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A LINK INVARIANT WITH VALUES IN THE WITT RING

GAËL COLLINET AND PIERRE GUILLOT

Abstract. Using Maslov indices, we show the existence of oriented link in-
variants with values in the Witt rings of certain fields. Various classical in-
variants are closely related to this construction. We also explore a surprising
connection with the Weil representation.

1. Introduction

In this paper we show that, given an appropriate field K, one can associate to
any oriented link L in Euclidean 3-space an element ΘK(L) ∈W (K), where W (K)
is the Witt ring of K. This element ΘK(L) is an isotopy invariant.

Recall that an element inW (K) is given by a (non-degenerate) quadratic form q,
over a finite dimensional K-vector space. However, two such quadratic forms q
and q′ may define the same element in W (K) even if they are not isomorphic; in
this case we call them Witt equivalent. Witt equivalence can be more or less subtle,
depending strongly on the field K. The easiest example is that of K = R, the field
of real numbers, for in this case q and q′ are Witt equivalent precisely when they
have the same signature. Accordingly one has an isomorphism W (R) ∼= Z. By
contrast, W (Q) is considerably more complicated (see below).

There have been many efforts to use quadratic forms in order to define link
invariants, and the pattern has frequently been as follows: one has a procedure to
obtain a quadratic form from a link, but it is not itself an isotopy invariant, so that
one is reduced to extracting coarser information. As early as 1932, Reidemeister
in [Rei83, §7 and §8] uses the so-called “Minkowski units” of a certain quadratic form
of his design, and proves that they are invariant. Better known is the construction
of the signature of a link, which is really the signature of a certain non-invariant
quadratic form (see [Lic97], Theorem 8.9 with ω = −1). In retrospect it may be
said, rather pedantically, that the quadratic form is replaced by its Witt equivalence
class in W (R) in order to get an invariant. In a sense, in this paper we use the
same strategy of working with the Witt ring, but over other fields. However our
construction is not as direct, and breaks the above pattern.

Indeed we shall follow in the footsteps of Ghys and Gambaudo (see [GG05]), who
were explicitly thinking of the signature as taking its values in W (R) in order to
solve the following problem. Let s(L) denote the signature of the oriented link L. If
we consider the braid group Bn on n strands, then we may define a map fn : Bn → Z
by fn(β) = s(β̂). Here we use β̂ to denote the closure of the braid β, which is an
oriented link in R3. One may ask whether fn is a group homomorphism; it is not,
and indeed Ghys and Gambaudo obtain an explicit formula for

c(β, γ) := fn(βγ)− fn(β)− fn(γ) .

Their formula is in terms of quadratic forms (as opposed to plain integers). In spite
of the complicated notation, let us give it here:

(*) fn(βγ)− fn(β)− fn(γ) = τ(Γ1, Γr(β), Γr(βγ)) .
1

ar
X

iv
:1

10
6.

35
98

v3
  [

m
at

h.
A

T
] 

 2
0 

Se
p 

20
12



2 GAËL COLLINET AND PIERRE GUILLOT

Here r : Bn → GLn(R) is the Burau representation (“at t = −1”), the notation Γg is
used for the graph of g, and τ is the Maslov index, an algebraic construction which
produces quadratic forms (up to Witt equivalence).

What we do in this paper is to take (*) as a definition of a link invariant instead.
More precisely, we construct for each n a map fn : Bn → W (K), for a suitable
field K, such that the analog of (*) holds. This makes sense since the Maslov
index is a very general procedure, not constrained to K = R. Then, we show
that (fn)n≥2 is a Markov function, that is, it is compatible with the Markov moves.
The celebrated theorems of Alexander and Markov then imply that fn(β) = ΘK(β̂)
for some link invariant ΘK . In particular, we have the following result.

Theorem 1.1 – Let K = R, or Q, or a finite field, or Q(t), the field of rational
fractions in t. Then there exists a unique oriented link invariant ΘK with values in
the Witt ring W (K), which takes the zero value for disjoint unions of unknots, and
with the following extra property. Defining fn : Bn → W (K) by fn(β) = ΘK(β̂),
one has

(**) fn(βγ)− fn(β)− fn(γ) = τ(Γ1, Γrn(β), Γrn(βγ)) .

Here rn : Bn → GLn(K) is the appropriate version of the Burau representation.
(We caution the reader who may glance at the results in the text now that for K =
Q(t) we actually mention a link invariant with values in a ring written WH(Q(t))
and called the hermitian Witt ring; luckily WH(Q(t)) ⊂ W (Q(t)) in this case and
the theorem holds as stated. These details need not distract us now.) This Theorem
appears in the text as Theorem 3.4.

