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THE ENE PRODUCT OVER A COMMUTATIVE RING

RICARDO PEREZ-MARCO

ABSTRACT

We define the ene product for the multiplicative group of polynomials and formal power
series with coefficients on a commutative ring and unitary constant coefficient . This de-
fines a commutative ring structure where multiplication is the additive structure and the
ene product is the multiplicative one. For polynomials over C, the enie product acts as a
multiplicative convolution of their divisor. We study its algebraic properties, its relation to
symmetric functions on an infinite number of variables, to tensor products, and Hecke oper-
ators. The exponential linearizes also the ene product. The enie product extends to rational
functions and formal meromorphic functions. We also study the analytic properties over C,
and for entire functions. The ene product respects Hadamard-Weierstrass factorization and
is related to the Hadamard product. The ene product plays a central role in predicting the
phenomenon of the “statistics on Riemann zeros” for Riemann zeta function and general
Dirichlet L-functions discovered by the author in [6]. It also gives reasons to believe in the
Riemann Hypothesis as explained in [7].
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2 R. PEREZ-MARCO
1. PRELIMINARIES.

We consider a commutative ring (A, +,.) with unit 1 € A and the associated local ring of formal
power series A[[X]] with coefficients in A. When series are meant to be convergent we shall use the
variable z instead of X.

Proposition 1.1. Let A =1+ XA[[X]]. The multiplication of formal power series is an internal
operation in A and (A,.) is an abelian group with 1 as neutral element.

Sometimes we denote Aa to indicate the coefficient ring A.
We recall some basic facts about the logarithmic derivative and the exponential.
Definition 1.2. The logarithmic derivative D : (A,.) — (A[[X]], +)
f=D)=1'/f
is an tsomorphism of groups.

For f,ge A, a € A, we have

D(f.9) =D(f) +D(g) ,
D(1)=0,
D(af) =D(f) ,
D(f(aX)) = a(D(f))(aX) .

From now on, in the statements where the exponential appears, we assume that Q C A (we can
also work in full generality with Q ® A but some statements become more complicated).

Definition 1.3. We assume Q C A. The exponential map exp : (X A[[X]],+) — (A4,.)

+Oof"

_ . f _

f—expf=e —E p
n=0

is an isomorphism of groups.

Observe that the exponential and the logarithmic derivative factor the usual derivative. The
group isomorphism D : (X A[[X]],+) — (A[[X]],+)

f=D(f)=f
factors as
D =Doexp .

A related natural operator is the exponential logarithmic derivative.

Definition 1.4. The exponential logarithmic deriwvative is the group isomorphism Dexp : (A,.) —
(A,.)
f o Dep(f) = P

2. THE ENE RING. DEFINITION AND FIRST PROPERTIES.

We work in this section with an arbitrary commutative ring A. We define the efie-product on A.
Let (Xy,...,X,) and (Y1,...,Yn) be two sets of variables.
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For p < n,m we define
22®m = E(ﬁ;jl)wn;(%xip)(Xﬁ}/jl) ce (Xip}/jp) € Z[Xl’ T ’Xn’ Yl’ N Ym]

where the pairs (ig, jr) in the sum are taken to be pairwise distinct. We refer to [5] or [2] for qual-
itative and quantitative generalizations of the following proposition using the theory of symmetric
functions (for the first to an infinite uncountable number of variables and the second for explicit
bounds). Here we provide a direct proof (which will be more natural after section 4).

Proposition 2.1. Forp < min{n, m}, there exists a universal polynomial Q, € Z[ X1, ..., Xp, Y1,...,Y}]
independent of n and m such that

SO = Qp(2F, .. 50, Y, 8))
where the X and XY are the corresponding symmetric functions in each set of variables.
We have
(“1)PQp(X1,..., Xp, Y1,...,Yy) = —pX,) Y, + Pp(X4,... X, Y1,...,Y,)
where P, does not contain any monomial X,Y,, and the weight on the X ’s and Y ’s of each monomial

of P, is p.

Proof. Consider the polynomials

i=1 P
9<Z>:ﬁ(1—592):1+zm:2{ 7"

Il
-

J k=1

Now in the same way
P
[[a-xv;2) =1+ 5™ 28+ 0(z7H) .
4,3 k=1
Observe that

f(Z) = exp <log(1 +youF Zk)>

k=1

+oo
= exp (Z Kp(25, ... ,25)2’“)

k=1
where Ky (Ut,...,U) is a polynomial of weight k on the U variables and Ky (Us,...,Ux) = Uy +
Lk(Ul, ey kal)- Also

f(Z) = exp <Z log(1 — XZ-Z)>
(g ()

() () s

i i

Observe now that
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thus

+oo p
exp (- S KRS SHKR(EY 2{)2’“) =14 spemzk+0o(zrt) .
k=1 k=1

But also the expansion on power series on Z gives

+oo
exp <_ Z kKk(Efv AR E?)Kk(zi/’ Ty EZ)Zk) -
k=1

p
=14 (-DFQrEY, ... 552,52 ZzF + o(z7 )
k=1

where Qi is a polynomial with the required properties. O

Definition 2.2. The ene-product of f,g € A,
fX)=1+a1X +aX?+...
g(X) =1+ X +bX?+ ...

