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Abstract

The present paper accomplishes a major step towards a reconciliation of two con-
flicting approaches in mathematical finance: on the one hand, the mainstream ap-
proach based on the notion of no arbitrage (Black, Merton & Scholes); and on the
other hand, the consideration of non-semimartingale price processes, the archetype
of which being fractional Brownian motion (Mandelbrot). Imposing (arbitrarily
small) proportional transaction costs and considering logarithmic utility optimisers,
we are able to show the existence of a semimartingale, frictionless shadow price
process for an exponential fractional Brownian financial market.
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1 Introduction
The classical framework of mathematical finance is given by frictionless financial markets,
where at each time t arbitrary amounts of stock can be bought and sold at the same
price St. Here, the mathematical structure of maximisation of expected utility essentially
implies that an optimal trading strategy only exists, if the discounted price processes S =
(St)0≤t≤T of the underlying financial instruments are semimartingales, that is, stochastic
processes which are “good integrators” (see [1, 27, 24]). This rules out non-semimartingale
models based on fractional Brownian motion proposed by Mandelbrot [28].

While fractional models provide arbitrage opportunities for frictionless trading, Gua-
soni [16] proved that they are arbitrage-free as soon as proportional transaction costs
are taken into account. This allows to use these models as price processes for portfolio
optimisation under transaction costs, as illustrated by Guasoni [15]. Studying the primal
problem, this author shows the existence of an optimal trading strategy.

In this paper, we continue the analysis of the existence of a so-called shadow price for
portfolio optimisation under transaction costs. That is, a semimartingale price process
Ŝ = (Ŝt)0≤t≤T taking values in the bid-ask spread such that frictionless trading for that
price process leads to the same optimal trading strategy and utility as in the original
problem under transaction costs. See [11, 10] for references and an overview of the
literature. For utility functions U : (0,∞) → R on the positive half-line (satisfying the
condition of reasonable asymptotic elasticity), we show that the condition of “two-way
crossing” (TWC) (Definition 2.2) is sufficient for the existence of a shadow price (provided
the indirect utility is finite) by using duality results established in [11, 12]. The two-
way crossing condition, introduced by Bender [3], has the intuitive interpretation that a
process “cannot move a.s. in a fixed direction”. This property has been established for
the fractional Black-Scholes model by Peyre [29]. Still in the case of the fractional Black-
Scholes model, we obtain the finiteness of the indirect utility by establishing an estimate
on the tail probabilities of the number of fluctuations of size δ > 0 of fractional Brownian
motion. This allows us to show that shadow prices exist for the fractional Black-Scholes
model for all utility functions on the positive half-line (not even needing the condition
of reasonable asymptotic elasticity), which is a fairly complete answer to this question.
Though in this article, we only focus on the archetypical fractional Black-Scholes model,
for the sake of simplicity, our results can likely also be applied to a much broader class
of non-semimartingale price processes.

The shadow price Ŝ is given by an Itô process

dŜt = Ŝt(µ̂tdt+ σ̂tdWt), 0 ≤ t ≤ T, (1.1)

where µ̂ = (µ̂t)0≤t≤T and σ̂ = (σ̂t)0≤t≤T are predictable processes such that the solution
to (1.1) is well-defined in the sense of Itô integration. For logarithmic utility, this implies
that the optimal trading strategy is related to the coefficients of the Itô process (1.1) via

π̂t =
µ̂t
σ̂2
t

=
ϕ̂1
t−Ŝt

ϕ̂0
t− + ϕ̂1

t−Ŝt
, 0 ≤ t ≤ T.

It is a special feature of logarithmic utility to allow for such a crisp relation between
the “dual” variables µ̂, σ̂ and the “primal” variables (ϕ̂0, ϕ̂1). Indeed, only the logarithmic
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utility maximiser is myopic. This underlines the central importance of understanding the
shadow price in the case of logarithmic utility, a case not covered by [10].

It is well known that the existence of a shadow price is related to the solution of a
suitable dual problem; see [20, 9, 11, 12, 10]. Under transaction costs, this duality goes
back to the pioneering work [7] of Cvitanić and Karatzas and has been subsequently
extended to dynamic duality results [7, 8, 11, 12, 10] for utility functions on the positive
half-line as well as static duality results [13, 4, 5, 6, 2] for (possibly) multi-variate utility
functions.

To apply this duality in our setup, we need to ensure the existence of so-called λ-
consistent local martingale deflators. These processes are used as dual variables similarly
as equivalent martingale measures [22, 18, 23, 25] and local martingale deflators in the
frictionless theory [21]. For this, we provide a local version of the fundamental theorem
of asset pricing for continuous processes under small transaction costs of [17] using the
condition (NOIA) of “no obvious immediate arbitrage” (see Definition 3.1).

The remainder of the article is organised as follows. We formulate the problem and
state our main results in Section 2. Their proofs are given in Section 4. Section 3 recalls
duality results and provides the local version of the fundamental theorem of asset pricing.
In Appendix A, we establish the estimates of the tail probabilities of the fluctuations of
fractional Brownian motion.

2 Main results
We consider a minimal financial market consisting of one riskless bond and one risky stock.
The riskless asset is assumed to be normalised to one. Trading the risky asset incurs
proportional transaction costs λ ∈ (0, 1). This means that one has to pay a (higher) ask
price St when buying risky shares but only receives a lower bid price (1−λ)St when selling
them. Here, S = (St)0≤t≤T denotes a strictly positive, adapted, continuous stochastic
process defined on some underlying filtered probability space (Ω,F , (Ft)0≤t≤T ,P) with
fixed finite time horizon T ∈ (0,∞), satisfying the usual assumptions of right-continuity
and completeness. As usual, equalities and inequalities between random variables, resp.
between stochastic processes, hold up to P-nullsets, resp. up to P-evanescent sets.

Trading strategies are modelled by R2-valued, càdlàg and adapted processes ϕ =
(ϕ0

t , ϕ
1
t )0−≤t≤T of finite variation indexed by [0−, T ] := {0−} ∪ [0, T ], where ϕ0

t and ϕ1
t

describe the holdings in the riskless and the risky asset, respectively, after rebalancing
the portfolio at time t. As explained in [12] in more detail, using [0−, T ] instead of [0, T ]
as index set allows us to use càdlàg trading strategies. For any process ψ = (ψt)0−≤t≤T
of finite variation, we denote by ψ =: ψ0− + ψ↑ − ψ↓ its Hahn-Jordan decomposition into
two non-decreasing processes ψ↑ and ψ↓ starting at zero.

