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THE GROTHENDIECK-TEICHMÜLLER GROUP OF PSL(2, q)

We show that the Grothendieck-Teichmüller group of PSL(2, q), or more precisely the group GT 1 (PSL(2, q)) as previously defined by the author, is the product of an elementary abelian 2-group and several copies of the dihedral group of order 8. Moreover, when q is even, we show that it is trivial.

We explain how it follows that the moduli field of any "dessin d'enfant" whose monodromy group is PSL(2, q) has derived length ≤ 3.

This paper can serve as an introduction to the general results on the Grothendieck-Teichmüller group of finite groups obtained by the author.

Introduction & Statement of results

In [Gui], we have introduced the Grothendieck-Teichmüller group of a finite group G, denoted GT (G). Motivation for the study of this group stems from the theory of dessins d'enfants. Recall that a dessin is essentially a bipartite graph embedded on a compact, oriented surface (without boundary), and that the absolute Galois group Gal(Q/Q) acts on (isomorphism classes of) dessins. As explained in loc. cit., there is an action of GT (G) on those dessins whose monodromy group is G, and the Galois action on the same objects factors via a map Gal(Q/Q) -→ GT (G).

Motivation for the study of all groups GT (G), for all groups G, is increased by the fact that the combined map

Gal(Q/Q) -→ GT := lim G GT (G) is injective.
The group GT (G) possesses a normal subgroup GT 1 (G), which is such that the quotient GT (G)/GT 1 (G) is abelian. It follows that the commutator subgroup of Gal(Q/Q) maps into GT 1 (G), and injects into the inverse limit GT 1 formed by these as G varies. There is little mystery left in GT (G)/GT 1 (G) (see [Gui] again), and the challenge is in the computation of GT 1 (G).

In this paper we treat the case of G = PSL(2, q). We obtain the following result.

Theorem 1.1 -The group GT 1 (PSL(2, 2 s )) is trivial for all s ≥ 1.

The group GT 1 (PSL(2, q)), when q is odd, is isomorphic to a product

C n1 2 × D n2 8 .
Here D 8 is the dihedral group of order 8. Note that this result was observed experimentally for small values of q in [Gui].

This theorem depends crucially on the work of MacBeath in [START_REF] Macbeath | Generators of the linear fractional groups, Number Theory[END_REF], which classifies the triples (x, y, z) in PSL(2, q) in various ways. Indeed, we feel that the group GT 1 (PSL(2, q)) encapsulates part of this information neatly.

Let us give an application to dessins d'enfants. The first part of the next theorem was implicit in [Gui], and indeed it hardly deserves a proof once the statement is properly explained. However, it seems worth spelling it out for emphasis.

Theorem 1.2 -Let G be a finite group. There exists a number field K, Galois over Q, such that Gal(K/Q) is a subgroup of GT (G), and containing the moduli field of any dessin whose monodromy group is G.

For example, suppose that X is a dessin whose monodromy group is PSL(2, q). If q is even, then the moduli field of X is an abelian extension of Q. If q is odd, then the Galois closure F of the moduli field F of X is such that Gal( F /Q) has derived length ≤ 3.

A word of explanation. First, when Γ is a group we write Γ ′ for the derived (commutator) subgroup, and we say that Γ has derived length ≤ 3 when Γ ′′′ is trivial. Also, the moduli field of a dessin is the extension F of Q such that Gal(Q/F ) is the stabilizer of the isomorphism class of X under the Galois action. Note that if we can write down explicit equations for X with coefficients in the number field L, then certainly the moduli field F is a subfield of L. While there are subtle counterexamples of dessins for which there are no equations over F , it is still intuitively helpful to think of F as the smallest field over which the dessin is defined.

For example in [START_REF]An elementary approach to dessins d'enfants and the Grothendieck-Teichmüller group[END_REF], Example 4.6 and Example 4.13, we have examined a certain dessin X (a planar tree), whose monodromy group is the simple group of order 168, that is PSL(2, 7) (or PSL(3, 2), as it is written in loc. cit.). We found explicit equations with coefficients in a field of the form Q(α) with the minimal polynomial of α having degree 4 (though not all details are provided); if L is the Galois closure of Q(α), then Gal(L/Q) is a subgroup of S 4 , which has derived length 3, confirming the prediction. However, there is even an easier way to see that the moduli field is very simple: there are only two dessins in the Galois orbit of X, so the moduli field is in fact a quadratic extension of Q.