When it comes to computing ΘK(L) explicitly, we have to rely on (**), after
having found a braid group element whose closure is L. We hasten to add that we
have made a Sage script available, which can perform the calculations automati-
cally. It outputs a diagonal matrix representing the quadratic form ΘK(L). In the
rest of this Introduction, we assume that the computational side of things is thus
taken care of, and comment on the results. Before anything else though, this is
as good a place as any to point out that (**) implies that fn(β) = −fn(β−1), so
that ΘK(L′) = −ΘK(L) if L′ is the mirror-image of L. In particular 2ΘK(L) = 0
if L and L′ are isotopic.

First and foremost, for K = R one can interpret the result by Ghys and Gam-
baudo as saying that ΘR(L) agrees with the signature of L. Things are already
more interesting with K = Q. In this case (see [MH73]) there is an exact sequence
(where the arrows are completely explicit)

0 −→ Z −→W (Q) −→
⊕
p

W (Fp) −→ 0 .

This sequence is split by the homomorphism W (Q)→W (R) ∼= Z. Moreover, for p
odd the group W (Fp) is either Z/2× Z/2 or Z/4 according as p is 1 mod 4 or not,
while W (F2) = Z/2. For each oriented link L, we obtain a set of primes which is
an invariant of L, namely the set of those p for which ΘQ(L) maps to a non-zero
element via the residue map W (Q) → W (Fp). Of course, for each p the value
in W (Fp) is also an invariant.

The truly interesting case is K = Q(t). The ringW (Q(t)) is very rich, so the first
thing we should do is extract easily computable information from ΘQ(t)(L). We do
this by showing that the above theorem yields a Laurent-polynomial invariant akin
to the Alexander-Conway polynomial. We also exploit our method to produce a
“signature” for each complex number ω of module 1, that is a Z-valued invariant.
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When ω is a root of unity, this invariant is related to the Levine-Tristram signa-
ture, as follows again from [GG05]. Thus ΘQ(t)(L) seems to “contain” many other
invariants, and its first virtue is unification.

However, there is more to ΘQ(t)(L) than the polynomial and the signatures. One
has an exact sequence

0 −→W (Q) −→W (Q(t)) −→
⊕
P

W (Q[t]/(P )) −→ 0 .

Here the direct sum runs over all irreducible polynomials, so that κ = Q[t]/(P ) is
a number field. Finally, the Witt ring W (κ) fits into yet another exact sequence,
similar to that for Q but involving the Witt ring of the ring of integers in κ (for κ =
Q, this is the ring Z, and W (Z) = Z; we shall not encounter Witt rings of rings
which are not fields elsewhere in this paper). All the arrows are quite explicit, so
even thoughW (Q(t)) appears to be huge, it is in principle always possible to decide
in finite time whether ΘQ(t)(L) is zero (and thus possibly show that L is not the
trivial knot).

So far we have described the contents of the three sections of the paper following
this Introduction. In Section 2 we present background material and give simple,
sufficient conditions for an invariant as above to be defined out of representations
of the braid groups. In Section 3 it is shown that these conditions are satisfied in
the case of the Burau representation. Examples are provided in Section 4.

Let us now say a word about Section 5, which explores the ideas behind the proof
of Theorem 1.1 in the case K = R, rather than its statement, and connects them
to the so-called Weil representation. In summarizing Section 5 we shall presently
provide a sketch of the key steps in the proof of the Theorem (the assumptionK = R
allowing for simpler arguments).

The first ingredient is the observation that the Burau representation at t = −1
carries a B2n-invariant symplectic form, thus providing a map r2n : B2n → Sp2n(R).
Now, we have π1(Sp2n(R)) = Z, so that Sp2n(R) possesses many covers; we shall
be particularly interested in the simply-connected cover S̃p2n(R) and the 2-fold
cover M2n, also known as the metaplectic group.

The second ingredient is the cohomological fact that H2(Bn,Z) = 0, which
implies that the map r2n : B2n → Sp2n(R) can be lifted to a map r′2n : B2n →
S̃p2n(R). The kernel of the map S̃p2n(R) → Sp2n(R) is Z, and once we de-
scribe S̃p2n(R) explicitly using a two-cocycle c with values in Z, then finding r′2n
amounts to finding a one-cocycle on B2n whose coboundary is c. That one-cocycle
is the map f2n which appears in Theorem 1.1.

