fig. 8. Density for the 2D Riemann problem at time t = 0.3. Comparison between uniform
(number of cells: 1,048,576) and AMR grids (number of cells: 146,578).

We test the AMR algorithm on the previous 2D Riemann problem (Section 5.2.1).558

We set Lmin = 5, Sref = 0.002 and Scoa = 0.0001 and we enforce a material CFL559

constraint νmat = 0.3. Lmax is varied from 6 to 9 and these grids at time t = 0.3560

are reported in Fig. 7. We observe that the entropy criterion is pivoting the AMR in561

the correct way, since the refinement levels are introduced where the 4 waves occur.562

By comparing the grids of Fig. 7 and the solution structure in Fig. 8, we can see563

that the postshock region is refined also after the solution has become smooth. For564

this reason, the refinement needs to be further optimized. In Fig. 8 we compare the565

density profile obtained with a uniform grid built with Lmin = Lmax = 10, which566

gives 1,048,576 cells and the density obtained with the AMR by setting Lmin = 5567

and Lmax = 10, which gives a total number of cells of 146,578 at the end of the568

simulation. The solution structure, the different waves and the small vortex in the569

center are accurately approximated for both grids, gaining a very similar precision570

(the small oscillations that can be seen on the contours of Fig. 8(b) are due to the571

visualization software that is not able to fully handle quadtree grids). However, it572

is evident that with the AMR technique the computational effort is reduced, since573

the number of degrees of freedom is consistently reduced (of about 10 times). The574

CPU times required with the uniform grid and with the AMR grid, using 32 cores,575

are respectively 9.25 · 103 and 1.61 · 103 seconds.576

6. An extension to non-linear elasticity. As anticipated above, the relax-577

ation all-speed scheme (3.16) can be adopted also for the simulation of flows with578

more complex EOS. Specifically, the accurate approximation of the deformation of579

elastic solids can be addressed. To this end, we adopt a monolithic Eulerian model580

describing different materials with the same system of conservation laws. The model581

derivation has been exstensively discussed in several previous works [19, 37, 20, 2].582

Here we briefly report the 2D system and the chosen hyperelastic state law.583

Let Ω0 ∈ R2 the initial (or reference) configuration of a continuum and Ωt ∈ R2584

the deformed configuration at time t. The considered system of conservation laws585

models fluids and hyperelastic solids in the Eulerian framework, thus it is written in586

the deformed configuration Ωt. As for fluids, the equations describing the evolution587

of elastic solids are the conservation of mass, of momentum and energy. In addition, a588

law for the description of the deformation is needed: this is done with the introduction589
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of equations of transport of the backward characteristics. These functions describe the590

continuum in the Eulerian framework: for a time t and a point x in the deformed591

configuration, the corresponding initial point ξ in the initial configuration is given,592

i. e. Y : Ωt × [0, T ] → Ω0, (x, t) → Y (x, t). One can also introduce the forward593

characteristics X (ξ, t), defined as the image at time t in the deformed configuration594

of a material point ξ belonging to the initial configuration, i. e. X : Ω0 × [0, T ] →595

Ωt, (ξ, t) → X (ξ, t). The corresponding Eulerian velocity field u is defined as u :596

Ωt × [0, T ]→ R2, (x, t)→ u (x, t). Forward and backward characteristics are related597

as follows: Y (X (ξ, t)) = ξ. By differentiating this latter relation, one gets598

(6.1)

{
∂tY + u · ∇Y = 0

Y (x, 0) = x, x ∈ Ωt.
599

Since the stress tensors have a direct dependence on [∇Y ], the gradient of (6.1) is600

taken as a governing equation (see for details [2, 13]). The full monolithic Eulerian601

model thus is written as follows:602

(6.2)


∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu⊗ u− σ) = 0

∂t ([∇xY ]) +∇x (u · [∇xY ]) = 0

∂t (ρe) +∇x ·
(
ρeu− σTu

)
= 0.

