
HAL Id: hal-02373199
https://hal.science/hal-02373199

Preprint submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Should I Stalk or Should I Go? An Auditing
Exploration/Exploitation Dilemma

Reda Aboutajdine, Pierre Picard

To cite this version:
Reda Aboutajdine, Pierre Picard. Should I Stalk or Should I Go? An Auditing Explo-
ration/Exploitation Dilemma. 2019. �hal-02373199�

https://hal.science/hal-02373199
https://hal.archives-ouvertes.fr


Should I Stalk or Should I Go?

An Auditing Exploration/Exploitation Dilemma

Reda Aboutajdine ∗†1 and Pierre Picard ‡1

1
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Abstract

We consider a fraud inspection problem where service providers are central to

the fraud generating process, either as the main protagonists or as colluding third

parties. Because interactions are repeated between the auditor (insurer, tax collec-

tor, environmental regulation agency, etc.) and auditees (doctors, tax preparers,

waste management subcontractors, etc.), auditing behaves as a learning mechanism

to separate the wheat (honest agents) from the chaff (defrauders). We analyze a

Bayesian inspector’s dynamic auditing problem in the face of fraud, and characterize

its optimal strategy as a strategic exploration/one-armed bandit one. The insurer

faces the well-known reinforcement learning exploration/exploitation trade-off be-

tween gathering information for higher future profits (exploration) and prioritizing

immediate profits (exploitation). We then derive optimal auditing strategies with

multiple auditees and capacity constraints as the solution to a k-armed bandit prob-

lem. We finally investigate the extents to which learning occurs under optimality

in terms of how much information is obtained and how quickly it is obtained.
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1 Introduction

When an auditor can monitor an auditee’s action at some cost, the auditing decision

comes down to balancing between investigation-generated gains and losses. These gains

and losses usually include the administrative costs of auditing, the proceeds from re-

covering undue payments in case of a fraud-revealing audit, and the profits drawn from

a deterrence effect when defrauders are threatened to be spotted. But another non-

immediate (and less scrutinized) motivation for monitoring may arise: information ac-

quisition. When auditees are heterogeneous and the auditor’s optimal action is not type-

constant, the latter could benefit from learning more about the auditee. For example, in

insurance, policyholders may differ in their propensity to defraud: it would be optimal

for the insurer to audit “low morality” types more since they defraud frequently enough

to amortize auditing costs, with significant deterrence effects. On the contrary, “high

morality” types usually submit invalid claims by mistake, rendering them impervious to

incentives, and unfrequently enough for net proceeds of auditing to be negative. While

this morality is not directly observable, the repeated fraud patterns may convey infor-

mation about the true type, provided an audit is conducted. This situation is obviously

not restricted to insurance fraud and is relevant to multiple settings where fraud and

auditing can take place. Tax evasion, environmental compliance and subcontractor fraud

all fall in its scope and share a common feature, that is the repeated character (annually,

monthly or even daily) of auditor-auditee interactions.1 But an audit is costly, and gains

from uncertainty reduction may not be profitable. When are they then?

To answer this question, we consider a dynamic programming problem where a de-

cision maker (DM), the auditor, faces a non-strategic auditee who takes an action that

may be invalid. We willingly restrict the occurrence of fraud to a simple non-strategic

stochastic process in order to single out the information acquisition effect and exclude

the deterrence one. The DM can choose to inspect the auditee at each period and reveal

whether there was fraud. As a Bayesian, he acquires information by updating his belief

1The frequency of interactions can also be explained by the existence of intermediaries who provide
services to several agents: e.g.,car repairers or heath service providers in insurance, tax preparers for tax
evasion
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about the auditee’s type, conditionally on the outcome of the auditing decision. Our goal

is to understand if this learning opportunity alters the DM’s myopic optimal auditing

policy and how. In particular, we are interested in the role of the time horizon (finite or

infinite), the time preference and the efficiency of the information acquisition mechanism

in reducing uncertainty.

Our main result states that this learning opportunity induces the DM to extend the

inspection target set to some auditees whose immediate auditing proceeds are negative.

In other words, the DM faces a trade-off between not auditing to avoid losing money at

the expense of not learning anything, and auditing with a negative expected immediate

proceed while acquiring knowledge for more accurate future audits. The DM’s inter-

temporal strategy takes the shape of a cut-off in the belief space, whereby he audits

all agents above the threshold and ignores the ones below. With a finite-horizon, this

cut-off is increasing in time, implying that more exploration takes place early on in the

relationship: since the information acquired is about a time-invariant type, any informa-

tion obtained at a given period is useful for all remaining periods, and, the further the

horizon, the easier it is to amortize the one-time information acquisition cost. At the last

period, the threshold is the one-period myopic one and excludes auditees with negative

auditing proceeds. With an infinite horizon, the cut-off is unsurprisingly constant, lower

than the myopic/no-learning threshold, and corresponds to the limit of the finite-horizon

first period belief threshold when the total number of periods tends to infinity. As for the

time preference, a more patient DM will be willing to explore more to enjoy the future

information-generated additional profits. More importantly, when the DM is indifferent

between the present and the future, i.e., when the discount rate tends to one, total ex-

ploration takes place in the infinite horizon setting: all beliefs are audited, as it takes a

finite time and cost to reach a given level of belief precision, and an undiscounted infinite

number of periods are left to take optimal actions and amortize the initial finite cost.

The intuitive concept underlying this set of results is the classical Exploration versus

Exploitation dilemma: the DM must choose between playing his best option according

to his current knowledge at the risk of being mistaken, or diversify his actions early on to
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refine his beliefs and take more accurate actions later on. This dilemma arises particularly

in Reinforcement Learning problems, in particular Bandit problems. We establish that

our dynamic programming problem is nothing but a Strategic Exploration/One-Armed

Bandit one, i.e. a bandit with a risky arm (auditing) and a safe arm (not auditing).

The value function is then analogous to the well-known Gittins index, which allows us to

extend our main result to the case of multiple auditees and capacity constraints. Another

interpretation of our problem, in line with the One-Armed Bandit approach, is that of an

optimal stopping problem: the cut-off threshold defines a stopping time as the moment

when the belief process crosses the threshold. In our fraud inspection problem, auditing

has the peculiarity of being both the learning action and the profit generating action.

Therefore, the DM’s cut-off decision comes down to a trade-off between stopping early

enough in case of a honest type (low stopping time/large threshold), and not excluding a

dishonest type in case of mistaken initial beliefs (large stopping time/low threshold). In

contrast to our approach, the classical setting is one where the learning action (e.g., atten-

tion allocation, price revelation) is chosen first, then the profit generating action (buying,

selling, etc.) is taken, and the DM’s decision is the stopping time, which consequently

never goes to infinity.

A second set of results elaborates on the specificity of the information acquisition pro-

cess and its implications in terms of optimal auditing. We start by answering the question

of when (in)complete/(in)adequate learning occurs, as defined by Easley & Kiefer (1988)

and Aghion et al. (1991), and show that the answer lies in the distribution of optimal

stopping times. Then, we focus on the efficiency of information gathering, i.e., the speed

of convergence of the belief process to the true state. To do so, we first exploit the

(sub/super)-martingale feature of the Bayesian belief process and focus on the Doob-

Meyer predictable component.

These features relate to several strands of the academic literature. Our approach

relies on the seminal work of Townsend (1979) and Gale & Hellwig (1985) on Costly

State Verification where a principal can costly reveal some hidden information before
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taking the action. We extend the literature on optimal auditing2 by characterizing the

scheme of optimal strategies under dynamic information acquisition in a multi-period

setting.3 One important aspect through which our conclusions differ from previous ones

is that our cutoff is in a belief space rather than on monetary amounts associated to

fraud. Our main result bears a striking resemblance with that of Dionne et al. (2008)

as the auditor is induced to monitor auditees with negative expected payoff, although

for different reasons. For us, this is motivated by the perspective of future profits due

to sequential learning, while the motivation stems from a static deterrence effect in their

case. This dynamic aspect with information gathering links our work to the literature

on sequential experiments and optimal stopping, following the seminal papers by Wald

(1945) and Arrow et al. (1949). These optimal stopping problems are intrinsically related

to bandit ones4 and our model is easily reinterpreted as a One-Armed Bandit problem,

bringing our work close to the literature on Bandits in economics (Bergemann & Välimäki

(2008)) and on Reinforcement Learning (Sutton & Barto (1998)). More generally, it

relates to the literature on dynamic information acquisition by a decision maker, as in

Easley & Kiefer (1988) and Aghion et al. (1991).

