
HAL Id: hal-02373179
https://hal.science/hal-02373179v1

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hard Homogenous Spaces and Commutative
Supersingular Isogeny based Diffie-Hellman

Joël Felderhoff

To cite this version:
Joël Felderhoff. Hard Homogenous Spaces and Commutative Supersingular Isogeny based Diffie-
Hellman. [Internship report] LIX, Ecole polytechnique; ENS de Lyon. 2019. �hal-02373179�

https://hal.science/hal-02373179v1
https://hal.archives-ouvertes.fr

Hard Homogenous Spaces and Commutative Supersingular Isogeny

based Diffie–Hellman

Joël Felderhoff

1 Introduction

1.1 Motivation and problematic

When two parties want to communicate privately, a standard way to do it is to agree on a key
and then use that key (or a quantity derived from it) to encrypt the messages using a symetric
cryptosystem such as AES. An important algorithmic question is then “how can two parties share
a key privately”. This question gives raise to a fundamental topic which is at the heart of many
cryptosystems used on a daily basis: the key sharing. It was introduced by Diffie and Hellman
in [DH76] and the idea is to create a shared secret between two parties (usualy Alice and Bob) by
publishing information such that an eavesdropping attacker could not get the shared secret.

The classical way to do such a sharing is the Diffie–Hellman Key Exchange explained in
Figure 1. In this setting, G a group of prime order p and a generator g are chosen publicly. The

notation
$←− denotes a uniform sampling.

Alice Bob

a
$←− (Z/pZ)× b

$←− (Z/pZ)×

ga ← ga gb ← gb
ga−→
gb←−

gs ← gab gs ← gba

Figure 1: The Diffie–Hellman key exchange

Alice and Bob are presumed authenticated for this protocol, else there is an obvious “Man in
the Middle” attack. At the end of the exchange, both participants share gs = (ga)b = (gb)

a
, and

hence have a shared secret that has never transited througt the network. The question is then “how
can a malicious listener find the shared secret given the public information (i.e., G, g and all the
data sent throught the network)?”. This question can be formulated in the following computational
problem.

Definition 1.1.1. Computational Diffie–Hellman (CDH) problem
Given G = 〈g〉 , ga, gb for a, b ∈ (Z/pZ)× compute gab.

This problem exists in different versions, each applying to particular cases: the secret key of
Alice can be static (there will be multiple requests with the same a) or ephemeral (each new iteration
of the protocol, a and b change). For the static case, one could think that only the public key ga of
Alice is revealed. The problem of finding its secret key from only this information is the Discrete
Log Problem.

1

Definition 1.1.2. Discrete logarithm (DLOG) Problem
Given G = 〈g〉 , ga for a ∈ Z/#GZ, find a.

The difficulty of those problems depends on the group considered. If G = (Z/pZ,+), then those
problems are trivially broken by modular division (solved by the Euclidean algorithm), but it is
supposed to be classically hard (e.g., there is no known algorithm solving this problem in less than
exponential time) if G is a cyclic subgroup of prime order of the group of points of an elliptic curve
over a finite field (except for a little and very well known set of curves1). A third, intermediate,
example is the group F∗p for large p. Even though there is no known polytime algorithm for solving
this problem, subexponential attacks exist (see for example [GM16]).

The problem with this protocol (and of all the protocols based on the discrete logarithm problem)
is that with Shor’s algorithm (decribed in [Sho94]), the DLOG problem is broken in polynomial
time. Then, there were several attempts to build quantum resistant cryptosystems. Those systems
are said to be post-quantum.

1.2 State of the art

In 2016, the American National Institute of Standards and Technology (NIST) initiated a call for
project to try to create a standard for post-quantum cryptography. Several propositions where
submitted and analysed by the institute and pairs. Among the ones which passed the first round,
there are 3 types: cryptosystems based on multivariate polynomials, on lattices, and on isogenies.

The typical problem on which isogeny cryptography is based is the problem of finding an isogeny
between two elliptic curves, given that such an isogeny exists. There are several versions of this
problem, with differents class of curves and with more or less information about the underlying
isogenies. The isogeny-based key encapsulation scheme that was taken for the second round is
SIKE [SIK]. It is based on the Supersingular Isogeny Diffie–Hellman (SIDH) [JDF11] key
exchange. In 2008, Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes published a preprint about another key exchange based on supersingular isogenies called
CSIDH (for “commutative” SIDH) [CLM+18]. This protocol has an advantage comparing to
SIDH, that is it can be studied and understood in a setting introduced by Couveignes in [Cou06],
called Hard Homogenous Spaces, that enables more natural security hypothesis, an easier study
of their complexities, and the adaptation of previously used protocol from security assumptions like
DLOG or CDH.

1.3 Context of the internship

This internship was realised in the INRIA team GRACE at LIX under the supervision of Ben Smith.
I also had the chance to attend the Winter School “Mathematical foundations of asymetric cryp-
tography”, organized by the LIP laboratory. During this school, I attended several talks about my
research topic and about other public key cryptography topics, such as lattice-based cryptography.

During the my internship, I had the opportunity to prepare several associative events about
the public computer science education. As a member of the association Prologin, I prepared and
attended (as staff) the final of the programming contest Prologin2, and I prepared (as principal
organizator) the event Girls Can Code! Lyon 20193, a programming Summer camp for undergrad-
uate girls. I was also invited to the Alkindi contest’s final4 to make an activity about public key

1Pairing-friendly and anomalous curves
2https://prologin.org
3https://gcc.prologin.org
4http://www.concours-alkindi.fr

2

cryptography for the finalists of the event.

1.4 Productions

My first work during the internship was to make myself clear about the general theory of elliptic
curves in general and about the public key cryptography based on isogenies in particular. I then
studied and implemented in Rust5 the CSIDH algorithm along with a library to manipulate elliptic
curves over prime fields and some protocols such as the OT protocol of Appendix A. During this
time, some computational problems appeared (such as 2-Inv-Approx) and started to investigate
the difficulties of them compared to classical HHS problems such as CDH-HHS. I studied various
reductions and protocols in of the discrete log litteratures, and I tried to adapt them to the HHS
case, which seemed to be an easier framework to study them. During that time, I implemented the
differents protocols with my CSIDH libraries and I tried to figure to what extends CSIDH could be
studied via the HHS framework.

1.5 Organization of the report

In Section 2, I will introduce the notion of Hard Homogenous Space (HHS), and the problems
associated with them. I will then discuss the relative computational difficulty of those problems,
making reduction between them in different cases. In Section 3, I will study the major HHS
of my internship, namely Commutative Supersingular Isogeny Diffie–Hellman. I will first
introduce several theoretical notions, and I will make the link between CSIDH and the general
theory of HHS, lighting their differences and their common points. The appendix will present
algorithms and protocols that I studied and implemented during the internship.

2 Hard Homogenous Spaces

In this subsection I am going to introduce various definitions about (Hard) Homogenous Spaces.
First I will explain what a HHS is, and then I will give the definitions of various computational
problems about them, then I will talk about the relative difficulties of those problems. We will see
that it depends on the structure of the HHS itself.

2.1 Definitions and notations

Let’s start by defining some notation and objects for what comes next. In the rest of this report,
G is a finite abelian group which is acting on X (a finite set).

2.1.1 Homogenous Spaces

In this document, I will use the capital letters for groups and sets of elements (G,X. . .), Greek
letters for elements of the group acting on X (α, β, γ. . .), letters of the end of the alphabet (x, y, z,
. . .) to denote the elements of X and letters of the beginning of the alphabet to denote integers
(a, b, c,. . .). In some case, like in example I will use group denoted multiplicatively, in that case the
group name will be denoted by a gothic letter (e.g., H).