18
frgX)=1+aX +eX?+...
where for n > 1, ¢, s defined by
en = (=1)"Qnla1,...,an,b1,...,by) ,
where Qn € Z[ X1, ..., Xn, Y1,..., Y] was defined in Proposition 2.1.

The following is inmediate from the definition.

Proposition 2.3. The ene-product is an internal operation of A.

If AC C and (o;) and (B;) are the roots of two polynomials f and g then the roots of f * g are
CHEINE

Note that the coefficient ¢, only depends on the coefficients of order < n. This operation, contrary
to the sum and product, is not pointwise geometric. It is geometric in the roots.

We give some values for the coefficients.

Proposition 2.4. We have

= —aiby
Cg = —2&21)2 + agb% + a%bg y
C3 = —3@31)3 + 3&3()1()2 — a3b:1)’ + 3@1&2()3 - alagblbg — a:{’b3 .

Now the main property follows.

Theorem 2.5. (Distributivity of the erie-product) The erie-product * is distributive with respect
to the multiplication. If f,g,h € A then

(f.g)xh=(f+h)(gxh).
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Proof. The n-th order coefficient of (f.g) x h (resp. (f = h).(g x h)) is a polynomial with integer
coefficients on the coefficients of order < n of f, g and h. Thus, by universality, it is enough to
establish the identity when A = C and when f, g and h are polynomials. Because in such case the
polynomials with integer coefficients giving the expressions of order n on both sides will agree on an
open set of € thus are equal (we must choose f, g and h of degree larger than n).

If (o), (B;) and (i) are respectively the zeros of f, g and h counted with multiplicity then the
zeros counted with multiplicity of (f.g) x h and (f * h).(g x k) are (;vx)ix U (B57);,1. Thus these
two polynomial functions have the same zeros, so they must be equal, and the result follows. 0

Theorem 2.6. The set (A, .,x) is a commutative ring with zero 1 € A and unity 1 — X € A. More
precisely, we have

(A,.) is an abelian group.

(Distributivity) For f,g,h € A, (f.g) *h = (fxh).(g*h).
(Associativity) For f,g,h € A, (fxg)*h = fx(gxh)
(Commutativity) For fige A, fxg=gx* f.

(Unit) For fe A, fx(1-X)=(1-X)*f.

Proof. Before we proved the distributive property. The other properties are proved in the same
way. O

So we have the usual properties of ring operation:
Corollary 2.7. For f,g € A and n > 1 we have

o fxl=1xf=1
° f*(l/g):(l/f)*gzﬁ'

o frgt=["xg=(f*g)".
° %*l:f*g.

e Newton binomial formula.
o TT (e (%)
(fo™m=1] (f (r=k) *g*k) :
k=0
We have also some additional properties that are proved again as in theorem 2.5.
Theorem 2.8. We have
e (1) If f,ge A and a € A we have
f(aX)xg(X) = f(X) % g(aX) = (f xg)(aX) .
In particular,
(1 - aX)* f(X) = f(aX) .
e (2) For f,g € A and k > 1 positive integer,
k
FXF) % g(XF) = ((f > 9)(X"))" .
e (3) For f,g € A and k,l > 1 positive integers with k ANl =1,
FXF) % g(X") = (fxg)(X*) .
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Proof. The proof of (1) is clear. For the proof of (2), observe that if the roots of f (resp. g) are the
(i) (resp. (B;)), then the roots of f(X*) (resp. g(X*), f*g(X¥), f(X*) % g(X")) are the (ea;/k)
(resp. (eﬁ;/k), (eai/kﬁ;/k), (ee'ai/kﬁ;/k) ) where € (and €') runs over the group Uy, of k-roots of 1.
Now, the morphism U2 — Uy, (e,€') — €€ is k-to-1 and the result follows.

The proof of (3) is similar observing that the morphism Uy x U; — Uy, (€,€') — €€, is an
isomorphism when kAl = 1. O

Theorem 2.9. We assume that A is a subring of C. If f,g € A are polynomials or entire functions
of order < 1 with respective zeros (o;) and (B;), we have

P =T1(-25) =10 () - Hg(a)'

] J

This last result extends to arbitrary entrie functions for each product that is converging.