The rest of the paper is organized as follows: Section 2 introduces the model. Section

3 characterizes the inter-temporal optimal auditing strategy and its interpretations in

terms of bandits and optimal stopping. Section 4 focuses on the extents to which learning

by auditing happens and its informativeness as a function of the problem’s parameters.

Section 5 concludes. All proofs are in the Appendix.

2 The Model

2.1 Setting

We consider a world inhabited by two protagonists: an auditor and an auditee. The

fundamental aspect of their interaction in this context is that it is repeated in time.

2see Picard (2013) for a comprehensive review.
3This work extends our previous analysis of the two-period case, see Aboutajdine & Picard (2018).
4see Ferguson (2004).
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Practically, it relates to the fact that many interactions occur between an auditing party

and a service provider (SP). The SP can be the direct entity contractually related to

the auditor, such as subcontractors who are major suppliers of a client firm or public

institution. The SP can instead act as a third party to perform a commercial act and/or

certify actions, such as health service providers (dentists, opticians,etc.) or tax preparers.

Thirs party SPs handle therefore the cases of several policyholders of the same insurer

or of several taxpayers, thus the frequent interaction with the auditor.5 Hereafter, we

restrict the auditee to be an SP, and use, for the sake of simplicity and without loss

of generality, the terminology of insurance fraud. The auditor becomes the insurer, the

auditee is an SP, and the SP’s action is to submit a claim.

The SP channels one and only one claim at each period with value 1, each claim being

either valid or invalid. The invalidity of a claim may result from honest mistakes or actual

ill-disposed voluntary intent to defraud. The probability of submitting invalid claims

depends on the SP’s intrinsic type, with the SP being either honest (type H, transmits

invalid claims only involuntarily) or dishonest (type D, transmits invalid claims both

voluntarily and involuntarily). Because of this, a D type is more prone to submitting

invalid claims than an H type, and we consider that he does so with probability pD, while

this probability is pH for an H type, with pH < pD. Hence, the SP is a non-strategic6

entity and his actions are represented by an exogenous Bernoulli process of parameter pi.

Types are time-invariant private information, unobservable to the insurer. But the

latter, based on his experience and his observations, has a subjective belief π that the

SP is of type D. In other words, the insurer attaches probability π to the fact that the

SP is of type D. An SP to whom the auditor assigns a prior π will therefore, from the

insurer’s point of view, submit an invalid claim with probability p̄(π) = (1−π)pH +πpD.

The insurer may audit a claim and reveal its true status, valid or invalid: when invalid,

the auditor gets back the illegitimate amount of 1. This decision is represented by the

5We know for a fact that anti-fraud efforts in health insurance focus on service providers, as their
collaboration is a necessary condition for fraud to occur, and they may even defraud without the insureds
knowledge. The case of tax preparers is less obvious, but Boning et al. (2018) suggest that they can play
an important role in anti-fraud efforts.

6Reminder: this is important to isolate the information effect from the deterrence effect.
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choice of an auditing strategy x ∈ [0, 1], which is the probability with which the auditor

will investigate the claim submitted by the SP. Since the only information available to

the auditor is the prior, the auditing strategy is a function of π.

It costs c ∈ (pH , pD) to perform an audit, inducing a net proceed of 1 − c when a

claim is found invalid, and −c when it is found valid. In expectation, the net proceed of

auditing an SP with prior π is p̄(π)− c. In particular, if the type was known, auditing a

dishonest SP would yield an expected net proceed of pD− c > 0 while auditing an honest

one would yield pH − c < 0. This difference in the profitability of auditing between types

of SPs is what may motivate the insurer to acquire information.

Finally, interactions take place over an arbitrary number of periods T ≥ 1.7 Each

period is indexed by t ∈ {1, 2, .., T} and the initial period t = 1 is the beginning of the

insurer-SP relationship. The period 1 initial prior may be considered as initialized at

some arbitrary value (e.g. 0.5 if no relevant information is available) or based on some

other observable characteristics of the SP. The total number of periods over which the

interactions take place may be interpreted as the “lifespan” of an SP. For example, if an

insurer checks the channeled claims every month and a pharmacist works for 30 years (i.e.,

360 months), then T = 360. Whenever necessary, the time-dependent variables of interest

will be indexed by both the period at which they are considered and the total number

of periods, i.e., by (t, T ) ∈ {1, .., T} × N∗. Otherwise, we will restrain the indexation to

t ∈ {1, .., T}.

2.2 Information Acquisition

Period t audits also allow the insurer to update his beliefs at the beginning of period

t+ 1. Depending on whether an audit has been performed and, if so, whether the claim

was valid or invalid (Val and Inv, respectively), posterior beliefs π̃t+1 are deduced from

7The model is now a generalization of the two-period model considered by Aboutajdine & Picard
(2018).
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initial beliefs πt through Bayes’ Law:

π̃t+1 =


P(D|audit, Inv) = ϕAI(πt) = pDπt

p̄(πt)
,

P(D|audit, V al) = ϕAV (πt) = (1−pD)πt
1−p̄(πt) ,

P(D|no audit) = ϕNA(πt) = πt,

(1)

with

ϕAV (πt) < πt < ϕAI(πt), (2)

ϕ′AI > 0, ϕ′′AI < 0,

ϕ′AV > 0, ϕ′′AV > 0.

The updating mechanism is such that an invalid claim increases the belief that an SP is

Figure 1: Updating Functions

dishonest (πt+1 = ϕAI(πt) > πt) while a valid claim decreases it (πt+1 = ϕAV (πt) < πt).

Either way, both cases imply that the insurer acquires information about the auditee’s

true type. On the contrary, not auditing leaves the beliefs unchanged since no relevant
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information is obtained.

As the setting is dynamic, the evolution of beliefs in times constitutes a stochastic

belief process 〈πt〉 with a natural filtration Ft, and, because it is governed by Bayes Law,

the process behaves as a martingale.

Lemma 1. The belief process 〈πt〉 is a martingale under the auditor’s probability measure

P

EP[π̃t+1|Ft] = πt.

In addition, with some auditing (i.e. x > 0), under state of the world H (respectively

D) and the associated probability measures PH (resp. PD), the belief process 〈πt〉 is a

supermartingale (resp. a submartingale). With an infinite horizon, the process converges

to the true belief about the state of the world

i - EH [π̃t+1|Ft] ≤ πt and πt
PH−−−−−→ 0.

ii - ED[π̃t+1|Ft] ≥ πt and πt
PD−−−−−→ 1.

Figure 2: Simulated convergence of priors to the true beliefs

Corollary 1. The posterior π̃t+1 is a mean-preserving spread of the prior πt.
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Figure 2 illustrates the convergence of beliefs for each type, with the same initial

belief π1. This convergence of the Bayesian beliefs to the truth under systematic auditing

means that auditing acts as a separating tool to isolate dishonest SPs from honest ones.

Figure 3 simulates over T = 1000 periods the trajectories of beliefs for a population of

2000 SPs, half honest half dishonest. At period 1, the population is uniformly distributed

across priors, and a Bernoulli process is drawn for each SP’s fraud behavior, resulting in

a corresponding belief process realization under systematic auditing (i.e., x = 1). The

progressive separation of types, as a convergence of beliefs to both ends of the spectrum,

is such that, after enough time, dishonest SPs end up on the right, while honest ones are

on the left.

(a) t = 1 (b) t = 50 (c) t = 100

(d) t = 250 (e) t = 500 (f) t = 1000

Figure 3: Distribution of priors after repeated audits (T = 1000).

In the following, we go back to a situation where the insurer faces one single SP.