Elements of G will be denoted additively to make the analogy with vectors acting on a set of
points. The action of an element α ∈ G on an element x ∈ X will be denoted [α] · x. The neutral
element will be denoted 0G. Note that these notations differ from the usual CSIDH litterature, but

5Code avaible at https://github.com/jetSett/Elliptic-curve-algorithms

3

as the concept of homogenous space is studied here and not only CSIDH, I chosed those notations
to make the analogy with both the discrete log setting in the case of elliptic curves and the case of
vectors acting on a set of points of the space.

In our setting, the action is:

• Identic: ∀x ∈ X, [0G] · x = x

• Compatible: ∀α, β ∈ G, x ∈ X, [α+ β] · x = [α] · [β] · x.

• Faithful and transitive: ∀x, y ∈ X, ∃!α ∈ G s.t.,y = [α] · x.

X is then said to be a Principal Homogeneous Space (or PHS) for G. In particular, #G = #X.
It is assumed that the following operations are efficiently computable (eg polytime in the size

of G) to do.

• Given x ∈ X and α ∈ G, compute [α] · x (group action).

• Given α, β ∈ G, compute α+ β (group law).

The most evident example of PHS is a group G acting on itself by its own group law, but this
is not of great interest. Another example would be a vector space acting on its underlying affine
space.

Example 1. If E is a vector space and E is its underlying affine space, then (E,E) is a PHS by
the following action:

[~v] · x = x+ ~v

This example is not used in practice for reasons that will be explained in the next sections.
Instead, another example is far more important for this report.

Example 2. Let H be a commutative group (written multiplicatively) of prime order p, then one
can associate a PHS to it, that I will denote by Exp(H).

Exp(H, p) = (Z/pZ×,H \ {1H})

The action of α ∈ Z/pZ× on h ∈ H is [α] · h = hα.

It must be emphasized that Example 2 is fundamental. The interest of the PHS problems
are that they are generalisation of the Discrete Log ones and then they enable one to protocols,
problems and reductions from the discrete log point of view to the PHS one.

The last example is a good candidate for Hard Homogenous Space suited for post-quantum
cryptography, it will be more deeply developed in Section 3 of the report (including all the definitions
of the terms used in it).

Example 3. Let p be a prime number of the form p = 4 ·
∏
i li − 1 with li small primes, let O be

the maximal order (i.e., the ring of integers) of the quadratic field Q(
√
−p) and G = Cl(O) be its

class group.
Now let X = Ellp(O) be the set of supersingular elliptic curves over Fp with endomorphism ring

isomorphic to O. Then (X,G) is an homogenous space.

With those PHS, one can desing a key exchange similar to the Diffie–Hellman key exchange
of Figure 1. This key exchange is presented in Figure 2, where X,G is a PHS and x is a public
parameter.

4

Alice Bob

α
$←− G β

$←− G
xa ← [α] · x xb ← [β] · x

xa−→
xb←−

xs ← [α] · xb xs ← [β] · xa

Figure 2: The PHS Diffie–Hellman key exchange

2.1.2 Problems and Hard Homogenous Spaces

Now that Homogenous Spaces are defined, I am going to define some algorithmic problems about
them. A major subject of my internship was to study the relative difficulty of those. In order to
define the difficulty of the problems of this part, I introduce the parameter λ, and I will assume
#G = Θ(2λ). The complexity of the algorithms and problems will expressed in terms of λ (e.g., a
polytime algorithm will be read as “polytime in λ”).

Definition 2.1.1. Vectorization (Figure 3)
Given x, y ∈ X2, compute α ∈ G such that y = [α] · x.

1 2

x y
α

Figure 3: Vectorization

One can see that depending on the PHS one is considering, this problems’ difficulties are on a
line between “constant time” and “no polytime algorithm known”. In the setting of Example 1, any
instance of this problem can be efficiently solved since it suffices to return y−x on input (x, y) ∈ E .
In the case of Example 2, where (X,G) = Exp(H, p), an instance (x, y) of Vectorization is exactly
a Discrete Log instance DLOGx(y) in the group H. At that point, it becomes evident that the
difficulty of Vectorization changes a lot depending on the homogenous space one takes.

Definition 2.1.2. DLOG-Vectorization
Given that G = 〈γ〉 is cyclic, x, y ∈ X2 and γ ∈ G a generator, find n ∈ Z≥0 such that

y = [nγ] · x.

One could note that DLOG-Vectorization is clearly harder than Vectorization but that
there is a quantum reduction between those two because of the Shor algorithm ([Sho94]).

Definition 2.1.3. CDH-HHS (Figure 4)
Given x, [α] · x, [β] · x ∈ X3 compute [α+ β] · x.

This problem is called Parallelization in [Cou06]. To take a look at what those looks like in
the Example 2 will help to undestand the intrinsic difficulty of those problems.

Definition 2.1.4. An homogenous space (X,G) is said to be a Hard Homogenous Space (HHS)
if CDH-HHS is a hard problem for (X,G) e.g., there is no known polytime algorithm solving
CDH-HHS for any arbitrary input x, y, z ∈ X.

This distinction is important since the difficulty of the CDH-HHS problem will impact the
cryptographic difficulty of the scheme that will be developed over it. For example in Example 2

5

x

y

z

α

β

α+ β

Figure 4: cdh-hhs

x y

α

[2α] · x

α

Figure 5: Square-HHS

[−α] · x x

α

y

α

Figure 6: Inv-HHS

is classically hard with suitable groups (e.g., groups of points on elliptic curves over finite fields).
In [Cou06], Couveigne asks for both CDH-HHS and Vectorization to be hard for a PHS to be
a HHS, but as it will be explained in the following, CDH-HHS is easier than Vectorization, so
the hardness of CDH-HHS implies the Vectorization’s one.

In the setting of Example 2, when (G,X) = Exp(G, p) (and then G = (Z/pZ)×), an instance
of CDH-HHS is an instance of the Computational Diffie–Hellman Problem: given (x, [α] ·
x, [β] ·x) it is asked to compute [αβ] ·x (at least when α, β 6= 0). This problem is known to be hard
and it has been studied for a long time. One can then try to introduce the same kind of problem in
the HHS settings and see how the relation between those problems behaves. In that setting, CDH
is equivalent to Inv-CDH (given g ∈ H, ga compute ga

−1
) and Square-CDH (given g ∈ H, ga

compute ga
2
). On can define analogs of those problems into the more general HHS setting.

Definition 2.1.5. Square-HHS (Figure 5)
Given x, [α] · x compute [2α] · x.

Definition 2.1.6. Inv-HHS (Figure 6)
Given x, [α] · x compute [−α] · x.

Both of these problems can be generalized for any scalar multiplication.

Definition 2.1.7. Scalar-HHS
Given x, [α] · x, n ∈ Z compute [nα] · x.

By examining the OT scheme of [Vit19] (which is presented in Appendix A), other problems
appeared. These problems are “approximate versions” of Inv-HHS.

6

x

y

z

x′

α

β y′

−α

z′

−β

Figure 7: 2-Inv-Approx-HHS

Definition 2.1.8. k-Inverse-Approx-HHS (Figure 7) Given x, (xi)1≥i≥k ∈ X × Xk with xi =

[αi] · x, find x′, (x′i)1≥i≥k ∈ X ×X
k such that xi = [−αi] · x.

All the problems seen so far can be sumarized in Table 1.

Name Input Output

DLOG-Vectorization G = 〈γ〉 , x, y ∈ X n ∈ Z s.t., y = [nγ] · x
Vectorization x, y ∈ X α ∈ G s.t., y = [α] · x
CDH-HHS x, y = [α] · x, z = [β] · x ∈ X [α+ β] · x
Square-HHS x, y = [α] · x ∈ X [2α] · x
Inv-HHS x, y = [α] · x ∈ X [−α] · x
Scalar-HHS x, y = [α] · x ∈ X,n ∈ Z [nα] · x
k-Inverse-Approx-HHS x, (yi = [αi] · x)1≤i≤k ∈ X x′, (y′i = [−αi] · x′)1≤i≤k

Table 1: HHS problems

2.2 Relative difficulty of HHS problems

First I will state some trivial ordering on the difficulties of the problems defined in the previous
part, then I will explain more subtle links. All reductions and equivalence (unless stated otherwise)
are classical equivalences. In this part (G,X) is a PHS.