These two ingredients must be slightly refined in the case of a general field K,
but the spirit of the construction of the map fn is always the same. Topological
arguments are replaced by the apparatus of Maslov indices (which are needed in
order to make precise statements anyway).

In Section 5, the emphasis is on the induced map B2n → M2n, for M2n is
known to act on an infinite-dimensional Hilbert space via the Weil representation.
Thus B2n also acts on this space, and the representation is also known to have a
“trace” in some technical sense. This trace has been computed by Thomas ([Tho08]),
who provides explicit formulae involving Maslov indices. Comparing these with the
material in Section 2, we end up proving that the trace is a link invariant, which
can be expressed in terms of the Alexander-Conway polynomial and the signature
(which appears in the guise of ΘR, see above). Note that strictly speaking our
result about the trace of the Weil representation is not deduced from Theorem 1.1;
rather, it consitutes a variant on its proof.
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We conclude the paper with some remarks about the Weil representation of finite
fields and the work of Goldschmidt and Jones.

In a subsequent paper it will be established that, at the price of more machinery
including a recent theorem of Barge and Lannes on Maslov indices over rings, we
can follow the above outline over Z[ 1

2 , t, t
−1] instead of a field. There results a single

link invariant which specializes to all the others, thus pushing the unification a step
further. What is more, it will be shown that our method extends to the case of
coloured links, for which the braid groups have to be replaced by an appropriate
groupoid.
Acknowledgments. The authors wish to thank Étienne Ghys, Jean Barge, and
Christian Kassel for their interest in the paper. Our thanks extend to Hubert
Rubenthaler for helpful discussions on the harmonic analysis underlying the Weil
representation. Pierre Torasso pointed out the reference [Tho08], and we are grate-
ful for his help. Finally, we are indebted to Ivan Marin for discovering an embar-
rassing mistake in an earlier version of the paper. Also, we would like to thank the
referee for raising subtle technical points about §5 and generally encouraging us to
develop that section.

2. Background material

2.1. The braid groups. The braid group on n strands Bn is the group generated
by n−1 generators σ1, . . . , σn−1 subject to the relations σiσj = σjσi for |i− j| > 2,
while

σiσi+1σi = σi+1σiσi+1 .

The well-known interpretation of Bn in terms of geometric braids (see [KT08],
Theorem 1.12) allows one to define the operation of closure β 7→ β̂ (loc. cit., §2.2):
here β ∈ Bn and β̂ is an oriented link in Euclidean 3-space. The celebrated theorem
of Alexander (loc. cit., §2.3) asserts that any oriented link in R3 is isotopic to one
of the form β̂ for some β belonging to some Bn.

This process defines an equivalence relation on the disjoint union
∐
n≥2Bn, ac-

cording to which β ∼ γ whenever the links β̂ and γ̂ are isotopic. Markov’s theorem
(loc. cit., §2.5) describes this relation explicitly. Here we shall state the result in
the following form: a map f =

∐
n≥2 fn on the above disjoint union, with values

in any set E, is constant on the equivalence classes if and only if the two following
properties are satisfied:

(i) each fn is invariant under conjugation, that is fn(γ−1βγ) = fn(β) for
all β, γ ∈ Bn.

(ii) for all n ≥ 2 and all β ∈ Bn one has fn+1(ιn(β)σ±1
n ) = fn(β), where ιn

denotes the inclusion of Bn into Bn+1.
Such a map is usually called a Markov function. It follows that the value of

a Markov function on a braid β only depends on the closure β̂, and in view of
Alexander’s theorem we see that a Markov function gives an oriented link invariant
(and conversely).

Because of condition (i), a traditional strategy in order to produce Markov func-
tions is to start with a collection of representations rn : Bn → GL(Vn), where Vn
is a module over some ring R, and then rely on functions which are known to be
conjugation-invariant on the group of invertible matrices, like the trace or deter-
minant. A standard example is the Alexander-Conway polynomial, which relies on
the Burau representation and the determinant (loc. cit., §3.4). Here R = Z[t, t−1]
and the invariant takes its values in R.
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2.2. Witt rings and Maslov indices. Let K be a field of characteristic different
from 2. Suppose that K is endowed with an involution σ, and let k = Kσ denote
the field of fixed elements. We shall write x̄ instead of σ(x).