2.3 A Dynamic Programming Problem

2.3.1 The one-period/myopic problem

When T = 1, the problem is myopic, the auditor has no future profits to take into account,

and information acquisition is not relevant. The auditor has objective function

ΩT (π, x) = u(π, x) = (p(π)− c)x,
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and solves for the value function

VT (π) = max
x(π)∈[0,1]

ΩT (π, x).

Because of the linearity of the objective function in x, optimal auditing has a bang-bang

solution characterized by a threshold π+ above which auditing proceeds are positive. In

other words, the auditors targets only individually profitable claims. The value function

is consequently piece-wise linear in π.

Lemma 2. For T = 1, the optimal auditing strategy is bang-bang

x∗T (π)


= 0 if π < π+,

∈ (0, 1) if π = π+, where π+ = c−pH
pD−pH

∈ (0, 1),

= 1 if π > π+.

Figure 4 illustrates the myopic problem’s objective function, optimal policy and value

function.

(a) ΩT (π) (b) x∗T (π) (c) VT (π)

Figure 4: Myopic objective, policy and value functions.

2.3.2 The multi-period problem

With a multi-period setting, the existence of future periods and their interactions with

the present through the learning process alters the objective function at any t < T ,

Ωt(πt, xt) = u(πt, xt) + δEt
[
Vt+1(π̃t+1)|xt

]
, (3)
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and

Vt(πt) = max
xt∈[0,1]

Ωt(πt, xt),

where δ represents time-discounting.8 Denote also with the superscript d the average

discounted counterparts Ωd
t = 1∑T

j=t δ
j−t

Ωt and V d
t = 1∑T

j=t δ
j−t
Vt. Our problem is now a

dynamic programming one with parameters [δ, u,P(π̃t+1), x].

In a finite horizon setting, this problem can be solved by backward induction.Therefore,

the total number of periods T is important and we will occasionally index functions by

{t, T} rather than just {t}. The (piece-wise) linearity features of the objective/value

functions persist through time and the corresponding optimal auditing strategies remain

bang-bang. Lemma 3 characterizes all these features.

Lemma 3. The objective function Ωt,T (π, x) is

i - linear in x, continuous and piece-wise linear in π,

ii -
∂Ωt,T

∂x

∣∣∣
π

is continuous and increasing in π,
∂Ωt,T

∂x

∣∣∣
π=1

> 0 and
∂Ωt,T

∂x

∣∣∣
π=0

< 0,

iii - and there exists a threshold π∗t,T ∈ (0, 1) defined uniquely by
∂Ωt,T

∂x

∣∣∣
π∗t,T

= 0.

The optimal auditing strategy x∗t,T (·) is bang-bang: x∗t,T (π) = 1{π≥π∗t,T }.

The value function Vt,T (π) verifies

i - Vt,T (π) = Ωt,T (π, x∗t,T (π)) = max(0,Ωt,T (π, 1)),

ii - it is continuous and piece-wise linear in π,

iii - it is convex in π (as the maximum of linear functions).

Figure 5 illustrates the Lemma 3 statements. Figure 5a illustrates the fact that

optimal auditing is bang-bang. Figure 5b represents a possible shape of the intertemporal

optimal auditing thresholds, with one threshold for each period. At this stage, we can’t

say anything more about these thresholds other than that they are lower than π+. Figure

8Our model may be extended to the case where the horizon T is random, and δ includes a termination
probability.
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(a) Optimal Policy Function (b) Auditing thresholds

(c) Objective function (d) Vt = max(0,Ωt(π, 1))

(e) Vt = max(Linearfunctions)

Figure 5: Time t policy, objective and value functions
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5c illustrates the fact that the objective function at time t where the insurer audits with

probability one is null for the corresponding threshold π∗t . Finally, Figures 5d and 5e show

how the value function is obtained either as the maximum between 0 and the objective

function under certain auditing, or as the maximum of linear functions. At this stage

of the paper, these linear functions appear in the proof of Lemma 3, but we don’t know

more about their signification.

At any time t ∈ {1, .., T − 1}, the objective function in equation (3) differs from the

myopic one through the second expectation term, which represents the impact of current

auditing decision xt on expected future auditing proceeds through its effects on beliefs.

Lemma 4 describes this component’s dependence on xt.

Lemma 4. The component Et
[
Vt+1(π̃t+1)|xt

]
is increasing in xt and always positive.

In other words, current auditing increases expected future proceeds because of an

exploration effect: the information gathered at the current period allows more accurate

audits in the future. The objective function can therefore be decomposed into an ex-

ploitation and an exploration component

Ωt(πt, xt) =

Exploitation︷ ︸︸ ︷
u(πt, xt) +δ

Exploration︷ ︸︸ ︷
Et
[
Vt+1(π̃t+1)|xt

]
.

(0, π+) (π+, 1)

Exploitation ∂
∂x
u - +

Exploration ∂
∂x
Et[Vt+1] + +

Objective ∂
∂x

Ωt,T (π) ? +

Table 1: Marginal effects of auditing

The myopic threshold π+ = π∗T,T divides the belief space into two segments where

exploitation and exploration effects may go in different directions (see Table 1): above
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π+, both components are increasing in xt, while below π+, the exploitation effect is

decreasing in xt, discouraging auditing, while the exploration one is increasing in xt,

encouraging it.

The exploration and exploitation effects are thus conflicting on (0, π+). The exploita-

tion component is maximized for π∗t = π+. The exploration component is maximized

for π∗t = 0. We can therefore identify the sequence (π∗t ), illustrated in Figure 5b, as a

measure of the dynamic balance between exploitation and exploration. As illustrated in

Figure 6, the closer π∗t to 0, the more the auditor explores, and the closer π∗t to π+, the

more he exploits.

Figure 6: Levels of Exploration/Exploitation

Our goal hereafter is to understand how this optimal balance between exploration and

exploitation behaves through time, i.e., to characterize the sequence (π∗t ).

3 Exploration vs Exploitation: Auditing to Separate

the Wheat from the Chaff

In this section, we present our main results about the evolution of optimal auditing

thresholds as functions of time and discounting, and we relate our problem to classical

learning problems. In Section 3.1, we answer our question of interest for the finite horizon

case, then take the limit when T tends to infinity to characterize the infinite horizon

solution in Section 3.2. Finally we interpret our problem as an optimal stopping one in

Section 3.3 and as a Bandit one in 3.4.
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3.1 Finite horizon optimal auditing

The inclusion of the exploration component at early periods encourages more auditing

by decreasing the optimal thresholds. In addition, the larger the discount rate δ, the

stronger the exploration effect. These results are stated in Proposition 1.

Proposition 1 (Finite Horizon Optimal Thresholds). The existence of the learning op-

portunity changes the auditing efforts as

i - the optimal thresholds sequence (π∗t,T )t∈{1,..,T} is strictly increasing, i.e., there is more

exploration in the early stages of the relationship,

ii - the optimal level of exploration depends on the remaining number of periods (π∗t,T =

f(T − t)) and for all i ∈ {0, 1, ..t− 1}, π∗t,T = π∗t−i,T−i = π∗1,T−t+1,

iii - the sequence of first period thresholds (π∗1,T )T∈N∗ is strictly decreasing,

iv - the optimal levels of exploration are increasing with the DM’s patience, i.e., for any

t ∈ {1, .., T − 1}:

∂π∗t,T
∂δ

< 0 and lim
δ→0

π∗t,T (δ) = π+.

Statement i means that, for a given number of periods, the earlier the audit, the

larger the auditing set (π∗t,T , 1]. Figure 7a illustrates this through the fact that the opti-

mal thresholds are increasing in time. This is due to the fact that interacting for a longer

time with auditees induces the auditor to learn more about them, even when their claims

are believed to be non profitable to audit at that point in time. Because information

gained from the current period audit increases all subsequent periods’ expected auditing

proceeds, the generated gains cover the one-time preliminary expenses. In terms of explo-

ration/exploitation, the auditor explores more at the beginning, hoping to identify dis-

honest types soon enough to exploit them later. Statement ii formalizes this dependence

on the remaining number of periods. As shown in Figure 7b, starting at period 1 with a

horizon T = 5 yields the same optimal thresholds as starting at period 5 with a horizon
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(a) Optimal Policy Function (b) Optimal Thresholds

(c) Learning Opportunity (d) Optimal Threshold and Discounting

Figure 7: Finite Horizon Thresholds and Value Function

T = 9: in both cases, there are 4 periods remaining, and (π∗t,5)t∈{1,..,5} = (π∗t,9)t∈{5,..,9}.