2.2.1 Easy and known links between problems

Galbraith, Panny, Smith and Vercauteren proved that CDH-HHS and Vectorization are quan-
tumly equivalent ([GPSV18]).

One can also notice that an oracle for the CDH-HHS problem and the data of a single point
x gives a group structure to X with x as neutral element (this is the underlying idea of the proof
of [GPSV18]). The law in question is the following. If one wants to compute y?z, write y = [α]·x, z =
[β]·x and use the CDH-HHS oracle to compute w = [α+β]·x, then define y?z = w. This group law
gives access to the structure of G via the elements of X. It is then easy to performs the operations
asked in the problems Square-HHS, Inv-HHS, Scalar-HHS and k-Inverse-Approx-HHS -
for example CDH(x, y = [α] · x, y) = [2α] · x. Square-HHS, Inv-HHS, etc. . . then reduces to
CDH-HHS.

I should also state some other easy reductions: k-Inverse-Approx-HHS reduced to k′-Inverse-
Approx-HHS with k′ ≥ k and k-Inverse-Approx-HHS reduces to Inv-HHS.

7

Lemma 2.2.1. 1-Inverse-Approx-HHS is trivial.

Proof. Let x, y be a 1-Inverse-Approx-HHS instance. One can simply return the tuple (y, x).
If it is required that the returned tuple is not (y, x) (which seems fair), the problem is still trivial

if it is assumed that one has access to a nontrivial α in G; then one can return [α]·y, [α]·x, which will
be a valid 1-Inverse-Approx-HHS solution (indeed, every solution for 1-Inverse-Approx-HHS
will have this form).

2.2.2 Equivalence of Square, Inverse and Scalar multiplication

Now, let’s show that the Square-HHS, Inv-HHS and Scalar-HHS are, as in the discrete log-
arithm case, equivalent. The proof coming from the DLOG setting (see [BDZ03]) transfers quite
easily to the HHS setting.

Proposition 2.2.2. Square-HHS and Inv-HHS are equivalent.

Proof. Let x, y = [α] · x be an instance of one of those problems.
If one has access to S, a Square-HHS oracle, then she can solve Inv-HHS by:

S(y, x) = S([α] · x, [−α+ α] · x) = [−2α+ α] · x = [−α] · x.

If one has access to I, a Inv-HHS oracle, then she can solve Square-HHS by:

I(y, x) = I([α] · x, [−α+ α] · x) = [α+ α] · x = [2α] · x.

Theorem 2.2.3. Square-HHS and Scalar-HHS are equivalent.

Proof. Square-HHS is a subproblem of Scalar-HHS so the interesting thing to prove is the
reduction from Scalar-HHS to Square-HHS.

Let’s assume that one has a Square-HHS oracle S, that is to say an oracle wich on input
x, y = [α] · x returns [2α] · x.

Let x, y = [α] · x ∈ X,n ∈ Z≥0 be an instance of Scalar-HHS and observe that for all a, b ∈ Z,
O([aα] ·x, [bα] ·x) = [(2b−a)α] ·x. One can then build a recursive polytime (in log(n)) square-and-
multiply algorithm to compute [nα] · x. This is Algorithm 2.1.

Algorithm 2.1 Compute [nα] · x on input x, y = [α] · x and n ∈ Z≥0
1: procedure Scalar(x, y, n)
2: if n = 0 then return x
3: else if n = 1 then return y

4: if n is even then
5: x′ ← Scalar(x, y, n/2)
6: w ← S(x, x′) = [(2n2 − 0)α] · x = [nα] · x
7: return w
8: else
9: x′ ← Scalar(x, y, n+1

2) . (n+ 1)/2 < n here.
10: w ← S(y, x′) = [(2n+1

2 − 1)α] · x = [nα] · x
11: return w

This algorithm is clearly polytime in log(n) and solves the problem.
Figure 8 makes a global diagram of the problems studied so far.

8

Figure 8: Relative difficulties of HHS problems in the general setting

2.2.3 Comparison between Scalar Multiplication and CDH-HHS

The interesting question is to know whether this scalar multiplication is as hard as the CDH-HHS
problem. In the DLOG setting, Scalar and CDH are equivalent (see [BDZ03]), but the proof do
not transfer to the HHS setting, in fact tt turns out that this question seems to be related with the
structure of the group.

Theorem 2.2.4. If one has access to an Square-HHS oracle and if x, xα = [α] · x, xβ = [β] · x a
CDH-HHS instance is given such that the order of α is odd and known, then there is a poly-time
algorithm computing [α+ β] · x.

In particular, if (G,X) is a HHS with G having odd order and if this order is known, then
Square-HHS is equivalent to CDH-HHS for this HHS.

Proof. Let (x, xα = [α] · x, xβ = [β] · x) be a CDH-HHS instance. Assume that the order of α is
2n+ 1 for some n and let S be a Square-HHS oracle S and Scal a Scalar-HHS oracle.

Algorithm 2.2 Compute [α+ β] · x on input x, xα, xβ given Square and Scalar HHS oracles

1: x2α ← S(x, xα)
2: x2α−β ← S(xβ, xα)
3: x2α+β ← S(x2α−β, x2α)
4: w ← Scal(xβ, x2α+β, n+ 1)
5: return w

Algorithm 2.2 computes [α + β] · x, and is clearly polytime. One can check that at each step
xγ = γ ·x for every γ ∈ G considered. The last step Scal(xβ, x2α+β, n+1) = Scal(xβ, [2α] ·xβ, n+1)
computes

(2n+ 1 + 1)α · xβ = [α] · xβ = [α+ β] · x

Remark 2.2.5. The above reduction works even if an odd multiple of the order of α is known, but
it is not possible to use it if the orders of α and β are even.

Indeed, the following proposition shows that if the orders of α and β are even then there are
cases where it is impossible to solve CDH-HHS with only an oracle for Square-HHS.

9

Proposition 2.2.6. Let (x, [α] · x, [β] · x) be an instance of CDH-HHS where α and β have even
order and are independent (aα = bβ =⇒ aα = bβ = 0). Then it is impossible to give an answer to
this instance of CDH-HHS with only calls to an instance of Square-HHS.

Proof. Let S be an oracle for Square-HHS. Let (x, [α] · x = xα, [β] · x = xβ) be an instance as in
the statement.

Now consider Y , the set of points that one can generate with calls to S and the points x, xα, xβ. I
claim that the only points that can be generated by those calls are the points of the form [aα+bβ] ·x
with a, b ∈ Z. I claim also that there are restrictions on a and b in that case, namely:

Y ⊆ {[aα+ bβ] · x, ab ≡ 0 mod 2}

Note that it makes sense to look at a and b and their parities only because α and β are inde-
pendent and a (resp b) is defined modulo the order of α (resp β) which is even. Now recall that
S([aα + bβ] · x, [a′α + b′β] · x) = [(2a′ − a)α + (2b′ − b)β] · x, so the parity of a, b is preserved by
the application of S. Since I only start with points whose group element parity are (0, 0), (1, 0) and
(0, 1), a point with parity (1, 1) will never be created by repeated applications of S.

2.3 Reductions exploiting group structure

Previous results used few assumptions about the group. In the general case, one could think that
an attacker would have a better knowledge of G than just its order.

For example, with only the public presentation of a group G, a quantum attacker could derive
its whole structure using using Kitaev’s generalisation of Shor’s algorithm of [Kit95]. This justify
the study of HHS when the group has a particular (and known structure).

2.3.1 The cyclic case

If G is cyclic with generator γ (which is known), then the problem of DLOG-Vectorization turns
out to be easier than one could expect in view of Proposition 2.2.6.

Proposition 2.3.1. If G is a cyclic group with order a power of two, then there is a reduction from
DLOG-Vectorization to Scalar-HHS in this setting.

