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come    

Proposition 1.2. Let t → F(t) be a measurable operator-valued function from [0, ∞) to the linear contractions on a Banach space X such that F(0) = 1. If (1.4)

The second ingredient comes from the, so-called, √ n-Lemma ([Che68] Lemma 2). It yields the estimate

e t C(t/n) w -F(t/n) n w ≤ √ n (F(t/n) -1) w , (1.5) 
for any w ∈ X. Then (1.4) and (1.5) imply lim n→∞ e t C(t/n) u -F(t/n) n u = lim n→∞ e t C(t/n) u n -F(t/n) n u n

≤ lim n→∞ t/ √ n C(t/n) [1 -C(t/n)/ √ n] -1 u = lim n→∞ t u n -u = 0 .
Hence, by (1.3) together with estimate e t C u -F(t/n) n u ≤ e t C ue t C(t/n) u + e t C(t/n) u -F(t/n) n u , for any u ∈ X, we obtain (1.2).

Remark 1.3. (a) Equivalence of condition (1.1) to the existence of the strong derivative F ′ (+0) is a part of the Trotter-Neveu-Kato theorem, [START_REF] Engel | One-parameter Semigroups for Linear Evolution Equations[END_REF] Ch.III, Sects.4.8 and 4.9. (b) For analysis of optimality, generalisation and improvement of the √ n-Lemma, see [START_REF] Zagrebnov | Comments on the Chernoff √ n-lemma, Functional Analysis and Operator Theory for Quantum Physics[END_REF].

Definition 1.4. Equation (1.2) is called the Chernoff product formula, or the Chernoff approximation formula, in the strong operator topology for contraction C 0 -semigroup {e t C } t≥0 .

The aim of the present Notes is lifting the strongly convergent Chernoff product formula to formula convergent in the operator norm topology, whereas a majority of results concerns only strong convergence, see, e.g., a detailed review [START_REF] Ya | The method of Chernoff approximation[END_REF]. Our main results are focused on analysis of the operator-norm convergence of the Chernoff product formula in a Hilbert space H, see Section 2. In Section 3 we establish estimates of the operator-norm rate of convergence for self-adjoint Chernoff product formula. The case of Chernoff product formula for nonself-adjoint quasi-sectorial contractions is the subject of Section 4. The Trotter-Kato product formula is a direct application of the Chernoff product formula, see Section 5.

We conclude this section by the proof of our first Note: for strongly convergent Chernoff product formula the self-adjointness allows to relax condition (1.1) to the weak operator convergence. To this aim we recall a lifting topology assertion in H : Proposition 1.5. Let {u n } n≥1 be a weakly convergent sequence of vectors, w-lim n→∞ u n = u, in a Hilbert space H. If , in addition, lim n→∞ u n = u , then lim n→∞ u nu = 0. This assertion implies the following statement.

Lemma 1.6. Let S : R + → L (H) be a measurable family of non-negative self-adjoint operators and let H be non-negative self-adjoint operator. If the weak operator limit

w-lim τ→+0 (λ 1 + S(τ)) -1 = (λ 1 + H) -1 , (1.6)
for each λ > 0, then it is also true in the strong operator topology :

s-lim τ→+0 (λ 1 + S(τ)) -1 = (λ 1 + H) -1 . (1.7) Proof. From (1.6) we get lim τ→+0 (λ 1 + S(τ)) -1/2 u 2 = (λ 1 + H) -1/2 u 2 , u ∈ H, (1.8) 
for λ ≥ 1. Since

(1 + S(τ)) -1/2 = 1 π ∞ 0 dη 1 √ η (η 1 + 1 + S(τ)) -1 ,
(1.6) also yields w-lim τ→+0 (1 + S(τ)) -1/2 = (1 + H) -1/2 . This, together with (1.8) and the lifting Proposition 1.5, implies s-lim τ→+0 (1 + S(τ)) -1/2 = (1 + H) -1/2 . Then strong convergence of the product of operators yields (1.7).

By Lemma 1.6, the conditions of Proposition 1.2 for the family of operators

S(τ) := 1 -F(τ) τ , τ > 0 , (1.9) 
can be reformulated in a Hilbert space H. Then we get a stronger assertion:

Theorem 1.7. Let F : R + -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1 and let H ≥ 0 be a self-adjoint operator in H. Then

s-lim n→+∞ F(t/n) n = e -tH , (1.10)
if and only if for each λ > 0 the condition

w-lim τ→+0 (λ 1 + S(τ)) -1 = (λ 1 + H) -1 , (1.11) is satisfied.
Proof. If (1.11) is valid, then applying Lemma 1.6 we verify (1.7). Using Proposition 1.2 in a Hilbert space H for C(τ) = -S(τ), C = -H and (1.7) for λ = 1, we prove the self-adjoint Chernoff product formula (1.10).

To prove the converse we use the representation

e -tS(t/n) -e -tH = F(t/n) n -e -tH + e -tS(t/n) -F(t/n) n .
(1.12)

Then lim n→+∞ (F(t/n) ne -tH )u = 0 by condition (1.10), whereas by the spectral functional calculus for self-adjoint operator F(τ) we obtain the operator norm estimate

F(t/n) n -e -n(1-F(t/n)) = [0,1] dE F(t/n) (λ ) λ n -e -n(1-λ ) ≤ 1 n .
(1.13) Therefore, (1.12) yields for τ = t/n the limit s-lim τ→+0 e -tS(τ) = e -tH , (1.14) for t ∈ R + . Note that by the self-adjoint Trotter-Neveu-Kato convergence theorem the limit (1.14) is equivalent to s-lim

τ→+0 (1 + S(τ)) -1 = (1 + H) -1 . (1.15) Since (1.15) is, in turn, equivalent to s-lim τ→+0 (λ 1 + S(τ)) -1 = (λ 1 + H) -1 ,
for λ > 0, the latter yields the weak limit (1.11).