As a consequence, the average discounted value function V d
t,T is larger than the myopic

value function VT,T , and the difference represents the learning opportunity, as illustrated

in Figure 7c. Statement iii is a direct consequence of statements i and ii because of the

backward induction nature of the solution, and conveys the idea that, at the beginning of

the relationship, more exploration takes place if there are more periods remaining (i.e. T

increases). Statement iv tells us that the more patient the insurer, the more exploration

takes place as more weight is put on the remaining periods. However, if the auditor is not

patient, optimal auditing sequences tend to the myopic/one-period threshold π+. Figure

7d illustrates this last statement.

Observe that the increasing optimal thresholds mean that there is more auditing at

the beginning of the relationship. Mittone (2006) notes in a tax evasion experiment
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that auditing may act as en “educating” mechanism when applied early. Participants

audited at the beginning show less propensity to defraud in subsequent periods, even is

they are no longer audited. On the contrary, subjects not audited before the second part

of the experiments continue defrauding and are hardly deterred. Our result provides an

alternative information based motivation for intense auditing earlier in an auditor-auditee

relationship.

3.2 Infinite horizon optimal auditing

With an infinite horizon, the optimal auditing strategy is characterized in Proposition 2

below.

Proposition 2 (Infinite Horizon Optimal Thresholds). The infinite-horizon problem is

obtained by taking the limit T −→∞

i - The optimal thresholds sequence (π∗t,T )t∈N∗ is time independent, i.e. constant and

equal to π∗∞ = limT→∞ π
∗
1,T ≥ 0.

ii - The infinite horizon objective function V∞(π) is convex in π as the supremum of an

infinite countable family of linear functions.

iii - Total exploration occurs when the DM is patient enough

lim
δ→1

π∗∞(δ) = 0.

Statements i is illustrated in Figure 8a and Figure 8b, while statement ii is illustrated

in Figure 8c. According to statement iii, a necessary and sufficient condition for all priors

to be audited at the initial period when T becomes arbitrarily large is for the auditor

to be patient enough, i.e., δ close enough to 1. The underlying intuition is that, while

additional auditing allows to have refined information and better targeted audits, the

lower the initial period prior, the longer the insurer has to wait before he can derive

positive proceeds for the corresponding SPs.
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(a) Convergence of Optimal Thresholds (b) Infinite Horizon Optimal Thresholds

(c) V d
∞ for (pD, pH , c, δ) = (0.8, 0.2, 0.5, 0.8) (d) V d

∞ for (pD, pH , c, δ) = (1, 0, 0.5, 1)

Figure 8: Infinite Horizon Thresholds and Value Functions

Example 1. Assume (pD, pH) = (1, 0). In this context, types are revealed after only one

period as ϕAI = 1 and ϕAV = 0. Then, the objective function is given by

Ω∞(π, x) =
(
π − c+ π

∑
i≥1

δi(1− c)
)
x

=
(
π − c+ π(1− c) δ

1− δ

)
x

=
(
π(

1− δc
1− δ

)− c
)
x.

Then π∗∞ verifies π(1−δc
1−δ )− c = 0⇒ π∗∞ = (1−δ)c

1−δc and

V∞(π) =
(
π(

1− δc
1− δ

)− c
)
1{π>π∗∞}.

Figure 8d illustrates the average discounted value function V d
∞ as a linear function when
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δ → 1, as linear combination with weights π and 1− π between per period payoffs 1− c

and 0. Indeed, in this case, with probability π, the auditee is dishonest and the average

future payoff per period is 1− c, and with probability 1−π the average future payoff per

period is 0, as auditing is stopped. Current period proceeds do not appear as they are

amortized over an infinite undiscounted number of periods.

3.3 Dynamic auditing as an optimal stopping problem

A consequence of 1 and 2 is that once it is optimal to not audit at a given period,

not auditing is optimal at all subsequent periods. This is due to the fact that our

optimal auditing problem can be formulated as an optimal stopping problem, as shown

in Proposition 3 below.

Proposition 3. Let τ be a stopping time with respect to (Ft)t∈{1,..,T}, where T ∈ N∪{∞},

and define W1,τ (π1, δ) as the expected proceeds of systematically auditing for τ periods,

starting from a prior π1 and with time discounting δ,

W1,τ (π1, δ) = E
[ τ−1∑
j=1

δj−1u(π̃j, 1)
]
, and W1,1(π1, δ) = 0.

Then, for ν = 1{
⋃
j∈{1,..,T}{π̃j < π∗j}}, the optimal stopping time τ ∗, defined as

τ ∗ = ν min
{
t ∈ {1, .., T}

∣∣∣1{π̃t < π∗t }
}

+ (1− ν)(T + 1),

verifies

V1,T (π1, δ) = W1,τ∗(π1, δ) = max
τ

W1,τ (π1, δ).

Figure 9 illustrates the optimal stopping rule. When auditing is systematic, in Figure

9a, beliefs for both types converge towards the true belief. Under the optimal strategy, in

Figure 9b, type H stops being audited after 89 periods, because the corresponding belief

drops below the optimal threshold. Type D, on the contrary, continues being audited

until the end. This optimal stopping rule defines an optimal stopping region in the belief
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space at each period t as SRt = {π|π < π∗t }. As soon as the belief process 〈πt〉 generated

under the optimal auditing strategy is lower than π∗t , auditing and learning stop, and

consequently the belief remains constant.

(a) Constant auditing (x = 1) (b) Optimal Auditing

Figure 9: Optimal auditing as an optimal stopping rule

This formulation as an optimal stopping problem allows us to better understand what

are the linear functions of which V1,T is the maximum (Figure 5e). proposition 4 formalizes

this idea.

Proposition 4. There exists an integer M ∈ N∪ {∞} and a partition
⋃
m∈{1,..,M}Ψm of

(0, 1) defined as

(π, π′) ∈ Φ2
m ⇐⇒ ∀ω = (ω1, .., ωT ), τ ∗(ω, π) = τ ∗(ω, π′),

where ω is a trajectory of the fraud generating process. Then, V1,T (π) is linear on each

Ψm, and the family of linear functions of which V1,T is the maximum corresponds to the

linear functions on Ψm.

Proposition 4 means that the value function is linear on intervals of beliefs for which

auditing stops at the same time for all priors of the same interval. In other words, the

trajectories of the belief process for a realization ω are such that the time t belief is either

higher or lower than π∗t , for all the initial beliefs belonging to the same interval.

In particular, with a finite horizon, one such interval is defined as {π|π > ϕt−TAV (π∗T )}.

This is the set of beliefs that are so large that they are always audited, because updating
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will never bring them below an optimal threshold. In this case, the corresponding optimal

stopping time is always equal to T + 1, and

V1,T ((π1, δ)) = W1,T+1(π1, δ) =
T∑
j=1

δj−1E[u(π̃j, 1)]

=
T∑
j=1

δj−1u(E[π̃j], 1)

=
T∑
j=1

δj−1u(π1, 1), from the martingale property.

This shows that for the highest beliefs, the average discounted value function is equal to

the myopic value function.

3.4 Dynamic auditing as an armed bandit problem

Optimal stopping problems are also intimately related to Bandit problems. Bandit prob-

lems are settings where a slot machine, referred to as a ”bandit”, has k + 1 arms that

yield different payoffs. All arms but one have payoffs governed by an unknown random

variable, the last arm representing an outside option with known deterministic payoff

that may be normalized to 0. A gambler must choose a limited number of arms to play

at each period, and can update his beliefs about the payoffs after observing the outcome

of his play. He thus faces an exploration/exploitation dilemma between choosing once

and for all the best arm at the initial period, or explore by updating his choice given the

accumulated experience. Hereafter, we place ourselves in an infinite horizon setting, but

results are valid in the finite horizon problem.