Proof. Let x, y be an instance of vectorization, and assume that the order of G is 2t. Let Scal be
an oracle for Scalar-HHS.

Algorithm 2.3 On input x, y = [β] · x, γ, t, compute a if β = aγ, else fail.

1: a← 0, α← 0G . The current approximation of the discrete log in γ
2: z ← y
3: for i = 0 to t− 1 do . Loop invariant: [α] · z = y
4: z′ ← Scal(x, z, 2t−1−i)
5: if z′ 6= x then
6: a← a+ 2i

7: α← α+ 2iγ
8: z ← [−2iγ] · z
9: if z 6= x then

10: Fail
11: else
12: return a

10

If y = [
∑t−1

i=0 2iaiγ] · x with all ai ∈ {0, 1}, then Algorithm 2.3 computes ai at the step i. The
loop invariant to consider is:

I(i) :“At the begining of step i, α =
∑i−1

j=0 2jajγ and z = [α] · x”.
I(0) is clearly true. If I(i) is true, let’s show that I(i + 1) is true too. There are two cases to

consider: either ai = 0 or ai = 1. By I(i),

z′ = [2t−1−i(

t−1∑
j=i

2jaj)γ] · x = [

t−1∑
j=i

2j+t−1−iajγ] · x = [2t−1aiγ] · x.

Then z′ = x if and only if 2t−1aiγ = 0G i.e. ai = 0. This concludes the proof that I(i+ 1) is true.
It is easily shown that α = aγ at every point of the algorithm. At the end, the algorithm fails

if and only if β is not a multiple of γ.
The two precedent proofs can then be combined to describe a reduction from CDH-HHS to

Scalar-HHS.

Theorem 2.3.2. In the setting of cyclic groups with known generators γ, there is an effective
reduction from CDH-HHS to Scalar-HHS.

Proof. Let (x, [α] ·x = xα, [β] ·x = xβ) be an instance of CDH-HHS. Let’s assume that the access
to a Scalar-HHS oracle Scal is granted. Let’s assume G has known order N = 2s · r.

The idea is first to vectorize the even part of α and β and then to apply the reduction of
Theorem 2.2.4. Let A(x, y, γ) be an oracle for DLOG-Vectorization in the group spanned by γ
of order a power of two. This oracle can be constructed from the Scal oracle using Algorithm 2.3.

Algorithm 2.4 Compute [α+ β] · x on input x, [α] · x = xα, [β] · x = xβ

1: γ2 ← rγ . γ2 is a generator of the 2th power part of G.

2: x
(2)
α ← S(x, xα, r) and x

(2)
β ← S(x, xβ, r) . The odd part of α and β is killed.

3: a← A(x, x
(2)
α , γ2) and b← A(x, x

(2)
β , γ2)

4: x
(1)
α ← [−aγ] · xα, x

(1)
β ← [−bγ] · xβ . The even part of α and β is killed.

5: γ1 ← 2tγ . γ1 is a generator of the odd part of G.

6: compute x
(1)
α+β with the reduction of Theorem 2.2.4 in the group generated by γ1 (of odd order).

7: return [(a+ b)γ] · x(1)α+β

In Step 3, a and b are computed such that rα = aγ2 and rβ = bγ2. Hence in Step 4,

x(1)α = [−aγ] · xα = [α−aγ] · x and r(α−aγ) = aγ2 − aγ2 = 0G.

x
(1)
β = [−bγ] · xβ = [β−bγ] · x and r(β−bγ) = bγ2 − aγ2 = 0G.

Hence x
(1)
α = [α′] · x and x

(1)
β = [β′] · x with α′ and β′ of odd order, hence in the cyclic group

generated by γ1, which justifies the use of the reduction of Theorem 2.2.4.

At the end, x
(1)
α+β = [α′ + β′] · x = [α+ β − (a+ b)γ] · x so the value [(a+ b)γ] · x(1)α+β is equal to

[α+ β] · x, which is the desired output of the algorithm.

11

2.3.2 Smooth-order groups

Algorithm 2.3 gives a reduction from DLOG-Vectorization to Scalar-HHS in the case of cyclic
groups of order 2t. But it can be straightforwardly adapted to any group of order pt for a small p.
I’m assuming that a generator γ of the group is given along with its order pt.

Algorithm 2.5 On input (x, y = [β] · x, γ, p, t) compute b if β = bγ, else fail

1: Let a← 0, α← 0G . The current approximation of the discrete log in γ
2: z ← y
3: for i = 0 to t− 1 do . Loop invariant: [α] · z = y
4: z′ ← S(x, z, pt−1−i)
5: for k = 0 to p− 1 do
6: if [−kp(t−1)γ] · z′ = x then
7: a← a+ k · pi
8: α← α+ k · piγ
9: z ← [−kpiγ] · z

10: break
11: if z 6= x then
12: Fail
13: else
14: return a

This algorithm gives a reduction in time O(p · t). This is going to enable us to give a reduction
from DLOG-Vectorization to Scalar-HHS for cyclic groups of smooth order. The algorithm is
a straightforward generalisation of Pohlig–Hellman algorithm.

Theorem 2.3.3. If G is cyclic of order N =
∏n
i=1 p

ti
i , then there is a O(mini (tipi)) reduction from

DLOG-Vectorization to Scalar-HHS described in Algorithm 2.6.

Algorithm 2.6 Compute the discrete log of α in base γ on input x, y = [α]·x, γ, (pi)i=1...n, (ti)i=1...n

Proof. 1: for i = 1 to n do
2: Compute ai the discrete log of Scal(x, y,N/ptii) in base N/ptii γ

3: Use EEA to compute u1, . . . , un ∈ Z such that
∑n

i=1

(
N/ptii

)
ui = 1.

4: return
∑n

i=1(aiNui)/(p
ti
i) mod N

As before, Scal is a Scalar-HHS oracle. At each step, (ai) are computed such that N/ptii α =
(N/ptii)aiγ. This is a valid operation since N/ptii γ is in the ptii -part of G which is generated by
N/ptii γ. By the CRT, α =

∑n
i=1 ui(

N

p
ti
i

α) =
∑n

i=1 ui(ai
N

p
ti
i

γ). Then the DLOG of α in base γ is∑n
i=1

aiNui
p
ti
i

.

One can see that this result is legitimate, since in cyclic group Scalar-HHS and CDH-HHS
are equivalent, and that with a CDH-HHS, X can be endowed with a group structure.

In cyclic groups, the relative difficulties of the problems are represented in Fig. 9.

2.4 Non-cyclic groups

The case of non-cyclic groups is more subtle. Of course some previous reductions still work (namely
all the reductions of Section 2.2.2), but others seem to be more difficult to maintain.

12

Figure 9: Relative difficulties of HHS problems in the cyclic group setting

For example, a good reason to think that something similar to Proposition 2.3.1 does not apply
in the general case is that giving access to a Square oracle for the group G = (Z/2Z)n acting on
some set does not give any information, since every element of G has order 2.

Proposition 2.4.1. If G = G1 ×G2 with G1 of odd order r and G2 of order 2t, and if generators
of G2 are known, then there is a (polylog(r) + 2 · 2t) reduction from CDH-HHS to Scalar-HHS.

Proof. The idea of the reduction is to make an exhaustive search for the even part of the elements
and then to use the reduction of Theorem 2.2.4. Let Scal be a Scalar-HHS oracle. Algorithm 2.7
computes the reduction.

Algorithm 2.7 Compute [α+ β] · x on input x, xα = [α] · x, xβ = [β] · x

1: x
(2)
α ← Scal(x, xα, r) and x

(2)
β ← Scal(x, xβ, r) . The odd part of α and β are killed.