3. MAIN FORMULA AND FIRST APPLICATIONS.

The following fundamental relation relates the exponential, the logarithmic derivative and the
ene-product.

Theorem 3.1. (Main Formula). For f,g € A we have
exp (XD(f xg)) = g+ exp(XD(f)) = f» exp(XD(g)) -

Or, in terms of the exponential logarithmic derivative,

DCXp(f*g) = f*DCXp(g) = Dcxp(f) *xg .

Proof. We observe again that it is enough to prove the result for f and g polynomials with complex
coefficients.

Let us consider f and g polynomials with respective sets of zeros (a;) and (5;). Observe that
*xg)(z) = —
o =11 (1-57)- g ()
thus

D(f g)(z) = Z 5; (DF)(z/B5)

SO

ZD(fx9)(z) = Z 5; (D)(z/8B;) 5

and using theorem 2.9

P = T % PPEH) = gy PG

J

Corollary 3.2. Let fe A, f(X)=1+4+ f1X +..., anda € A. We have

f*e“X = e~aiX
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Proof. Put g(X) = €X in the Main Formula. Observe that
D) =a.

We get
r aX aX
e XD(fxe™) f*eXD(e ) f*eaX '

Thus F(X) = f xe?X satisfies the differential equation
F — oXDF) _ XF'/F
We define G = log F' then G’ = F'/F and G satisfies the differential equation
1
G =—=G.
X
The only formal solutions are G(X) = a¢X for some constant ag € A. So finally
F(X) = f*eX = ew0X |

To determine ag, using the formula for ¢;, we observe that

fre X =1+ fiX+..)x1+aX+...)
=1l—af1X+...
Thus ag = — fra. g

More generally we have the following result.

Corollary 3.3. Let fe A, f(X)=1+4+ X+ ..., a € A, and n > 1 positive integer. We have

f*eaXn — ed@n(fl;nwfn)x

)

where ~
Qn(fla'-'afn) = (_1)nQn(f17'-'7fn707-'-707(1)/(1 = _nfn+Pn(f17'~'fn—l)

is a polynomial vanishing when fi1 = fo=...= f, =0.

Proof. As before, using the main formula we get
eXD(f*eaX") _ f*eXD(eaX”)

_ f % enaX"
= (f * eaX" ) "
Then F(X) = fxe®X" satisfies the differential equation
o — (XF'/F
Thus G = log F satisfies
nG = XG'

which has only formal solutions G(X) = ap X", ag € A. To determine the constant ag we write the
first term of the expansion

fre™ =1+ X+ )xQ+aX"+..)
=14+ (-D"Qun(f1,--- fn,0,...,0,0) X" + ...
Thus
ap = (-1)"Qn(f1,--, [n,0,...,0,a) = (—nfn +...)a
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where the quantity between brackets is independent of ¢ and has monomials of weight n on the
coefficients (f;) (see proposition 2.1). O

Corollary 3.4. For n,m > 1 positive integers, and a,b € A, we have if n # m,

n m
X" X =1

and for n =m,
aX™ bX™ _ —nabX™

4. EXPONENTIAL FORM AND APPLICATIONS.

We can summarize the previous discussion with the following key result. It shows that the ene-
product operator x has a very simple expression in exponential form, or, in other words, we have
the remarkable property that the exponential linearizes the ene product.

Theorem 4.1. (Exponential form). Let f,g € A. Using the isomorphism given by the exponen-
tial map, we can write

f=ef = I XA X+ F3 X

g=¢C = eC1X+Ga X +Gs X ...

where F,G € A[[X]].
We have
frg=exp(FX +RBX>*+ FX?+..)xexp (G1X + G2 X2 + G X3 +..))
=exp (—F1G1X — 2F,G2X? — 3F3Gs X% + .. .
We denote by x. the exponential form of the ene-product

FxeG=—-FGiX —2F,Go X% —3F3G3 X%+ ... .

Proof. We simply use the distributivity of x and the previous corollary:

—+oo —+oo
fxg=-exp <Z FiXi> * eXP Z Gij
i=1 Jj=1
—+oo —+oo
= (H exp(FiXi)> * H exp(G X7)
i=1 j=1
—+oo
= H exp(F; X") » exp(G; X7)
i,j=1
—+oo
= H exp(—iF;G; X")
i=1

+oo
= exp <— Z iFiGin)

i=1
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Using this formula we can now determine exactly which elements of the ring (A, ., x) are divisors
of zero (the zero is the constant series 1).