Let V be a vector space overK. A map h : V ×V → K is called an anti-hermitian
form (resp. a hermitian form) when it is linear in one variable and satisfies

h(y, x) = −h(x, y) (resp. h(y, x) = h(x, y)) .

In this case V is called an anti-hermitian space (resp. a hermitian space). The
form h is called non-degenerate when the determinant of the corresponding matrix
(in any basis) is non-zero.

Let V be anti-hermitian. A lagrangian is a subspace ` ⊂ V such that ` = `⊥.
We say that V is hyperbolic when it is the direct sum of two lagrangians.

Now given a hyperbolic, non-degenerate, anti-hermitian space V with form h
and three lagrangians `1, `2 and `3, we shall describe their Maslov index, which is
a certain element

τ(`1, `2, `3) ∈WH(K,σ) .

HereWH(K,σ) is the hermitianWitt ring ofK: see [MH73]. For exampleWH(K,σ)
may be defined as the quotient of the Grothendieck ring of the category of non-
degenerate hermitian spaces by the ideal consisting of all hyperbolic spaces.

The Maslov index τ(`1, `2, `3) is then the non-degenerate space corresponding
to the following hermitian form on `1 ⊕ `2 ⊕ `3:

H(v,w) = h(v1, w2 − w3) + h(v2, w3 − w1) + h(v3, w1 − w2) .

More precisely, if this hermitian space is degenerate, we take the quotient by its
kernel.

We claim that this construction enjoys the following properties:
(i) Dihedral symmetry:

τ(`1, `2, `3) = −τ(`3, `2, `1) = τ(`3, `1, `2) .

(ii) Cocycle condition:

τ(`1, `2, `3) + τ(`1, `3, `4) = τ(`1, `2, `4) + τ(`2, `3, `4) .

(iii) Additivity: if `1, `2 and `3 are lagrangians in V , while `′1, `′2 and `′3 are
lagrangians in V ′, then `i ⊕ `′i is a lagrangian in the orthogonal direct sum V ⊕ V ′
and we have

τ(`1 ⊕ `′1, `2 ⊕ `′2, `3 ⊕ `′3) = τ(`1, `2, `3) + τ(`′1, `
′
2, `

′
3) .

(iv) Invariance: for any g ∈ U(V ) (the unitary group), one has

τ(g · `1, g · `2, g · `3) = τ(`1, `2, `3) .

In fact, in the particular case when σ = Id, and thus k = K, an anti-hermitian
form is nothing but a symplectic form, and a hermitian form is just a symmetric,
bilinear form. In this setting, with the Maslov index taking its values in the classical
Witt ring W (k), the properties above have been established in [LV80] (over the
reals, but the proof is not different for other fields).

To deal with the general case, first note that the real part of an anti-hermitian
form h, that is the map s(x, y) = 1

2 (h(x, y) + h(x, y)), is a symplectic form on
the space Vk (with scalars restricted to k). Likewise, hermitian forms give rise to
symmetric, bilinear forms, thus yielding a map RK,k : WH(K,σ)→W (k) which is
known to be injective ([MH73]).

Lagrangians for h are lagrangians for s, and it is immediate that the Maslov
index computed in V corresponds to the Maslov index computed in the symplectic
space Vk under the map RK,k. It follows that the properties (i), (ii), (iii) and (iv)
hold in the general situation as well.
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The term “cocycle condition” is employed because the map

c : U(V )×U(V ) −→WH(K,σ)

defined by c(g, h) = τ(`, g·`, gh·`) is then a two-cocycle on the unitary groupU(V ),
for any choice of lagrangian `. There is a corresponding central extension :

0 −→WH(K,σ) −→ Ũ(V ) −→ U(V ) −→ 1 ,

in which the group Ũ(V ) can be seen as the set U(V )×WH(K,σ) endowed with
the twisted multiplication

(g, a) · (h, b) = (gh, a+ b+ c(g, h)) .

We conclude these definitions with a simple trick. The constructions above,
particularly the definition of the two-cocycle, involve choosing a lagrangian in an
arbitrary fashion. Moreover, the anti-hermitian space V needs to be hyperbolic,
while many spaces arising naturally are not. Thus it is useful to note the following.
Starting with any anti-hermitian space (V, h), put D(V ) = (V,−h)⊕ (V, yh), where
the sum is orthogonal. Then D(V ) is non-degenerate if V is, and it is automatically
hyperbolic. Indeed, for any g ∈ U(V ), let Γg denote its graph. Then Γg is a
lagrangian in D(V ), and in fact D(V ) = Γ1 ⊕ Γ−1. From now on, we will see Γ1

as our preferred lagrangian. Note that there is a natural homomorphism U(V )→
U(D(V )) which sends g to 1× g.

