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Abstract 

Hepatitis C virus (HCV) infection remains a major global health problem, with 

130-170 million chronically infected individuals at risk to develop severe liver 

disease, including hepatocellular carcinoma. Although the development of direct-

acting antivirals offers cure in large majority of patients, there are still a number 

of clinical challenges. These include DAA failure in a significant subset of 

patients, difficult-to-treat genotypes and limited access to therapy due to high 

costs. Moreover, recent data indicate that the risk for liver cancer persists in 

patients with advanced fibrosis. These challenges highlight the need for 

continued efforts towards novel therapeutic strategies for HCV. Over the past 

two decades, advances in HCV model systems have enabled a detailed 

understanding of HCV entry and its clinical impact. Many of the virus-host 

interactions involved in HCV entry have now been identified and explored as 

antiviral targets. Furthermore, viral entry is recognized as an important factor 

for graft reinfection and establishment of persistent infection. HCV entry 

inhibitors, therefore, offer promising opportunities to address the limitations of 

DAAs. Here, we summarize recent advances in the field of HCV entry and 

discuss perspectives towards the prevention and cure of HCV infection and 

virus-induced liver disease. 

 

 

 

 

 

 



Global impact of HCV infection. There are an estimated 130-170 million people 

worldwide who are chronically infected with hepatitis C virus (HCV) [1]. These 

individuals are at higher risk to develop severe liver disease, including cirrhosis and 

hepatocellular carcinoma (HCC) [1]. Although recent approval of direct-acting 

antivirals (DAAs) has improved the outlook for HCV patients, the risk for liver 

disease persists even after viral cure, once fibrosis has been established [2]. 

Furthermore, not all patients respond to therapy and the high costs of DAAs limit 

access to treatment even in high-resource countries [3-5]. A detailed, comprehensive 

knowledge of HCV entry will guide development of novel antiviral approaches [6, 7]. 

Here, we review recent insights into the HCV entry process and its clinical impact as 

an antiviral target. We also discuss perspectives to use our accumulating knowledge 

of HCV entry to develop strategies aimed at the prevention and cure of HCV infection 

and virus-induced liver disease. 

Molecular virology and cell biology of HCV entry. HCV is a member of the 

flaviviridae family, classified in the hepacivirus genus. HCV, with a positive sense 

single-stranded RNA genome of 9.6 kilo-base pairs, is a cytoplasmic-replicating virus 

[8]. The HCV capsid is surrounded by a host-derived lipid envelope, in which the E1 

and E2 glycoproteins are embedded, and is associated with serum lipoproteins such as 

apolipoprotein E (ApoE) [9]. 

The first step in HCV infection is low-affinity binding to heparan moieties in 

heparan sulfate proteoglycans on the surface of hepatocytes [10-12], an interaction at 

least partially mediated through virion-associated ApoE [13-15]. The cellular low-

density lipoprotein receptor (LDL-R) also interacts with virion-associated 

apolipoproteins to facilitate further binding [16-19]. Furthermore, the scavenger 

receptor class B type I (SR-B1) binds to virion-associated lipoproteins [20] and the 



HCV E2 protein [21]. The lipid transfer activities of SR-BI may expose regions of E2 

involved in interactions with other cellular factors, such as cluster of differentiation 

81 (CD81) [22, 23]. CD81, the first receptor identified for HCV, binds directly to E2 

[24] and also mediates critical post-binding events [25, 26], including activation of 

signaling pathways. Indeed, CD81 engagement was shown to activate signaling 

through the epidermal growth factor receptor (EGFR) [27] and Rho and Ras GTPases 

[28, 29]. 

Tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN) have 

also been identified as HCV entry factors	 [30, 31]. CD81 interacts with CLDN1 to 

form a co-receptor complex [32], which along with the HCV particle is ultimately 

internalized into clathrin-containing endosomes [26]. Given that CD81-CLDN1 co-

receptor complex formation could be detected at basolateral membranes but not in TJ-

associated pools of CLDN1 [32], it is likely that the nonjunctional pool of CLDN1 

predominantly contributes to HCV entry. OCLN is another TJ protein required for a 

post-binding step of HCV entry [31, 33], although its specific role in entry has not yet 

been elucidated. 