A trading strategy ϕ = (ϕ0
t , ϕ

1
t )0−≤t≤T is called self-financing, if∫ t

s

dϕ0
u ≤ −

∫ t

s

Sudϕ
1,↑
u +

∫ t

s

(1− λ)Sudϕ
1,↓
u for all 0− ≤ s ≤ t ≤ T, (2.1)

where the integrals can be defined pathwise as a Riemann-Stieltjes integrals.
A self-financing strategy ϕ = (ϕ0, ϕ1) is called admissible, if it satisfies

V liq
t (ϕ) := ϕ0

t + (ϕ1
t )

+(1− λ)St − (ϕ1
t )
−St ≥ 0 for all 0 ≤ t ≤ T : (2.2)
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in this equation, V liq
t , which is called the liquidation value at time t, corresponds to the

amount that the trader would get if she decided to liquidate instantly her portfolio into
cash at that time.

For x > 0, we denote by A(x) the set of all self-financing and admissible trading
strategies under transaction costs λ starting from initial endowment (ϕ0

0− , ϕ
1
0−) = (x, 0).

We consider an economic agent whose goal is to maximise her expected utility from
terminal wealth

E
[
U(V liq

T (ϕ))
]
→ max!, ϕ ∈ A(x). (2.3)

Here, U : (0,∞) → R denotes an increasing, strictly concave, continuously differentiable
utility function, satisfying the Inada conditions

U ′(0) := lim
x↘0

U ′(x) =∞ and U ′(∞) := lim
x↗∞

U ′(x) = 0. (2.4)

(If limx↘0 U(x) > −∞, we will implicitly extend U to [0,∞) by continuity).
In this paper, we continue the analysis of problem (2.3) by using the concept of a

shadow price.

Definition 2.1. A semimartingale price process Ŝ = (Ŝt)0≤t≤T is called a shadow price
process, if all the following conditions hold:

1. Ŝ is valued in the bid-ask spread [(1− λ)S, S];

2. A solution ϑ̂ = (ϑ̂t)0≤t≤T to the frictionless utility maximisation problem

E
[
U(x+ ϑ · ŜT )

]
→ max!, ϑ ∈ A(x; Ŝ) (2.5)

exists (in the sense of [25]), where A(x; Ŝ) denotes the set of all self-financing and
admissible trading strategies ϑ = (ϑt)0≤t≤T for Ŝ without transaction costs. That
is, Ŝ-integrable (in the sense of Itô), predictable processes ϑ = (ϑt)0≤t≤T such that
Xt = x+ ϑ · Ŝt ≥ 0 for all 0 ≤ t ≤ T .

3. An optimal trading strategy ϑ̂ = (ϑ̂t)0≤t≤T to the frictionless problem (2.5) coincides
with (the left limit of) the holdings in stock ϕ̂1

− = (ϕ̂1
t−)0≤t≤T of an optimal trading

strategy to the utility maximisation problem (2.3) under transaction costs so that
x+ ϑ̂ · ŜT = V liq

T (ϕ̂).

In Theorem 3.2 of [12], the existence of a shadow price for a continuous price process
S = (St)0≤t≤T satisfying the condition (NUPBR) of “no unbounded profit with bounded
risk” (without transaction costs) is established. The assumption of (NUPBR) implies
that S has to be a semimartingale. Therefore, the result did not yet apply to price
processes driven by fractional Brownian motion BH = (BH

t )0≤t≤T such as the fractional
Black-Scholes model

St = exp(µt+ σBH
t ), 0 ≤ t ≤ T, (2.6)

where µ ∈ R, σ > 0n, and H ∈ (0, 1) \ {1
2
} denotes the Hurst parameter of the fractional

Brownian motion BH . In the present article, we combine a recent result of Peyre [29]
with a strengthening of the existence result in Theorem 3.2 of [12] to fill this gap.

For this, we need a weaker no-arbitrage-type condition than (NUPBR) that is never-
theless in some sense stronger than stickiness. It turns out that the condition (TWC) of
“two-way crossing” is the suitable one to work with.
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Definition 2.2. Let X = (Xt)0≤t≤T be a real-valued continuous stochastic process. For
σ a finite stopping time, set

σ+ := inf{t > σ | Xt −Xσ > 0},
σ− := inf{t > σ | Xt −Xσ < 0}.

Then, we say that X satisfies the condition (TWC) of “two-way crossing”, if σ+ = σ−
P-a.s. for all finite stopping time σ.

The two-way crossing condition was introduced by Bender in [3] for the analysis of
the condition of “no simple arbitrage” (without transaction costs), that is, no arbitrage
by (finite) linear combinations of buy and hold strategies. Using it in the context of
portfolio optimisation under transaction costs allows us to establish the following results.
For better readability, their proofs are deferred to Section 4.
Theorem 2.3. Fix a strictly positive continuous process S = (St)0≤t≤T satisfying (TWC)
and transaction costs λ ∈ (0, 1). Let U : (0,∞) → R be an increasing, strictly concave,
continuously differentiable utility function, satisfying the Inada conditions (2.4), and hav-
ing reasonable asymptotic elasticity, that is lim supx→∞(xU ′(x) / U(x)) < 1, and suppose
that

u(x) := sup
ϕ∈A(x)

E
[
U(V liq

T (ϕ))
]
<∞ (2.7)

for some x > 0.
Then, there exists an optimal trading strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0−≤t≤T for (2.3), for which

there exists a shadow price Ŝ = (Ŝt)0≤t≤T .
The significance of the condition (TWC) in the above result is that it does not re-

quire S to be a semimartingale, as it holds for the fractional Black-Scholes model (2.6).
This allows us to conclude the existence of a shadow price process for the fractional
Black-Scholes model and utility functions that are bounded from above, like power utility
U(x) = α−1xα with risk aversion parameter α < 0. For utility functions U : (0,∞) → R
that are not bounded from above such as logarithmic utility U(x) = log(x) or power
utility U(x) = α−1xα with risk aversion parameter α ∈ (0, 1), it remains to show that
the indirect utility (2.7) is finite in order to apply Theorem 2.3. We do this below by
controlling the number of fluctuations of size δ > 0 of fractional Brownian motion, which
allows us to obtain the following complete answer to the question whether or not there
exists a shadow price for the fractional Black-Scholes model.
Theorem 2.4. Fix the fractional Black-Scholes model (2.6) and transaction costs λ ∈
(0, 1). Let U : (0,∞) → R be an increasing, strictly concave, continuously differentiable
utility function, satisfying the Inada conditions (2.4).

