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It is well known that the quadratic Wasserstein distance W 2 (•, •) is formally equivalent, for infinitesimally small perturbations, to some weighted H -1 homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W 2 distance exhibits some localization phenomenon: if µ and ν are measures on R n and ϕ : R n → R + is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between ϕ • µ and ϕ • ν by an explicit multiple of W 2 (µ, ν).

1 Non-asymptotic equivalence between W 2 distance and Ḣ-1 norm

Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its distance dist(•, •) and its standard measure λ provided by the volume form (so, in the case M = R n , λ is the Lebesgue measure). Let us give a few standard definitions which will be at the core of our work:

• For µ, ν two positive measures on M , denoting by Π (µ, ν) the set of (positive) measures on M × M whose respective marginals are µ and ν, for π ∈ Π (µ, ν) one defines

I(π) := ˆM×M dist(x, y) 2 π(dx, dy) (1) 
and then

W 2 (µ, ν) := inf{I(π) | π ∈ Π (µ, ν)} 1/2 . ( 2 
)
W 2 is a (possibly infinite) distance, called the quadratic Wasserstein distance [13, § 7.1]. Note that this distance is finite only between measures having the same total mass.

• On the other hand, for µ a (positive) measure on M , if f is a C 1 real function on M , one denotes

f Ḣ1 (µ) := ˆM |∇f (x)| 2 µ(dx) 1/2 , (3) 
which defines a semi-norm; for ν a signed measure on M , one then denotes

ν Ḣ-1 (µ) := sup{| f, ν | | f Ḣ1 (µ) 1}, (4) 
where the duality product f, ν denotes the integral of the function f against the measure ν. [ * ] We observe that • Ḣ-1 (µ) defines a (possibly infinite) norm, which we will call the Ḣ-1 (µ) weighted homogeneous Sobolev norm. Note that this norm is finite only for measures having zero total mass. In the case µ is the standard measure, we will merely write " Ḣ-1 " for " Ḣ-1 (λ)".

The W 2 Wasserstein distance is an important object in analysis; but it is nonlinear, which makes it harder to study. For infinitesimal perturbations however, the linearized behaviour of W 2 is well known: if µ is a positive measure on M and dµ is an infinitesimally small perturbation of this measure, [ †] one has formally (see [13, § 7.6] or [9, § 7]) W 2 (µ, µ + dµ) = dµ Ḣ-1 (µ) + o(dµ). [ ‡] (5)

More precisely, one has the following equality, known as the Benamou-Brenier formula ([2, Prop. 1.1] for M = R n ; see [START_REF] Pratelli | Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds[END_REF] for general Riemannian manifolds): for two positive measures µ, ν on M ,

W 2 (µ, ν) = inf ˆ1 0 dµ t Ḣ-1 (µt) µ 0 = µ, µ 1 = ν . (6) 
Then, a natural question is the following: are there non-asymptotic comparisons between the W 2 distance and the Ḣ-1 norm? Concretely, we are looking for inequalities like

C a µ -ν Ḣ-1 (µ) W 2 (µ, ν) C b µ -ν Ḣ-1 (µ) (7) 
for constants 0 < C a C b < ∞, under mild assumptions on µ and ν.

[ * ] The rationale behind the use of duality notation in this article is that we cannot use the notation "dµ" to refer to the measure of a small volume: see indeed Footnote [ †] below.

[ †] Beware that here dµ denotes a small measure on M , not the value of µ on a small volume. [ ‡] This formula has to be understood in the sense that, for every measure ν, one has W2(µ, µ

+ εν) ε→0 = |ε| ν Ḣ-1 (µ) + o(ε).
As explained in the references cited, some regularity assumptions on ν shall be required for that property to hold rigorously: in particular, one must have ν µ with a bounded and smooth enough density.

 W 2 distance and Ḣ-1 norm Rémi Peyre 1.2 Controlling W 2 by Ḣ-1 Theorem 1. For any positive measures µ, ν on M , W 2 (µ, ν) 2 µ -ν Ḣ-1 (µ) . (8) 
Proof. We suppose that µ -ν Ḣ-1 (µ) < ∞, otherwise there is nothing to prove. For t ∈ [0, 1], let

µ t := (1 -t)µ + tν, (9) 
so that µ 0 = µ, µ 1 = ν and dµ t = (µ -ν)dt. Then, by the Benamou-Brenier formula (6):

W 2 (µ, ν) ˆ1 0 µ -ν Ḣ-1 (µt) dt. (10) 
Now, we use the following key lemma, whose proof is postponed:

Lemma 2.
If µ, µ are two measures such that µ ρµ for some ρ > 0, then

• Ḣ-1 (µ ) ρ -1/2 • Ḣ-1 (µ) . [ §]
Here obviously µ t (1 -t)µ, so

W 2 (µ, ν) ˆ1 0 (1 -t) -1/2 µ -ν Ḣ-1 (µ) dt = 2 µ -ν Ḣ-1 (µ) , (11) qed. 
Corollary 3. If µ ρλ for some ρ > 0, then