3.4.1 One-armed bandit

We start with the most simple setting for a Bandit problem: the One-Armed Bandit. In

this setting the player only faces one risky arm with returns (X1, X2, .., Xn, ...), and one

safe arm with deterministic return λ at each period. Arms are characterized by their
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Gittings Index.

Definition 1 (Gittins Index for an arm). For an arm characterized by the returns

(X1, X2, .., Xn, ...), and N a stopping time, its Gittins Index is given by

Λ(δ) = sup
N≥1

{
E(
∑N

1 δ
j−1Xj)

E(
∑N

1 δ
j−1)

}
.

Thus, the safe arm has a Gittins Index equal to λ/(1 − δ)). The optimal policy is

given by the Gittins Index Theorem for a One-Armed Bandit, whereby it is optimal to

play the risky arm if Λ(δ) > λ/(1− δ). Otherwise, it is optimal to use the safe arm once

and for all.

In our setting, the risky arm is auditing and the associated return are a function of

the belief π. Its has a Gittins Index Λ(π, δ) that depends on π. The risky returns are

given by Xj = u(π̃j, 1). The safe arm corresponds to not auditing, with λ = 0. When the

Gittins Index of the risky arm is larger than 0, it is equivalent to the condition π > π∗∞.

Proposition 5.

Λ(π1, δ) > 0⇐⇒ π1 > π∗∞.

This is a direct consequence of the fact that V∞(π1) = E[
∑τ∗

1 δj−1u(π̃j, 1)] and

V∞(π1) > 0 for π1 > π∗∞.

3.4.2 k-armed bandit

This characterization of our problem as a Bandit one allows us to answer the question of

what happens with multiple auditees and capacity constrained auditing. Multi-Armed

Bandits optimal strategies consist in Gittins Index Rules.

Definition 2 (Gittins Index Rule). A decision rule that at each stage chooses an arm

that has the highest Gittins index is called a Gittins index rule.

The Gittins Index Theorem shows that such rules are optimal.
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Theorem 1 (The Gittins Index Theorem). For a k-armed bandit problem with indepen-

dent arms and geometric discounting, any Gittins index rule is optimal.

We show in Proposition 6 that, in the context of our auditing problem, the Gittins

Index Rule is equivalent to auditing arms by order of highest prior.

Proposition 6. Given an initial prior π1, using a Gittins Index Rule is equivalent to

auditing the highest priors in priority, conditional on the priors being larger than π∗∞.

Λ(π1, δ) > Λ(π′1, δ)⇐⇒ π1 > π′1 (> π∗∞).

(a) Example 1 (b) Example 2

Figure 10: 6-armed bandit with a capacity constrained audit (k = 2)

Therefore, we can derive the optimal auditing strategy when there are multiple au-

ditees and a capacity constrained audit. Let there be a population of auditees of size n.

Let there also be a capacity constraint on auditing:

n∑
i=0

xi,t ≤ k.

Then an optimal strategy is to audit by decreasing prior until the constraint is binding or

the optimal threshold π∗∞ is reached. Figure 10 shows two examples of a 6-armed bandit

when k = 2. The two auditees, one of each type, with the lowest initial prior at π∗1 − ε

are never audited, because the outside option is more valuable since the beginning. In

both examples, the type D starting at a prior of 0.7 is kept in the auditing pool. The
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other type D, starting at a lower prior of 0.3 is excluded from auditing in Figure 10a after

a certain number of periods where it competes with the other two auditees of type H.

In Figure 10b, this other type D, is kept in the auditing pool even if its prior decreases

sharply at first. The two type H auditees are both excluded after a finite time.

4 The Extents of Learning

After showing how the possibility of learning through audits alters optimal auditing

strategies, we now focus on different aspects of the learning process. First, in Section

4.1, we examine how much information the DM gets on average, i.e., how often he gets

to know the truth, or at least how often he learns enough to take the optimal action.

Second, in Section 4.2, we focus on the speed at which information is gathered, i.e., how

fast we approach the truth.

4.1 How much can the DM learn?

We are hereafter interested in the question of whether the DM gets to learn the truth,

i.e., how often the belief process converges to the true belief. In the Optimal Learning

academic literature,9 this question is addressed through the concepts of complete and

adequate learning (e.g., Easley & Kiefer (1988), Aghion et al. (1991)). Complete learning

occurs when, with probability one, the agent acquires the true information about the

state of the world. Adequate learning is a weaker version of complete learning, whereby

it occurs when, with probability one, the agent acquires enough information to allow him

to obtain the true maximum payoff” (i.e., ”learning everything worth knowing”).

Aghion et al. (1991) address the question of characterizing situations where adequate

learning obtains or does not obtain. More specifically, they ask the question of whether

adequate learning is the generic outcome. One situation where they find adequate learn-

ing to obtain is the undiscounted case, i.e., δ −→ 1.10 This is exactly analogous to

9In this literature, the horizon is usually infinite.
10Other exhibited situations where adequate learning occurs include smoothness and quasi-concavity,

or analyticality of the payoff function
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Statement iii in proposition 2: because of the absence of discounting, the optimal thresh-

old tends to 0, which means systematic auditing, and therefore convergence of the belief

process to its true value (Lemma 1). However, they argue that adequate learning is not

the generic outcome, and define partial learning as occurring when the agent acquires

adequate knowledge with probability strictly between 0 and 1. They suggest, through an

informal discussion, that partial learning is the generic outcome.

Hereafter, we show that we can formally answer this question in our setting. With an

infinite horizon, complete, adequate, and partial learning can be formulated through the

distribution of the optimal stopping times. With a finite horizon, the comparison is not

possible as we cannot talk about the convergence of beliefs.

Infinite horizon In the infinite horizon setting, adequate learning occurs if, in the case

of a type H, the belief converges to a limit for which there is no auditing, or if, in the

case of a type D, the belief converges to a limit for which there is auditing. In other

words, conditional on type H, adequate learning occurs when τ ∗ < ∞, and the belief

process drops to a value πlim below π∗∞. The belief therefore converges to πlim since

auditing stops. Conditional on type D, adequate learning occurs when τ ∗ =∞, auditing

never stops, and the belief process converges to 1. Definition 3 formalizes this idea and

Proposition 7 answers the question of genericity.

Definition 3 (Adequate learning in infinite horizon). Let τ ∗ be the stopping time τ ∗ =

inf(t ∈ N∗|πt < π∗∞). For an initial prior π1, adequate learning occurs with probability

P(AL|π1) = π1P(τ ∗ =∞|D, π1) + (1− π1)(1− P(τ ∗ =∞|H, π1)),

= π1P(τ ∗ =∞|D, π1) + (1− π1). (4)

Proposition 7. In this setting, partial learning is the generic outcome for all initial

priors π1

0 < P(AL|π1) < 1, ∀π1 ∈ (0, 1). (5)
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In particular

P(AL|π1 < π∗∞) = (1− π1). (6)

Adequate learning is never obtained because it is too strong a condition. Adequacy

is always obtained conditional on type H, but never for type D. When the initial prior

is below the optimal threshold, adequate learning occurs if the auditee is of type H,

i.e., with probability (1 − π1), but not for type D, as he is never audited. This means

P(τ ∗ = ∞|D, π1) = 0 and explains equation (6). When the initial prior is larger than

π∗∞, there is a non null probability, conditional on type D, for the belief process to hit

the optimal threshold, and P(τ ∗ = ∞|D, π1) < 1. Example 2 below provides a special

case where P(τ ∗ =∞|D, π1) is computable.