Remark 1.8. (a) We note that due to self-ajointness of the family {F(t)} t≥0 the estimate (1.13) is stronger than the √ n-estimate (1.5) for general contractions. (b) By definition of {F(t)} t≥0 and by condition (1.11) the C 0 -semigroup property of {e -tH } t≥0 ensures that strong limits s-lim t→+0 of the left-and the right-hand sides of (1.10) are welldefined and coincide with 1. Similarly, since by (1.14) the limits in lim t→+0 s-lim τ→+0 e -tS(τ) commute, one gets that t ∈ R + 0 .

2 Lifting the Chernoff product formula to operator-norm topology

The first result about lifting the Chernoff product formula to the operator-norm topology is due to [NZ99a], Theorem 2.2. Our next Note will be about improvement of this result by extension to any closed t-interval I ⊂ R + 0 . Similarly to the case of the strong operator topology our strategy includes the estimate of two ingredients (1.3) and (1.5) involved into Proposition 1.2, but now in the operator norm topology. Since the second ingredient has estimate (1.13), it rests to find conditions for lifting to operator norm convergence of the limit (1.14) in the Trotter-Neveu-Kato convergence theorem. We proceed with the following lemma.

Lemma 2.1. Let K and L be non-negative self-adjoint operators in a Hilbert space H. Then

e -K -e -L ≤ c (1 + K) -1 -(1 + L) -1 (2.1)
with a constant c > 0 independent of operators K and L.

By the Riesz-Dunford functional calculus one obtains representation:

e -K -e -L = 1 2πi Γ dz e z (z + K) -1 -(z + L) -1 . (2.2)
Essentially, the line of reasoning is based on straightforward estimates that use (2.2) for a given contour Γ. Then arguments show that constant c is only Γ-dependent. We skip the proof. By virtue of (1.13) and Lemma 2.1 the operator-norm Trotter-Neveu-Kato theorem needs lifting of the strong convergence in (1.15) to the operator-norm convergence.

Lemma 2.2. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for non-negative self-adjoint operator H in H. Then condition

lim τ→+0 (1 + S(τ)) -1 -(1 + H) -1 = 0, (2.3) is satisfied if and only if lim τ→+0 sup t∈I (1 + tS(τ)) -1 -(1 + tH) -1 = 0, (2.4) 
for any closed interval I ⊂ R + .

Proof. A straightforward computation shows that

(1 + tS(τ)) -1 -(1 + tH) -1 = t(1 + S(τ))(1 + tS(τ)) -1 [(1 + S(τ)) -1 -(1 + H) -1 ](1 + H)(1 + tH) -1 . (2.5)
Here we used that if t > 0 and τ > 0 then for self-adjoint operator S(τ) the closure

(1 + t S(τ)) -1 (1 + S(τ)) = (1 + S(τ))(1 + t S(τ)) -1 .
For these values of arguments t and τ we obtain estimates:

(1 + S(τ))(1 + t S(τ)) -1 ≤ (1 + 2/t) , (1 + H)(1 + t H) -1 ≤ (1 + 2/t) .
If I is a closed interval of R + , e.g., I := [a, b] for 0 < a < b < ∞, then by (2.5)

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ b(1 + 2/a) 2 (1 + S(τ)) -1 -(1 + H) -1 , (2.6)
for t ∈ [a, b] and τ > 0. By (2.3) the estimate (2.6) yields (2.4). The converse is obvious.

Theorem 2.3. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H. Then we have

lim n→∞ sup t∈I F(t/n) n -e -tH = 0 , (2.7)
for any closed interval I ⊂ R + , if and only if the family {S(τ)} τ>0 satisfies condition (2.3).

Proof. For t > 0 and n ≥ 1 we get estimate

F(t/n) n -e -tH ≤ F(t/n) n -e -tS(t/n) + e -tS(t/n) -e -tH .
(2.8)

Then (1.13) and (2.8) imply

F(t/n) n -e -tH ≤ 1 n + e -tS(t/n) -e -tH , t > 0, n ≥ 1 .
(2.9)

Note that by Lemma 2.1 there is a constant c > 0 such that for t > 0

e -tS(t/n) -e -tH ≤ c (1 + tS(t/n)) -1 -(1 + tH) -1 .
(2.10)

Inserting the estimate (2.10) into (2.9) we obtain

F(t/n) n -e -tH ≤ 1 n + c (1 + tS(t/n)) -1 -(1 + tH) -1 , (2.11) 
Then (2.11) and Lemma 2.2 yield (2.7).

Conversely, let us assume (2.7). For t > 0 and n ≥ 1 we have estimate

e -tS(t/n) -e -tH ≤ F(t/n) n -e -tH + F(t/n) n -e -tS(t/n) ,
and by (1.13)

e -tS(t/n) -e -tH ≤ F(t/n) n -e -tH + 1 n .
(2.12)

Then by assumption (2.7) for any closed interval I ⊂ R + the estimate (2.12) yields lim n→∞ sup t∈I e -tS(t/n)e -tH = 0 .