W 2 (µ, ν) 2ρ -1/2 µ -ν Ḣ-1 . (12) 
Proof. Just use that

• Ḣ-1 (µ) ρ -1/2 • Ḣ-1 by Lemma 2.
Proof of Lemma 2. Take µ ρµ and let ν be a signed measure on M such that µ + ν is positive; then µ + ρν is also positive. For m a measure on M , we denote by diag(m) the measure on M × M supported by the diagonal whose marginals (which are equal) are m, i.e.:

diag(m) (A × B) := m(A ∩ B); (13) 
with that notation,

π ∈ Π (µ, µ + ν) ⇒ ρπ + diag(µ -ρµ) ∈ Π (µ , µ + ρν), (14) 
and

I ρπ + diag(µ -ρµ) = ρI(π). (15) 
Therefore, taking infima, 16) [ §] Beware that here '•' stands for a measure, not for a function: otherwise the formula would be false.-When f is a function, f Ḣ-1 (µ) stands for the Ḣ-1 (µ) norm of the measure having density f w.r.t. µ.

W 2 (µ , µ + ρν) 2 = inf{I(π ) | π ∈ Γ (µ , µ + ρν)} inf I ρπ + diag(µ -ρµ) π ∈ Γ (µ, µ + ν) = ρ inf{I(π) | π ∈ Γ (µ, µ + ν)} = ρW 2 (µ, µ + ν) 2 . (
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2 Ḣ-1 (µ ) ρ ν 2 Ḣ-1 (µ) , hence ν Ḣ-1 (µ ) ρ -1/2 ν Ḣ-1 (µ)
. This relation remains true even for non-infinitesimal ν by linearity, which ends the proof. Remark 4. Lemma 2 could also be proved very quickly by using the definition (3)-( 4) of the Ḣ-1 (µ) norm. The proof above, however, has the advantage that it does not need the precise expression of • Ḣ-1 (µ) , but only the fact that it is the linearized W 2 distance.

1.3 Controlling Ḣ-1 by W 2 Theorem 5. Assume M has nonnegative Ricci curvature. Then for any positive measures µ, ν on M such that µ ρ 0 λ and ν ρ 1 λ,

µ -ν Ḣ-1 2(ρ 1/2 0 -ρ 1/2 1 ) ln(ρ 0 / ρ 1 ) W 2 (µ, ν). ( 17 
)
(For ρ 1 = ρ 0 , the right-hand side of (17) is to be taken as ρ • Ḣ-1 (µt) by Lemma 2. Then, by the integral triangle inequality for normed vector spaces,

µ -ν Ḣ-1 = ˆ1 0 dµ t Ḣ-1 ˆ1 0 dµ t Ḣ-1 ˆ1 0 ρ (1-t)/2 0 ρ t/2 1 dµ t Ḣ-1 (µt) = ˆ1 0 ρ (1-t)/2 0 ρ t/2 1 dt W 2 (µ, ν) = 2(ρ 1/2 0 -ρ 1/2 1 ) ln(ρ 0 / ρ 1 ) W 2 (µ, ν), (18) 
qed.

Remark 7. Taking into account the dimension n of the manifold M , the bound on µ t ∞ could be refined into

µ t ∞ (1 -t) µ 0 -1/n ∞ + t µ 1 -1/n ∞ -n (19) 
[ ¶] To make rigorous the formal argument of taking an infinitestimally small ν, according to Footnote [ ‡] above, one would have to replace ν by εν1, where ν1 is a regular enough measure, and to let ε tend to 0; then the regularity assumption on ν1 would be relaxed by a classical approximation argument. Anyway, Lemma 2 can also be proved easily and rigorously without referring to optimal transportation at all, cf. Remark 4 below.
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W 2 distance and Ḣ-1 norm Rémi Peyre (cf. [START_REF] Mccann | A convexity principle for interacting gases[END_REF]Theorem 2.3]), which would yield a slightly sharper bound in Equation (17), namely:

µ -ν Ḣ-1 ˆ1 0 (1 -t)ρ -1/n 0 + tρ -1/n 1 -n/2 dt W 2 (µ, ν) =      ρ 1/2-1/n 0 -ρ 1/2-1/n 1 (n/2-1)(ρ -1/n 1 -ρ -1/n 0 ) W 2 (µ, ν) n 2; log(ρ 1 /ρ 0 ) 2(ρ -1/2 0 -ρ -1/2 1 ) W 2 (µ, ν) n = 2. ( 20 
)
For n = 1 it turns out that one can let tend ρ 1 → ∞ in (20) without making the integral diverge; which leads to a much more powerful result:

Theorem 8. When M is an interval of R, then under the sole assumption that µ ρ 0 λ, one has for all positive measures ν on M :

µ -ν Ḣ-1 2ρ 1/2 0 W 2 (µ, ν). ( 21 
)
Remark 9. For n 2 there is no hope to get a bound valid for all ν, because then it can occur that W 2 (µ, ν) < ∞ but µ -ν Ḣ-1 = ∞: for instance, take µ to be the uniform measure on the 2-dimensional sphere and ν a Dirac mass.