Theorem 4.2. The divisors of zero in the erie-ring (A, .,*) are exactly those f € A such that if we

write
+oo )
f=e"=exp (Z FiXZ>

i=1
there is some coefficient F; that is O or a divisor of 0 in A. Thus, if A is an integral domain, only
those f € A for which some F; =0 are divisors of 0.

The elements f € A that are not divisors of zero are ene-invertible, i.e. are units of the ring A,
if and only if each one of its exponential coefficients has an inverse, the inverse being

—+o0
g=e% =exp <Z GiXi>
i=1

with

Proof. The ene-identity 1 — X has the exponential form

1—X =exp(log(l — X —exp< Z X).

and the result follows. O

Remark 4.3. Notice that when A C C, if f has infinite radius of convergence (i.e. it is an entire
function) and is efie-invertible, then its efie-inverse has zero radius of convergence.

5. SOME ENE PRODUCTS.

The next result shows that the ene-product of rational functions is a rational function.

Theorem 5.1. The ene-product leaves invariant the the multiplicative group (1 + X A[X])/(1 +
XA[X]) € A(X) of rational functions quotient of polynomials in 1+ X A[X]. Thus (1+ X A[X])/(1+
XA[X]) C A is a sub-ring of the ene-ring. More precisely, et R1(X), R2(X) € A(X) with

B0 = G160
 P(X)
BalX) = 5,

with P1(X), Py(X), Q1(X), Qa(X) € 1+ XA[X]. Then

):( 1(X) * Pa(X)) . (Q1(X) * Qa2(X))
(PL(X) x Q2(X)) - (Q1(X) x P2(X))

Ri(X)* Ro(X

Thus
deg(R1(X) * R2(X)) = deg R1(X).deg Ra(X) .
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We observe that when A C C, the zeros of R;(z)x R2(z) are the products of zeros of Ry and Ry
or the product of poles of Ry and Ra. Also the poles of R;(z)x Ra(2) are the products of a pole and

a zero of Ry and Rs. In short we can write

ZEro * ZEero = Zero
pole * pole = zero
zero x pole = pole
pole * zero = pole

Notice that this information, with multipliciities and the normalization of 1 at 0, is enough to

uniquely determine Rq x R».

Proof. Tt is just simple distributivity of the ene-product. For the degrees we recall that if R(X) €

A(X) with

with P(X),Q(X) € A[X] then by definition
deg R(X) = max(deg P(X),deg Q(X)) .

Thus the formula for the degree follows from the formula for the ene-multiplication.

O

The previous observations do extend to meromorphic functions on C quotient of two entire func-

tions, when A C C.

Theorem 5.2. We have the same formula as before for the ene-product.

If A C C and f1, fo € A are meromorphic functions, quotient of entire functions of order < 1 with
coefficients in A, then fi1 x fo is a meromorphic function quotient of entire functions of order < 1
given by the above formula, and whose zeros are the products of zeros of f1 and fa, or the product
of poles of f1 and f2, and whose poles are the products of a zero of f1 (resp. f2) and a pole of fo

(resp. f1).
As we prove in section 9 this result extends to arbitrary entire functions.
The ene-product by exp(—X/(1 — X)) has an interesting property.

Theorem 5.3. (Convolution formula). For f € A
o ToX o f= eXD(f) — Deap(f) -

In particular, if f is an entire function of order < 1 with zeros (cy;) (in particular when f is a
polynomial), then the ene-multiplication by the function exp(—z/(1 — 2)) creates a funtion with

essential isolated singularities at the «;’s :

Proof. This results from the main formula. We have
eXD(f) — XD(f(1-X))
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In the next theorem we have a list of computations of various ene-products.
Theorem 5.4. (Some computations). We have

e fora,be A,
1 1
T —ax "T_px (7@

X)#(1—bX)=1—abX .

o Let P € A[X] and f € A then
XPX) | f = XQUX)

where Q(X) € A[X] is a polynomial with deg Q < deg P.
e For N > 1 positive integer, let En(X) denote the Weierstrass factor

EN(X)_(1—X)exp<X+X—2+...+X—N>

2 N
7 XN+1 XN+2
TP UTNTT Ntz ¢

For f € A we have
EN*f:fTﬁf(l/f)v

where T, is the exponential N-truncation operator, i.e.

A

o For N, M > 1 positive integers, we have
Enx En = Enax(nN,M) -
e For N > 1 we define
In(X)=1-XV.
For f(X) € A, f(X) = exp(3F% F,X%), we have

—+oo
In * f(X) = exp <Z FNkXNk> :
k=1
e For NNM > 1,
Inx Iy = Lo (v,M) -
o Fora e A we define

—+oo

(1+X)a:Za(a—l)..ﬁga—n—i-l)Xn.

n=0

For f,ge A and a € A,
JX)* % g(X) = f(X) xg(X)* = (f(X)*g(X))" .