Hence, lim n→∞ e -tS(t/n)e -tH = 0 implies lim τ→+0 e -tS(τ)e -tH = 0 for any t > 0. Now, using representation:

(1 + S(τ)) -1 -(1 + H) -1 = ∞ 0 ds e -s e -s S(τ) -e -s H , (2.13)
we obtain the estimate

(1 + S(τ)) -1 -(1 + H) -1 ≤ ∞ 0 ds e -s e -sS(τ) -e -sH .
(2.14)

Let Φ τ (s) := e -s e -sS(τ)e -sH . Since S(τ) ≥ 0 and H ≥ 0, one gets Φ τ (s) ≤ 2 e -s ∈ L 1 (R + ) and lim τ→+0 Φ τ (s) = 0. Then lim τ→+0 in the right-hand side of (2.14) is zero by the Lebesgue dominated convergence theorem, that yields (2.3).

Extension of this statement to any bounded interval I ⊂ R + 0 (cf. Remark 1.8(b)) needs a uniform operator-norm extension of the Trotter-Neveu-Kato theorem, that we present below.

Theorem 2.4. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) , for self-adjoint operator H ≥ 0 in H. Then the convergence lim τ→+0 sup t∈I e -tS(τ)e -tH = 0 , (2.15)

holds for any bounded interval I ⊂ R + 0 if and only if the condition

lim τ→+0 sup t∈I (1 + tS(τ)) -1 -(1 + tH) -1 = 0 , (2.16)
is valid for any bounded interval I ⊂ R + 0 . Proof. By conditions of theorem and by Lemma 2.1 we obtain from (2.10) the estimate

sup t∈I e -tS(τ) -e -tH ≤ c sup t∈I (1 + tS(τ)) -1 -(1 + tH) -1 ,
for τ > 0 and for any bounded interval I ⊂ R + 0 . This estimate and condition (2.16) imply the convergence in (2.15).

Conversely, assume (2.15). Note that by representation (2.13) one gets for t ≥ 0:

(1 + tS(τ)) -1 -(1 + tH) -1 = ∞ 0 ds e -s e -stS(τ) -e -stH .
This yields the estimate

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ ∞ 0 ds e -s e -stS(τ) -e -stH ,
for τ > 0 and t ≥ 0. Now, let 0 < ε < 1 and let N ε :=ln(ε/2). Then ∞ N ε ds e -s e -stS(τ) -e -stH ≤ ε , for τ > 0 and t ≥ 0. Hence,

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ N ε
0 ds e -s e -stS(τ) -e -stH + ε , that for any bounded interval I ⊂ R + 0 and τ > 0 yields

sup t∈I (1 + tS(τ)) -1 -(1 + tH) -1 ≤ sup t ∈ I ∧ s ∈ [0, N ε ] e -stS(τ) -e -stH + ε .
Applying now (2.15) we obtain lim

τ→+0 sup t∈I (1 + tS(τ)) -1 -(1 + tH) -1 ≤ ε ,
for any ε > 0. This completes the proof of (2.16).

Now we are in position to improve Theorem 2.3. We relax the restriction to closed intervals I ⊂ R + to condition on any bounded interval I ⊂ R + 0 .

Theorem 2.5. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H. Then

lim n→∞ sup t∈I F(t/n) n -e -tH = 0,
(2.17)

for any bounded interval I ⊂ R + 0 if and only if

lim n→∞ sup t∈I (1 + tS(t/n)) -1 -(1 + tH) -1 = 0, (2.18)
is satisfied for any bounded interval

I ⊂ R + 0 .
Proof. By (2.11) and by assumption (2.18) we obtain the limit (2.17). Conversely, using (2.12) and assumption (2.17) one gets (2.15) for τ = t/n and for any bounded interval I ⊂ R + 0 . Then application of Theorem 2.4 yields (2.18).

3 Chernoff product formula: rate of the operator-norm convergence

Theorem 2.4 admits further improvements. They allow to establish estimates for the rate of operator-norm convergence in (2.15) under certain conditions in (2.16). Our next Note concerns the estimates of the convergence rate in Theorem 2.5. Recall that the first result in this direction was due to [IT01] (Lemma 2.1).

Lemma 3.1. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H.

(i) If ρ ∈ (0, 1] and there is a constant M ρ > 0 such that the estimate

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ M ρ τ t ρ , (3.1) 
holds for τ,t ∈ (0, 1] and 0 < τ ≤ t, then there is a constant c ρ > 0 such that the estimate

F(τ) t/τ -e -tH ≤ c ρ τ t ρ , (3.2)
is valid for τ,t ∈ (0, 1] with 0 < τ ≤ t.

(ii) If ρ ∈ (0, 1) and there is a constant c ρ such that (3.2) holds, then there is a constant M ρ > 0 such that the estimate (3.1) is valid.