Then,
u(x) := sup

ϕ∈A(x)

E
[
U(V liq

T (ϕ))
]
<∞ (2.8)

for all x > 0, and there exists an optimal trading strategy ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0−≤t≤T for (2.3),

for which there exists a shadow price Ŝ = (Ŝt)0≤t≤T .
It is worth pointing out that the above theorem does not need a condition on the

asymptotic elasticity. The finiteness of the indirect utility function and the existence of
an optimal trading strategy even holds for linear utility functions. The existence of a
shadow price, however, needs that the Inada conditions are satisfied.
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3 Local duality theory
In this section, we establish a local version of the fundamental theorem of asset pricing
for continuous processes under small transaction costs; compare [17]. To that end, we
recall the following notions.

A λ-consistent price system is a pair of stochastic processes Z = (Z0
t , Z

1
t )0≤t≤T such

that Z0 = (Z0
t )t is the density process of an equivalent measure Q ∼ P under which

(S̃t)t := (Z1
t / Z

0
t )t is a local martingale, and such that S̃ evolves in the bid-ask spread

[(1−λ)S, S]. Requiring that S̃ is a local martingale underQ is tantamount to requiring the
product Z1 = Z0S̃ to be a local martingale under P. Under transaction costs, λ-consistent
price systems ensure “absence of arbitrage” in the sense of “no free lunch with vanishing
risk” (NFLVR) similarly as equivalent local martingale measures in the frictionless case;
see, for example, [19] and the references therein. A λ-consistent local martingale deflator
is a pair of strictly positive local martingales Z = (Z0

t , Z
1
t )0≤t≤T such that S̃ := Z1 / Z0

is evolving within the bid-ask spread [(1 − λ)S, S] and E[Z0
0 ] = 1. We denote the set

of all λ-consistent local martingale deflators by Z. Note that, if (τn)∞n=1 is a localising
sequence of stopping times such that the stopped process (Z0)τn = (Z0

τn∧t)0≤t≤T is a true
martingale, then Zτn = (Z0

τn∧t, Z
1
τn∧t)0≤t≤T is a λ-consistent price system for the stopped

process Sτn = (Sτn∧t)0≤t≤T . In this sense, the condition that S admits a λ-consistent
local martingale deflator is indeed the local version of the condition that S admits a
λ-consistent price system.

Moreover, we use the subsequent no arbitrage concepts.

Definition 3.1. Let S = (St)0≤t≤T be a strictly positive, continuous process. We say that
S allows for an “obvious arbitrage”, if there are α > 0 and [0, T ] ∪ {∞}-valued stopping
times σ ≤ τ with P[σ <∞] = P[τ <∞] > 0 such that either

Sτ ≥ (1 + α)Sσ, a.s. on {σ <∞}, (a)

or
Sτ ≤ (1 + α)−1Sσ, a.s. on {σ <∞}. (b)

In the case of (b), we also assume that (St)σ≤t≤τ is uniformly bounded.
We say that S allows for an “obvious immediate arbitrage”, if, in addition, we have

St ≥ Sσ, for all t ∈ Jσ, τK, a.s. on {σ <∞}, (a’)

or
St ≤ Sσ, for all t ∈ Jσ, τK, a.s. on {σ <∞}. (b’)

We say that S satisfies the condition (NOA) (respectively, (NOIA)) of “no obvious
arbitrage” (respectively, “no obvious immediate arbitrage”), if no such opportunity exists.
The name “obvious arbitrage” comes from the fact that it is indeed obvious how to make
an arbitrage if (NOA) fails, provided the transaction costs λ are smaller than α.

Using the above, we obtain the following slight strengthening of Theorem 1 of [17].

Theorem 3.2. Let S = (St)0≤t≤T be a strictly positive, continuous process. Then, the
following assertions are equivalent.
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(i) Locally, S has no obvious immediate arbitrage, i.e. satisfies (NOIA).

(ii) Locally, S has no obvious arbitrage, i.e. satisfies (NOA).

(iii) Locally, S admits a µ-consistent price system for all µ ∈ (0, 1).1

(iv) For each µ ∈ (0, 1), there exists a µ-consistent local martingale deflator for S.

Proof. Obviously, we have (ii) ⇒ (i). The equivalent (ii) ⇔ (iii) follows directly from
Theorem 1 of [17]. As explained above, (iv) implies (iii).

The converse (iii)⇒ (iv) follows by exploiting that (iii) asserts locally the existence
of a µ-consistent price system for each 0 < µ < 1. Indeed, fix 0 < µ < 1 and a localising
sequence (τn)∞n=1 of stopping times. Let Z̄ = (Z̄0

τn∧t, Z̄
1
τn∧t)0≤t≤T be a µ̄-consistent price

system for Sτn := (Sτn∧t)0≤t≤T with 0 < µ̄ < µ. Then, we can extend Z̄ to a µ̃-consistent
price system Z̃ = (Z̃0

τn+1∧t, Z̃
1
τn+1∧t)0≤t≤T for Sτn+1 = (Sτn+1∧t)0≤t≤T with 0 < µ̄ < µ̃ < µ

by setting

Z̃0
t =

{
Z̄0
t for 0 ≤ t < τn,

Z̄0
τn

Ž0
τn

Ž0
τn+1∧t for τn ≤ t ≤ T,

Z̃1
t =

{
(1− µ̌)Z̄1

t for 0 ≤ t < τn,

(1− µ̌)
Z̄1
τn

Ž1
τn

Ž1
τn+1∧t for τn ≤ t ≤ T,

where Ž = (Ž0
τn+1∧t, Ž

1
τn+1∧t)0≤t≤T is a µ̌-consistent price system for Sτn+1 = (Sτn+1∧t)0≤t≤T

with 0 < µ̌ < 1
2
(µ̃ − µ̄). Repeating this extension allows us to establish the existence of

a µ-consistent local martingale deflator.

(i)⇒ (iii): As (iii) is a local property, we may assume that S satisfies (NOIA).
To prove (iii), we do a similar construction as in the proof of Proposition 1 in [17].