Example 2 (Infinite horizon Gambler’ Ruin). When pD + pH = 1, the updating functions

are symmetrical (ϕAI = ϕ−1
AV ). Given an infinite horizon threshold π∗∞ and an initial prior

π1, the updating functions define a partition of (0, 1) =
⋃
k∈Z Φk =

⋃
k∈Z (ϕkAI(π1), ϕk+1

AI (π1)],

and there exists a k∗ such that π∗∞ ∈ Φk∗ . Then the problem is analogous to a Gambler’s

Ruin problem with a biased toss, where the player wins with probability pD > 1
2

and has

initial fortune k∗. Thus

P(τ ∗ =∞|D, π1) =

 0 if k∗ ≥ 0,

1− ( pD
1−pD

)k
∗

if k∗ < 0,

and, when π1 > π∗∞, partial learning occurs, with adequate learning happening with

probability

P(AL|π1) = π1(1− (
pD

1− pD
)k
∗
) + (1− π1).

4.2 How fast can the DM learn?

Lemma 1 shows that the belief process is a martingale and converges to the true belief.

Now, we are interested in how fast information is accumulated, and how this speed of
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(a) pD = 0.6, pH = 0.4 (b) pD = 1, pH = 0 (c) pD = pH

(d) pD = 0.12, pH = 0.08 (e) pD = 0.92, pH = 0.88 (f) pD = 0.98, pH = 0.88

Figure 11: Updating functions for different parameters

information acquisition is related to the parameters of the model.

Figure 11 shows the updating functions {ϕAI , ϕAV } for different values of the parame-

ters (pD, pH). The first intuition is that the more polarized the behaviors of types H and

D, i.e., the larger pD−pH , the more informative the audit. The extreme case pD−pH = 1

is illustrated in Figure 11b. In this case, auditing is perfectly informative, as observing

an invalid claim implies that the auditee is type D, while observing a valid claim implies

he is of type H. On the contrary, when pD = pH (Figure 11c), types behave the same

way and auditing reveals nothing about the type. The second intuition is related to the

informativeness of extreme behaviors. i.e., when for a fixed difference pD − pH , either pD

is close to 1 or pH is close to 0. If pD ≈ 1, observing a valid claim is a strong sign that

the auditee is of type H, as shown in Figure 11f. If pH ≈ 0, observing an invalid claim is

a strong sign that the auditee is of type D.

4.2.1 Doob-Meyer decomposition

In proposition 8, we use the Doob-Meyer decomposition for submartingales and super-

martingales to decompose the belief processes under both states of the world H and D.

This decomposition allows us to identify the magnitude of information acquisition.

Proposition 8. [Information acquisition] Under states of the world H and D, we can

decompose the stochastic process of updated beliefs thanks to the Doob-Meyer decomposi-

27



tion.

i Under PH , π̃t = MH
t + PH

t where MH
t is a martingale and PH

t is a decreasing and

predictable process.

ii PH
t = −(pD − pH)

∑t−1
i=1 π̃i

[
ϕAI(π̃i)− ϕAV (π̃i)

]
< 0

iii Under PD, π̃t = MD
t + PD

t where MD
t is a martingale and PD

t is an increasing and

predictable process.

iv PD
t = (pD − pH)

∑t−1
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
> 0

The predictable process P i
t represents the average gain in information under the true

state i ∈ {H,D}

Ei[π̃t|π1] = π1 + Ei[P i
t |π1].

4.2.2 Informativeness and exploration

The decomposition in Proposition 8 allows us to quantify the amount of information

obtained at each stage and to understand how it affects the optimal level of exploration.

From the expression of Pt, we can see that the difference β = pD−pH plays an important

role. This is rather intuitive in that a larger difference means more polarized behavior

between the Honest and Dishonest behaviors. Proposition 9 formalizes the idea that

the more polarized the behavior, the larger |PH
t | and |PD

t |, and the more information is

gathered on average.

Proposition 9. At any time t, the predictable process PH
t is increasing in pH and de-

creasing in pD

∂PH
t

∂pH
> 0 and

∂PH
t

∂pD
< 0,

and the predictable process PD
t is increasing in pD and decreasing in pH

∂PD
t

∂pD
> 0 and

∂PD
t

∂pH
< 0.
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Behaviors are more polarized when pD increases and/or pH decreases. When it is the

case, PH
t is smaller, and since PH

t < 0, the average decrease in the belief |PH
t | is larger,

and beliefs converge towards the true belief 0 faster. The reasoning is analogous for type

D as, when behaviors are more polarized, PD
t is larger. As PD

t > 0, the average increase

in the belief PD
t is larger and beliefs converge towards the true belief 1 faster.

The impact of a more efficient learning, in the sense that belief processes converge

faster, is such that optimal thresholds are lower, and more exploration takes place un-

der optimal auditing at each period. Figure 13 illustrates different optimal threshold

sequences for different levels of polarization of behaviors β = pD − pH .

Figure 12: Optimal thresholds depend on β

Figure 13: Polarized and extreme fraud behaviors induce more exploration

5 Conclusion

This article investigates the role of learning in the context of fraud inspection when

inspector/inspectee interactions are repeated. Auditing acts as a learning mechanism

that isolates the dishonest (worth auditing) types from the honest (unprofitable to audit)
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types.

Our first set of results shows how future auditing proceeds are always increasing in the

current auditing efforts, but current proceeds may be negative. Optimal auditing relies

then on an exploration/exploitation trade-off consisting in balancing auditing-diminished

present proceeds and auditing-enhanced discounted future proceeds. Because learning-

generated advantages reverberate through all future periods, the number of remaining

periods positively impact auditing efforts. As a weighting of future proceeds, low dis-

counting encourages learning through auditing and complete exploration occurs in an

infinite horizon when the auditor is indifferent between present and future proceeds.

Our second set of results examines the particularities of our learning process: we first

show that, in our setting, partial learning is the generic outcome. Second, we identify

the average change in the belief process as the predictable component of a Doob-Meyer

decomposition of the belief process in each state of the world. This average change is

larger when dishonest and honest types behave very differently, as the separating power

of auditing is then stronger.
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Appendix

5.1 Proofs

5.1.1 Proof of Lemma 1

Proof. At period t+ 1, with prior πt and auditing decision xt

EP[π̃t+1|Ft, xt]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[pDπt + (1− pD)πt] + (1− xt)πt

= πt

ED[π̃t+1|Ft, xt]

= xt[pDϕAI(πt) + (1− pD)ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt) + (pD − p(π))(ϕAI(πt)− ϕAV (πt))] + (1− xt)πt

= πt + xt[(pD − p(π))︸ ︷︷ ︸
≥0

(ϕAI(πt)− ϕAV (πt))︸ ︷︷ ︸
≥0

]

≥ πt

EH [π̃t+1|Ft, xt]

= xt[pHϕAI(πt) + (1− pH)ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt) + (pH − p(π))(ϕAI(πt)− ϕAV (πt))] + (1− xt)πt

= πt + xt[(pD − p(π))︸ ︷︷ ︸
≤0

(ϕAI(πt)− ϕAV (πt))︸ ︷︷ ︸
≥0

]

≤ πt

Finally, the convergence of the belief process to the true belief is a direct consequence of

the Martingale Convergence Theorem for bounded martingales.

5.1.2 Proof of Corollary 1

Proof. This is a direct consequence of the martingale property.
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5.1.3 Proof of Lemma 2

This is straightforward as

• p(π)− c is strictly increasing in π, strictly negative for π = 0 and strictly positive

for π = 1,

• π+ is then uniquely defined,

• sign
(
∂ΩT

∂x

)
= sign(π − π+),

• then x∗T = 1{π ≥ π+}.

5.1.4 Proof of Lemma 3

Proof. We proceed by backward induction for t ∈ {1, .., T}.

At the final stage t = T : The objective function

ΩT,T (π, x) = u(π, x) = (p(π)− c)x,

is trivially (piece-wise) linear in π, linear in x. Its derivative with regards to x

∂ΩT,T

∂x

∣∣∣
π

= p(π)− c = (pD − pH)π + pH − c,

is increasing in π, is equal to pD− c > 0 for π = 1 and to pH − c < 0 for π = 0. It implies

the existence of a threshold π∗T,T ∈ (0, 1) such that

∂ΩT,T

∂x

∣∣∣
π∗T,T

= 0,

and

x∗T,T (π)


= 0 if π < π∗T,T ,

∈ (0, 1) if π = π∗T,T ,

= 1 if π > π∗T,T .
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Then, the value function

VT,T (π) = max
(

0, p(π)− c
)
,

is (piece-wise) linear in π and convex as the maximum of the finite family of linear

functions indexed by IT

IT = {0, p(π)− c}.