Proof. (i) By Lemma 2.1 there is a constant c > 0 such that

e -tS(τ) -e -tH ≤ c (1 + tS(τ)) -1 -(1 + tH) -1 , (3.3)
for τ,t > 0. Then (3.1), for τ,t ∈ (0, 1] with 0 < τ ≤ t, yields, cf. Theorem 2.4,

e -tS(τ) -e -tH ≤ c M ρ τ t ρ .
By definition (1.9) and inequality (1.13)

F(τ) t/τ -e -tS(τ) ≤ τ t . (3.4)
Therefore, by estimate

F(τ) t/τ -e -tH ≤ F(τ) t/τ -e -tS(τ) + e -tS(τ) -e -tH , (3.5) 
we obtain for τ,t ∈ (0, 1] with 0 < τ ≤ t

F(τ) t/τ -e -tH ≤ τ t + c M ρ τ t ρ .
Since for ρ ∈ (0, 1] one has τ/t ≤ (τ/t) ρ ,

F(τ) t/τ -e -tH ≤ (1 + c M ρ ) τ t ρ . (3.6) Setting c ρ := 1 + c M ρ , we prove (3.2) for ρ ∈ (0, 1].
(ii) To prove (3.1) we use the identity:

(1 + tS(τ)) -1 -(1 + tH) -1 = ∞ ∑ n=0 n+1 n dx e -x e -xtS(τ) -e -xtH ,
here τ,t > 0. Substitution x = y + n yields

(1 + tS(τ)) -1 -(1 + tH) -1 = ∞ ∑ n=0 e -n 1 0
dy e -y e -(y+n)tS(τ)e -(y+n)tH , that gives the representation

(1 + tS(τ)) -1 -(1 + tH) -1 = ∞ ∑ n=0 e -n n-1
∑ k=0 e -ktS(τ) e -tS(τ)e -tH e -(n-k-1)tH 1 0 dy e -y e -ytS(τ) + e -ntH 1 0 dy e -y e -ytS(τ)e -ytH .

Hence, we obtain the estimate for τ,t ∈ (0, 1], with 0 < τ ≤ t.

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ (3.
Finally, by virtue of (3.8) and (3.12) we get for (3.7)

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ ∞ ∑ n=0 e -n n (1 + c ρ ) + (1 + c ρ ) 1 0 dy e -y y -ρ + 2 τ t ρ . Now, setting M ρ := ∞ ∑ n=0 e -n n (1 + c ρ ) + (1 + c ρ ) 1 0
dy e -y y -ρ + 2 we obtain estimate (3.1).

Remark 3.2. In Lemma 3.1(i) it is shown that for ρ = 1 the condition (3.1) implies (3.2). But it is unclear for converse since Lemma 3.1(ii) does not cover this case.

The next assertion extends the result of Lemma 3.1(i) to any bounded interval I ⊂ R + 0 .

Theorem 3.3. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H.

If for some ρ ∈ (0, 1] there is a constant M ρ > 0 such that the estimate (3.1) holds for τ,t ∈ (0, 1] and 0 < τ ≤ t, then for any bounded interval I ⊂ R + 0 there is a constant c I ρ > 0 such that the estimate

sup t∈I F(t/n) n -e -tH ≤ c I ρ 1 n ρ , (3.13) holds for n ≥ 1. Proof. Let N ∈ N such that I ⊆ [0, N]. Then representation F(t/Nn) Nn -e -t H = N-1 ∑ k=0 e -k t H/N (F(t/Nn) n -e -t H/N )F(t/Nn) (N-1-k)n ,
for n ≥ 1, yields the estimate

F(t/Nn) Nn -e -t H ≤ N F(t/Nn) n -e -t H/N . (3.14)
Let t ′ := t/N ≤ 1 and τ ′ := t ′ /n ≤ 1. Then t ≤ N and 0 < τ ′ ≤ t ′ ≤ 1. By Lemma 3.1(i) we obtain

F(t/Nn) n -e -tH/N = F(τ ′ ) t ′ /τ ′ -e -t ′ H ≤ c ρ τ ′ t ′ ρ ,
and by (3.14) the estimate

F(t/Nn) Nn -e -tH ≤ c ρ N τ ′ t ′ ρ .
Let n ′ := Nn ≥ 1. Then

F(t/n ′ ) n ′ -e -tH ≤ c ρ N 1+ρ 1 n ′ ρ , t ∈ [0, N].
Setting c

[0,N] ρ := c ρ N 1+ρ , we prove the theorem for I = [0, N]. Since for any bounded interval I one can always find a N ∈ N such that I ⊆ [0, N], this completes the proof.

To extend Theorem 3.3 to I = R + 0 one needs conditions when the values of τ,t are allowed to be unbounded. Theorem 3.4. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H.

If for some ρ ∈ (0, 1] there is a constant M ρ > 0 such that the estimate (3.1) holds for 0 < τ ≤ t < ∞, then there exists a constant c R + ρ > 0 such that for τ = t/n the estimate

sup t∈R + 0 F(t/n) n -e -tH ≤ c R + ρ 1 n ρ , (3.15)
holds for n ≥ 1.

Proof. The arguments ensuring that (3.3) yields estimate (3.6) go through verbatim if we assume (3.1) for 0 < τ ≤ t < ∞. Then setting τ := t/n, n ∈ N we deduce from (3.6)

F(t/n) n -e -tH ≤ c R + ρ 1 n ρ , n ≥ 1,
for t ∈ R + 0 , where c R + ρ := 1 + c M ρ . So, this proves (3.15).