11
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e Action of the Artin-Hasse exponential. We recall that
+o00
exp(X) = [ (1 - xmye0/m
n=1
where u 1s the Mdéebius function. For a prime p, the Artin-Hasse exponential is
+00

expp(X) = H (1 — X")#(")/n
n=1;n#kp

xr X7
= exp <X+—+—2+...>
p p
Iffe A f(X)=exp (Z;Of FiXi), then
+o0 .
exp, (X) x f(X) = exp (—ZFkap ) .
k=1

Proof. We prove one of the formulas and left the others as exercices. Observe that

X2 XN X2 xM
exp<X+7+...+T)*exp<X+7+...+W>

= exp (—X -

Then we use the distributivity

X2 Xmin(N,M)
2 T min(N,M))

X2 XM X2 xM
EN*EM—(1—X).exp<X+—+...+—>.eXp(X—I———I—...-I——)

2 M 2 M
X2 Xmin(N,M)
/exp( + 2 + +min(N,M)>
X2 Xmax(N,M)
=(1-X). X+ —+.. 4+ —
( ) exp< + 2 + +max(N,M))

= Lmax(N,M)
O

In view of the action of the action by efie-product of I,,(X) =1 — X", it is natural to define, in
parallel with the theory of modular forms, the following Hecke operators.
Definition 5.5. (Hecke operators). For n > 1 we define,

Tn): A— A
by
T(n)(f)(X) = (Lo * f)(XY™)

that is, if f(X) = exp (E:;Of FiXi),

+oo
T(n)(f) =exp (Z Fnka> .

k=1
Note that T'(n) can be defined in the same way on 14+ A[[X/}]] for A € C*.
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We can also define the ”dilatation operators” by
Definition 5.6. (Dilatation operators). For A € C* we define,
Ry: A— 1+ A[XYY)
by

RA(F)(X) = F(XT7A) .
Note that Ry is defined in the same way on 1+ A[[X'/"]] for any u € C*.

We observe that T'(n) factors.

Theorem 5.7. We have
T(n)(f) = Ra(In* f) .

Note that extending properly the efie-product to 14 A[[X'/A]] we have commutation of Ry and
ene-multiplication by I,,, thus we can also write

T(n)(f) = Inx (Rin(f)) -

Then we have, similar (and simpler) formulas than in the theory of modular forms (see [8] p.159
for example),

Theorem 5.8. We have
o For \,u e C*,
RA\R, = Ry,
e Forn>1 and \ € C*
R)\T(n) = T(H)R)\ .
e Formm>1,nAm=1,
T(n) T(m)=T(nm) .

6. ENE RING STRUCTURE FOR A FIELD A.

The ene-product of polynomials P and @) of respective degrees d; and ds is the polynomial P x Q
of degree dids (because the roots of P x @) counted with multipicity are the products of a root of
P with a root of @)). Thus the ene-product does not respect the graduation by degrees. But in
exponential form it does. More precisely, for N > 1, let Ay C A be the subset of A

Ay ={f € A;3P € XA[X], deg(P)< N, f=exp(P)}.
Observe that the exponential truncation Ty defines a ring homomorphism 75 : A — Ay
f=TR(f)
We denote Zy its kernel, thus
AN ~ A/IN .

Obviously the inclusions
An = Ana
are ring homomorphisms.

Theorem 6.1. The subset Ay C A is a subring of the efie-ring (A, .,*) with unit (1 — X)/En(X)
and zero En(X). Morevoer, A is the direct limit of the An’s

AzhglAN.
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Proof. The ene-product preserves each Ay as is immediate from its simple exponential form. Also
(1 - X)/EN(X) is the unit since

(1—X)/EN(X)_exp<—X—X—2—...—X—N> .

Also En(X) is the zero since
Ex(X) = exp(O(XV+1)) .

The direct limit is clear. O

When A is a field the following theorem gives a description of the ideals of the efie-ring.
Theorem 6.2. We assume that A is a field. The mazximal ideals of A are
TIn ={f € A f(X) =exp(F1 X + F,X?+...) such that F,, =0} .

In particular, Ax is a quasi-local ring, i.e. it has a finite number of maximal ideals.