At any stage t ∈ {1, .., T − 1}: The objective function

Ωt,T (π, x) = u(π, x) + δEt
[
Vt+1,T (π̃t+1)

]
,

= (p(π)− c)x+ δ
[
x
(
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))

)
+ (1− x)Vt+1,T (π)

]
,

is trivially linear in x as x appears only in the transition probabilities, while Vt+1,T is

independent of x. In addition, by induction, Vt+1,T is piece-wise linear in π. It implies,

for every π ∈ (0, 1), the existence of a couple (α, β) ∈ R2 such that

Vt+1,T (π) = απ + β.

Therefore,

p(π)Vt+1,T (ϕAI(π)) = p(π)
(
αϕAI(π) + β

)
= αpDπ + p(π)β,

p(π)Vt+1,T (ϕAV (π)) = (1− p(π))
(
α
′
ϕAV (π) + β

′
)

= α
′
(1− pD)π + (1− p(π))β

′
,
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and Ωt,T is piece-wise linear in π. It is also continuous in π as the sum of functions

continuous in π. Its derivative with regards to x verifies

∂Ωt,T

∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))− Vt+1,T (π)

]
,

∂Ωt,T

∂x

∣∣∣
π=0

= pH − c < 0,

∂Ωt,T

∂x

∣∣∣
π=1

= pD − c > 0.

In addition, a second derivative with regards to π

∂Ωt,T

∂x∂π

∣∣∣
π

= pD − pH + δ
[
α(ϕAI(π))pD + α(ϕAV (π))(1− pD)− α(π)

]
,

> 0,

is strictly positive,11 thus defining the threshold π∗t,T . Since the optimal action is either

to audit or not to audit, the value function can be expressed as

Vt,T (π) = max
(

Ωt,T (π, 0),Ωt,T (π, 1)
)

= max
(

0, p(π)− c+ δVt+1(π̃t+1)
)

= max
(

0, p(π)− c+ δ[p(π)Vt+1(ϕAI(π)) + (1− p(π))Vt+1(ϕAV (π))]
)
.

Then, for any element fl(π) of the linear functions family It+1 such that Vt+1(π) =

maxfl∈It+1 fl(π), reasoning as previously, p(π)fli(ϕAI(π)) and (1− p(π))fli(ϕAV (π)) are

linear in π, therefore p(π)Vt+1(ϕAI(π)) and (1 − p(π))Vt+1(ϕAV (π)) are maximums of

families of linear functions. Finally, using usual properties of sums or maximums, scalar

multiplication of maximums and maximums of maximums, there exists a family It of

linear functions such that

Vt(π) = max
fl∈It

fl(π).

11Because pD − pH = maxα

36



As the maximum of a finite family of linear functions, Vt(π) is continuous, piece-wise

linear and convex in π.

5.1.5 Proof of Lemma 4

Proof. This is a direct consequence of the martingale property, the convexity of Vt+1 in

π and Jensen’s inequality:

∂

∂xt
Et[Vt+1(π̃t+1)|xt] = p(πt)Vt+1(ϕAI(πt)) + (1− p(πt))Vt+1(ϕAV (πt))− Vt+1(πt)

> Vt+1

(
p(πt)ϕAI(πt) + (1− p(πt))ϕAV (πt)− πt

)
≥ 0.

The positivity is straightforward as

Vt(π) ≥ Ωt(π, xt = 0) = δVt+1(π) ≥ .. ≥ δT−tVT (π) ≥ 0.

5.1.6 Proof of Proposition 1

Proof. We proceed by backward induction.

Initialization Stage t = T − 1: The objective function verifies

∂ΩT−1,T

∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)VT,T (ϕAI(π)) + (1− p(π))VT,T (ϕAV (π))− VT,T (π)

]
,

and, since VT,T (π) = 0 below π∗T,T and ϕAV (π) < π < ϕAI(π),

∂ΩT−1,T

∂x

∣∣∣
π∗T,T

= δp(π∗T,T )VT,T (ϕAI(π
∗
T,T )) > 0.
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As π∗T−1,T is defined by ∂
∂x

ΩT−1,T

∣∣∣
π∗T−1,T

= 0 and ∂
∂x

ΩT−1,T is strictly increasing in π, it

implies

π∗T−1,T < π∗T,T .

At any stage t ∈ {1, .., T − 2}: The objective function verifies

∂Ωt,T

∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))− Vt+1,T (π)

]
,

and, since Vt+1,T (π) = 0 below π∗t+1,T and ϕAV (π) < π < ϕAI(π),

∂Ωt+1,T

∂x

∣∣∣
π∗t+1,T

= 0 = p(π∗t+1,T )− c+ δ
[
p(π∗t+1,T )Vt+1,T (ϕAI(π

∗
t+1,T ))

]
,

thus, by subtraction,

∂Ωt,T

∂x

∣∣∣
π∗t+1,T

= δ
[
p(π∗t+1,T )(Vt+1,T − Vt+2,T )(ϕAI(π

∗
t+1,T ))

]
,

Since at prior π and time t+1, playing the sequence (x∗t+1,T , x
∗
t+2,T , .., x

∗
T,T ) is optimal and

yields Vt+1,T (π), it dominates any other sequence, in particular (x∗t+2,T , x
∗
t+3,T , .., x

∗
T,T , 0),

which yields Vt+2,T (π). Hence

Vt+2,T (ϕAI(π
∗
t+1,T )) ≤ Vt+1,T (ϕAI(π

∗
t+1,T )).

In addition, since ϕAI(π
∗
t+1,T ) > π∗t+2,T , then Ak(π∗t+1,T ) > π∗t+k+1,T for k ∈ {1, T −

t− 1}, and the corresponding belief transitions happen with strictly positive probability

∈ (pT−tH , pT−tD ). It implies that the sequence (x∗t+2,T , x
∗
t+3,T , .., x

∗
T,T , x

∗
T,T ) strictly dominates

(x∗t+2,T , x
∗
t+3,T , .., x

∗
T,T , 0). Therefore

Vt+2,T (ϕAI(π
∗
t+1,T )) < Vt+1,T (ϕAI(π

∗
t+1,T )).
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In the end

∂Ωt,T

∂x

∣∣∣
π∗t+1,T

> 0 =
∂Ωt,T

∂x

∣∣∣
π∗t,T

.

Since
∂Ωt,T

∂x
is a strictly increasing function of π,

π∗t,T < π∗t+1,T .

This proves statement i. Statement ii is a direct consequence by backward induction.

Statement iii is a result of both these statements as

π∗1,T = π∗2,T+1 > π∗1,T+1.

As for the impact of δ, when δ → 0, the result is straightforward as the problem comes

down to the myopic one. A simple backward induction from stage t = T − 1 shows that

∂

∂δ
Vt,T (π, δ) > 0,

∂

∂x∂δ
Ωt,T > 0,

implying that, since π∗t,T (δ) solves for ∂
∂x

Ωt,T

∣∣∣
π,δ

= 0 and ∂Ω
∂x

is decreasing in π,

∂π∗t,T
∂δ

< 0.

5.1.7 Proof of Proposition 2

Proof. Statement i is a direct consequence of (π∗t,T )T/inN∗ being decreasing and bounded

below by 0. Statement ii comes from the fact that at each stage the value function is the

maximum of a finite family of linear functions.

As for Statement iii, assume that it is not true,i.e., limδ→1 π
∗
∞(δ) = π > 0. Then,

for π < π, V∞(π) = 0. Consider the profits of the auditor under strategy (xt = 1)1≤t≤t.
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Because of the linearity of u and the martingale property of beliefs

E1

[ t∑
i=1

δi−1u(π̃i, 1)
]

=
1− δt

1− δ
u(π, 1).

With probability π, the auditee is initially believed to be of type D, and because of the

convergence of beliefs to the true state, there exists r ∈ (0, 1) and a time tr such that

P
(
π̃tr > π+ + ε|D, (xt)1≤t≤tr = 1

)
> r.