Remark 3.5. We Note that in Theorem 2.5 we established the self-adjoint operator-norm convergent extension of the Chernoff product formula for any bounded interval I ⊂ R + 0 under t-dependent condition (2.18), which is necessary and sufficient. We Note that Theorem 3.3 and Theorem 3.4 prove self-adjoint operator-norm Chernoff product formula in R + 0 with estimate of the rate of convergence. They are also based on t-dependent fractional power condition (3.1), which is necessary and sufficient for ρ ∈ (0, 1).

Our next Note is that t-dependence in assumption (3.1) for ρ = 1 can be relaxed. The assertion below extends to R + 0 (with convergence rate) the established in Theorem 2.3 operatornorm convergence of the self-adjoint Chernoff product formula for bounded interval I ⊂ R + . It yields an operator-norm version of original Chernoff product formula, see Proposition 1.2. Theorem 3.6. Let F : R + 0 -→ L (H) be a measurable family of non-negative self-adjoint contractions such that F(0) = 1. Let self-adjoint family {S(τ)} τ>0 be defined by (1.9) and (1.15) for self-adjoint operator H ≥ 0 in H.

If there is a constant M 1 > 0 such that the estimate

(1 + S(τ)) -1 -(1 + H) -1 ≤ M 1 τ , (3.16)
holds for τ ∈ (0, 1], then for any bounded interval I ⊂ R + 0 there is a constant c I 1 > 0 such that the estimate

sup t∈I F(t/n) n -e -tH ≤ c I 1 1 n , ( 3 
.17)

holds for n ≥ 1.
Proof. By virtue of (2.5) and (3.16) we obtain the estimate

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ M 1 τ t (1 + S(τ))(1 + tS(τ)) -1 (1 + H)(1 + tH) -1 . (3.18)
Then (3.18), together with estimates

(1 + S(τ))(1 + tS(τ)) -1 ≤ 1/t and (1 + H)((1 + tH) -1 ≤ 1/t,
for self-adjoint S(τ) and H, imply for 0 < τ ≤ t ≤ 1 and ρ = 1 the estimate (3.1) and thus (3.2). Finally, applying Theorem 3.3 we extend the proof to any bounded interval I ⊂ R + 0 . Now we extend Theorem 3.6 for condition (3.16), to infinite interval I = R + 0 . To this end, similar to Theorem 3.4, one needs additional assumption valid on infinite t-intervals.

Theorem 3.7. Let in addition to conditions of Theorem 3.6 operator H ≥ µ1, µ > 0 and for any ε > 0 there exists a δ ε ∈ (0, 1) such that

0 ≤ F(τ) ≤ (1 -δ ε )1, (3.19)
is valid for τ ≥ ε. If there is a constant M 1 > 0 such that (3.16) holds for τ ∈ (0, ε ≤ 1), then there exists a constant c R + 1 > 0 such that (3.17) is valid for infinite interval I = R + 0 . Proof. Since (3.16) implies the resolvent-norm convergence of {S(τ)} τ>0 , when τ → +0, and since H ≥ µ1, there exists 0 < µ ε ≤ µ such that S(τ) ≥ µ ε 1 for τ ∈ (0, ε), where ε is sufficiently small.

On the other hand, (3.18) for self-adjoint S(τ) and H, yields

(1 + tS(τ)) -1 -(1 + tH) -1 = ≤ M 1 τ t (1 + S(τ))(1/t + S(τ)) -1 (1 + H)(1/t + H) -1 , (3.20)
for t > 0. Since S(τ) ≥ µ ε 1, τ ∈ (0, ε), and H ≥ µ1, we obtain estimates

(1 + S(τ))(1/t + S(τ)) -1 ≤ 1 + µ ε µ ε , (1 + H)(1/t + H) -1 ≤ 1 + µ µ .
By (3.20) these estimates give

(1 + tS(τ)) -1 -(1 + tH) -1 ≤ M R + 1 τ t , (3.21) 
for τ ∈ (0, ε) and t > 0.

Here M R + 1 := M 1 (1 + µ ε )(1 + µ)/µ ε µ. Note that if τ/t ≤ 1, then by (3.4) F(τ) t/τ -e -tS(τ) ≤ τ t , 0 < τ ≤ t < ∞ .
Therefore, (3.3), (3.5) and (3.21), which are valid for τ ∈ (0, ε ≤ 1), allow to use the result (3.17) of Theorem 3.6 for the case 0 < τ ≤ t < ∞, and τ = t/n, n ≥ 1. This yields

F(t/n) n -e -tH ≤ c R + 1 1 n , (3.22) 
for bounded interval: t ∈ [0, εn), and for c R + 1 := 1 + c M R + 1 . Now let t ≥ εn. Then by assumption (3.19) we have

F(t/n) n ≤ (1 -δ ε ) n = e n ln(1-δ ε ) , t ≥ nε . (3.23)
Note that H ≥ µI implies e -tH ≤ e -nε µ for t ≥ nε. This together with (3.22) and (3.23) yield for a small ε > 0, cf. (3.21), the estimate

F(t/n) n -e -tH ≤ c R + 1 1 n + e n ln(1-δ ε ) + e -nε µ ,
valid for any t ≥ 0. Since c 1 := sup n≥1 n(e n ln(1-δ ε ) + e -nε µ ) < ∞, there exists constant c R + 1 := c R + 1 + c 1 such that (3.17) is valid for n ≥ 1 and infinite interval I = R + 0 4 Nonself-adjoint operator-norm Chernoff product formula

The results on the nonself-adjoint Chernoff product formula in operator-norm topology are more restricted. The most of them concern the quasi-sectorial contractions [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF].