It is an open problem to explicitly exhibit a dessin such that Gal( F /Q) is nonabelian.

The examples treated in this paper are a less technical illustration of the ideas discussed in [Gui], and may serve as an introduction to the latter. Note that, motivation and background aside, it is not necessary to be familiar with [Gui] in order to follow the arguments we present, leading to the computation of GT 1 (PSL(2, q)).

Definitions

We take a definition of GT 1 (G) which is only suitable when G is non-abelian and simple, such as G = PSL(2, q) ; see [Gui] for the more general definition.

So let G be such a finite group, and let T denote the set of triples (x, y, z) ∈ G 3 such that xyz = 1 and x, y, z = G. Further, we let T /G denote the set of orbits in T under simultaneous conjugation by an element of G. We write [x, y, z] for the class of (x, y, z). (In [Gui] we write P instead of T , thinking of these elements as pairs (x, y).)

There is a free action of Out(G), the group of outer automorphisms of G, on T /G. Moreover, there is also an action of S 3 , the symmetric group of degree 3. This is essentially a permutation of the coordinates, but to be more precise, one usually introduces the permutation θ of T /G defined by θ • [x, y, z] = [y, x, z x ], and the permutation δ defined by δ•[x, y, z] = [z, y, x y ]. These are both well-defined, and square to the identity operation of T /G. There is a homomorphism S 3 → S(T /G), where S(T /G) is the symmetric group of the set T /G, mapping (12) to θ and (13) to δ.

The two actions described commute, and together define an action of

H := Out(G) × S 3 on T /G. Let us write [x, y, z] ≡ [x ′ , y ′ , z ′ ] when
x is a conjugate of x ′ , while y is a conjugate of y ′ , and z is a conjugate of z ′ . This is an equivalence relation on T /G.

The group GT 1 (G) is defined, in this context, to be the subgroup of the symmetric group S(T /G) comprised by those permutations ϕ which:

• commute with the action of H; in other words, if h ∈ H, t ∈ T /G then ϕ(h• t) = h • ϕ(t). • are compatible with ≡; that is, t ≡ t ′ implies ϕ(t) ≡ ϕ(t ′ ), if t, t ′ ∈ T /G.
(Somewhat arbitrarily, we write h • t for the action of h ∈ H, and ϕ(t) for the action of ϕ ∈ GT 1 (G), in order to set the elements of GT 1 (G) apart.)

Characteristic two

We start by assuming that q is a power of 2, so that PSL(2, q) = SL(2, q). Following MacBeath [START_REF] Macbeath | Generators of the linear fractional groups, Number Theory[END_REF], we partition the set of triples (x, y, z) of elements of SL(2, q) satisfying xyz = 1 into the subsets E(a, b, c), where a, b, c ∈ F q , by requiring (x, y, z) ∈ E(a, b, c) when Tr(x) = a, Tr(y) = b, Tr(z) = c (here Tr is the trace).

Since elements of GT 1 (SL(2, q)) are assumed to be compatible with the relation ≡, the following observation is trivially true.

Lemma 3.1 -Suppose (x, y, z) ∈ E(a, b, c), with x, y, z = SL(2, q), let ϕ ∈ GT 1 (SL(2, q)), and suppose that x ′ , y ′ , z ′ satisfy

ϕ([x, y, z]) = [x ′ , y ′ , z ′ ] . Then (x ′ , y ′ , z ′ ) ∈ E(a, b, c).
Note that SL(2, q) acts on E(a, b, c) by simultaneous conjugation. The crucial point is this: Proposition 3.2 (after MacBeath) -When the set E(a, b, c) contains a triple (x, y, z) such that x, y, z = SL(2, q), it consists of just one conjugacy class.

Proof. In [START_REF] Macbeath | Generators of the linear fractional groups, Number Theory[END_REF], the triples (a, b, c) are divided into the "singular" ones and the "non-singular" ones ; also, the type of (x, y, z) is the type of (Tr(x), Tr(y), Tr(z)) by definition. Theorem 2 asserts that when (x, y, z) is singular, the group x, y, z is "affine", and in particular it is not all of SL(2, q). Our hypothesis guarantees thus that (a, b, c) is non-singular.

We may then apply (ii) of Theorem 3 in loc. cit., giving the result.

Corollary 3.3 -The group GT 1 (SL(2, q)) is trivial.