We suppose in the sequel that the reader is familiar with the aforementioned proof.
Define the stopping time %̄1 by

%̄1 := inf

{
t > 0

∣∣∣∣ StS0

≥ 1 + µ or
St
S0

≤ (1 + µ)−1

}
.

Define the sets Ā+
1 , Ā

−
1 and Ā0

1 as

Ā+
1 := {%̄1 <∞ and S%̄1 = S0 × (1 + µ)},

Ā−1 := {%̄1 <∞ and S%̄1 = S0 / (1 + µ)},
Ā0

1 := {%̄1 =∞}.

It was observed in [17] that the assumption (NOA) rules out the case P[Ā+
1 ] = 1 and

P[Ā−1 ] = 1. But under the present weaker assumption (NOIA) we cannot a priori exclude
the above possibilities. To refine the argument from [17] in order to apply to the present
setting, we distinguish two cases. Either we have P[Ā+

1 ] < 1 and P[Ā−1 ] < 1, or one of the
probabilities P[Ā+

1 ] or P[Ā−1 ] equals one.
1Here we mean that there exists one localised version of S, not depending on µ, which admits a

µ-consistent price system for all µ ∈ (0, 1).

7



In the first case, we let %1 := %̄1 and proceed exactly as in the proof of Proposition 1
in [17] to complete the first inductive step.

For the second case, we assume without loss of generality that P[Ā+
1 ] = 1, the other

case can be treated in an analogous way.
Define the real number β ≤ 1 as the essential infimum of the random variable

min0≤t≤%̄1(St / S0). We must have β < 1, otherwise the pair (0, %̄1) would define an
immediate obvious arbitrage. We also have the obvious inequality β ≥ (1 + µ)−1.

We define for 1 > γ ≥ β the stopping time

%̄γ1 := inf

{
t > 0

∣∣∣∣ StS0

≥ 1 + µ or
St
S0

≤ γ

}
.

Defining Āγ,+1 := {S%̄γ1 = (1 + µ)S0} and Āγ,−1 := {S%̄γ1 = γS0}, we find an almost surely
partition of Ā+

1 into the sets Āγ,+1 and Āγ,−1 . Clearly P[Āγ,−1 ] > 0, for 1 > γ > β. We
claim that

lim
γ↘β

P
[
Āγ,−1

]
= 0.

Indeed, supposing that this limit were positive, we again could find an obvious immediate
arbitrage, as in this case we have that P[Āβ,−1 ] > 0. Hence, the pair of stopping times

σ := %̄β11{S
%̄
β
1

=βS0} +∞1{S
%̄
β
1

=(1+µ)S0}

τ := %̄11{S
%̄
β
1

=βS0} +∞1{S
%̄
β
1

=(1+µ)S0}

would define an obvious immediate arbitrage, which is contrary to our assumption.
We thus may find 1 > γ > β such that

0 < P
[
Āγ,−1

]
<

1

2
. (3.1)

After having found this value of γ we can define the stopping time %1 in its final form as

%1 := %̄γ1 .

Next, Ω can be decomposed into the partition Āγ,+1 ∪ Āγ,−1 , which is made of two sets
of positive measure. We will denote Āγ,+1 =: A+

1 , resp. Ā
γ,−
1 =: A−1 . As in the proof of

Proposition 1 in [17], we define a probability measure Q1 on F%1 by letting dQ1/dP be
constant on these two sets, where the constants are chosen such that

Q1[A+
1 ] =

1− γ
1 + µ− γ

and Q1[A−1 ] =
µ

1 + µ− γ
.

We then may define the Q1-martingale (S̃t)0≤t≤%1 by

S̃t := EQ1
[S%1|Ft], 0 ≤ t ≤ %1,

to obtain a process remaining in the interval [γS0, (1 + µ)S0]. The above weights for
Q1 were chosen in such a way to obtain S̃0 = EQ1

[S%1 ] = S0. This completes the first
inductive step similarly as in the proof of Proposition 1 of [17].
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Summing up, we obtained %1, Q1 and (S̃t)0≤t≤%1 precisely as in the proof of Proposition
1 in [17] with the following additional possibility: it may happen that %1 does not stop
when St first hits (1 +µ)S0 or (1 +µ)−1S0, but rather when St first hits (1 +µ)S0 or γS0,
for some γ ∈

(
(1+µ)−1, 1

)
. In the case we have P[A0

1] = 0, we made sure that P[A−1 ] < 1
2
,

i.e., we have a control on the probability of {S%1 = γS0}.

We now proceed as in the proof of Proposition 1 in [17] with the inductive construc-
tion of %n,Qn and (S̃t)0≤t≤%n . The new ingredient is that again we have to take care
(conditionally on F%n−1) of the additional possibility P[A+

n ] = 1 or P[A−n ] = 1. Supposing
again without loss of generality that we have the first case, we deal with this possibil-
ity precisely as for n = 1 above, but now we make sure that P[A−n ] < 2−n instead of
P[A−1 ] = P[Āγ,−1 ] < 1

2
above.

This completes the inductive step and we obtain, for each n ∈ N, an equivalent
probability measure Qn on F%n and a Qn-martingale (S̃t)0≤t≤%n taking values in the bid-
ask spread

(
[(1 + µ)−1St, (1 + µ)St]

)
0≤t≤%n

. We note in passing that there is no loss
of generality in having chosen this normalization of the bid-ask spread instead of the
usual normalization [(1 − µ′)S ′, S ′] by passing from S to S ′ = (1 + µ)S and from µ to
µ′ = 1− (1 + µ)−2.

There is one more thing to check to complete the proof of (iii) : we have to show
that the stopping times (%n)∞n=1 increase almost surely to infinity. This is verified in the
following way: suppose that (%n)∞n=1 remains bounded on a set of positive probability.
On this set we must have that S%n+1 / S%n equals (1 +µ) or (1 +µ)−1, except for possibly
finitely many n’s. Indeed, the above requirement P[A−n ] < 2−n makes sure that a.s. the
novel possibility of moving by a value different from (1 +µ) or (1 +µ)−1 can only happen
finitely many times. Therefore we may, as before Proposition 1 in [17], conclude from the
uniform continuity and strict positivity of the trajectories of S on [0, T ] that %n increases
a.s. to infinity which completes the proof of (iii).