Proof. Given an ideal J C A, we consider the set of integers

Ny={n>1;3f(X)=exp | Y FX'| €J, with F, #0}

i>1
If Ny = () then J = {1}. Otherwise we have
Jgc () Jn
n%N‘y

7. ENE-PRODUCT AND TENSOR PRODUCT.

We have the well known formal relation for M € M, (A),
+oo . k
det(/ - MX) = - Tr(M%)— | .
U1 = 21) = exp  ~ 3 >

We recall that given M, N € M,,(A) the tensor product M @ N € M,2(A) is defined by
(M@N)(z®y)=(Mz)® (Ny) .
In terms of the coefficients of the matrices
(M @ N)(j k)it = MijNi -
Thus in particular
Tr(M ® N) = Tr(M). Te(N) .
From these observations and the exponential form of the ene-product we get
Theorem 7.1. For M,N € M,(A) we have
det(I — MX)det(I — NX) = det(I — (M ® N)X) .
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This last result provides a linear algebra procedure to compute the ene-product. Notice that if
PX)=14+a1 X +asX?+...4+aqX? we have

[ 1 o 0 -~ 0 (- 1)d la 1
-X 1 0 - 0 (=1)%2a4 1X
0 -X 1 - 0 (=14 ad_gX
. . 1 —GQX
. 0 - o 0 -X 1+a1 X
where
[0 0 0 0 (=1)day
1 0 0 0 (=) tag_,
0 1 0 0 (=1)92a4_9
Mp =
0 ag
| 0 0 1 —ay |
Thus we get

Theorem 7.2. We have
P(X)*xQ(X)=det(I — (Mp® Mg)X) .
Notice that the extension of the ene-product to formal power series indicates that theorem 7.2
remains valid for infinite matrices. Also theorem 7.1 makes sense for infinite matrices once the tensor

product and the determinant are properly defined (one can also define the infinite determinant the
other way around).

8. ANALYTIC PROPERTIES OF THE ENE PRODUCT.

The ene-product satisfies remarkable analytic properties. We assume in this section that A C C
and we study the convergence propertles of series. Recall Hadamard formula for the radius of
convergence of f € A, f(2) =1+ 5% iz,

1 .
— = limsup|fi|"/* .

It is convenient to introduce the enie-radius of convergence of f as
R(f) = min(|ev|, R(f))
where (;) are the zeros of f. Since f(0) =1 we have
R(f) > R(f) > 0.
We observe that if we write f = exp(F') with F =log f, then
R(F) = R(f) .

The first basic result is that the ene-product of series with positive radius of convergence is a
series with positive radius of convergence :
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Theorem 8.1. Let f,g € A. We have
R(f*g9) = R(f)-R(g) -

In particular, the ene-product of two series with positive radius of convergence has positive radius of
convergence.

Remark 8.2. We will improve this result and show that indeed
R(fxg) > R(f).R(g) -

Proof. We write f and g in exponential form

+oo

+oo
9(2) = exp(G(2)) = exp <Z GZ>
i=1
Using Hadamard formula we get
1 .
RF~. ) ﬂi‘;p(" Gil)
= limsup(|F;[|Gi]) !/
1——+00

< <limsup|Fi|1/i) ) (li_msup|Gi|l/i>

1—+00 1——+o00

1 1

R(F) R(G)

Thus -
R(f*g) > R(F % G) > R(F).R(G) = R(f).R(g) -

We state next a continuity property:

Theorem 8.3. We consider the space Ar, of power series f € A with R(f) > Ry, i.e convergent
and with no zeros on the disk Dg, of center 0 and radius Ry > 0. We consider also the space Ar, of
power series f € A with R(f) > Ro. We endow this spaces with the topology of uniform convergence
on compact subsets of Dr. The ene-product * : flRl X AR2 — AR, R,

(fi9) = fxg

1S continuous.

Proof. Any function f € ARO can be written f = ef’ with F' = log f having radius of convergence
at least Ry > 0. The linear expression of the ene-product on the coefficients of F' shows the
continuity. O

We can now improve theorem 8.1.
Corollary 8.4. Let f,g € A. We have
R(f *g) > R(f).R(g) -
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Proof. We only need to show that any zero & of fx g with |¢] < R(f x g) satisfies |¢| > R(f)R(g). If
|€] > R(f)R(g) > R(f)R(g) we are done. We assume then || < R(f)R(g). By the previous theorem
we have that

Tn(f)*Tn(g) = f*g

when N — +o0 uniformly on compact sets in Dg(f)r(g)- Thus, in particular, we have uniform
convergence in a compact neighborhood of £. Then by Hurwitz theorem £ must be the limit of
zeros of Tn(f) x Tn(g). Any such zero is of the form ayfy where an (resp. Bn) is a zero of the
polynomial Tn(f) (resp. Tn(g)). Since anxfny — & we must have that the sequences (an) and
(Bn) are bounded (if ey, — oo then By, — 0 which is impossible). We can extract converging
subsequences oy, — « and By, — (. Finally we observe that |a| > R(f) and |8 > R(g). Because

if |a] < R(f) then since Tn(f) — f in Dg(yy then o would be a zero of f thus |a] > R(f). The
same argument applies to 5. We conclude