603

Here σ is the Cauchy stress tensor, which is derived through the chosen EOS. The604

total energy e is still given by expression (2.2), but now the internal energy ε has to605

account for the behaviour of different materials, including gases, liquids and solids.606

Therefore, we adopt the following general constitutive law [24, 20]:607

(6.3) ε (ρ, s, [∇xY ]) =
κ (s)

γ − 1
ργ−1 +

p∞
ρ︸ ︷︷ ︸

general gas

+
χ

ρ

(
trB − 2

)
︸ ︷︷ ︸

neohookean solid

,608

where B is the normalized Cauchy stress tensor:609

B =
B

J
=

[∇xY ]
−1

[∇xY ]
−T

J
, J = det ([∇xY ])

−1
.610

The energy function (6.3) includes different physical behaviors. The first part is611

exactly the internal energy (2.3) for gases and liquids. The last term describes the612

variation of energy in a neohookean elastic solid due to elastic deformations (χ is the613

shear elastic modulus). As shown in Table 3, classical models are obtained by specific614

choices of the coefficients.

Material γ p∞ χ
[Pa] [Pa]

Perfect biatomic gas 1.4 0 0
Stiffened gas (water) 4.4 6.8 · 108 0
Elastic solid (copper) 4.22 3.42 · 1010 5 · 1010

Table 3
Typical parameters for different materials.

615
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The general expression of the Cauchy stress tensor σ is easily obtained [13, 1]616

(6.4)

σ (ρ, s, [∇xY ]) = −p (ρ, s) I + 2χJ−1

(
B − trB

2
I

)
p (ρ, s) = −p∞ + k (s) ργ .

617

We rewrite the Eulerian model (6.2) in the compact formulation with the direc-618

tional splitting (3.1), having ψ,F (ψ) ,G (ψ) ∈ Rn with n = 8:619

(6.5)

ψ =



ρ
ρu1

ρu2

Y 1
,1

Y 2
,1

Y 1
,2

Y 2
,2

ρe


, F (ψ) =



ρu1

ρu2
1 − σ11

ρu1u2 − σ21

u1Y
1
,1 + u2Y

1
,2

u1Y
2
,1 + u2Y

2
,2

0
0(

ρe− σ11
)
u1 − σ21u2


, G (ψ) =



ρu2

ρu1u2 − σ12

ρu2
2 − σ22

0
0

u1Y
1
,1 + u2Y

1
,2

u1Y
2
,1 + u2Y

2
,2(

ρe− σ22
)
u2 − σ12u2


.620

In this notation, the superscript i indicates the component of Y and the subscript ,j621

stands for the direction along which the derivative is calculated. With this formu-622

lation, the Jin-Xin relaxation system (3.3) is easily constructed, by introducing the623

relaxation variables vectors. Then, the implicit time integration and the all-speed624

spatial discretization are adopted just as in the case of fluid dynamics, with the an-625

alytical derivation of the jacobians of the fluxes F (ψ) and G (ψ) to be used inside626

linearization (3.10) (for the jacobians derivation see Appendix A). Thus, the scheme627

has exactly the same formulation derived for the Euler equation case: this means that628

the relaxation all-speed scheme introduced in Section 3 can solve flows with more629

complex EOS, including elastic deformations, without any substantial modification.630

6.1. Low Mach number limits in elastic solids. We now analyze the low631

Mach number regime in compressible elastic solids. This regime can be seen as a632

small deformation or a deformation that is slow with respect to other propagating633

waves. Alongside with the sound speed, which is computed as for fluid dynamics with634

expression (2.4), we define an “elastic speed” in the following way:635

(6.6) uel =

√
2χ

ρ
.636

We can thus define an “isochoric Mach number” on this elastic speed, as the ratio637

between the isochoric speed and the advective velocity [2]:638

(6.7) Mχ =
u

uel
=

√
ρu2

2χ
.639

Therefore, two different scales can be distinguished. They can be identified when640

the Eulerian system is non-dimensionalized. As done for the standard case of the Euler641

system in Section 2.1, every variable is decomposed into a product of a reference value642

and a dimensionless number. By using the definitions of the two Mach numbers (2.8)643

and (6.7) and by using the speed of sound to scale pressure and total energy, we get644

the following formulation of the non-dimensional Eulerian system (for simplicity of645
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notation we loose the hat ·̂ on the non-dimensional variables):646

(6.8)



∂tρ+∇x · (ρu) = 0

∂t (ρu) +∇x · (ρu⊗ u) +
∇xp
M2

− 2χ

M2
χ

∇x
(
J−1

(
B − trB

2
I

))
= 0

∂t ([∇xY ]) +∇x (u · [∇xY ]) = 0

∂t
ρe

M2
+∇x ·

(
ρe

M2
u +

(
p

M2
− 2χ

M2
χ

∇x
(
J−1

(
B − trB

2
I

)))
u

)
= 0.