4 Proofs of the main results
Proof of Theorem 2.3. Like in the proof of Theorem 3.2 of [12], we show the existence of a
shadow price by duality. To that end, we observe that, for continuous price processes S =
(St)0≤t≤T , the condition (TWC) of “two-way crossing” implies the no obvious immediate
arbitrage condition (NOIA) locally. It follows by part (iv) of Theorem 3.2 that there
exists a µ-consistent local martingale deflator for S for each µ ∈ (0, 1). Therefore, the
assumptions of Theorem 2.10 of [12] are satisfied; and thus there exists an optimal trading
strategy ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0−≤t≤T that attains the supremum in (2.7), as well as a so-called

“λ-consistent supermartingale deflator”2 Ŷ = (Ŷ 0
t , Ŷ

1
t )0≤t≤T given by an optimiser to a

suitable dual problem, such that the process

Ŷ 0(ŷ)ϕ̂0(x) + Ŷ 1(ŷ)ϕ̂1(x) = (Ŷ 0
t (ŷ)ϕ̂0

t (x) + Ŷ 1
t (ŷ)ϕ̂1

t (x))0≤t≤T

2The set B(y) of all λ-consistent supermartingale deflators consists of all pairs of non-negative càdlàg
supermartingales Y = (Y 0

t , Y
1
t )0≤t≤T such that E[Y 0

0 ] = y, Y 1 = Y 0S̃ for some [(1 − λ)S, S]-valued
process S̃ = (S̃t)0≤t≤T , and Y 0(ϕ0 + ϕ1S̃) = Y 0ϕ0 + Y 1ϕ1 is a non-negative càdlàg supermartingale for
all ϕ ∈ A(1). Note that yZ ⊆ B(y) for y > 0 by Proposition 2.6 of [12].
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is a martingale. By Theorem 2.10 of [12], this martingale property implies that, for
Ŝ := Ŷ 1 / Ŷ 0, we have

{dϕ̂1 > 0} ⊆ {Ŝ = S}, {dϕ̂1 < 0} ⊆ {Ŝ = (1− λ)S}. (4.1)

To obtain that Ŝ = (Ŝt)0≤t≤T is a shadow price for problem (2.7) (in the sense of Def-
inition 2.1), it is by Proposition 3.7 of [11] sufficient to show that the dual optimiser
Ŷ = (Ŷ 0

t , Ŷ
1
t )0≤t≤T is a local martingale. By Proposition 3.3 of [12], this follows as soon

as we have that the liquidation value

V liq
t (ϕ̂) := ϕ̂0

t + (ϕ̂1
t )

+(1− λ)St − (ϕ̂1
t )
−St

is strictly positive almost surely for all t ∈ [0, T ], i.e.,

inf
0≤t≤T

V liq
t (ϕ̂) > 0, a.s.. (4.2)

To show (4.2), we argue by contradiction. Define

σε := inf{t ∈ [0, T ] | V liq
t (ϕ̂) ≤ ε}, (4.3)

and let σ := limε↘0 σε. We have to show that σ = ∞, almost surely. Suppose that
P[σ <∞] > 0 and let us work towards a contradiction.

First observe that V liq
σ (ϕ̂) = 0 on {σ < ∞}. Indeed, as (V liq

t (ϕ̂))0≤t≤T is càdlàg, we
have that 0 ≤ V liq

σ (ϕ̂) ≤ limε↘0 V
liq
σε (ϕ̂) ≤ 0 on the set {σ <∞}.

So suppose that V liq
σ (ϕ̂) = 0 on the set {σ < ∞} with P[σ < ∞] > 0. We may and

do assume that S “moves immediately after σ”, i.e., σ = inf{t > σ | St 6= Sσ}: indeed,
we may replace σ on {σ < ∞} by the stopping time σ+ = σ− (the equality “σ+ = σ−”
coming from the (TWC) assumption). As V liq

T (ϕ̂) > 0 a.s., we have σ+ < T on {σ <∞}.
We shall repeatedly use the fact established in Theorem 2.10 in [12] that the process

V̂ := (ϕ̂0
t Ŷ

0
t + ϕ̂1

t Ŷ
1
t )0≤t≤T

is a uniformly integrable P-martingale satisfying V̂T > 0 almost surely. This implies that
ϕ̂1
σ 6= 0 a.s. on {σ < ∞}. Indeed, otherwise V̂σ = Ŷ 0

σ V
liq
σ (ϕ̂) = 0 on {σ < ∞}. As V̂ is

a uniformly integrable martingale with strictly positive terminal value V̂T > 0, we arrive
at the desired contradiction.

We consider here only the case that ϕ̂1
σ > 0 on {σ < ∞} almost surely: the case

ϕ̂1
σ < 0 with strictly positive probability on {σ <∞} can be dealt with in an analogous

way. We show that we cannot have Ŝσ = (1− λ)Sσ with strictly positive probability on
{σ < ∞}. Indeed, this again would imply that V̂σ = Ŷ 0

σ V
liq
σ (ϕ̂) = 0 on this set which

yields a contradiction as in the previous paragraph.
Hence, we assume that Ŝσ > (1 − λ)Sσ on {σ < ∞}. This implies by (4.1), see also

Theorem 3.5 in [10] and formula (249) in [30], that the utility-optimising agent defined
by ϕ̂ cannot sell stock at time σ as well as for some time after σ, as S is continuous and
Ŝ càdlàg. Note, however, that the optimising agent may very well buy stock. But, we
shall see that this is not to her advantage.

Define the stopping time %n as the first time after σ when one of the following events
happens:
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(i) Ŝt − (1− λ)St <
1
2

(
Ŝσ − (1− λ)Sσ

)
, or

(ii) St < Sσ − n−1.