€] = |allB8] = R(f)R(9) ,

as we wanted to show. O

Remark 8.5. We show in section 10 as an application of Hadamard multiplication theorem that we
do have the equality

R(f*g) = R(f).R(g) -

9. ENE PRODUCT AND ENTIRE FUNCTIONS.

It is not difficult to see, from the interpretation involving the zeros, that the ene-product does
extend from polynomials to entire functions of order < 1 and leaves this space invariant. The next
result shows that we have even better, Weierstrass factors cause no trouble and the enie-product
extends to functions of finite order.

Theorem 9.1. We consider here A = C, and 0 < A < +00. We define the space Ex C A of entire
functions of order < \ with constant coefficient 1.

The ene-product is an internal operation in Ex and (Ex,.,*) is a subring of A.

Moreover, the ene-product x : Ex x Ex — Ex, (f,9) — f *g is continuous for the topology of
uniform convergence on compact subsets.

This theorem results from the next result that is more general and that shows that the ene-
product respects Hadamard-Weierstrass factorization of entire functions of finite genus. We recall
that the genus p of en entire function f is the minimal integer so that f can be written

=T ()

where F' € C[z] is a polynomial of degree < p, and the infinite product is uniformly convergent
on compact subsets of C. The factorization for general entire functions is due to Weierstrass. The
above factorization for functions of finite genus is due to Hadamard. If no such p exists then the
genus is infinite. We have p < A < p+1 (see for example [1] p. 209).

Theorem 9.2. Let f and g be entire functions of finite genus 0 < p < 400 with respective sets of
zeros (a;) and (B;). We assume that 0 is not a zero of f or g, and more precisely f and g have
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constant coefficient f(0) = g(0) = 1. We consider the Hadamard-Weierstrass factorizations
f(z) =e'® HE £
i "\
_COTT <i>
z)=e
g( ) 1:[ P Bj

where, by definition of the genus, F' and G are polynomials vanishing at 0 of degree < max(deg F,deg G) <
p. Then F %, G is a polynomial of degree < p and we have

f*g(z) _ eF*eG(z)HEp ( Zﬂ ) '
;04

.3

Proof. The exponential form of the ene-product shows that F' x. G is a polynomial of degree < p.

Now, working on the ring A (thus we do not need to pay attention to questions of convergence
for the moment and the computations are done at the formal level), we have, using distributivity,

Frg(z) = (F ). eF*HEp(Bi) (HE,,(ai)*eG>
12 ()15 ()

Now, we have

Also

eF*IZIEp (%) :1;[6F*Ep (ﬂ%)

= HeF(Z/ﬁj) *Ep(z)

J

_ HGF(Z/ﬁj)'Tpe (e™F) (2/85)

J
— H e (F=Tp(F))(2/8;)

J
=1

because deg F' < p thus F' — T,,(F) = 0. By the same reasons

HE,, <ai) xe¥=1.
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e () 105 (5)
115 () -5 (5)

_ HEP(Z) «E, (ajﬁ)
T (55) 7 (v (35))

:HE (a@)

where the last equality is obtained observing that

e

Thus we have established the formal Weierstrass factorization for f xg. We only need to check that
the product of Weierstrass factors is uniformly convergent on compact subsets of C. This follows
from the continuity of the ene-product for the topology of uniform convergence on compact sets on
a domain where the functions have no zeros. Given a compact set in the plane, we consider a ball
Dpr of center 0 and radius R > 0 large enough to contain the compact set. Consider only those
Weierstrass factors having zeros out of this ball, we observe that their product converges uniformly
as well as they ene-product by theorem 8.3. The remaining Weierstrass factors are finite. O

And finally,

Remark 9.3. This previous result has a generalization to arbitrary entire functions of infinite genus.
We must then choose the orders in the Weierstrass factors large enough (depending on f and g) in
order not to introduce other terms in the exponential besides F' x. G.

10. ENE-PRODUCT AND HADAMARD MULTIPLICATION.

We recall the definition of Hadamard multiplication (see [4]).

Definition 10.1. (Hadamard multiplication) Let A be an arbitrary ring. The Hadamard mul-
tiplication of f(X),g(X) € A[[X]],

+oo
X)=> faX"
i
X) = Z ann
n=0

S8

+oo
fQQ(X) = anann .
n=0
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Note that the unit for the Hadamard multiplication is
x &
— = X",
XX
More precisely, we have
Theorem 10.2. The sum and the Hadamard multiplication are internal operations of A[X], A and
A[[X]], and (A[[X]],+,®) is a commutative ring if A is commutative.