Other cellular factors have been implicated in HCV entry, yet their functions 

remain enigmatic. For example, the Niemann-Pick C1-like 1 cholesterol absorption 

receptor interacts with virion-associated cholesterol to mediate binding or 

internalization steps [34]. Transferrin receptor 1 and cell death-inducing DFFA-like 

effector b are thought to be involved in late entry steps [35, 36]. Recently, the 

provirus integration site for Moloney murine leukemia virus (Pim1) kinase was 

identified as an additional HCV entry factor, perhaps by contributing to CD81-

CLDN1 receptor complex formation via PI3K-Akt signaling [37]. The serum 

response factor binding protein 1 (SRFBP1) also interacts with CD81 to coordinate 



host cell penetration [38]. SRFBP1 was proposed to mediate actin-dependent 

translocation following HBV receptor binding [38], and may also contribute to CD81-

CLDN1 co-receptor complex assembly. 

Ultimately, these virus-host interactions lead to the internalization of HCV 

into Rab5-containing early endosomes, where low pH induces viral fusion [26, 39]. 

The HCV fusion protein is still unknown. Although initial predictions pointed to E2 

as being the fusion protein, the recently solved crystal structure of the E2 core 

ectodomain suggests otherwise [40, 41]. Indeed, the E2 ectodomain is globular and 

did not undergo conformational changes when exposed to low pH [40, 41], suggesting 

that E2 acts through a novel mechanism or that E1 may be involved in inducing 

membrane fusion [42]. Further mechanistic studies, and likely a structure of the 

E1/E2 heterodimer, will be necessary to elucidate the fusion mechanism.  

Another route of HCV entry relies on direct cell-to-cell spread [43]. In this 

context, CD81, CLDN1 and SR-BI likely play key roles [43, 44], as do the viral 

envelope glycoproteins [45]. However, CD81 may be dispensable for cell-to-cell 

spread, at least in hepatoma cell lines [45]. Signaling pathways activated by EGFR 

may also contribute to cell-to-cell spread [27, 29]. Furthermore, virion-associated host 

factors such as ApoE have been implicated in cell-to-cell transmission [46]. 

HCV entry and liver disease. Viral entry is thought to play a major role in the 

pathogenesis of HCV infection. In the context of liver transplantation – which is 

severely hampered by rapid reinfection of the graft – it has been shown that viral 

quasispecies are rapidly selected following transplantation [47] and the resulting 

selection of viral variants contributes to pathogenesis. Indeed, escape from antibody-

mediated neutralization selects for viral variants with a highly efficient entry 

phenotype associated with altered receptor usage [48]. Mutations in E2 that modulate 



interactions with CD81 were implicated in mediating viral evasion at a post-binding 

step [49]. Altered usage of SR-B1 has also been observed [50], and increased levels 

of CLDN1 and OCLN modulate recurrence of HCV infection following liver 

transplantation [51]. These findings highlight viral entry as an important determinant 

for graft reinfection and the establishment of persistent infection. They also point to 

entry as an attractive therapeutic target, including preventing reinfection of the liver 

graft. 

Entry as a therapeutic target to address current limitations of DAAs. HCV entry 

offers many advantages as an alternative antiviral target. Entry inhibitors block the 

virus life cycle at a step before persistent infection can be established. Indeed, in the 

absence of de novo infection, hepatocyte turnover likely results in the elimination of 

infected hepatocytes and leads to clearance of infection [52]. Furthermore, host-

targeting agents aimed at entry factors have a higher genetic barrier for resistance, as 

the targets are not encoded by highly mutable viral genomes. Entry inhibitors also act 

synergistically with DAAs	 [53, 54], which would allow their incorporation into 

combination regimens. Interestingly, adding an entry inhibitor to DAA therapy 

reduces breakthrough of DAA-resistant variants, and entry inhibitors have been 

shown to have strong antiviral activity against DAA-resistant variants [55, 56]. 

Furthermore, many of the entry inhibitors including natural compounds may be 

produced at low costs offering a perspective to improve access to therapy in particular 

in countries or patients with limited resources.  The complex and multi-step HCV 

entry process offers many antiviral targets, and our accumulating knowledge of the 

virus-host interactions involved in HCV entry opens perspectives to develop antivirals 

targeting these steps. 

 



Entry inhibitors in preclinical and clinical development. Several compounds have 

been shown to block HCV binding. These include negatively charged small 

molecules, such as heparin, heparin-like compounds and polyphenols, which non-

specifically compete for binding to cell-surface HSPGs [10, 11, 57-63]. Other 

molecules target specific receptor binding. For example, the small molecule 281816 

(a dibenzothiepin derivative) disrupts the interaction between the HCV E2 protein and 

CD81 [64]. Similarly, oleanane-type triterpenes and the terpenoid saikosaponin b2 

bind to E2 and disrupt E2-CD81 interactions to inhibit HCV entry	 [65, 66]. 