By the hypothesis of (TWC) of “two-way crossing”, we conclude that, a.s. on {σ <∞}, we
have that %n decreases to σ and that we have S%n = Sσ−n−1, for n large enough. Choose n
large enough such that S%n = Sσ−n−1 on a subset of {σ <∞} of positive measure. Then
V liq
%n (ϕ̂) is strictly negative on this set which will give the desired contradiction. Indeed,

the assumption ϕ̂1
σ > 0 implies that the agent suffers a strict loss from this position as

S%n < Sσ. The condition (i) makes sure that the agent cannot have sold stock between σ
and %n. The agent may have bought additional stock during the interval Jσ, %nK. However,
this cannot result in a positive effect either as the subsequent calculation, which holds
true on {S%n = Sσ − n−1}, reveals:

V liq
%n (ϕ̂) = ϕ̂0

%n + (1− λ)ϕ̂1
%nS%n

≤ ϕ̂0
σ −

∫ %n

σ

Sudϕ̂
1,↑
u + (1− λ)

(
ϕ̂1
σ +

∫ %n

σ

dϕ̂1,↑
u

)
S%n

= V liq
σ (ϕ̂) + ϕ̂1

σ(1− λ) (S%n − Sσ)︸ ︷︷ ︸
=−n−1

−
∫ %n

σ

(
Su − (1− λ)S%n

)︸ ︷︷ ︸
≥Su−S%n≥0

dϕ̂1,↑
u < 0.

This contradiction finishes the proof of the theorem.

To apply Theorem 2.3 to the fractional Black-Scholes model (2.6), it remains to show
that condition (2.7), requiring that the indirect utility is finite, is satisfied. This is
established in the following lemma by using the estimate on the fluctuations of fractional
Brownian motion from Proposition A.1.

Fix H ∈ (0, 1), µ ∈ R, σ > 0, the fractional Black-Scholes model (2.6), that is,

St = exp
(
µt+ σBH

t

)
, 0 ≤ t ≤ T.

Let Xt := log(St) = µt + σBH
t . For δ > 0, define the δ-fluctuation times (τj)j≥0 of X

inductively by τ0 ≡ 0 and

τj+1(ω) := inf
{
t ≥ τj(ω)

∣∣ |Xt(ω)−Xτj(ω)(ω)| ≥ δ
}
. (4.4)

The number of δ-fluctuations of X up to time T is then given by the random variable

F̄
(δ)
T (ω) := sup{j ≥ 0 | τj(ω) ≤ T}. (4.5)

Lemma 4.1. Fix H ∈ (0, 1), µ ∈ R, σ > 0, the fractional Black-Scholes model (2.6),
that is,

St = exp
(
µt+ σBH

t

)
, 0 ≤ t ≤ T,

as well as λ > 0, and δ > 0 such that (1− λ)e2δ < 1.
Then, there exists a constant K > 0, depending only on δ and λ, such that, for each

ϕ ∈ A(x), we have

V liq
T (ϕ) ≤ xKn on {F̄ (δ)

T = n}. (4.6)

11



In particular, for any concave function U : (0,∞) 7→ R, the set{(
U(V liq

T (ϕ))
)+ ∣∣ ϕ ∈ A(x)

}
is dominated by an integrable random variable.

Proof. We first observe that the mapping t 7→ µt can at most have 2µδ−1T fluctuations
of size 1

2
δ up to time T . Since δ = |Xτj − Xτj+1

| ≤ |µ(τj − τj+1)| + σ|BH
τj
− BH

τj+1
|, we

therefore have that
F̄

(δ)
T ≤ 2µTδ−1 + F

(δ/2σ)
T ,

where F (δ/2σ)
T denotes the number of (δ/2σ)-fluctuations of BH up to time T as defined in

Appendix A. Combining the previous estimate with Corollary A.2 gives that the random
variable F̄ (δ)

T has exponential moments of all orders, that is, E[exp(aF̄
(δ)
T )] < ∞ for all

a ∈ R. As regards the final sentence of the lemma, it follows from (4.6) and (A.2) that

0 ≤ V liq
T (ϕ) ≤ xK F̄

(δ)
T = x exp(log(K)F̄

(δ)
T ) ∈ L1(P ) (4.7)

and hence {V liq
T (ϕ) | ϕ ∈ A(x)} ⊆ L1

+(P ) is dominated by an integrable random variable.
This implies the final assertion as any concave function U is dominated by an affine
function.

It remains to show (4.6). Fix an admissible trading strategy ϕ starting at ϕ0− = (x, 0)
and ending at ϕT = (ϕ0

T , 0). Define the “optimistic value” process (V opt(ϕt))0≤t≤T by

V opt(ϕt) := ϕ0
t + (ϕ1

t )
+St − (ϕ1

t )
−(1− λ)St :

the difference to the liquidation value V liq as defined in (2.2) is that we interchanged the
roles of S and (1− λ)S. Clearly V opt ≥ V liq.

Fix a trajectory (Xt(ω))0≤t≤T of X as well as j ∈ N such that τj(ω) < T. We claim
that there is a constant K = K(λ, δ) such that, for every τj(ω) ≤ t ≤ τj+1(ω) ∧ T,

V opt(ϕt(ω)) ≤ KV opt(ϕτj(ω)). (4.8)

To prove this claim we have to do some rough estimates. Fix t as above. Note that
St(ω) is in the interval [e−δSτj(ω), eδSτj(ω)] as τj(ω) ≤ t ≤ τj+1(ω) ∧ T. To fix ideas
suppose that St(ω) = eδSτj(ω). We try to determine the trajectory (ϕu)τj(ω)≤u≤t which
maximises the value on the left-hand side of (4.8) for given V := V opt(ϕτj(ω)) on the
right-hand side. As we are only interested in an upper bound we may suppose that the
agent is clairvoyant and knows the entire trajectory (Su(ω))0≤u≤T .

In the present case where St(ω) is assumed to be at the upper end of the interval
[e−δSτj(ω), eδSτj(ω)] the agent who is trying to maximise V opt(ϕt(ω)) wants to exploit
this up-movement by investing into the stock S as much as possible. But she cannot
make ϕ1

u ∈ R+ arbitrarily large as she is restricted by the admissibility condition V liq
u ≥ 0

which implies that ϕ0
u +ϕ1

u(1−λ)Su(ω) ≥ 0, for all τj(ω) ≤ u ≤ t. As for these u we have
Su(ω) ≤ eδSτj(ω) this implies the inequality

ϕ0
u + ϕ1

u(1− λ)eδSτj(ω) ≥ 0, τj(ω) ≤ u ≤ t. (4.9)
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As regards the starting condition V opt(ϕτj(ω)) we may assume without loss of gener-
ality that ϕτj(ω) = (V, 0) for some number V > 0. Indeed, any other value of ϕτj(ω) =
(ϕ0