The Hadamard multiplication has similar properties than the exponential ene-product .. For
example, we have

Theorem 10.3. If P(X) € A[X] and f(X) € A[[X]] then P© f € A[X], and
deg(P) = deg(P © f) .

The relation to the exponential ene-product is clear from the definition.
Theorem 10.4. We have for F(X),G(X) € A[[X]],
Fx.G=—-Ky0OFOoG

where
X

(1-X)?
is the Koébé function (that plays a central role in univalent function theory, being extremal for many
problems).

Ko(X) =X +2X24+3X3+... =

This means that the exponential ene-product structure is the Hadamard ring structure twisted
by —Kjy. Note that the inverse of —Kj for the Hadamard multiplication (that is the unit for the

twisted structure) is
1 1

—X—§X2—§X3—...:10g(1—X) ,

i.e. it is also the unit for the exponential ene-product.

Also directly from the definition we get
Theorem 10.5. Let F,G € A[[X]]. We have

D(F%.G)=—-D(F)® D(G) .

More precisely, —D : (X A[[X]], +, %) = (A[[X]], +,©), F = —D(F) is a ring isomorphism between
the exponential ene ring structure and the Hadamard ring structure.

As corollary we get the direct relation to the ene-product.

Theorem 10.6. Let f,g € A. We have
D(fxg) ==D(f) ©D(g) -
Proof. Write
f=exp(F)
g = exp(G)
and observe that
D(f *g) = D(F % G) = =D(F) © D(G) = =D(f) © D(g) .
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11. EXTENSION OF THE ENE-PRODUCT AND INVERSION.

We extend the definition of efie-product to the ring of non zero polynomials A[X] by using the
interpretation with roots.
Definition 11.1. For P(X),Q(X) € A[X], P and Q non zero, with
P(X) = apX"Py(X)
Q(X) = boX"Qo(X)
where ag,bp € A — {0}, and Py(X), Qo(X) € 1 + X A[X] we define
(P Q)(X) = Xmdes(@tmdeslioltnm( By + Qo) (X) .
We denote by P(A[X]) the set of polynomials with lower coefficient 1 and # 0 (when A is a field,
this is the projective space of the ring A[X]). We have

Proposition 11.2. We have that (P(A[X]),.,*) is a commutative ring.

Now we can extend the ene product to non-zero rational functions.

Definition 11.3. We extend the ene product to non-zero rational functions quotients of elements

in P(A[X)). If

R0 = 55
P (X)
"X) =5,

then we put
(Pr* P2).(Q1 % Q2)
(PL*Q2).(QuxPs)

Next, we have a main property of the extension of the ene product. It shows that the points at
0 and oo in the Riemann sphere play a symmetric role.

(Rl * RQ)(X) =

Theorem 11.4. The ene-product is invariant by inversion. More precisely, let P(X), Q(X) € A[X]
be non-zero polynomials with lower degree and leading coefficient 1, then

1 1 1
P(})*Q(}) = (P*Q)(}) :

Proof. Write

Py =0
Q) =A%)

where P(X), Q(X) € A. Observe that if (a;) are the zeros of P then the zeros of P are (a; !). From
this observation it follows that o
1, (PxQ)X)

(P *Q)(

thus .
(PxQ)=P~*Q .
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We have now

REFERENCES

AHLFORS, L.V.; Complex analysis, 3rd edition, McGraw-Hill, 1979.

BURCH, D.; JONES, N.; MUNOZ, E.; PEREZ—MARCO, R.; Transalgebraic number theory, Manuscript, 2002.
EULER, L.; Introductio in Analysin, Facsimil edition RSME, 2000.

HADAMARD, J.; Théoréme sur les séries entiéres, Acta Math., 22, 1, 1899, p.55-63.

PEREZ—MARCO, R.; Fundamental theorem of symmetric functions with an infinite number of variables , Man-
uscript, 2002.

PEREZ—MARCO, R.; Statistics on Riemann zeros, ArXiv:1112.0346, 2011.

PEREZ—MARCO, R.; Notes on the Riemann Hypothesis, ArXiv:1707.01770, 2017.

SERRE, J.-P.; Cours d’arithmétique, Presses Universitaires de France,2eme édition,1977.

CNRS, IMJ-PRG UMR 7586, UNIVERSITE PARIS DIDEROT, BAT. SOPHIE GERMAIN, 75205 PARIS, FRANCE

E-mail address: ricardo.perez-marco@imj-prg.fr