2 Application to localization of Wasserstein distance

Introduction

In all this section, we work in the Euclidian space R n , whose norm is denoted by |•|. dist(x, A) := inf{|x -y| | y ∈ A} denotes the distance between a point x and a set A; A c denotes the complement of A; λ denotes the Lebesgue measure. We will use the following notation to handle measures:

• For µ a measure on R n and f : R n → R n a measurable map, f * µ denotes the pushforward of µ by f , that is,

f * µ (A) := µ(f -1 (A)).
• For µ a measure on R n and ϕ : R n → R + a nonnegative measurable function, ϕ • µ denotes the measure such that ϕ • µ (dx) := ϕ(x)µ(dx).

We will also use the following norms on measures:

• µ Ḣ-1 (ν) has the same definition as in § 1;

•

µ 1 := ´Rn|µ(dx)| is the total variation norm of µ; [ ]
• For ν a positive measure with µ ν, we define

µ L 2 (ν) := ˆsupp ν µ(dx) ν(dx) 2 ν(dx) 1/2 . [ * * ] (22) 
For A ⊂ R n , we also denote

• L 2 (A) for • L 2 (1 A •λ) .
[ ] Note that in the case µ is a positive measure on R n , then µ 1 is nothing but µ(R n ). [ * * ] What we denote here by µ(dx)/ν(dx) here is what is commonly called dµ/dν (x): indeed, as we already told, in this article we reserve the use of "dµ" to denote a mass distribution of infinitesimally small magnitude, rather than for the mass of an infinitely small volume.
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The goal of this section is to give an application of Theorem 1 to the problem of localization of the quadratic Wasserstein distance. Morally, the question is the following: take two measures µ, ν on R n being close to each other in the sense of W 2 distance; is it true that µ and ν remain close when you consider their restrictions to a subset of R n ? Concretely, if ϕ is a non-negative real function on R n with compact support (plus some technical assumptions to be specified later), we want to bound above W 2 (aϕ•µ, ϕ•ν) by some multiple of W 2 (µ, ν)-where, in the former expression, a is a constant factor ensuring that aϕ • µ and ϕ • ν have the same mass (for otherwise the distance between ϕ • µ and ϕ • ν is generically infinite).

This question, which was my initial motivation for the results of § 1, was asked to me by Xavier Tolsa, who needed such a result for his paper [START_REF] Tolsa | Mass transport and uniform rectifiability[END_REF] on characterizing uniform rectifiability in terms of mass transport. Actually Xavier managed to devise a proof of his own [12, Theorem 1.1], but it was quite long (about thirty pages) and involved arguments of multi-scale analysis. With Theorem 1 at hand, however, the reasoning becomes far more direct; moreover we will be able to relax some of the assumptions of Xavier's theorem.

Statement of the theorem

Theorem 10. Let µ, ν be (positive) measures on R n having the same total mass; let B be a ball of R n (whose radius will be denoted by R when needed). Assume that on B, the density of µ w.r.t. the Lebesgue measure is bounded above and below:

∃ 0 < m 1 m 2 < ∞ ∀x ∈ B m 1 λ(dx) µ(dx) m 2 λ(dx). (23) 
Let ϕ : R n → R + be a function such that:

(i) ϕ is zero outside B;

(ii) There exist 0 < c 1 c 2 < ∞ such that for all x ∈ B, c

1 dist(x, B c ) 2 ϕ(x) c 2 dist(x, B c ) 2 . (iii) ϕ is k-Lipschitz for some k < ∞.
Then, denoting a

:= ϕ • ν 1 / ϕ • µ 1 , W 2 (aϕ • µ, ϕ • ν) C(n) c 3/2 2 m 3/2 2 c 3/2 1 m 3/2 1 kc -1/2 1 W 2 (µ, ν), (24) 
for C(n) < ∞ some absolute constant only depending on n. Moreover, one can bound explicitly

C(n) in such a way that C(n) = O(n 1/2 ) when n → ∞. [ † †]
Remark 11. Theorem 10 relaxes the assumptions of Theorem 1.1 of [START_REF] Tolsa | Mass transport and uniform rectifiability[END_REF] on the following points: first, Tolsa's theorem required that |∇ϕ| was bounded by a multiple of dist(•, B c ), while ours does not impose any specific control on |∇ϕ| near the boundary of B; second, Tolsa's theorem worked only for radially symmetric ϕ. Also, contrary to [START_REF] Tolsa | Mass transport and uniform rectifiability[END_REF], our conclusions state explicitly how the bound on W 2 (aϕ • µ, ϕ • ν) depends on the constants k, c 1 , c 2 , m 1 , m 2 and on the dimension n.