2: Make an exhaustive search over the elements of G2 to find α2 and β2 such that x
(2)
α = [α2] · x

and x
(2)
β = [β2] · x

3: x
(1)
α ← Scal(x, xα, 2

t) and x
(1)
β ← Scal(x, xβ, 2

t) . x
(1)
α and x

(1)
β have odd order by CRT

4: Use the reduction of Theorem 2.2.4 to compute y1, the CDH-HHS output on input

(x, x
(1)
α , x

(1)
β)

5: Compute u, v ∈ Z such that u2t + vr = 1
6: w ← [uα2 + uβ2] · Scal(x, y1, v) = [urα+ urβ + 2tvα+ 2tvβ] · x = [α+ β] · x
7: return w

Corollary 2.4.2. The exaustive search of the previous algorithm can be replaced by Algorithm 2.3
if the even part of the group appears to be cyclic. On would then have a polytime reduction from
CDH-HHS to Scalar-HHS.

3 Commutative Supersingular Isogeny Diffie–Hellman

If one takes a prime p of the form p = 4
∏
i li − 1 with (li) some odd primes, then she can consider

a group action that can be modeled as an HHS.

• X = Ellp(O) with O = Z[π] up to Fp-isomorphism. Each class of curves is represented by its
Montgomery coefficient, which makes sense as p ≡ 3 mod 8.

13

• G ⊂ Cl(
√
−p) (more preciselyG is the subgroup of Cl(

√
−p) generated by the ideals ([li] = (li, π + 1))i).

This setting (more precisely the key exchange derived from this setting) is called CSIDH.
In this section, first I will explain the mathematical background important to understand this

group action, then I will explain to what extent my discussion about the HHS carries over to the
CSIDH framework.

3.1 Elliptic Curves and Isogenies

The theory of elliptic curves comes from the number theory world and has many applications in
computer science, for example factorization algorithms, key exchanges, or attacks on cryptosystems.
There are many ways to present their theory but here I will try to stick to the simplest and to
introduce only the objects I will need. In the following, F will be a field of characteristic different
from 2, 3. The interested reader will find a more precise and exhaustive presentation in [Sil09] or a
presentation focused on the application of isogeny-based cryptography in [De 17].

Definition 3.1.1. Let a, b ∈ F, an elliptic curve E defined over F (we will just note E/F) is the
curve defined by the equation y2 = x3 + ax+ b. Its set of points is

E(F) =
{

(x, y) ∈ F2 : y2 = x3 + ax+ b
}
∪ {∞}

.
Where ∞ stands for a point “at infinity”.

This point at infinity has a proper meaning in terms of projective geometry, but it is not
interesting for this short presentation. Elliptic curves are algebraic curves (set of points defined
by a single polynomial equation). It turns out that elliptic curves also have a group structure, by
the “chord and tangent rule” (Figure 10).

Figure 10: Operations on elliptic curves.6

Proposition 3.1.2. [Sil09, Prop. III.2.2] The operations of Figure 10 define a group law on any
elliptic curve E(F), this group law is defined by algebraic operations and its neutral element is ∞.

Remark 3.1.3. If K is an extension of F (e.g., K = F the algebraic closure of F), we can see E as
a curve over K and then E(F) will be a subgroup of E(K). A way to see this is to say that E is a
functor from the category of extensions of F to the category of Abelian groups.

One can see that elliptic curves have two “facets” : they are algebraic objects and groups. An
isogeny is then a morphism that maintains those two aspects.

6Figure by SuperManu [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

14

Definition 3.1.4. Let E1/F, E2/F be two elliptic curves. A map φ : E1 → E2 is said to be a
morphism of algebraic varieties if it is defined by algebraic equations over F. It is said defined
over a field F if its equations have coefficients in F. This map is said to be a homomorphism if,
in addition, it sends the point at infinity of E1 into the point at infinity of E2.

A map φ : E1 → E2 is said to be an isogeny if it is a nonzero homomorphism.

I can then give the most fundamental examples of isogenies. Let E/F be an elliptic curve.

Definition 3.1.5. Let n ∈ Z, then

[n] : E −→ E
P 7−→ P + · · ·+ P︸ ︷︷ ︸

n times

is an isogeny if and only if n 6= 0.

The second example is less straightforward but also very important.

Definition 3.1.6. Let F be the finite field with q elements Fq. Then the q-Frobenius endomorphism
is

πq : E −→ E
P = (x, y) 7−→ (xq, yq)

and it is an isogeny.

One can see that these are isogenies from E to E . They are endomorphisms (homomorphism
from E to E). As endomorphisms are stable under composition and additions, they form a ring
denoted EndF(E). The structure of this ring very restricted.

Proposition 3.1.7. [Sil09, Prop. III.4.2] The ring EndF(E) contains Z by the morphism n 7→ [n]
i.e., the map n 7→ [n] is an injection from Z into EndF(E).

One can go further and say that when F = Fq, EndF(E) contains Z[π]. Isogenies have a very
restricted definition, and there are several facts about them.

Theorem 3.1.8. [Sil09, Prop. III.4.12] If φ : E1 → E2 is an isogeny, then its kernel is a finite
subgroup of E1(F) and there is correspondence between subgroups of E1(F̄) and isogenies starting
from E1.

More precisely, if H ⊂ E1(F) is finite, then there is an unique (up to F-isomorphism) elliptic
curve EH/F̄ and an isogeny φH : E1 → EH defined over F̄ such that the kernel of φH is H. Moreover,
if one requires φH to be separable (a notion that is beyond the scope of this report), then the
correspondance is one-to-one.

Proposition 3.1.9. In Theorem 3.1.8, if H is a subgroup stable by the action of the Galois group
of F/F (e.g., a subgroup of E(F)), then both φH and EH are defined over F.

What Theorem 3.1.8 along with Proposition 3.1.9 are saying is that if one works with isogenies
defined over F, she only have to look at curves up to F-isomorphism. This will be important for
the algorithm I am going to consider in the report. The class of curve defined by a subgroup H is
called the quotient curve of E by H.

Remark 3.1.10. The notations here are quite ambiguous and I emphasize that the group of points
of a quotient curve (E/H)(F) is not equal to the group quotient E(F)/H. Indeed, if F is a finite
field, |(E/H)(F)| = |E(F)|.

15

From this point, the only fields I am going to consider are Fp and its algebraic closure Fp for a
prime p. For the following, E is a curve defined over Fp.

Proposition 3.1.11. [Sil09, Th. V.2.3.1] There exist t such that | t |≤ 2
√
p For every P ∈ E(Fp),

πp(P)2 − tπp(P) + p = 0

The integer t is called the trace of the Frobenius.

The value of t has a great influence on the structure of the endomorphism rings of a given elliptic
curve. Here, in order to stick to the CSIDH cryptosystem, I will focus on curves with t = 0 (a
particular case of supersingular curves). For the following, E has Frobenius’ trace 0.

It is interesting to note that in that case, πp follows the equation X2 + p = 0, meaning that if
it is seen as a purely algebraic object it can be seen as

√
−p.

Theorem 3.1.12. [Sil09, Th. III.9.3] The ring EndFp(E) = O is an order of Q(
√
−p) i.e.,

O ⊗Q ∼= Q(
√
−p).

Corollary 3.1.13. If OK is the ring of integers of Q(
√
−p), then

Z[πp =
√
−p] ⊂ EndFp(E) ⊂ OK .

The structure of endomorphism ring is well studied and well known. It can be used to study
the actions of endomorphism on a certain curve. In the following, I will denote EndFp(E) by O.

Proposition 3.1.14. If a is an ideal of O, then the set E [a] = {P ∈ E , φ(P) =∞ ∀φ ∈ a} is a
subgroup of E(Fp).

One could try to take the quotient curve by E [a]. It will be denoted by E/E [a].

Proposition 3.1.15. The curve E/E [a] has the same endomorphism ring as E.

With this knowledge, one can construct a map giving the action of the set of ideals of O (called I
here) on the set of Elliptic curves over Fp with endomorphism ring O up to Fp-isomorphism (called
Ellp(O) here).