τj
(ω), ϕ1

τj
(ω)) with V opt(ϕτj(ω)) = V may be reached from (V, 0) by either buying

stock at time τj(ω) at price Sτj(ω) or selling it at price (1− λ)Sτj(ω). Hence we face the
elementary deterministic optimization problem of finding the trajectory (ϕ0

u, ϕ
1
u)τj(ω)≤u≤t,

starting at ϕτj(ω) = (V, 0) and respecting the self-financing condition (2.1) as well as
inequality (4.9), which maximizes V opt(ϕt). Keeping in mind that (1 − λ) < e−2δ, a
moment’s reflection reveals that the best (clairvoyant) strategy is to wait until the mo-
ment τj(ω) ≤ t̄ ≤ t when St̄(ω) is minimal in the interval [τj(ω), t], then to buy at time
t̄ as much stock as is allowed by the inequality (4.9), and then keeping the positions
in bond and stock constant until time t. Assuming the most favourable (limiting) case
St̄(ω) = e−δSτj(ω), simple algebra gives ϕu = (V, 0) for τj(ω) ≤ u < t̄ and

ϕu =

(
V − Vbought,

Vboughte
δ

Sτj(ω)

)
for t̄ ≤ u ≤ t,

where
Vbought :=

V

1− (1− λ)e2δ
.

Using St(ω) = eδSτj(ω) we therefore may estimate in (4.8):

V opt(ϕt(ω)) ≤ V

(
1− 1

1− (1− λ)e2δ
+

e2δ

1− (1− λ)e2δ

)
. (4.10)

Due to the hypothesis (1 − λ)e2δ < 1 the term in the bracket is a finite constant K,
depending only on λ and δ. We have assumed a maximal up-movement St(ω) = eδSτj(ω).
The case of a maximal down-movement St(ω) = e−δSτj(ω) as well as any intermediate
case follow by the same token yielding again the estimate (4.8) with the same constant
given by (4.10). Observing that V opt ≥ V liq we obtain inductively (4.6) thus finishing
the proof.

Proof of Theorem 2.4. The fractional Black-Scholes model satisfies (TWC) by Corol-
lary 6.1 of [29]. The finiteness of the indirect utility function u(x) < ∞ follows from
Lemma 4.1. Using Theorem 3.2, Proposition 2.9 of [12] and Theorem 3.1 of [25], we
obtain that the primal value function u and the dual value function v are conjugate.

In order to show the duality results, by Theorem 4 of [26], it is sufficient to show
that v(y) < ∞ for all y > 0. To that end, let y > 0 be arbitrary. Since U is strictly
concave, strictly increasing and satisfies the Inada conditions, we may find C > 0 and
0 < k < y(E[K F̄

(δ)
T ])−1, depending on y, such that U(x) ≤ C + kx, and therefore, by

(4.7), that u(x) ≤ C + k E[K F̄
(δ)
T ]x, which implies

v(y) = sup
x>0
{u(x)− xy} ≤ sup

x>0

{
C +

(
k E
[
K F̄

(δ)
T

]
− y
)
x
}
≤ C <∞.

By Theorem 4 of [26], we obtain the existence of primal optimiser (ϕ̂0, ϕ̂1) and dual
optimiser (Ŷ 0, Ŷ 1) such that Ŷ 0ϕ̂0 + Ŷ 1ϕ̂1 is a uniformly integrable martingale. The
existence of a shadow price Ŝ = (Ŝt)0≤t≤T in the sense of Definition 2.1 then follows by
the same argument as in the proof of Theorem 2.3.
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A Appendix: Fluctuations of fractional Brownian mo-
tion

In this appendix we establish a control on the number of fluctuations of fractional Brow-
nian motion (Proposition A.1). It allows us to show the finiteness of the indirect utility
for the proof of Theorem 2.4, and may also be interesting in its own right. Though the
results stated here only deal with the case of fractional Brownian motion, our techniques
can actually also be applied to a broader class of Gaussian processes.

Let BH = (BH
t )t≥0 be a standard fractional Brownian motion with Hurst parameter

H ∈ (0, 1]. Fix δ > 0 and define the δ-fluctuation times of BH , denoted by (τj(ω))j∈N,
resp. the number of δ-fluctuations of BH up to time T ∈ (0,∞), denoted by F

(δ)
T (ω),

exactly as we defined these concepts for X in (4.4) and (4.5).
The main result of this appendix is the following proposition:

Proposition A.1. With the notation above, there exist finite positive constants C =
C(H), C ′ = C ′(H) such that

P
[
F

(δ)
T ≥ n

]
≤ exp

(
−C−1δ2T−2Hn(n2H∧1 − C ′ lnn)

)
for all n ≥ 2. (A.1)

The interest of Proposition A.1 for this article lies in the following corollary:

Corollary A.2. With the above notation, for any δ > 0, the random variable F (δ)
T does

have exponential moments of all orders, that is,

E
[
exp
(
aF

(δ)
T

)]
<∞ for all a ∈ R. (A.2)

Moreover, if H ≥ 1/2, this random variable even has a Gaussian moment, that is,
there exists a > 0 such that

E
[
exp(a(F

(δ)
T )2)

]
<∞.3 (A.3)

Proof of Corollary A.2. For f(x) = exp(ax) and f(x) = exp(ax2), we have

E
[
f(F

(δ)
T )
]

= f(0) +

∫ ∞
0

f ′(x)P
[
F

(δ)
T ≥ x

]
dx

by Fubini’s Theorem. Combining this with the estimate (A.1) gives (A.2) and (A.3).

Proof of Proposition A.1. Throughout the proof, we denote by C,C ′ > 0 constants only
depending on H, but whose precise value may vary from appearance to appearance.

Let n,m ∈ N be such that m > n ≥ 2. We divide [0, T ] into m subintervals Ik :=

[ k
m
T, k+1

m
T ] for k = 0, . . . ,m − 1 and denote their midpoints by tk := k+1/2

m
T . Then, we

can estimate the probability of the set

A1 :=
m−1⋃
k=0

{∃t ∈ Ik |BH
t −BH

tk
| > 1

4
δ}

3Equation (A.3) is actually not used in this article, but this result seemed worth being written to us.
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by

P
[
A1

]
≤ mP

[
∃t ∈ Ik |BH

t −BH
tk
| > 1

4
δ
]

= mP
[
sup
|t|≤1

|BH
t | > (T / 2m)−H 1

4
δ
]
≤ C ′m exp

(
−C−1

(
(m / T )Hδ

)2)
, (A.4)

where the penultimate equality comes from translation and scale invariance of fractional
Brownian motion,4 and the last inequality from Fernique’s theorem [14, Lemma 2.2.5].