[ † †] For instance, with the estimates of this article, one finds that C(n) := 47n 1/2 fits-though this may be strongly suboptimal.
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Corollary 13. Make the same assumptions as in Theorem 10, except that B need not be a ball: instead, we only assume that, denoting by B • the (true) ball having the same volume as B, there exists a bijection Φ : B ↔ B • mapping the uniform measure on B onto the uniform measure on B • (i.e. such that Φ * (1

B • λ) = 1 B• • λ)
such that Φ is bi-Lipschitz (i.e. such that both Φ and Φ -1 are Lipschitz). Denote by

Φ Lip and Φ -1
Lip the optimal Lipschitz constants for resp. Φ and Φ -1 . Then, the conclusion of Theorem 10 remains true, except that now you have to replace the factor C(n) by Lip and c 2 Φ -1 2 Lip . Therefore, applying (24):

( Φ Lip Φ -1 Lip ) 5 C(n). (25 
W 2 (aϕ • • µ • , ϕ • • ν • ) C(n) Φ 4 Lip Φ -1 4 Lip c 3/2 2 m 3/2 2 c 3/2 1 m 3/2 1 W 2 (µ • , ν • ). (26) 
But the optimal transportation plan from µ to ν, with cost W 2 (µ, ν) 2 , can be pushed forward by Φ into a (not optimal in general) transportation plan from µ • to ν • , whose cost will then be

Φ 2 Lip W 2 (µ, ν) 2 ; so W 2 (µ • , ν • ) Φ Lip W 2 (µ, ν). Similarly W 2 (aϕ • µ, ϕ • ν) Φ -1 Lip W 2 (aϕ • • µ • , ϕ • • ν • ).
The announced result follows.

Proof of the main theorem

In the sequel we will shorthand W 2 (µ, ν) =: w, and also ϕ • µ =: μ, resp. ϕ • ν =: ν. Let g =: Id + S be a map achieving optimal transportation from ν to µ, i.e. such that µ = g * ν with ´Rn|S(y)| 2 ν(dy) = w 2 . [ ‡ ‡] Our strategy will consist in transforming ν into aμ according to the following procedure:

x We apply the transportation plan g to ν; this transforms ν into some measure μ * . The measure μ * is not supported by B a priori, so we split it into μ * [ ‡ ‡] Actually such an g does not always exist, as it can occur that the optimal transportation plan from ν to µ "splits points" if ν is not regular enough. However it would suffice to use the general formalism of transportation plans to handle that case: we do not do it here to keep notation light, but this is straightforward. Also note that it is not obvious that the infimum in ( 2) is attained: again, that is not a real problem as our proof still works by considering a sequence of transportation plans approaching optimality.

B + μ * c := 1 B • μ * + 1 B c • μ * .
[ * ] Observe that aB + ac = a.
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Then, denoting by W 2 (x), W 2 (y), W 2 (z) the respective Wasserstein distances of these steps, we shall have

W 2 (ν, aμ) W 2 (x) + (W 2 (y) 2 + W 2 (z) 2 ) 1/2 .
Let us begin with bounding the cost of Step x. The squared cost of this step is

W 2 (x) 2 = ˆ|S(y)| 2 ν(dy) = ˆ|S(y)| 2 ϕ(y)ν(dy) sup ϕ × ˆ|S(y)| 2 ν(dy) = sup ϕ × w 2 c 2 R 2 w 2 , ( 27 
) whence W 2 (x) c 1/2
2 Rw. Now consider Step y. As a c μ is supported by B, one has obviously

W 2 (y) 2 ˆ dist(x, B) + 2R 2 μ * c (dx) = ˆBc dist(x, B) + 2R 2 μ * (dx). (28) 
From that we deduce that W 2 (y) 2c

1/2 2 Rw by the following computation:

ˆBc dist(x, B) + 2R 2 μ * (dx) = ˆg(y)/ ∈B dist(g(y), B) + 2R 2 ϕ(y)ν(dy) c 2 ˆy∈B g(y) / ∈B dist(g(y), B) + 2R 2 dist(y, B c ) 2 ν(dy) c 2 ˆy∈B g(y) / ∈B R dist(g(y), B) + 2R dist(y, B c ) 2 ν(dy) 4c 2 R 2 ˆy∈B g(y) / ∈B dist(g(y), B) + dist(y, B c ) 2 ν(dy) 4c 2 R 2 ˆ|y -g(y)| 2 ν(dy) = 4c 2 R 2 w 2 . ( 29 
)
Step z is the difficult one. We begin with observing that it is easy to bound the L 2 (B) distance between μ * B and μ: indeed, denoting by f =: Id + T the inverse map of g [ †] ,

μ * B -μ 2 L 2 (1 B •µ) = ˆB μ * (dx) -ϕ(x)µ(dx) µ(dx) 2 µ(dx) = ˆB ϕ(f (x)) -ϕ(x) 2 µ(dx) k 2 ˆRn |x -f (x)| 2 µ(dx) = k 2 ˆ|T (x)| 2 µ(dx) = k 2 w 2 , ( 30 
)
(where we used that μ * (dx

) = ν d(f (x)) = ϕ(f (x))ν d(f (x)) = ϕ(f (x))µ(dx)), so that μ * B -μ 2 L 2 (B) k 2 m 2 w 2 . [ ‡] (31) 
[ †] For f to exist, g should be bijective, which is not always true stricto sensu; but we can safely carry out the reasoning with pretending so, by the same argument as in Footnote [ ‡ ‡] on page 7.