: I× Ellp(O) −→ X(O)
(a, E) 7−→ E/E [a]

This is not a group action because I is a monoid and not a group, but it appears that we can
transform it into a group action.

Proposition 3.1.16. The action of any principal ideals (x) is trivial i.e., E/E [(x)] is isomorphic
to E.

The quotient of I by the set P of principal ideals is a well known number theoretic object called
the Class group of O and denoted Cl(O).

Theorem 3.1.17. [CLM+18] The quotient action of Cl(O) on Ellp(O) is faithful and transitive.
Hence (Cl(O), X(O)) is a principal homogenous space.

16

3.2 The CSIDH Protocol

Now that the action of Cl(O) on Ellp(O) has been made explicit, an efficient algorithm to compute
this action is needed. The first thing to do is to compute the quotient curve by a given subgroup.

Proposition 3.2.1. If E is an elliptic curve over a finite field F, and H is a finite subgroup of E(F),
then one can compute the morphism φH and the equation of the curve E/H in O(#H) operations.

Proof. See Appendix B for the algorithm.
The idea of CSIDH is indeed to take primes and curves that make those computation easy. The

choice has been made to take p = 4
∏m
i=1 li−1 with (li)i small odd primes, and supersingular elliptic

curves with trace of Frobenius equal to 0, because their number of points is equal to p+ 1 = 4
∏
i li.

The elements of the class group that are to be considered are those represented by the ideals
li = (li, πp − 1). The action of such an ideal is then computed with Algorithm 3.1. Note that the
action of l−1i can be computed in a similar way (taking advantage of the quadratic twist and the
representation of the curve), but it is beyond the scope of this report.

Algorithm 3.1 Compute [li] · E on input E , li

1: P
$←− E(Fp)

2: while (4
∏
j 6=i lj)P =∞ do

3: P
$←− E(Fp)

4: Q← 4(
∏
j 6=i lj)P . Q is of order li

5: H ← 〈Q〉 be the group generated by Q
6: E ′ ← E/H be the curve computed from Velu formula
7: return E ′

The private key is then a tuple (ei) ∈ Zm, which will represent the ideal
∏m
i=1 li

ei . The action
of the class group element represented by (ei) is then computed by Algorithm 3.2.

Algorithm 3.2 Compute
∏m
i=1 li

ei · E on input E , (ei)

1: E ′ ← E
2: for i = 1 to m do
3: for j = 1 to ei do
4: E ′ ← [li] · E
5: return E ′

Remark 3.2.2. Algorithm 3.2 is neither optimized nor constant-time (meaning that its execution
time depends on the secret key, so it is vulnerable to side-channel attack). A more optimized version
is in Appendix B, and a constant time version is a current research topic.

The whole key exchange is then the following. E0 is a public supersingular elliptic curve, p =
4
∏m
i=1 li − 1 and k ∈ Z≥0 are public parameters too.

3.3 CSIDH viewed as an instance of HHS

It is clear that CSIDH is a HHS instance, but one could argue that in that sense that not the action
of all elements of the class group that are computed, but only the action of the li. This is true and
it comes from the fact that no efficient algorithm is known for computing the action of an arbitrary

17

Alice Bob

(ai)
$←− [0, k]m (bi)

$←− [0, k]m

Ea ← [
∏m
i=1 l

ai
i] · E0 Eb ← [

∏m
i=1 l

bi
i] · E0

Ea−→
Eb←−

Eab ← [
∏m
i=1 l

ai
i] · Eb Eab ← [

∏m
i=1 l

bi
i] · Ea

Figure 11: The Commutative Supersingular Diffie–Hellman key exchange

element of the class group on Ellp(O). Indeed, the complexity of computing the action of a given
isogeny is exponential in the size of its kernel which is equal to the norm of the ideal representing it
in Cl(O). In order to keep a reasonable amount of computation, one can either use only elements
smooth in the li or to smooth any given element with respect to the li with lattice-based techniques
such as LLL.

It should be noticed too that in almost all of the reduction presented in Section 2 informations
about the group structure (e.g., its size or a multiple of it) are used. This is the second difference
between the abstract HHS model and CSIDH: the structure of the class group is an information
one does not have in the general case. There are algorithms to compute the structure of the
class group of quadratic orders, the best known has (under GRH) heuristic complexity Lp(1/3)
(see [Bia12]). It is based on sieving: finding relations betweens elements choosen in a smart way.
For the parameters of the original CSIDH paper [CLM+18], the class group order and structure
were computed during my internship and presented in [BKV19]. Those parameters were the prime
p = 4

∏74
i=1 li − 1, with l1, . . . , l73 the first 73 odd primes and l74 = 587 the smallest prime making

the product prime. The size of p was then around 512 bits, making the classical attacks (such
as birthday paradox method) impratical. The class group was discovered to be cyclic of order
N = 37·1407181·51593604295295867744293584889·31599414504681995853008278745587832204909.

The structure of the class group should then be considered as a “secret but computable” infor-
mation for the protocol, and it is interesting to note that (at least in this setting) all the reduction
for cyclic group presented in Section 2 applies.

3.4 Difference between SIDH and CSIDH

As mentioned in the state of the art, another protocol using supersingular elliptic curve is currently
under study. This protocol is called SIDH [JDF11] and, even if it seems similar with CSIDH (even
in its name), it has a lot of differences and, in particular, does not fit into the HHS modelization.

The idea of SIDH is to take primes of the for p = 2a3bf − 1 (with f a small cofactor) and
a public supersingular curve E0 with trace of its Frobenius equal to 0 over Fp2 . It can be shown
that the 2a (resp. the 3b-torsion) of E(Fp2), denoted E [2a] (resp. E [3a]) is of order 2a (resp. 3b), is
generated by two points. Those point are fixed and publicly known, denoted Pa, Qa (resp. Pb, Qb).
The key exchange is then explicited in Figure 12. At the end of it, Eab = Eba is the shared secret.

Even if the basic aspects of the key sharing are similar in SIDH and CSIDH (the shared secret
is a curve obtained by the application of two isogenies), these protocol are deeply differents. First,
the amount of information given in SIDH is far greater than in CSIDH: the whole torsion basis of
the curves is transmited throught the network in SIDH. The second difference is that no group is
acting on the curves in SIDH. TODO: insert a thing about walking on the graph of curves.

18

Alice Bob

ma, na
$←− Z/2aZ mb, nb

$←− Z/3bZ
not both divisible by 2 not both divisible by 3
Sa = [ma]Pa + [na]Qa Sb = [mb]Pb + [nb]Qb
Compute Ea = E/ 〈Sa〉 Compute Eb = E/ 〈Sb〉
along with φa : E → Ea along with φb : E → Eb

Ea,φa(Pb),φa(Qb)−−−−−−−−−−−→
Eb,φb(Pa),φb(Qa)←−−−−−−−−−−

Let Ra = [ma]φb(Pa) + [na]φb(Qa) Let Rb = [mb]φa(Pb) + [nb]φa(Qb)
Compute Eab = E/ 〈Ra〉 Compute Eba = E/ 〈Rb〉

Figure 12: The Commutative Supersingular Diffie–Hellman key exchange

3.5 Attacks on CSIDH

The more evident classical and quantum attacks on CSIDH are presented in its founding pa-
per [CLM+18]. The first class of attack is the “meet in the middle”. The idea is to walk in
the graph Ellp(O) randomly waiting to find a collision by the birthday paradox. This attack has
complexity O(|Cl(O)|1/2). As Cl(O) is of size roughly

√
p, this attack has exponential complex-

ity. For the quantum security, an attack based on Grover search and claw finding exists in O(6
√
p)

is proposed too but recent work by Schanck shows that once memory management is taken into
account, this complexity jumps from O(6

√
p) to O(3

√
p) (see [JS19]).