Proof. Let ϕ ∈ GT 1 (SL(2, q)). Any t ∈ T /G is of the form t = [x, y, z] with (x, y, z) ∈ E(a, b, c) for some a, b, c, and x, y, z = SL(2, q) by definition. The Lemma applies, showing that ϕ(t) = [x ′ , y ′ , z ′ ] with (x ′ , y ′ , z ′ ) ∈ E(a, b, c), while the Proposition proves that all triples in E(a, b, c) are in fact conjugate. As a result ϕ(t) = t.

Odd characteristics

Now we assume that q = p s is a power of the odd prime p, and we turn to the description of GT 1 (G) where G = PSL(2, q). 4.1. Sets of triples. As in the previous section, we define E(a, b, c) to be the set of triples (x, y, z) ∈ SL(2, q) 3 such that xyz = 1 and with Tr(x) = a, Tr(y) = b, Tr(z) = c. We also define E(a, b, c) to be the subset of E(a, b, c), which may well be empty, of triples generating SL(2, q) (or equivalently, whose images generate G). Finally, we write PE(a, b, c) for the image of E(a, b, c) in G 3 .

Lemma 4.1 -The notation behaves as follows.

(1) If PE(a, b, c) and PE(a ′ , b ′ , c ′ ) are not disjoint, then they are equal, and (a ′ , b ′ , c ′ ) = (±a, ±b, ±c) for some choices of signs.

(2) We have

PE(a, b, c) = PE(-a, -b, c) = PE(-a, b, -c) = PE(a, -b, -c) .
In other words, the set PE(a, b, c) is not altered when an even number of signs are introduced.

(3) When abc = 0, all choices of signs give the same set PE(±a, ±b, ±c). (4) When abc = 0, the sets PE(a, b, c) and PE(a, b, -c) are disjoint.

Proof. (1) An element (g, h, k) ∈ PE(a, b, c) is of the form (x, y, z), where x, y, z ∈ SL(2, q) and the bar denotes the morphism to G, where the traces of these elements are a, b, c respectively. If (g, h, k) also belongs to PE(a ′ , b ′ , c ′ ), given that the possible lifts of g, h, k are ±x, ±y, ±z respectively, we see that 3)-(4) (since these properties imply that PE(a, b, c) and PE(±a, ±b, ±c) are either equal or disjoint).

a ′ = ±a, b ′ = ±b, c ′ = ±c. The fact that PE(a, b, c) = PE(a ′ , b ′ , c ′ ) will follow from (2)-(
(2) If (x, y, z) ∈ E(a, b, c), then (-x, -y, z) ∈ E(-a, -b, c), and these two triples map to the same element in G 3 . This shows that an element of PE(a, b, c) also belongs to PE(-a, -b, c), and conversely. The other arguments are similar.

(3) If abc = 0, then one of a, b, c is 0, say a = 0, so that a = -a. We are thus free to change the sign of a, and an even number of other signs, which gives the result.

(4) If x ′ = ±x, and Tr(x ′ ) = Tr(x) = 0, then x ′ = x. We see thus that, whenever two triples (x, y, z) ∈ E(a, b, c) and (x ′ , y ′ , z ′ ) ∈ E(a, b, -c) map to the same element of G 3 , we must have x ′ = x and y ′ = y, so that z ′ = z since xyz = 1 = x ′ y ′ z ′ . This is a contradiction since the traces of z and z ′ are c = 0 and -c. As a result, PE(a, b, c) and PE(a, b, -c) are disjoint in this case.

Example 4.2 -Trying the example of PSL(2, 5), one finds that PE(0, 2, 3) is nonempty, showing that the case abc = 0 does occur non-trivially. The set PE(2, 2, 4) is also non-empty, as is PE(2, 2, -4), so the case abc = 0 occurs and states here the disjointness of non-empty sets. However, PE(1, 2, 4) is non-empty, but PE(1, 2, -4) is empty, an instance where (4) still holds, but in a degenerate way.

We define finally

T (a, b, c) = signs PE(±a, ±b, ±c) = PE(a, b, c) ∪ PE(a, b, -c) .
This is a subset of T , and T (a, b, c)/G is a subset of T /G. As (a, b, c) varies, the subsets T (a, b, c)/G are disjoint, and constitute an initial partition of T /G. Lemma 4.3 -The subset T (a, b, c)/G is stable under the action of GT 1 (G).