Definition 4.1. A contraction F on the Hilbert space H is called quasi-sectorial with semiangle α ∈ [0, π/2) with respect to the vertex at z = 1, if its numerical range W (F) ⊆ D α , where closed domain

D α := {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 -z)| ≤ α and |z -1| ≤ cos α}. (4.1)
The limits: α = 0 and α = π/2 -0, correspond, respectively, to non-negative self-adjoint contractions and to general contractions.

A characterisation of quasi-sectorial contraction semigroups is due to [START_REF] Zagrebnov | Quasi-sectorial contractions[END_REF], [START_REF] Arlinski | Numerical range and quasi-sectorial contractions[END_REF].

Proposition 4.2. C 0 -semigroup {e -t H } t≥0 is, for t > 0, a family of quasi-sectorial contractions with W (e -t H ) ⊆ D α , if and only if generator H is an m-sectorial operator with W (H) ⊂ S α , the open sector with semi-angle α ∈ [0, π/2) and vertex at z = 0 .

Note that if operator F is a quasi-sectorial contraction and W (F) ⊆ D α , then 1 -F is also m-sectorial operator with vertex z = 0 and semi-angle α. Using the Riesz-Dunford functional calculus one obtains estimate

F n (1 -F) ≤ K n + 1 , n ∈ N . (4.2) 
The estimate (4.2) allows to go beyond the Chernoff √ n-Lemma (1.5) and to establish the

(1/ 3 √ n)-Theorem [Zag17].
Proposition 4.3. Let F be a quasi-sectorial contraction on H with numerical range W (F) ⊆ D α for α ∈ [0, π/2). Then

F n -e n(F-1) ≤ M n 1/3 , n ∈ N , (4.3) 
where M = 2K + 2 and K is defined by (4.2).

Next we recall nonself-adjoint operator-norm extension of the Trotter-Neveu-Kato convergence theorem for quasi-sectorial contraction semigroups [CZ01] (Lemma 4.1): Proposition 4.4. Let {S(τ)} τ>0 be a family of m-sectorial operators with W (S(τ)) ⊆ S α for some α ∈ [0, π/2) and for all τ > 0. Let H be an m-sectorial operator with W (H) ⊂ S α . Then the following conditions are equivalent:

(a) lim τ→+0 (ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 = 0, for some ζ ∈ S π-α ;
(b) lim τ→+0 e -t S(τ)e -t H = 0, for t in a subset of R + having a limit point.

Therefore, the estimate (4.3) together with Proposition 4.4 and inequality 

F(t/n) n -e -t
lim τ→+0 (ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 = 0 , for some ζ ∈ S π-α . (4.6)
Remark 4.6. Since semigroups {e -z S(τ) } z∈S π/2-α , τ > 0, and {e -z H } z∈S π/2-α are holomorphic in sector S π/2-α , proof of the Chernoff product formula (4.5) for nonself-adjoint quasisectorial contractions is based on the Riesz-Dunford functional calculus. To establish the operator-norm convergence without rate it successfully (although not completely, since t > 0) substitutes the self-adjointness in the proofs in Sections 2 and 3.

We use this calculus to prove the operator-norm Chernoff product formula for quasisectorial contractions with estimate of the rate of convergence. We Note that this is a generalisation of the Chernoff product formulae proven respectively in Theorem 3.6 (for self-adjoint case) and in Proposition 4.5 (without rate of convergence).

Theorem 4.7. Let {F(τ)} τ≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H and let {S(τ)} τ>0 be a family of m-sectorial operators defined by (1.9) and (1.15) for m-sectorial operator H with W (H) ⊆ S α . If there is L > 0 such that estimate

(ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 ≤ L τ dist(ζ , -S α ) , (4.7) 
holds for ζ ∈ S π-α , then for any bounded interval I ⊂ R + there is a constant C I > 0 such that estimate

sup t∈I F(t/n) n -e -tH ≤ C I 1 n 1/3 , (4.8) holds for n ≥ 1.
Proof. Estimation of the last term in inequality (4.4). Since by (1.9) and conditions on {F(τ)} τ≥0 operators {S(τ)} τ>0 are m-sectorial with W (S(τ)) ⊆ S α , the Riesz-Dunford formula

e -tS(τ) = 1 2πi Γ dζ e tζ ζ 1 + S(τ) ,
defines for τ > 0 a family of holomorphic semigroups τ → {e -tS(τ) } t∈S π/2-α . Here Γ ⊂ S π-α is a positively-oriented closed (at infinity) contour in C around -S α . The same is true for m-sectorial operator H since W (H) ⊆ S α :

e -tH = 1 2πi Γ dζ e tζ ζ 1 + H . We define Γ := Γ ε ∪ Γ δ ∪ Γ ε , where the arc Γ δ = {z ∈ C : |z| = δ > 0, | arg z| ≤ π -α -ε} (for 0 < ε < π/2 -α) and Γ ε , Γ ε are two conjugate radial rays with Γ ε = {z ∈ C : arg z = π -α -ε, |z| ≥ δ }. Then for t > 0 one gets e -tS(τ) -e -tH ≤ 1 2π Γ |dζ ||e tζ | (ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 . (4.9)
Since operators {S(τ)} τ>0 and H are m-sectorial with numerical ranges in open sector S α , by condition (4.7) we obtain: To estimate the first term in the right-hand side of (4.4) we use Proposition 4.3. Then

(ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 ≤ L τ δ sin ε , for ζ ∈ Γ δ , (4.10) (ζ 1 + S(τ)) -1 -(ζ 1 + H) -1 ≤ L τ |ζ | sin ε , for ζ ∈ Γ ε ∨ Γ ε . ( 4 
F(t/n) n -e -tS(t/n) ≤ M 1 n 1/3 . (4.14)
The inequalities (4.4) and (4.13), (4.14) prove the estimate (4.8).