Monoclonal antibodies against CD81 and SR-BI also interfere with HCV binding [67-

69] and to protect human liver chimeric mice from HCV infection [67-69]. Antibodies 

targeting SR-BI also reduced viral spread in already infected mice [68, 69]. 

Conversely, neutralizing antibodies targeting highly conserved epitopes on the viral 

envelope are also able to inhibit viral binding to CD81 [70-72]. Polyclonal 

immunoglobulins against HCV have been shown to protect human liver chimeric 

mice from HCV infection [73,74] and are being evaluated in a clinical trial in the 

context of graft reinfection (NCT01804829). Antibodies targeting non-virally 

encoded virion-associated epitopes such as ApoE also interfere with virion binding 

[9], as do peptides derived from ApoE [75]. 

Following the binding step, CD81-CLDN1 co-receptor complex formation is a 

critical step in HCV entry and therefore a most promising antiviral target. 

Furthermore, the CD81-CLDN1 co-receptor complex has no known physiological 

role, thereby limiting off-target effects. Monoclonal antibodies targeting the 

extracellular loops of CLDN1 inhibit CD81-CLDN1 association at a post-binding 

step. These antibodies inhibit infection by all major genotypes of HCV as well as 

patient isolates [76-78]. Furthermore, anti-CLDN1 monoclonal antibodies prevent 



HCV infection in human liver chimeric mice [52, 79]. Notably, one such antibody 

cured chronically infected mice in monotherapy [52], providing proof-of-concept for 

the use of entry inhibitors to cure chronic viral infection. Similarly, peptides targeting 

CLDN1 inhibit HCV entry at a post-binding step [80]. Small molecules targeting 

EGFR and EphA2, kinases involved in CD81-CLDN1 association, block HCV 

infection in cell culture and in human liver chimeric mice [27]. An EGFR inhibitor, 

erlotinib, is in clinical trials for chronic HCV infection (NCT02126137). 

Other post-binding steps in the HCV entry process are also targets. SR-BI 

receptor antagonists, including the arylketoamide ITX5061, inhibit HCV infection 

following binding [81]. ITX5061 is in a phase 1b clinical trial (NCT01560468). 

Arbidol (a synthetic indole) and silibinin (a flavonolignan from milk thistle) inhibit 

HCV clathrin-dependent endosomal trafficking by interfering with dynamin-2-

mediated membrane scission [82, 83]. Ezetimibe, a small molecule in clinical use as a 

cholesterol-lowering agent, inhibits HCV infection by interfering with NPC1L1 

internalization [34]. A clinical trial has been initiated to study its effects on 

chronically infected patients (NCT02126137). Recently, an antihistamine approved 

for allergy treatment, chlorcyclizine hydrochloride, was shown to inhibit infection by 

all genotypes of HCV, likely by targeting a late entry step linked to fusion	[84]. 

 Fusion is a critical step in the entry of enveloped viruses, including HCV. 

Indeed, the fusion inhibitor enfuvirtide – a peptide preventing conformational 

rearrangements of the human immunodeficiency virus (HIV) fusion protein – is 

approved to treat HIV infections. Our limited understanding of the HCV fusion 

mechanism currently prevents similar rational design approaches for HCV. However, 

peptides derived from E2 were shown to inhibit HCV infection at a post-binding step 

[85]. Furthermore, flunarizine (a piperazine derivative approved for the treatment of 



migraine headaches) inhibits HCV genotype 2 fusion by targeting E2 and a potential 

fusion peptide within E1 [42]. An antimalarial compound, ferroquine, inhibited HCV 

fusion, possibly through its interactions with E1 [86]. HCV infectivity inhibitor-1 

(HCV-II1) is thought to lock the HCV envelope in a pre-fusion conformation, thus 

blocking HCV fusion [87]. An HCV-specific triazine inhibitor, EI-1, interacts with E2 

to inhibit a post-binding pre-fusion entry step [88].  