Proof. Suppose ϕ ∈ GT 1 (G), and ϕ([g, h, k]) = [g ′ , h ′ , k ′ ], with g, h, k, g ′ , h ′ , k ′ ∈ G.
Since ϕ is compatible with ≡ by definition, we see that g ′ is conjugate to g within G; writing g = x for x ∈ SL(2, q), and similary g ′ = x ′ , we conclude that x ′ is a conjugate of ±x, so Tr(x ′ ) = ± Tr(x). Similar considerations apply to h and h ′ , and to k and k ′ .

We conclude that if (g, h, k) ∈ PE(a, b, c), then (g ′ , h ′ , k ′ ) ∈ PE(±a, ±b, ±c), as we wanted. 

1 0 0 -1 ∈ GL(2, q) SL(2, q) .
One verifies that α is not inner (below we recall the description of Out(G)). Moreover, since conjugate matrices have the same trace, we see that the action of α on the triples in T also preserves the sets PE(a, b, c).

Proposition 4.5 (after MacBeath) -When PE(a, b, c) is non-empty, it is made of precisely two conjugacy classes, which are exchanged by α.

Proof. First we argue as in Proposition 3.2, relying on (i) of Theorem 3 in [START_REF] Macbeath | Generators of the linear fractional groups, Number Theory[END_REF].

The conclusion is that when E(a, b, c) is non-empty, that is when E(a, b, c) contains a triple generating SL(2, q), then E(a, b, c) consists of two conjugacy classes exactly. If (x, y, z) ∈ E(a, b, c), then (α(x), α(y), α(z)) cannot be in the conjugacy class of (x, y, z), lest we should conclude that α is inner (here we view α as an automorphism of SL(2, q), rather than G). However (α(x), α(y), α(z)) ∈ E(a, b, c), showing that E(a, b, c) intersects both conjugacy classes in E(a, b, c), and that E(a, b, c) = E(a, b, c).

When α is viewed as an automorphism of G, it is still non-inner. So the same reasoning applies, showing that there are triples in PE(a, b, c) which are not conjugate to one another, and more precisely that (g, h, k) and (α(g), α(h), α(k)) are never conjugate. The Proposition has been proved.

The cardinality of PE(a, b, c)/G is thus 2, when it is not 0; and T (a, b, c)/G contains 2 or 4 elements (or 0). These sets are unions of orbits of α (recall that Out(G) acts freely on T /G).

The action of H. Recall that we write

H = Out(G) × S 3 . According to [Wil09], Theorem 3.2, when G = PSL(2, p s ) with p odd, we have Out(G) = α × Gal(F p s /F p ) ∼ = C 2 × C s .
Here α is as above, and the Galois group acts on matrix entries in the obvious way. In particular, note that α is central in H. Now suppose that (a, b, c) is a fixed triple, and let H 0 denote the subgroup of H leaving the subset T (a, b, c)/G stable, assuming the latter is non-empty. Note that α ∈ H 0 .

Lemma 4.6 -The permutation group induced by H 0 on the set T (a, b, c)/G is isomorphic to either C 2 , or C 2 2 , or D 8 . The same can be said of the centralizer of this permutation group in the symmetric group S(T (a, b, c)/G).

Proof. If T (a, b, c)/G has only 2 elements, there is nothing to prove, so we turn to the alternative, namely, we assume that this set has 4 elements. These are freely permuted by α, which has order 2, so they may be numbered 1, 2, 3, 4 in such a way that α acts as (12)(34).

The centraliser of α in S 4 is isomorphic to D 8 , generated, say, by (12) and (13)(24). Since α is central in H, we have a map H 0 -→ D 8 , and the first part of the Lemma is about its image. The non-trivial subgroups of D 8 are all of the form indicated, except for the presence of cyclic groups of order 4.

So we assume that

h = α i σπ ∈ α × Gal(F q /F p ) × S 3 = H
belongs to H 0 and acts as a 4-cycle on T (a, b, c)/G, and work towards a contradiction. First, we may replace h by αh if necessary, and assume that i = 0, that is h = σπ. The element π ∈ S 3 has order 1, 2 or 3; if it has order 3, we replace h by h 3 = σ 3 π 3 = σ 3 and we are reduced to the case when π = 1. So we assume that the order of π divides 2.

Elements of order 4 in D 8 , when squared, give the non-trivial central element, here (12)(34). Thus h 2 = σ 2 acts as α does. However, this is a contradiction, since α and σ belong to Out(G), which acts freely on T /G, while α = σ 2 does not hold.