647

Here we have substituted the expression for the stress tensor (6.4) inside the conser-648

vation equations, in order to separate terms scaling with M and with Mχ. The scaled649

state law reads as follows650

(6.9)
ρe

M2
=

1

2
ρ|u|2 +

p+ γp∞
M2 (γ − 1)

+
χ
(
trB − 2

)
2M2

χ

,651

where again both the acoustic and the elastic Mach numbers are present.652

Two different low Mach number regimes can be observed:653

1. acoustic and elastic low Mach regime, namely M � 1 and Mχ � 1. This case654

can be verified only if the parameters of the considered material are such that655

O(p∞) ' O(χ). We thus get that the two Mach numbers are of the same656

order, i. e. O(M) ' O(Mχ). Copper can be representative of this limit,657

since p∞ = 3.42 · 1010Pa and χ = 5 · 1010Pa. In this regime, the gradient of658

stress tensor σ fully scales as O(M2), i. e. the entire stress tensor gradient659

introduces stiffness in system (6.8). All propagating waves are consistently660

faster with respect to the material waves, since both the acoustic and elastic661

terms of the EOS are large and of the same order of magnitude.662

2. acoustic low Mach regime, namely M � 1 and M � Mχ. This is verified663

if the material parameters are such that p∞ � χ, giving an acoustic Mach664

number consistently smaller with respect to the elastic Mach number. This665

limit can be observed in rubber-like materials. In this regime, the gradient666

of stress tensor σ can be split into two different scales: the acoustic scale,667

which is represented by the pressure gradient and the elastic one, which is668

represented by the gradient of the elastic deformation. The pressure gradient669

is the only responsible for the stiffness of system (6.8) and in the EOS only670

the acoustic part is consistently large. Thus, only the longitudinal acoustic671

waves are consistently faster with respect to the deformation, whereas the672

shear elastic waves have a speed which is similar to the material deformation.673

Physically, M ≤ Mχ is always verified. Therefore, with the aim of recovering the674

correct numerical viscosity in both low Mach regimes, the proposed convex combina-675

tion of upwind and centered fluxes (3.13) still holds for the all-speed scheme. For a676

detailed study of the low Mach regime in elastic solids and of the behaviour of the677

different waves, we refer the reader to [2, 1]. In the following section we will solve two678

different Riemann problems representing the two limits inside two elastic solids.679

6.2. Numerical validations in elastic solids. We test the relaxation all-speed680

scheme on two 2D Riemann problems on the squared domain [0, 2]×[0, 2]. Simulations681

are performed on a uniform grid of 256 × 256 cells. For the first test, the domain is682

filled with copper (for the EOS parameters see Table 3), i. e. χ ' p∞. The initial683
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(a) Explicit-upwind (∆t = 8.8 · 10−7) (b) All-speed (∆t = 8.8 · 10−7)

(c) All-speed (∆t = 7.8 · 10−6) (d) All-speed (∆t = 1.17 · 10−5)

Fig. 9. Copper Riemann problem: density profiles at time t = 10−4s (20 contours: from 8882
to 8935). Panel (a): explicit-upwind scheme with ∆t = 8.8 · 10−7, given by νac = 0.45. Panels (b),
(c) and (d): all-speed relaxation scheme with ∆t = 8.8 · 10−7, ∆t = 7.8 · 10−6 (given by νmat = 0.2)
and ∆t = 1.17 · 10−5 (given by νmat = 0.3) respectively.

condition is the following684

(p, ρ, u1, u2) (x1, x2, t = 0) =


(
109, 8900, 0, 0

)
, Ω1(

109, 8900, 0, 0
)
, Ω2(

109, 8900, 0, 0
)
, Ω3(

105, 8900, 0, 0
)
, Ω4,

685

where we have introduced the subdomains Ω1 = [1, 2] × [1, 2], Ω2 = [0, 1] × [1, 2],686