Given that lipids play a central role in membrane fusion, molecules that target 

lipids also modulate fusion of enveloped viruses [89]. Lipid-mimicking rigid 

amphipathic fusion inhibitors insert into the lipid core of virion envelopes, where they 

block curvature changes required for fusion of HCV [90, 91]. Membrane fluidity is 

another critical determinant of fusion. Indeed, modulators of membrane fluidity such 

as phenothiazine derivatives, benzhydrylpiperazines and curcumin inhibit HCV fusion 

[92-94]. Similarly, polyunsaturated endoplasmic reticulum-targeting liposomes 

deplete cellular cholesterol levels to inhibit HCV fusion [95]. Clinical cholesterol-

lowering drugs such as statins and ezetimibe inhibit HCV infection [34, 96], perhaps 

at least partially by modulating membrane fluidity. Type II photosensitizers such as 

amphiphilic thiazolidine derivatives (e.g. LJ001) generate singlet oxygen species that 

oxidize phospholipids, leading to biophysical alterations in viral envelopes [97, 98]. 

These alterations were proposed to increase positive curvature and reduce membrane 

fluidity, both of which inhibit membrane fusion by increasing the energetics required. 

Clearly, many compounds acting by distinct mechanisms show great promise 

in pre-clinical models; ultimately, clinical studies will determine the future role of 

HCV entry inhibitors. Several clinical trials are ongoing and will reveal the 

perspectives for entry inhibitors against HCV to prevent liver graft reinfection or to 

treat patients who fail DAA-based therapy.  



Perspectives. Since the discovery of HCV approximately 25 years ago, major 

advances in HCV model systems have enabled a detailed understanding of HCV 

virology and virus-host interactions. These advances allowed the development of 

DAAs targeting virus replication steps, which have dramatically improved the 

standard of care for chronically infected patients. Recent advances in the 

understanding of HCV entry and its clinical impact have set the stage for further 

development of novel antiviral approaches, which could address the current 

limitations of DAAs including resistance/failure and access to therapy.  
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Table 1. HCV inhibitors targeting different steps of the HCV entry process. Inhibitors 
in bold are in clinical trials. 

Entry step Compound  Target/Mechanism References 
Primary binding Heparin-like molecules 

Epigallocatechin gallate 
Tannic acid 
Gallic acid 
Delphinidin 

HCV-HSPG interaction 
HCV-HSPG interaction 
Docking of HCV at cell surface 
Docking of HCV at cell surface 
Docking of HCV at cell surface 

[6, 7, 8, 53] 
[54-56] 
[57] 
[58] 
[59] 

Specific binding 281816 
Oleanane-type triterpenes 
Saikosaponin b2 
Anti-CD81 antibody 
Anti-SRBI antibody 
Anti-ApoE antibody 
Neutralizing antibodies 
Polyclonal anti-HCV IgG 
ApoE-derived peptide 

HCV E2-CD81 interaction 
HCV E2-CD81 interaction 
HCV E2-CD81 interaction 
HCV E2-CD81 interaction 
HCV-SRBI interaction 
HCV-associated ApoE-HSPG interaction 
HCV E1/E2 
HCV E1/E2 
HCV-associated ApoE-HSPG interaction 

[60] 
[61] 
[62] 
[63] 
[64, 65] 
[5] 
[66-68] 
[69, 70] 
[71] 

Post-binding Anti-CLDN1 antibodies 
CLDN1-derived peptide 
Erlotinib 
ITX5061 

CD81-CLDN1 coreceptor complex  
CD81-CLDN1 coreceptor complex  
CD81-CLDN1 coreceptor complex; signaling 
SRBI lipid transfer activity 

[48, 72-75] 
[76] 
[23] 
[77] 

Internalization Arbidol 
Silibinin 

HCV endosomal trafficking 
HCV endosomal trafficking 

[78] 
[79] 

Fusion Flunarizine 
Ferroquine 
RAFIs 
Phenothiazines 
Benzhydrylpiperazines 
Curcumin 
Polyunsaturated liposomes 
Statins  
Ezetimibe 
Photosensitizers (LJ001) 

HCV genotype 2 fusion (E1 and/or E2) 
HCV fusion (E1) 
HCV envelope curvature 
HCV envelope fluidity 
HCV envelope fluidity 
HCV envelope fluidity 
Cellular membrane (cholesterol depletion) 
Cellular membrane (cholesterol depletion) 
Cellular membrane (cholesterol depletion) 
Lipid oxidation (viral envelope) 

[38] 
[81] 
[85, 86] 
[87] 
[88] 
[89] 
[90] 
[91] 
[30] 
92, 93] 

 

 

 

 

 

 

 



	

Figure 1. A simplified scheme of the HCV entry pathway, showing major viral and 
cellular determinants of viral entry. Inhibitors targeting the main entry steps are also 
shown.  
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