On the complement Ac
1 of A1, we then have that

sup
t∈Ik
|BH

t −BH
tk
| ≤ 1

4
δ for all k = 0, . . . ,m− 1. (A.5)

Suppose now that F (δ)
T (ω) ≥ n. Then there have to be at least (n+ 1) “random indices”

0 = K0(ω) < K1(ω) < · · · < Kn(ω) < m such that τj(ω) ∈ IKj(ω) for j = 0, . . . , n.
Because of (A.5) and |BH

τj
− BH

τj+1
| = δ, we then must have |BH

tKj
− BH

tKj+1
| ≥ 1

2
δ for

j = 0, . . . , n− 1 on {F (δ)
T ≥ n} ∩ Ac

1.
In order to estimate P[{F (δ)

T ≥ n} ∩ Ac
1], it therefore only remains to bound the

probability of the event

A2 :=
n−1⋂
j=0

{
|BH

tKj
−BH

tKj+1
| ≥ 1

2
δ
}
.

But the event A2 depends on the realisation of the “random indices” (Kj(ω))0≤j≤n. To
get rid of this dependence, we simply estimate the probability of the event

A3 :=
n−1⋂
j=0

{|BH
tkj
−BH

tkj+1
| ≥ 1

2
δ}

for all
(
m−1
n

)
possible realisations 0 = k0 < k1 < · · · < kn < m of our “random indices”.

For this, fix an arbitrary realisation of indices (kj)0≤j≤n and set

∆j := BH
tkj+1
−BH

tkj
for j = 0, . . . ,m− 1.

Then

A3 =
n−1⋂
j=0

{|∆j| ≥ 1
2
δ} =

n−1⋂
j=0

{sgn(∆j)∆j ≥ 1
2
δ} ⊆

{n−1∑
j=0

sgn(∆j)∆j ≥ 1
2
nδ
}
,

so that

A3 ⊆
⋃{{n−1∑

j=0

εj∆j ≥ 1
2
nδ
} ∣∣∣ (εj)0≤j<n ∈ {−1,+1}n

}
.

4Exact translation and scale invariance of fractional Brownian motion is actually not needed here:
more precisely, exact invariance shortens the proof by allowing the use of Fernique’s theorem, but a
slight refinement of that theorem would make the result work as soon as one has a bound of the type
Var(BH

t −BH
s ) ≤ C|t− s|2H : see e.g. Lemma 4.2 of [29].
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For fixed (εj)0≤j<n ∈ {−1,+1}n, we have that
∑n−1

j=0 εj∆j is a centred normally dis-
tributed random variable with variance

Var
(n−1∑
j=0

εj∆j

)
=

n−1∑
j,j′=0

εjεj′ Cov(∆j,∆j′) ≤
n−1∑
j,j′=0

|Cov(∆j,∆j′)|. (A.6)

To estimate (A.6), we distinguish the cases H ≥ 1/2 from the case H < 1/2. If
H ≥ 1/2, the covariance Cov(∆j,∆j′) is always non-negative, so that

n−1∑
j,j′=0

|Cov(∆j,∆j′)| = Var
(n−1∑
j=0

∆i

)
= Var(BH

tkn
−BH

tk0
) = |tk0 − tkn|

2H ≤ T 2H .

If H < 1/2, the covariance Cov(∆j,∆j′) is non-positive as soon as j 6= j′, so that

n−1∑
j′=0

|Cov(∆j,∆j′)| = Var(∆j)− Cov
(

∆j,
∑
j′<j

∆j′

)
− Cov

(
∆j,

∑
j′>j

∆j′

)
= Var(∆j)− Cov(∆j, B

H
tk0
−BH

tkj
)− Cov(∆j, B

H
tkj+1
−BH

tkn
).

But for 0 ≤ t ≤ u ≤ v ≤ T , it follows from the definition of fractional Brownian motion
that

−Cov(BH
u −BH

t , B
H
v −BH

u ) = 1
2
(|t− u|2H + |u− v|2H − |t− v|2H) ≤ 1

2
|t− u|2H .

Therefore, we have that

n−1∑
j′=0

|Cov(∆j,∆j′)| ≤ |tkj − tkj+1
|2H + 1

2
|tkj − tkj+1

|2H + 1
2
|tkj − tkj+1

|2H = 2|tkj − tkj+1
|2H

and thus

Var
(n−1∑
j=0

εj∆j

)
≤ 2

n−1∑
j=0

|tkj − tkj+1
|2H . (A.7)

But, since H < 1/2, the function x 7→ x2H is concave, so that the right-hand side of (A.7)
is bounded above by

2n

(∑n−1
j=0 |tkj − tkj+1

|
n

)2H

= 2n(|tk0 − tkn| / n)2H ≤ 2n(T / n)2H = 2n1−2HT 2H .

Hence in both cases we can estimate:

Var
(n−1∑
j=0

εj∆j

)
≤ 2T 2Hn(1−2H)+ .

So, using the classical bound that P[Z ≥ x] ≤ e−x
2/2 for any standard normal dis-

tributed random variable Z ∼ N (0, 1), we have that

P
[n−1∑
j=0

εj∆j ≥ 1
2
nδ
]
≤ exp(− 1

16
T−2Hδ2n1+(2H∧1))
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for all 2n possible choices of (εj)0≤j<n ∈ {−1,+1}n, and therefore

P
[
A3

]
≤ 2n exp(− 1

16
T−2Hδ2n1+(2H∧1)).

Combining that estimate with (A.4), and using that
(
m−1
n

)
≤ mn, we finally get that

P
[
F

(δ)
T ≥ n

]
≤ P

[
A1

]
+ P

[{
F

(δ)
T ≥ n

}
∩ Ac1

]
≤ C ′m exp

(
−C−1T−2Hδ2m2H

)
+ 2nmn exp

(
− 1

16
T−2Hδ2n1+(2H∧1)

)
.

Now, it only remains to choose m to be dn1/He to obtain

P
[
F

(δ)
T ≥ n

]
≤ exp

(
−C−1δ2T−2Hn(n2H∧1 − C ′ lnn)

)
,

which completes the proof.
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