Ω3 = [0, 1] × [0, 1] and Ω4 = [1, 2] × [0, 1]. Copper is at rest and at high pressure687

everywhere, except for the right-bottom part of the domain Ω4, which is at a pressure688

of 105Pa and hence it is compressed by the surrounding copper. Two material waves689

are present due to the initial pressure discontinuity: they represent the deformation690

of copper in Ω4 and they are slow if compared to all the other propagating waves.691

With this initial condition, we have M 'Mχ ' O
(
10−3

)
on the two material waves692

at the edges of Ω4, i.e. this test is representative of the acoustic and elastic low Mach693

regime.694

In Figs. 9(a)-9(b), we show the density profiles at final time t = 10−4s obtained695

with the standard explicit-upwind relaxation scheme and with the all-speed relaxation696
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scheme, by enforcing the same acoustic CFL νac = 0.45, which gives ∆t = 8.8 · 10−7.697

It is evident that the all-speed spatial discretization accurately approximates the two698

material waves, which are instead diffused by an upwind-like discretization. Then,699

in Figs. 9(c)-9(d), we solve the same problem with the all-speed relaxation scheme700

by enforcing a material CFL constraint νmat = 0.2, which gives ∆t = 7.8 · 10−6, and701

νmat = 0.3, which gives ∆t = 1.17 · 10−5: the accuracy on the material waves is702

maintained also with large material time steps. Of course the fast waves are diffused,703

since their speed is too high to be followed by a material ∆t, as explained in Sec.704

3.2.1. In Fig. 10 we report the components σ11 and σ22 of the stress tensor, the705

pressure and the velocity field u, which is of course continuous on the two material706

waves. We report these profiles obtained with the acoustic CFL condition, in order707

to show all the propagating waves with a good resolution.

(a) σ11 (b) σ22

(c) p (d) u

Fig. 10. Copper Riemann problem: normal components of the stress tensor σ, pressure p and
velocity field u at time t = 10−4s (νac = 0.45).

708

The second test is instead representative of the acoustic low Mach regime. In709

order to simulate a rubber-like material, we adopt the EOS parameters γ = 4.4,710

χ = 8 · 105Pa and p∞ = 6.8 · 108Pa and the following initial conditions:711

(p, ρ, u1, u2) (x1, x2, t = 0) =


(
108, 1000, 0, 0

)
, Ω1(

108, 1000, 0, 0
)
, Ω2(

108, 1000, 0, 0
)
, Ω3(

9.8 · 107, 1000, 20, 20
)
, Ω4

712

We impose a small initial pressure discontinuity and also an initial velocity field713

in Ω4. The velocity field is imposed in order to analyze the propagation of slow714
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(a) ρ explicit-upwind (b) ρ all-speed

(c) σ21 explicit-upwind (d) σ21 all-speed

Fig. 11. Rubber-like Riemann problem: density (30 contours: from 994 to 1005) and tangential
stress σ21 at time t = 3 · 10−4s (νac = 0.45).

shear waves. In this framework, we get M ' 2.5 · 10−3 and Mχ ' 0.125 on the715

two material waves at the edges of Ω4. Thus, the longitudinal acoustic waves are716

consistently faster with respect to all other waves, including the material waves and717

the shear elastic waves. In fact, these latter waves propagate with a speed similar to718

the deformation velocity (this wave pattern is briefly presented in the previous section719

and analysed in detail in [2]). In Figs. 11(a)-11(b) we show the density contours at720

final time t = 3 ·10−4s: we compare the results obtained with the all-speed relaxation721

scheme and with the explicit-upwind relaxation scheme. For both schemes we enforce722

νac = 0.45, which gives ∆t = 5.6 ·10−6, in order to have a good resolution of all waves.723

It is evident that the all-speed scheme is providing a more accurate approximation of724

the deformation waves also for this specific low Mach number limit. In Figs. 11(c)-725

11(d) the stress tensor component σ21 is plotted and we can focus on the shear elastic726

waves approximation. At time t = 3 ·10−4s these slow waves are still very close to the727

material waves. We can observe that the sharpness and the correct magnitude of the728

shear waves are accurately approximated by the all-speed discretization, whereas the729

upwind scheme is once again diffusive. These results are consistent with the results730

of a similar 1D test proposed in [2].731

7. Conclusions and future developments. In this work we have proposed an732

asymptotic preserving scheme to solve flows of compressible materials at all speeds.733