[ ‡] Remember that when ν stands for a measure, ν L 2 (µ) means what is more commonly denoted by dν/dµ L 2 (µ) , so that the relation µ mλ implies that ν 2

L 2 (λ)
m ν 2 L 2 (µ) -while on the other hand, when f stands for a function, one has f 2

L 2 (µ) m f 2 L 2 (λ) .
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Now we have to link

• L 2 (B) with • Ḣ-1 (µ)
. This is achieved by the following lemma, whose proof is postponed: Lemma 14. Define λ to be the measure on B such that λ(dx) := dist(x, B c ) 2 λ(dx). Then, for any signed measure m on B having total mass zero:

m Ḣ-1 ( λ) C 1 (n) 1/2 m L 2 (B) , (32) 
where C 1 (n) is some absolute constant only depending on n. Moreover, taking C 1 (n) := (2e + 1)n -1 ∨ 8e fits.

Thanks to Theorem 1 and Lemma 14, we have that

W 2 (z) 2 a B μ -μ * B Ḣ-1 (a B μ) 2(a B c 1 m 1 ) -1/2 a B μ -μ * B Ḣ-1 ( λ) 2C 1 (n) 1/2 (a B c 1 m 1 ) -1/2 a B μ -μ * B L 2 (B) . ( 33 
)
Next, we compute

a B μ -μ * B L 2 (B) = μ * B 1 μ 1 μ -μ * B L 2 (B) | μ * B 1 -μ 1 | μ 1 μ L 2 (B) + μ * B -μ L 2 (B) μ L 2 (B) μ 1 μ * B -μ 1 + μ * B -μ L 2 (B) μ L 2 (B) μ 1 λ(B) 1/2 + 1 μ * B -μ L 2 (B) c 2 m 2 c 1 m 1 λ(B) 1/2 λ L 2 (B) λ 1 + 1 μ * B -μ L 2 (B) [ §] √ 6 c 2 m 2 c 1 m 1 + 1 μ * B -μ L 2 (B) (31) 
( √ 6 + 1) c 2 m 2 c 1 m 1 km 1/2 2 w, (34) 
so that, combining (33) and (34), we have got:

W 2 (z) (2 √ 6 + 2)C 1 (n) 1/2 a -1/2 B c 2 m 3/2 2 c 1 m 3/2 1 k c 1/2 1 w. ( 35 
)
Equation ( 35) is the kind of bound we were looking for, provided a B 1. Though this will be the case in practice (since we are mainly interested in cases where ν is close to µ and thus μ * is close to μ), this is not quite satisfactory yet. So, what can we do when a B 1, that is, when μ * B 1 μ 1 ? In fact that case is easier, because transportation between small measures has low cost, while w has to be large to make μ * B very different from μ. The computations are the following. First, it is obvious that

W 2 (z) = W 2 (μ * B , a B μ) 2R μ * B 1/2 1 . ( 36 
)
[ §] This step comes from the computation λ(B)

1/2 λ L 2 (B) / λ 1 = ( ´1 0 r n-1 dr) 1/2 × ´1 0 (1 -r) 4 r n-1 dr 1/2 / ´1 0 (1 -r) 2 r n-1 dr = 6(1 + n)(2 + n) / (3 + n)(4 + n) 1/2 √ 6 ∀n.  W 2 distance and Ḣ-1 norm Rémi Peyre Next, observing that ϕ(f (x)) c 1 c 2 ϕ(x) -2c 1 dist(x, B c )|T (x)|, [ ¶] we compute that μ * B 1 = ˆB ϕ(f (x))µ(dx) ˆB c 1 c 2 ϕ(x) -2c 1 dist(x, B c )|T (x)| µ(dx) c 1 c 2 μ 1 -2c 1 ˆB dist(x, B c ) 2 µ(dx) 1/2 ˆB|T (x)| 2 µ(dx) 1/2 = c 1 c 2 μ 1 -2c 1 dist(•, B c ) 2 • µ 1/2 1 w c 1 c 2 μ 1 -2c 1 m 1/2 2 λ 1/2 1 w, (38) 
whence

w c 1 c 2 μ 1 -μ * B 1 + 2c 1 m 1/2 2 λ 1/2 1 = c 1 c 2 -a B + μ 1 2c 1 m 1/2 2 λ 1/2 1 m 1/2 1 2c 1/2 1 m 1/2 2 c 1 c 2 -a B + μ 1/2 1 . (39) So, W 2 (z) 2R μ * B 1/2 1 = 2Ra 1/2 B μ 1/2 1 4Rc 1/2 1 m 1/2 2 m 1/2 1 a 1/2 B ( c 1 c 2 -a B ) + w. (40) 
In the end, choosing either (35) if a B c 1 / 2c 2 or (40) if c 1 / 2c 2 , and observing that c 1 kR -1 , one has always:

W 2 (z) (4 √ 3 + 2 √ 2)C 1 (n) 1/2 ∨ 4 √ 2 c 3/2 2 m 3/2 2 c 3/2 1 m 3/2 1 k c 1/2 1 w. (41) 
Remark 15. To bound W 2 (z) in the situation where a B 1, we could also have started from "ϕ(f

(x)) ϕ(x) -k|T (x)|" (instead of "ϕ(f (x)) c 1 c 2 ϕ(x) - 2c 1 dist(x, B c )|T (x)|"
) to get another bound analogous to (38). Following such an approach, the factor (c 2 / c 1 ) 3/2 in (40) would be improved into (c 2 / c 1 ) in the analogous formula; however the dimensional factor would behave in O(n) rather than in O(n 1/2 ).

Proof of Lemma 14

It still remains to prove Lemma 14, whose statement we recall to be:

Lemma. Denoting λ := dist(•, B c ) 2 • λ,
one has, for any signed measure m on B having total mass zero:

m Ḣ-1 ( λ) (2e + 1)n -1 ∨ 8e 1/2 m L 2 (B) . (42) 
-In the sequel, " (2e + 1)n -1 ∨ 8e" will be shorthanded into "C 1 (n)".

Remark 16. The bound (42) is within a constant factor of being optimal, uniformly in n, as one sees by taking a linear function f in (45).

[ ¶] This follows from the computation:

ϕ(f (x)) c1 dist(f (x), B c ) 2 c1 dist(x, B c ) -|T (x)| 2 + c1 dist(x, B c ) 2 -2c1 dist(x, B c )|T (x)| c1 c2 ϕ(x) -2c1 dist(x, B c )|T (x)|. (37)  W 2 distance and Ḣ-1 norm Rémi Peyre
Proof of the lemma. We begin with translating the lemma into a functional analysis statement by a duality argument. Recall the duality definition of m Ḣ-1 ( λ) from § 1:

m Ḣ-1 ( λ) := sup{| f, m | | f Ḣ1 ( λ) 1}. (43) 
There is a similar duality formula for m L 2 (B) :

m L 2 (B) = sup{| f, m | | f L 2 (B) 1}, (44) 
where, for f a function, f L 2 (B) has its usual meaning, namely

f L 2 (B) := ´B f (x) 2 λ(dx) 1/2
. Since m is assumed to have total mass zero, | f, m | does not change when one adds a constant to f . On the other hand, when f describes the set

{ f 0 + a | a ∈ R}, f L 2 (B)
is minimal when a is such that f has zero mean on B, while the value of f Ḣ1 ( λ) remains constant. [ ] As a consequence, we can restrict the supremum in ( 43) and (44) to those f having zero mean on B. Thus, the lemma will be implied [ * * ] by proving that

f, 1 B • λ = 0 ⇒ f L 2 (B) C 1 (n) 1/2 f Ḣ1 ( λ) . ( 45 
)
Going back to the definitions of • Ḣ-1 ( λ) and • L 2 (B) , relaxing the condition on f to be centred by projecting it orthogonally in L 2 (B) onto the subspace of centred functions, and denoting by P the uniform probability measure on B, Equation (45) turns into:

∀f Var P (f ) C 1 (n) ˆdist(x, B c ) 2 |∇f (x)| 2 P (dx), (46) 
which we recognize to be a so-called "improved Poincaré inequality" [START_REF] Boas | Integral inequalities of Hardy and Poincaré type[END_REF][START_REF] Hurri-Syrjänen | An improved Poincaré inequality[END_REF]. In general, Poincaré inequalities, bounding the variance of f by a quadratic integral of its first derivative, are linked with the exponential convergence of a certain diffusion Markov process towards equilibrium (cf. [1, Chap. 2]): that probabilistic vision initially guided me to tackle Equation (46), although this will not be apparent in the sequel.

To prove (46), the first key idea (inspired by [START_REF] Bobkov | Spectral gap and concentration for some spherically symmetric probability measures[END_REF]) is to separate radial and spherical coordinates. This is, considering the bijection

ϕ : (0, R) × S n-1 → B {0} (r, θ) → rθ (47) 
(the origin of space being set at the center of B), we introduce the measure P := ϕ -1 * P , which is obviously the product measure Pr ⊗ Pθ , where Pr is the probability measure on (0, R) such that Pr (dr) := nR -n r n-1 dr, resp. Pθ is the uniform measure on the sphere S n-1 . With this notation, we perform can a change of variables to see that ( 46) is equivalent to proving that, for all g ∈ L 2 ( P ):

C 1 (n) -1 Var P (g) ˆR 0 ˆSn-1 (R -r) 2 |∇ r g(r, θ)| 2 + r -2 |∇ θ g(r, θ)| 2 Pr (dr) Pθ (dθ), (48) 
where ∇ r and ∇ θ denote the gradient along resp. the r coordinate and the θ coordinate. [ † †] We will denote the right-hand side of (48) by E(g, g).