This proves the first part. For the second part, since α ∈ H 0 , we note that the centralizer in question must centralize (12)(34), so it is a subgroup of the D 8 under consideration. The centralizer, in D 8 , of a subgroup which is not cyclic of order 4 is again not cyclic of order 4, as is readily checked. 4.4. The partition of T /G. We now let

X(a, b, c) = h∈H h • T (a, b, c)/G .
As a, b, c vary, the subsets X(a, b, c) provide a partition of T /G. Note that, given the description of H (and Out(G)), we certainly have, for any h ∈ H,

h • T (a, b, c)/G = T (a ′ , b ′ , c ′ )/G for some a ′ , b ′ , c ′ .
Lemma 4.7 -Let GT 1 (G) abc be the permutation group on X(a, b, c), consisting of those permutations commuting with the action of H, and compatible with the relation ≡. Then GT 1 (G) is the direct product of the various groups GT 1 (G) abc .

Proof. This is a completely general fact: when T /G is partitioned into subsets which are stable under the action of H, and which are unions of equivalence classes for ≡, then GT 1 (G) splits as a corresponding direct product, as one sees from the definition. Now suppose a, b, c are fixed, and resume the notation H 0 from the previous section.

Lemma 4.8 -The permutation group GT 1 (G) abc is isomorphic to one of {1}, C 2 , C 2 2 , or D 8 . Proof. Since the action of GT 1 (G) abc commutes with that of H, it is determined by its restriction to T (a, b, c)/G. In other words, the map GT 1 (G) abc → S(T (a, b, c)/G), which is well-defined since T (a, b, c)/G is stable under GT 1 (G), is injective.

The image Γ of that map is a permutation group which commutes with the action of H 0 , and so by Lemma 4.6 it is a subgroup of either C 2 , C 2 2 or D 8 . Thus it remains to prove that Γ is not cyclic of order 4, which potentially could happen when the centralizer C of H 0 is isomorphic to D 8 . Indeed, suppose Γ contains a 4-cycle. We infer that GT 1 (G) acts transitively on T (a, b, c)/G. It follows that the equivalence relation ≡, preserved by GT 1 (G), is trivial, in the sense that it has just one class in this set: all the triples in T (a, b, c) are "coordinate-wise conjugate". Thus the same can be said of ≡ on all the translates h • T (a, b, c)/G, easily. As a result, these translates are precisely the equivalence classes of ≡ on X(a, b, c) (see Remark 4.4).

However, let us now consider the action of the full centralizer C ∼ = D 8 , extended to all of X(a, b, c) by requiring commutation with the action of H. Given the description of the classes of ≡, it is clear that C is compatible with this equivalence relation. We conclude that GT 1 (G) abc contains a copy of D 8 , and in particular it is not cyclic of order 4.

The last two lemmas establish that, as announced: Theorem 4.9 -When q is a power of an odd prime, there exist integers n 1 , n 2 such that GT 1 (PSL(2, q)) ∼ = C n1 2 × D n2 8 .

In [Gui], explicit examples have been computed (with the help of the GAP software). We found the following table. The first line is in accordance with the isomorphism PSL(2, 5) ∼ = PSL(2, 4).

Application to dessins

We will conclude the paper with a proof of Theorem 1.1. Recall that Gal(Q/Q) acts on the isomorphism classes of dessins, and that the action on those dessins with monodromy group G factors via a certain map

λ G : Gal(Q/Q) -→ GT (G) .
If K is that field such that Gal(Q/K) = ker(λ G ), then K/Q is Galois and Gal(K/Q) is identified with a subgroup of GT (G).

The moduli field of the dessin X is that field F such that Gal(Q/F ) is the subgroup of elements stabilizing X (up to isomorphism). This subgroup contains ker(λ G ) if the monodromy group of X is G, so that F ⊂ K. This proves the first part of the Theorem. Now we specialize to G = PSL(2, q). If q is even, then GT 1 (G) = 1, so that GT (G) is abelian (since the commutators belong to GT 1 (G)). In this case K/Q is an abelian extension of Q, as is F/Q in the notation above.

When q is odd, we can at least state that GT 1 (G) is of derived length ≤ 2. As a result, the derived length of GT (G) is ≤ 3. The same can be said of Gal(K/Q) and of Gal( F /Q), where F ⊂ K is the Galois closure of F .

  Remark 4.4. Similar arguments show that T (a, b, c)/G is a union of equivalence classes for ≡. 4.2. Number of conjugacy classes of triples. The action of G on T by (simultaneous) conjugation restricts to an action on each set PE(a, b, c), clearly. Moreover, let us introduce the automorphism α of G induced by conjugation by