Remark 4.8. Note that the rate (4.8) of the operator-norm convergence of the Chernoff product formula for quasi-sectorial contractions is slower then for the self-adjoint case (3.17). This rate is limited by non-optimal estimate due to Proposition 4.3.

Corollary 4.9. Let {S(τ)} τ>0 be a family of m-sectorial operators defined by (1.9) and (1.15) with W (S(τ)) ⊆ S α for some α ∈ [0, π/2). Let H be an m-sectorial operator with W (H) ⊆ S α .

Then there exist M ′ > 0 and δ ′ > 0 such that e -tS(τ)e -tH ≤ M

′ t e t δ ′ (1 + S(τ)) -1 -(1 + H) -1 , (4.15)
holds for positive τ and t.

For extension of Theorem 4.7 to R + 0 the estimate (4.15) suggests a weaker form of the operator-norm Trotter-Neveu-Kato theorem. We Note that, under stronger than (4.7) (the tdependent resolvent condition, see (3.1) for ρ = 1) we obtain a new version of Proposition 4.4.

Theorem 4.10. Let {F(τ)} τ≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H. Let {S(τ)} τ>0 be a family of m-sectorial operators defined by (1.9), (1.15) with W (S(τ)) ⊆ S α for some α ∈ [0, π/2) and for m-sectorial operator H with W (H) ⊆ S α . Then estimate for the same contour Γ ⊂ S π-α . After change of variable: z = t ζ , the right-hand side of estimate (4.18) gets the same expression as (4.12), but for δ substituted by δ /t. This yields (4.17) for any bounded interval I ⊂ R + 0 . Sufficiency of (4.17): First, using the Laplace transform, we estimate: To apply a full power of the self-adjoint Chernoff product formula (Sections 2 and 3) we symmetrise and produce self-adjoint family {F(t) := g(tB) 1/2 f (tA)g(tB) 1/2 } t≥0 . Let positive operators A and B be such that operator A + B =: H ≥ µ1 is self-adjoint. If F(t) is sufficiently smooth at t = +0 and satisfy (3.19) (see [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF] (1.2)), then (3.16) holds for τ = t/n and Theorem 3.7 proves the operator-norm convergent symmetrised Trotter-Kato product formula:

sup t∈I (ζ 1 + tS(τ)) -1 -(ζ 1 + tH) -1 ≤ L I τ dist(ζ , -S α ) , ζ ∈ S π-α , ( 
•lim n→∞ g(tB/n) 1/2 f (tA/n)g(tB/n) 1/2 n = e -tH , (5.3) uniformly on R + 0 with O(1/n) as the rate of convergence, see [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF], [START_REF] Ichinose | Note on the paper "The norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF]. There it was also shown that this rate is optimal.

For proving convergence of the nonself-adjoint Trotter-Kato approximants, for example the simplest: {( f (tA/n)g(tB/n)) n } n≥1 , note that for n ∈ N and t ≥ 0:

( f (tA/n)g(tB/n)) n = f (tA/n)g(tB/n) 1/2 F(t/n) n-1 g(tB/n) 1/2 . This representation yields:

( f (tA/n)g(tB/n)) ne -tH ≤ F(t/n) n-1e -tH + 2 (1g(tB/n))e -tH + (1f (tA/n))e -tH .

Then by estimates (3.22) and (4.2) we get for n -1 ≥ 1

F(t/n) n-1 -e -tH ≤ ( c R + 1 + K) 1 n , t ≥ 0.
(5.4)

On the other hand, since f , g ∈ K and H = A + B: This paper is dedicated to the memory of Hagen Neidhardt passed away on 23 March 2019. I am deeply grateful to Hagen for valuable discussions on the subjects of this and of many others of my projects.

  C(τ)) -1 = (1 -C) -1 , (1.1) in strong operator topology, then s-lim n→+∞ F(t/n) n = e t C , (1.2) for all t ≥ 0 uniformly on bounded t-intervals. Proof. The proof needs two ingredients. The first is the Trotter-Neveu-Kato theorem ([Kat80], Ch.IX, Theorem 2.16): the strong convergence in (1.1) yields for contractions {e t C(τ) } t≥0 lim τ→+0 e t C(τ) u = e t C u ,(1.3)for all u ∈ X, locally uniformly on closed intervals I ⊂ R + 0 . Now, for any t > 0 and u ∈ X we define {u n := [1 -C(t/n)/√ n] -1 u} n≥1 . Then by (1sC(t/n) u = u.