[ ] Here we implicitly assume that ´B|f (x)|λ(dx) < ∞, which is legitimate since an approximation argument allows to restrict the suprema in ( 43) and (44) to those f having a C ∞ continuation on cl(B).

[ * * ] Actually there is even equivalence.

[ † †] In the latter case, we have to use the Riemannian definition of the gradient on S n-1 .
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Because P = Pr ⊗ Pθ , we know that L 2 ( P ) can be seen as (the closure of) the tensor product of L 2 ( Pr ) and L 2 ( Pθ ):

L 2 ( P ) = cl(L 2 ( Pr ) ⊥ ⊗ L 2 ( Pθ )), (49) 
where the symbol ' ⊥ ⊗' means that the Hilbertian structure of L 2 ( P ) is compatible with the Hilbertian structures of L 2 ( Pr ) and L 2 ( Pθ )-i.e., that h

a ⊗ u a , h b ⊗ u b L 2 ( P ) = h a , h b L 2 ( Pr) × u a , u b L 2 ( Pθ )
. Now consider the spherical harmonics Y 0 , Y 1 , . . ., which by definition are an orthonormal basis, in L 2 ( Pθ ), of eigenfunctions of the Laplace-Beltrami operator Δ on S n-1 ; and call 0 , 1 , . . . the associated eigenvalues, which are known to be such that (up to permuting indices) Y 0 ≡ 1 with 0 = 0, and i -(n -1) ∀i = 0 (see for instance [START_REF] Seeley | Spherical harmonics[END_REF]). By construction,

L 2 ( Pθ ) = cl ⊥ i∈N (R • Y i ) ; therefore, one has that L 2 ( P ) = cl ⊥ i∈N L 2 ( Pr ) • Y i : (50) 
in other words, the functions of L 2 ( P ) are those of the form

g(r, θ) = i∈N h i (r)Y i (θ), (51) 
with i h i 2 L 2 ( Pr) < ∞, and the correspondence is bijective. An interesting point is that, then, one has:

Var P (g) = Var Pr (h 0 ) + i =0 h i 2 L 2 ( Pr) . ( 52 
)
On the other hand, one has

E(g, g) = -Lg, g L 2 ( P ) , (53) 
where

Lg (r, θ) := (R-r) 2 Δ r g+ (n-1) (R -r) 2 r -2(R-r) e r •∇ r g+ (R -r) 2 r 2 Δ θ g. (54) 
From (54) we see that, since the Y i are eigenfunctions of Δ θ , all the L 2 ( Pr ) • Y i are invariant by L, and that one has:

E(g, g) = i∈N ˆR 0 (R -r) 2 |∇h i (r)| 2 -i (R -r) 2 r 2 h i (r) 2 Pr (dr). (55) 
So, proving (48) becomes equivalent to proving that both following formulas hold for all h ∈ L 2 ( Pr ):

Var Pr (h) C 1 (n) ˆR 0 (R -r) 2 |∇h(r)| 2 Pr (dr); (56) 
h 2 L 2 ( Pr) C 1 (n) ˆR 0 (R -r) 2 |∇h(r)| 2 + (n -1) (R -r) 2 r 2 h(r) 2 Pr (dr). (57) 
Let us start with (56). In all the sequel of the proof, we introduce

b := 1 -n -1 . ( 58 
)
By the Cauchy-Schwarz inequality, one has, for all r ∈ (bR, R):

h(r)-h(bR) 2 = ˆr bR h (s)ds 2 ˆr bR (R-s) -3/2 ds × ˆr bR (R-s) 3/2 |∇h(s)| 2 ds 2 (R -r) -1/2 -(R -bR) -1/2 ˆr bR (R -s) 3/2 |∇h(s)| 2 ds 2(R -r) -1/2 ˆr bR (R -s) 3/2 |∇h(s)| 2 ds. ( 59 
)
Integrating and using Fubini's formula, it follows that

ˆR bR h(r) -h(bR) 2 Pr (dr) 2 ˆR s=bR ˆR r=s nR -n (R -r) -1/2 r n-1 dr (R -s) 3/2 |∇h(s)| 2 ds 2 ˆR s=bR ˆR r=s nR -n (b -1 s) n-1 (R -r) -1/2 dr (R -s) 3/2 |∇h(s)| 2 ds = 2b -(n-1) ˆR s=bR ˆR r=s (R -r) -1/2 dr (R -s) 3/2 |∇h(s)| 2 Pr (ds) = 4b -(n-1) ˆR s=bR (R -s) 2 |∇h(s)| 2 ds. ( 60 
)
One can apply the same line of reasoning for r ∈ (0, bR): the (unweighted this time) Cauchy-Schwarz inequality then yields h(r) -h(bR) ˆr br (R -s) The second term of the right-hand side of (65) is itself bounded by 4b -(n-1) ˆR s=b 2 R ˆR r=s (R -r) -1/2 dr (R -s) 

Combining (66), ( 67) and (69), we finally get the wanted bound (57).