Then, consider the alternative strategy (xalt )t defined as

xalt = 1{t≤tr} + 1{t>tr}1{πtr>π++ε},

with corresponding expected profits higher than

1− δtr
1− δ

u(π, 1)︸ ︷︷ ︸
<0

+πr
δtr

1− δ
u(π+ + ε, 1)︸ ︷︷ ︸

>0

.

When δ tends to one, the left hand side term is finite, while the right hand side term

goes to infinity. This last result contradicts the fact that V∞(π) = 0.

5.1.8 Proof of Proposition 3

Proof. First, τ ∗ is indeed a stopping time as it is defined by the process 〈πt〉 that is by

definition adapted to the filtration (Ft)t∈{1,..,T}. In addition,

∀t < τ ∗, π̃t ≥ π∗t , (7)

∀t ≥ τ ∗, π̃t = π̃τ∗ < π∗τ∗ < π∗t . (8)

Equation (7) is true because otherwise, by definition of τ ∗ as a minimum of times

at which the previous inequality is verified, τ ∗ ≤ t. In equation (8), the first equality

relies on the fact that once audit stops, i.e., at τ ∗, priors remain constant, the following

inequality stems from the definition of τ ∗, and finally the last inequality stems from the
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fact that the sequence (π∗t )t is increasing, from Proposition 1.

Then rewriting the value function yields

V1,T (π1, δ) = E
[ T∑
j=1

δj−1u(π̃j,1{π̃j ≥ π∗j})
]

= E
[ T∑
j=1

δj−1u(π̃j, 1)1{π̃j ≥ π∗j}
]

= E
[ τ∗∑
j=1

δj−1u(π̃j, 1)
]
, from Eq. (7) and (8)

= W1,τ∗(π1, δ).

Finally, τ ∗ maximizes W because otherwise, there would be another stopping time based

auditing strategy that would maximize W and yield auditing proceeds strictly higher

than V1,T (π1, δ), which would be contradictory.

5.1.9 Proof of Proposition 4

Proof. For a given π1 and the corresponding optimal stopping rule τ ∗

W1,τ∗(π1, δ) = E[
τ∗−1∑
j=1

δj−1u(π̃j, 1)]

=
∑
ω

P(ω)

τ∗(ω)−1∑
j=1

δj−1u(πj(ω), 1).

Using the same reasoning as in the proof of Lemma 3, u(πj(ω), 1) is a linear function of

the initial belief π1, u(πj(ω), 1) = αj(ω)π1 + βj(ω). Thus

∂W1,τ∗

∂π1

=
∑
ω

P(ω)

τ∗(ω)−1∑
j=1

δj−1αj(ω).

This is the slope of the value function at π1. In addition, notice that for π′1 < π1 such

that they are not in the same Ψm

τ ∗(π′1, ω) ≤ τ ∗(π1, ω)
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and there exists at least one trajectory ω′ such that the inequality is strict. Otherwise,

by definition of the intervals Ψ, π′1 and π1 would be in the same Ψm. Then

∂W1,τ∗

∂π1

∣∣∣
π′1

<
∂W1,τ∗

∂π1

∣∣∣
π1
.

This last inequality shows that the linear functions slopes are increasing in π, as shown

in Figure 5e.

5.1.10 Proof of Proposition 6

Proof. We first show the direct implication of the equivalence. Denoting τ ∗(π) and τ ∗(π′)

the optimal stopping times for each prior

Λ(π, δ) > Λ(π′, δ)⇒
E[
∑τ∗(π)

j=1 δj−1u(π̃j, 1)]

E[
∑τ∗(π)

j=1 δj−1]
>

E[
∑τ∗(π′)

j=1 δj−1u(π̃′j, 1)]

E[
∑τ∗(π′)

j=1 δj−1]

⇒
E[
∑τ∗(π)

j=1 δj−1u(π̃j, 1)]

E[
∑τ∗(π)

j=1 δj−1]
>

E[
∑τ∗(π)

j=1 δj−1u(π̃′j, 1)]

E[
∑τ∗(π)

j=1 δj−1]

⇒ E[

τ∗(π)∑
j=1

δj−1u(π̃j, 1)] > E[

τ∗(π)∑
j=1

δj−1u(π̃′j, 1)]

⇒ π > π′.

Then, for the indirect implication

π > π′ ⇒ ∀ω, u(πj(ω), 1) > u(π′j(ω), 1)

⇒
E[
∑τ∗(π′)

j=1 δj−1u(π̃j, 1)]

E[
∑τ∗(π′)

j=1 δj−1]
>

E[
∑τ∗(π′)

j=1 u(π̃′j, 1)]

E[
∑τ∗(π′)

j=1 δj−1]
= Λ(π′, δ)

⇒ Λ(π, δ) ≥
E[
∑τ∗(π′)

j=1 δj−1u(π̃j, 1)]

E[
∑τ∗(π′)

j=1 δj−1]
> Λ(π′, δ).
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5.1.11 Proof of Proposition 7

Proof. Because of the (1−π1) component, it is sufficient to show that P(τ ∗ =∞|D, π1) <

1. This is straightforward as there exists some l ∈ N such that ϕlAV (π1) < π∗∞ ≤

ϕl−1
AV (π1).12 This is the prior obtained from auditing as long as π1 ≥ π∗∞ and observing

valid claims every time, which happens with probability (1 − pD)l. Therefore, P(τ ∗ =

∞|D, π1) ≤ 1− (1− pD)l.

5.1.12 Proof of Proposition 8

Proof. Let 〈It〉 be the Bernoulli process representing the fraud outcome at period. Then

PH(It = 1) = pH and PD(It = 1) = pD. The updated prior under a given state of the

world H or D can be written as

π̃t+1 = It+1ϕAI(π̃t) + (1− It+1)ϕAV (π̃t)

= π̃t +
(
It+1 − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]

In particular

ED[π̃t+1|Ft] = π̃t +
(
pD − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
= π̃t +

(
1− π̃t

)(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]

and

EH [π̃t+1|Ft] = π̃t +
(
pH − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
= π̃t − π̃t

(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
12If π1 < π∗∞, then l = 0.
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One decomposition into a martingale and a predictable process is given, under state of

the world D, by

π̃t = MD
t + PD

t

MD
t is a martingale and PD

t is predictable and increasing

PD
t = (pD − pH)

t−1∑
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
MD

1 = π̃1

PD
1 = 0

We can verify that MD
t is indeed a Martingale by induction (it is verified at t = 1)

ED[MD
t+1|Ft] = ED[π̃t+1 − PD

t+1|Ft]

= ED[π̃t+1|Ft]− PD
t+1

= ED[It+1ϕAI(π̃t) + (1− It+1)ϕAV (π̃t)|Ft]− PD
t+1

= π̃t +
(

1− π̃t
)(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
− PD

t+1︸ ︷︷ ︸
=−PD

t

= π̃t − PD
t

= MD
t

Finally, because of the unicity of the Doob-Meyer decomposition, the above decomposi-

tion is the only one.
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The same reasoning yields the decomposition under state of the world H

π̃t = MH
t + PH

t

MH
t is a martingale and PH

t is predictable and increasing

PH
t = (pD − pH)

t−1∑
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
MH

1 = π̃1

PH
1 = 0.

Positivity of PD
t and negativity of PH

t are direct consequences of inequalities (2).

5.1.13 Proof of Proposition 9

Proof. From the formulas for the updating functions

ϕAI =
pDπ

p(π)
and ϕAV =

(1− pD)π

(1− p(π))
,

we derive the derivatives with respect to pD and pH

∂ϕAI
∂pD

=
pHπ(1− π)

p(π)2
> 0 and

∂ϕAV
∂pD

=
−(1− pH)π(1− π)

(1− p(π))2
< 0,

∂ϕAI
∂pH

=
−pDπ(1− π)

p(π)2
< 0 and

∂ϕAV
∂pH

=
(1− pD)π(1− π)

(1− p(π))2
> 0.

Finally, taking the derivatives of PH
t and PD

t and using the above derivatives yields the

final result.
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