Another more problematic attack is the attack by the abelian hidden-shift problem which
applies to CSIDH (in fact it would apply to any HHS instance), and uses L(1/2) calls to the
quantum oracle and the same amount of quantum memory. This attack is subexponential, but not
that problematic since the amount of qubits needed to implement it is clearly a problem for now. In
order to give a compairison, subexponential attacks on the discrete logarithm for finite fields with
this families of complexity exists but the cryptosystem based on them are still used today.

I explored another way of attacking CSIDH during the internship. In CSIDH, the elliptic curves
are considered in Montgomery form (y2 = x3 +Ax2 +x), and are represented by their Montgomery
coefficient (A). Not all curve can be written in that way, but it is the case for supersingular
curves for the values of p considered in CSIDH. For further details on Montgomery curves and
their arithmetic, see [Mon87] and [CS17]. One has at her disposition an involution on Ellp(O): the
quadratic twist. This involution is very efficiently computable, since the Montgomery coefficient
of the quadratic twist of the curve of coefficient A is −A. The interest of this involution is summed
up in Proposition 3.5.1.

Proposition 3.5.1. If E = [a]E′, and if the quadratic twist is denoted by ·̃, then Ẽ = a−1Ẽ′.

Remark 3.5.2. If the curve defined by the equation y2 = x3 + x is denoted E0, then E0 = Ẽ0.

This involution can then be used to solve k-Inverse-Approx-HHS.

Proposition 3.5.3. k-Inverse-Approx-HHS is poly-time in the CSIDH setting.

Proof. I will do the proof only in the case of 2-Inverse-Approx-HHS since its generalization is
straightforward.

Let (E,E0 = [a] · E,E1 = [b] · E), then for any c ∈ Cl(
√
−p), ([c] · Ẽ, [c] · Ẽ0, [c] · Ẽ1) is a valid

2-Inverse-Approx-HHS solution by Prop 3.5.1.

19

Corollary 3.5.4. In the CSIDH setting, the OT scheme of figure 13 is broken for curious Bob.

A single class of problem is then broken for CSIDH. In order to solve CDH-HHS, one would
need to solve Inv-HHS and then apply the reduction algorithms presented in Section 2. I propose
a new problem to be studied in order to work in this direction.

Definition 3.5.5. Group-twist
Given the CSIDH parameters (p, the li, the structure of Cl(O)) and a curve E ∈ Ellp(O),

compute the unique a ∈ Cl(O) such that Ẽ = [a] · E.

If one can solve this problem, then I claim that she can solve Inv-HHS on CSIDH and then
CDH-HHS.

Proposition 3.5.6. For CSIDH, Inv-HHS reduces to Group-twist.

Proof. Let E , E ′ = [a] · E be a Inv-HHS instance and GT be a Group-twist oracle.
Let p = GT (E). Then the curve [p−1] · Ẽ ′ is the solution to Inv-HHS for this instance: one has

Ẽ ′ = [a−1] · Ẽ , then
[p−1] · Ẽ ′ = [a−1] · [p−1] · Ẽ ′ = [a−1] · E

Solving the Group-twist problem could be a subject of further research.

4 Conclusion

4.1 Summary of the results

In this report, I presented the work done during the internship. I stated definitions and problems
in the setting of Hard Homogenous Spaces, then I precised their relative difficulties. I showed that
these relations depends on the structure of the group. Then I stated other reductions, trying to
investigate the relations between Scalar-HHS and CDH-HHS. After this step I presented the
CSIDH key exchange. I briefly introduced the theory of elliptic curves and compared CSIDH to
the HHS model and to SIDH by explaining their common points and differences. Finaly I presented
attacks on CSIDH and proposed a new way to attack it.

I produced a Rust implementation of the various elliptic curves algorithm presented in the
report, some of them are presented in Appendix B.

4.2 Acknowledgements

I would like to thank Ben Smith for his help and flexibility during the whole duration of the
internship. Thank also to all the GRACE team for their friendly welcome and their help when Ben
could’nt be there.

I also want to thank Danaé (for being Danaé), all the team of Prologin and le Foyer de Paris
for their help to escape the loneliness of being in a city far from home.

References

[BDZ03] Feng Bao, Robert H Deng, and Huafei Zhu. Variations of Diffie–Hellman problem. In
International conference on information and communications security, pages 301–312.
Springer, 2003.

20

[Bia12] Jean-François Biasse. Improvements in the computation of ideal class groups of imagi-
nary quadratic number fields. arXiv preprint arXiv:1204.1300, 2012.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. Cryptology ePrint Archive,
Report 2019/498, 2019. https://eprint.iacr.org/2019/498.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In International Con-
ference on the Theory and Application of Cryptology and Information Security, pages
395–427. Springer, 2018.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. IACR Cryptology ePrint Archive,
2006:291, 2006.

[CS17] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic: The case
of large characteristic fields. IACR Cryptology ePrint Archive, 2017:212, 2017.

[De 17] Luca De Feo. Mathematics of isogeny based cryptography. CoRR, abs/1711.04062, 2017.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[GM16] Aurore Guillevic and François Morain. Discrete logarithms, 2016.

[GPSV18] Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Vercauteren. Quantum
equivalence of the DLP and CDHP for group actions. arXiv preprint arXiv:1812.09116,
2018.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingu-
lar elliptic curve isogenies. In International Workshop on Post-Quantum Cryptography,
pages 19–34. Springer, 2011.

[JS19] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the ram model: Claw-
finding attacks on SIKE. Cryptology ePrint Archive, Report 2019/103, 2019. https:

//eprint.iacr.org/2019/103.

[Kit95] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv
preprint quant-ph/9511026, 1995.

[Mon87] Peter L Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

[Sho94] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations of computer science, pages 124–
134. Ieee, 1994.

[SIK] SIKE website. https://sike.org/.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer Science &
Business Media, 2009.

[Vit19] Vanessa Vitse. Simple oblivious transfer protocols compatible with kummer and super-
singular isogenies. 2019.

21

A Oblivious Transfer with HHS

The discrete log version of this protocol was presented in the preprint [Vit19], but its generalisation
to the HHS setting is straightforward and I present it here for reference. In the Oblivious Transfer
settings there are two parties, namely Alice and Bob. Alice has two secrets and want to share only
one of them with Bob, and Bob want to have access to one of those secrets, but do not want Alice to
be able to tell which one of them. An analogy could be made with the medical records of patients.
If Bob is a doctor, and Alice a server which has the records, Bob would want to check the record of
a certain patient, but he wouldn’t want the server to know which one.

The proposed way to implement such a protocol is the following (X,G is a HHS, and KDF
is a Key Derivative Function for X, that is to say a function that will output a symetric
cryptographic key with input an element of X).

Alice (has secret s0, s1) Bob (wants secret k)

α0, α1
$←− G β

$←− G
x

$←− X
x0 ← [α0] · x
x1 ← [α1] · x

x,x0,x1−−−−→
y ← [β] · x

x′ ← [β] · xk
x′←−

c0 ← Enc(s0,KDF ([−α0] · x′))
c1 ← Enc(s1,KDF ([−α1] · x′))

c0,c1−−−→
Retrieve Enc−1(ck,KDF (y))

Figure 13: OT protocol

B Velu’s formulae and CSIDH algorithm

B.1 The formulae

The Velu’s formulaes give an explicit isogeny and curves for the curve E/H is H is a subgroup of
E(Fq). For the recall, all the curve are given in Montgomery form: y2 = x3 +Ax2 + x.

Theorem B.1.1. If H is a subgroup of E(Fq), then the function

φ : P = (xp, yp) 7→ (xp +
∑
Q∈H

(xP+Q − xQ), yp +
∑
Q∈H

(yP+Q − yQ))

is an isogeny from E : y2 = x3 + Ax2 + x to the curve E ′ : y2 = x3 + A′x2 + x, of kernel H. A′

is given by the formula A′ = η · (A− σ) for

η =
∏

Q∈H\0

xQ, σ =
∑

Q∈H\0

(xQ −
1

xQ
)

22

B.2 Implementations and optimizations

As elliptic curve cryptography has been studied for a long time and is widely used, all sorts of
practical improvements has been developped to compute quicker that kind of opérations. The more
usual idea is to take projective coordinates instead of affine one, and to use those coordinates
to reduce the number of divisions in finite fields (because divisions are the longest operations on
finite fields). The idea is also to only use the x coordinate, because in the case studied here (the
scalar multiplication of a point), all the operations can be computed with only the x-coordinate.
The algorithm used to compute [n]P is the Montgomery ladder, decribed in Algorithm B.1.