Remark 17. At the time I wrote that proof I was not aware of the already existing results on improved Poincaré inequalities, in particular [6, Theorem 1.3], which Equation ( 46) is actually a particular case of; nor were the people whom I had asked about such inequalities. Compared to the result of [START_REF] Hurri-Syrjänen | An improved Poincaré inequality[END_REF] however, my Equation (46) states an explicit value for the constant in the inequality, which moreover is within a constant factor of being optimal, uniformly in the dimension n; also, it uses a quite different proof, which may be interesting

)

  Proof. Consider the measures µ • := Φ * µ and ν • := Φ * ν, and the bump function ϕ • := ϕ • Φ -1 ; then, µ • , ν • and ϕ • satisfy the original assumptions of Theorem 10, the roles of 'm 1 ' and 'm 2 ' (in the ball situation) being held by m 1 and m 2 (in the general situation) themselves, the role of 'k' being held by Φ -1 Lip k, and the roles of 'c 1 ' and 'c 2 ' being held by c 1 / Φ 2

y

  Denoting a c := μ * c 1 / μ 1 , we then transform μ * c into a c μ according to an arbitrary transference plan. z Finally, denoting a B := μ * B 1 / μ 1 , [ * ] we transform μ * B into a B μ according to the optimal transference plan: the cost of this operation is W 2 (μ * B , a B μ), which we bound above by 2 μ * B -a B μ Ḣ-1 (a B μ) thanks to Theorem 1.

2 ( 2 ˆbR 0 |∇h(s)| 2

 2202 bR -r) × ´bR r |∇h(s)| 2 ds, whence: ˆbR 0 h(r) -h(bR) 2 Pr (dr) ˆbR s=0 ˆs r=0 nR -n (bR -r)r n-1 dr |∇h(s)| 2 ds bR -(n-1)ˆbR s=0 ˆs r=0 nr n-1 dr |∇h(s)| 2 ds = bR ˆbR 0 |∇h(s)| 2 s n ds bn -1 R Pr (ds) b(1 -b) -2 n -1 ˆbR 0 (R -s) 2 |∇h(s)| 2 Pr (ds).(61)Summing (60) and (61), we get thatˆR 0 h(r) -h(bR) 2 Pr (dr) 4b -(n-1) ∨ b(1 -b) -2 n -1 ˆs 0 (R -s) 2 |∇h(s)| 2 Pr (ds),(62) where 4b -(n-1) ∨ b(1 -b) -2 n -1 can itself be bounded by (n -1) ∨ 4e . The left-hand-side of (62) being an upper bound for Var Pr (h), this proves (56). Now we turn to (57). For r ∈ (bR, R) we have, similarly to (59), that h(r) -h(br) 2 2(R -r) -1/2

  3/2 |∇h(s)| 2 ds, 2 2h(br) 2 + 4(R -r) -1/2 ˆr br (R -s) 3/2 |∇h(s)| 2 ds. (R -r) -1/2 dr (R -s) 3/2 |∇h(s)| 2 ds. (65)By change of variables, the first term of the right-hand side of (65) is equal to 2b -n ´bR b 2 R h(s) 2 Pr (ds), which we can bound by
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	so that			
	h(r) (64)
	Then, integrating and applying Fubini's formula:			
	ˆR bR nR -n r n-1 2b -(n-2) (1 -b) -2 h(r) 2 Pr (dr) 2 h(br) 2 Pr (dr) + ˆR bR 4 ˆb-1 s∧R ˆR s=b 2 R r=s∨bR n -1 ˆbR b 2 R (n -1) (R -r) 2 h(s) 2 r 2 2ne ˆR 0 Pr (ds) (n -1)	(R -r) 2 r 2	h(s) 2	Pr (ds). (66)
				(63)
				

  3/2 |∇h(s)| 2 Pr (ds) 8e ˆR 0 (R -s) 2 |∇h(s)| 2 Pr (ds).(67)This way, we have bounded ´R bR h(r) 2 Pr (dr). On the other hand, it is trivial that, for r bR,

		h(r) 2	b 2 (n -1)(1 -b) 2 × (n -1)	(R -r) 2 r 2	h(r) 2 ,	(68)
	whence:							
	ˆbR 0	h(r) 2	Pr (dr) (n -1)	ˆR 0	(n -1)	(R -r) 2 r 2	h(r) 2	Pr (dr).

Acknowledgements. I warmly thank Franck Barthe for his much precious help in providing me with the technical tools for the proof of Lemma 14. I am also much grateful to the anonymous COCV referee for their very relevant remarks on my initial manuscript.

* Supported by the Austrian Science Fund (FWF) under grant P25815.