  n e -tS(τ)e -tH + 1 0 dy e -y e -ytS(τ)e -ytH .Note that assumption (3.2) and estimate (3.4) yield for τ,t ∈ (0, 1], with 0 < τ ≤ t, e -tS(τ)e -tH ≤ (1 + c ρ ) last term in (3.7) we use decomposition 1 0 dy e -y e -ytS(τ)e -ytH = (3.9) 1 τ/t dy e -y e -ytS(τ)e -ytH + τ/t 0 dy e -y e -ytS(τ)e -ytH . Since by (3.8) for τ,t, y ∈ (0, 1] and τ/t ≤ y e -ytS(τ)e -ytH ≤ (1 + c ρ ) τ ty ρ , we obtain for 0 < τ ≤ t the estimate 1 τ/t dy e -y e -ytS(τ)e -ytH ≤ (1 + c ρ ) 1 0 dy e -y y -ρ τ t ρ . (3.10) Moreover, for ρ < 1 one obviously gets τ/t 0 dy e -y e -ytS(τ)e -ytH ≤ 2 τ t ρ . (3.11) Taking into account (3.10) and (3.11) we obtain from (3.9): 1 0 dy e -y e -ytS(τ)e -ytH ≤ (1 + c ρ )

(ζ 1

 1 + t S(τ)) -1 -(ζ 1 + t H) -1 ≤ ∞ 0 ds e -s Re ζ e -st S(τ)e -st H , (4.19)in the half-plane C + = S π/2 . To this aim we let ε ∈ (0, 1) andN ε :=ln(ε/2) such that for ζ ∈ S π/2 and τ > 0, t ≥ 0 ∞ N ε ds e -s Re ζ e -st S(τ) -e -st H ≤ ε .Therefore, one gets(ζ 1 + t S(τ)) -1 -(ζ 1 + t H) -1 ≤ N ε 0 ds e -s Re ζ e -st S(τ)e -st H + ε ,that by condition (4.17) for any interval I ⊆ R + 0 and ε ∈ (0, 1) yieldssup t∈I (ζ 1 + tS(τ)) -1 -(ζ 1 + tH) -1 ≤ (4.20) 1 Re ζ sup t ∈ I ∧ s ∈ [0, N ε ] e -stS(τ) -e -stH + ε ≤ 1 Re ζ K R + 0 τ + ε .

( 1 -

 1 f (tA/n))e -tH ≤ C A C γ[ f ] 1 n and (1g(tB/n))e -tH ≤ C B C γ[g] f ] := sup x>0 (1f (x))/x and similar for g. Inequalities (5.4) and (5.5) yield for some Γ > 0 the estimate( f (tA/n)g(tB/n)) ne -tC ≤ Γ 1 n ,which proves the asymptotic O(1/n) for n → ∞.

  H ≤ F(t/n) ne -tS(t/n) + e -tS(t/n)e -tH , (4.4) yield nonself-adjoint operator-norm version of the Chernoff product formula for quasi-sectorial contractions (cf. Proposition 1.2 in[START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]):

	Proposition 4.5. Let {F(τ)} τ≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H, that is, W (F(τ) ⊆ D α (4.1), for all τ > 0. Let family {S(τ)} τ>0 be defined by (1.9) and (1.15). If H is m-sectorial operator with W (H) ⊂ S α , then
	lim n→∞	F(t/n) n -e -t H = 0 , for t > 0 ,	(4.5)
	if and only if		

  Necessity of (4.17): As in the proof of Theorem 4.7 we use the Riesz-Dunford functional calculus for holomorphic semigroups to obtain estimate e -tS(τ)e -tH ≤ 1 2π Γ |dz||e

			4.16)
	holds for any interval I ⊆ R + 0 if and only if the condition	
	sup t∈I	e -tS(τ) -e -tH ≤ K I τ ,	(4.17)
	is valid for any interval I ⊆ R + 0 .		
	Proof.		

z | (z1 + t S(τ)) -1 -(z1 + t H) -1 , (4.18)

Since ε may be arbitrary small, we obtain the estimate (4.16) for any ζ ∈ S π/2 .

For extension of ζ to sector S π-α we note that semigroups involved into estimate (4.19) are holomorphic in sector S π/2-α . Therefore, the Laplace transform is also valid for integration along the radial rays: s e iϕ ∈ S π/2-α . Then conditions for convergence of Laplace integrals take the form: 

for n ≥ 1 and any bounded interval

We Note that extension (4.23) of the operator-norm Chernoff product formula for quasisectorial contractions on R + 0 inherits the estimate of the rate of convergence established in Proposition 4.3.

Comments: Trotter-Kato product formulae

The first application of the Chernoff product formula (Proposition 1.2) was the proof of the strongly convergent Trotter product formula, see [START_REF] Chernoff | Note on product formulas for operator semigroups[END_REF]: s-lim n→∞ e -tA/n e -tB/n n = e -tH , t ≥ 0.

(5.1)

Here A and B are positive self-adjoint operators in a Hilbert space H with domains dom A and dom B such that dom A ∩ dom B = core H of the self-adjoint H. Note that operator family {F(t) := e -tA e -tB } t≥0 is not self-adjoint.

Later the operator-norm Chernoff product formula from Sections 2 and 3 was used to lift (5.1) to operator-norm topology, as well as to extend it from the exponential Trotter product formula to the Trotter-Kato product formulae for Kato functions K , see [START_REF] Neidhardt | On error estimates for the Trotter-Kato product formula[END_REF].

Recall that if a real-valued Borel measurable function

then f ∈ K . Different conditions on local continuity at t = +0 and global behaviour on R + select subclasses of the Kato functions, see Appendix C in [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF]. If functions f , g ∈ K substitute exponents in formula (5.1) then it is called the Trotter-Kato product formula.