Algorithm B.1 Montgomery ladder compute [n]P on input n, P

1: procedure Xadd([xP : zP], [xQ : zQ], [xP−Q : zP−Q])
2: u← (xP − zP)(xQ + zQ)
3: v ← (xP + zP)(xQ − zQ)
4: x← u+ v
5: z ← u− v
6: return [xP−Q · x2 : zP−Q · z2]
7: procedure Xdouble([x : z], A)
8: u← (x+ z)2

9: r ← (x− z)2
10: s← u− r
11: return [4 · u · r : s · (4 · r + s · (a+ 2))]

12: procedure Montgomery(n, P)
13: if n < 0 then
14: return Montgomery(−n,−P)
15: else if n == 0 then
16: return [1 : 0]

17: Q← [1 : 0]
18: Decompose n =

∑b
i=0 ai2

i

19: for i = b to 0 do
20: if ai = 0 then
21: P ← xAdd(P,Q, P)
22: Q← xDbl(Q)
23: else
24: Q← xAdd(P,Q, P)
25: P ← xDbl(P)

26: return Q

The overall algorithm used to compute the action of an ideal of the form l = (l, π − 1) is then
described in Algorithm B.2. A piece of my implementation in Rust can be found in Code 1 (for the
Velu formulae) and in Code 2 for the class group action.

23

Algorithm B.2 Computation of the action of (l, π − 1) on the curve and on the point Q

1: procedure Action(l, E : y2 = x3 +Ax2 + x, P of order l, Q)
2: T ← P
3: η ← [1 : 0], σ ← 0
4: xR ← 0, yR ← 0
5: for i = 1 . . . (l − 1)/2 do . The fact that xP = x−P is used
6: ηx ← ηx · T.x
7: ηz ← ηz · T.z
8: σ ← σ + (T.x2 − T.z2)/(T.x · T.z)
9: xR ← xR · (T.x ·Q.x− T.z ·Q.z)

10: zR ← zR · (Q.x · T.z − T.x ·Q.z)
11: if i = 1 then
12: T ← xDbl(T)
13: else
14: T ← xAdd(T, P, P)

15: ηx ← η2x . Here the values are squared or doubled
16: ηz ← η2z
17: xR ← x2R
18: zR ← z2R
19: σ ← 2σ
20: return The curve y2 = x3 + ηx

ηz
(A− 3 · σ)x2 + x along with the point [Q.x · xR : Q.z · zR]

[h!]

Source Code 1: Implementation of Velu formulaes

fn isogeny_velu(ell : &EllipticCurve<Fp<N, Integer>>,

point : &UnsignedProjPoint<Fp<N, Integer>>,

mut q : UnsignedProjPoint<Fp<N, Integer>>, k : Integer) ->

Result<(EllipticCurve<Fp<N, Integer>>, UnsignedProjPoint<Fp<N, Integer>>), ()>{

assert!(ell.is_montgomery());

assert!(k>=Integer::from(3));

assert!(&k%2 != Integer::from(0));

let p = point;

let mut i = Integer::from(1);

let mut t = p.clone(); // t = [i]p will iterate over elements of <p>

let mut t_minus_1 = UnsignedProjPoint::infinite_point();

let mut pi = UnsignedProjPoint::finite_point(Fp::from_int(1));

let mut sigma = Fp::from_int(0);

let mut projection_x = Fp::from_int(1);

let mut projection_z = Fp::from_int(1);

while &Integer::from(2)*&i < k{

24

if t.x == Fp::from_int(0){ // point of order 2, we abort

return Err(());

}

pi.x *= t.x.clone();

pi.z *= t.z.clone();

sigma += (&t.x*&t.x - &t.z*&t.z)/(&t.z*&t.x);

projection_x *= &t.x*&q.x - &t.z*&q.z;

projection_z *= &q.x*&t.z - &t.x*&q.z;

if i == Integer::from(1){

let _temp = t.clone();

t = ell.x_dbl(p.clone());

t_minus_1 = _temp;

}else{

let _temp = t.clone();

t = ell.x_add(t, p.clone(), t_minus_1);

t_minus_1 = _temp;

}

i += Integer::from(1);

}

pi.x *= pi.x.clone();

pi.z *= pi.z.clone();

projection_x *= projection_x.clone();

projection_z *= projection_z.clone();

sigma *= Fp::from_int(2);

pi = pi.normalize();

Ok((

EllipticCurve::new_montgomery(pi.x*(&ell.a_2 - &(Fp::from_int(3)*sigma))),

UnsignedProjPoint{

x: q.x*projection_x,

z: q.z*projection_z

}

))

}

Source Code 2: Implementation of the class group action

pub fn class_group_action(self : &CSIDHInstance<Fp<N, Integer>>,

pk : Fp<N, Integer>, mut sk : Vec<i32>) -> Fp<N, Integer>{

let L = &self.l;

25

let P = &self.p;

let N_PRIMES = &self.n_primes;

let mut finished_total : [bool; 2] = [false, false];

let mut k_sign : [Integer; 2]= [Integer::from(1),

Integer::from(1)]; // 1 -> >= 0; 0-> <= 0

let mut s_sign : [Vec<Integer>; 2] = [vec!(), vec!()];

let mut e_sign : [Vec<i32>; 2] = [vec!(), vec!()];

let mut finished_sign : [Vec<bool>; 2] = [vec!(), vec!()];

for i in 0..sk.len(){

if sk[i] == 0{

}else if sk[i] > 0{

e_sign[1].push(sk[i]);

s_sign[1].push(L[i].clone());

finished_sign[1].push(false);

k_sign[1] *= L[i].clone();

}else{

e_sign[0].push(sk[i]);

s_sign[0].push(L[i].clone());

finished_sign[0].push(false);

k_sign[0] *= L[i].clone();

}

}

let mut ell = EllipticCurve::new_montgomery(pk);

while !finished_total[0] || !finished_total[1] {

// Sample the point

let x = Fp::new(Integer::sample_uniform(&Integer::from(0),

&(P-Integer::from(1))));

let s = CSIDHInstance::compute_rhs(&x, &ell.a_2).legendre_symbol() as i32;

if s == 0{

continue;

}

let sign_index = ((s + 1)/2) as usize;

if finished_total[sign_index]{

continue;

}

finished_total[sign_index] = true;

let uns_p = UnsignedProjPoint::finite_point(x);

26

let mut k = k_sign[sign_index].clone();

let mut q_point = ell.scalar_mult_unsigned(

(P.clone()+Integer::from(1))/k.clone(), uns_p);

for j in 0..s_sign[sign_index].len(){

// Trick from the original implementation, they started by the big primes

let i = s_sign[sign_index].len()-1-j;

if finished_sign[sign_index][i]{

continue;

}

finished_total[sign_index] = false;

let li : Integer = s_sign[sign_index][i].clone();

let r_point = ell.scalar_mult_unsigned(&k/(&li), q_point.clone());

if &r_point == &UnsignedProjPoint::infinite_point(){

// The point sampled had too low l-index

continue;

}

let (ell_, q_point_) = match Self::isogeny_velu(&ell,

&r_point, q_point.clone(), li.clone()){

Err(()) => {

// This should never happend

println!("Erreur");

continue;

},

Ok(pair) => pair

};

ell = ell_;

q_point = q_point_;

e_sign[sign_index][i] -= s;

if e_sign[sign_index][i] == 0{

finished_sign[sign_index][i] = true;

}

k /= li;

}

}

ell.a_2

}

27