The scheme exploits the relaxation method proposed by Jin and Xin, in order to deal734

with an advective operator that is independent of the EOS. Thanks to this, we have735

been able to simulate fluid flows and elastic deformations without any modification736
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of the scheme structure.737

A proof of the asymptotic preserving property has been proposed, showing that738

the incompressibility condition is respected by the scheme. The Gresho vortex tests739

have shown that, by setting an incompressible initial flow, the scheme is able to pre-740

serve the incompressible regime at all times, with pressure fluctuations of order M2.741

The scheme has also been tested on the solution of Riemann problems, accurately742

approximating material waves propagating in both fluids and elastic materials. The743

material waves are kept sharp also with large material time steps. Moreover, an adap-744

tive mesh refinement algorithm has been designed for the proposed scheme, providing745

a consistent reduction of the computational effort. The algorithm is based on the746

estimate of the scheme entropy production, which has also been used to study the747

accuracy of the proposed spatial discretization.748

Different improvements will be proposed in the future, including the extension of749

the scheme to higher orders and the derivation of suitable preconditioners that can750

provide a more efficient solution of the linear system. The scheme will also be applied751

to the simulation of multi-material problems such as low speed-impacts. This can be752

done with the introduction of a level set function to track the physical interfaces and753

by extending the implicit multi-material scheme proposed in [4] to multi-dimensional754

problems. Moreover, the AMR technique will be extensively analyzed and improved.755

Appendix A. Jacobian of the fluxes in elasticity. The jacobians of the756

fluxes F (ψ) and G (ψ) inside the Eulerian model (6.2) can be computed analytically.757

We introduce the notation σjk,ψi , which stands for the derivative of the jk, j, k = 1, 2758

component of the tensor σ with respect to the conservative variable ψi, i = 1, ..8.759

These derivatives are computed using definition (6.4) of σ, where it can be useful to760

rewrite the pressure as function of the energy as follows761

p = −γp∞ + (γ − 1)

(
ρe− 1

2
ρ|u|2 − χ

(
trB − 2

))
.762

We remind that tensor σ is symmetric, i.e. σ12 = σ21. The expression for F′ (ψ) is763
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here reported:764

F
′
(ψ) =



0 1 0 0

−u2
1 − σ

11
,ψ1

2u1 − σ11
,ψ2

−σ11
,ψ3

−σ11
,ψ4

−u1u2 − σ21
,ψ1

u2 − σ21
,ψ2

u1 − σ21
,ψ3

−σ21
,ψ4

−
u1Y

1
,1 + u2Y

1
,2

ρ

Y 1
,1

ρ

Y 1
,2

ρ
u1

−
u1Y

2
,1 + u2Y

2
,2

ρ

Y 2
,1

ρ

Y 2
,2

ρ
0

0 0 0 0

0 0 0 0

−Eu1 + σ11u1

ρ
− u1σ

11
,ψ1

+
σ21u2

ρ

E − σ11

ρ
− u1σ

11
,ψ2

−u1σ
11
,ψ3
−
σ21

ρ
−u1σ

11
,ψ4
− u2σ

21
,ψ4

0 0 0 0

−σ11
,ψ5

−σ11
,ψ6

−σ11
,ψ7

−σ11
,ψ8

−σ21
,ψ5

−σ21
,ψ6

−σ21
,ψ7

0

0 u2 0 0

u1 0 u2 0

0 0 0 0

0 0 0 0

−u1σ
11
,ψ5
− u2σ

21
,ψ5

−u1σ
11
,ψ6
− u2σ

21
,ψ6

−u1σ
11
,ψ7
− u2σ

21
,ψ7

(
1− σ11

,ψ8

)
u1



765

and a similar expression is derived for G′ (ψ) in the same way.766
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Conseil Régional d’Aquitaine, Université de Bordeaux and CNRS (and ANR in ac-773

cordance to the Programme d’Investissements d’Avenir http://www.plafrim.fr/).774

REFERENCES775

[1] E. Abbate, Numerical methods for all-speed flows in fluid-dynamics and non-linear elasticity,776
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