2.3. Some two-cocycles on the braid groups. Let us consider a homomor-
phism r : Bn → U(V ) for some anti-hermitian space V , and let us compose it with
the map U(V ) → U(D(V )) just described. Let us call ρ : Bn → U(D(V )) the
resulting map. We obtain a two-cocycle on Bn by the formula

c(β, γ) = τ(Γ1, ρ(β) · Γ1, ρ(βγ) · Γ1) = τ(Γ1, Γr(β), Γr(βγ)) ;

indeed this is the pull-back of the two-cocycle on U(D(V )) defined above.
We show below that this two-cocycle must be a coboundary, so that there must

exist a map f : Bn →WH(K) such that

(2.1) f(βγ) = f(β) + f(γ) + c(β, γ) .

In other words, we shall see that ρ can be lifted to a map ρ̃ : Bn → ˜U(D(V )).
A word of terminology. Given g, h ∈ U(V ), the particular Maslov index

τ(Γ1, Γg, Γgh) ,

which involves the hyperbolic space D(V ), is often called the Meyer index of g
and h. By extension, we shall also call c(β, γ) the Meyer index of the braids β
and γ, with respect to r. A map f : Bn → WH(K) satisfying eq. (2.1) will be
called Meyer-additive for obvious reasons.

The first thing to notice is:

Proposition 2.1 – Any Meyer-additive function f is conjugation-invariant.

Proof. We shall need the following simple property of Maslov indices. Let `1, `2, `3
be lagrangians in some hyperbolic, anti- hermitian space W with form h. Assume
that α : W → W is a linear map such that h(α(x), α(y)) = −h(x, y) (in other
words, α is a homomorphism (W,h)→ (W,−h)). Then α · `i is a lagrangian in W ,
and

τ(α · `1, α · `2, α · `3) = −τ(`1, `2, `3) .

This is clear.
Now apply this to W = D(V ) = (−V ) ⊕ V and α(x, y) = (y, x). We obtain in

particular
τ(Γg−1 , Γ1, Γh) = −τ(Γg, Γ1, Γh−1) ,



A LINK INVARIANT WITH VALUES IN THE WITT RING 7

for any two g, h ∈ U(V ). Using the formal properties of the Maslov index, we may
rewrite this

τ(Γ1, Γg, Γgh) = τ(Γ1, Γh, Γhg) .

Thus we see that the Meyer index of g and h is in fact equal to that of h and g. As
a result, we see that f(βγ) is symmetric in β, γ, as we wanted. �

We are now in position to prove :

Proposition 2.2 – In the situation above, there exists a unique Meyer-additive
function f on Bn such that f(σi) = 0 for 1 ≤ i ≤ n− 1.

We shall talk of the normalized Meyer-additive function associated to the repre-
sentation r.

Proof. We prove the existence first. Let Fn denote the free group on n−1 generators
written σ1, . . . , σn−1, so that there is a projection map π : Fn −→ Bn. We put R =
kerπ. The two-cocycle above is certainly trivial when pulled-back to Fn, since the
latter has no non-trivial central extensions. Therefore there exists a Meyer-additive
function f̄ : Fn → WH(K); what is more, we may (and we do) impose f̄(σi) = 0.
We prove now that f̄(β) depends only on the class of β ∈ Fn modulo R, so that f̄
factors through Bn.

Since the representation r does factor through Bn, the two-cocycle c(β, γ) van-
ishes for β ∈ R and any γ ∈ Fn. It follows that f̄(βγ) = f̄(β) + f̄(γ) in
this situation. Therefore, it suffices to show that f̄ vanishes on R. Note also
that f̄(βγ) = f̄(β) + f̄(γ) whenever βγ ∈ R, for similar reasons.

The previous Proposition applies to f̄ , and shows that f̄ is conjugation-invariant.
Thus it is sufficient to show that f̄ vanishes on a set of generators for R as a
normal subgroup. We take for those the commutators [σi, σj ] for |i − j| ≥ 2,
and (σiσi+1σi)(σi+1σiσi+1)−1 for 1 ≤ i < n− 1.

Meyer-additivity implies, as the reader will check, that f̄(1) = 0 and f̄(β−1) =
−f̄(β). As a result f̄(βγ−1) = f̄(β) − f̄(γ) whenever βγ−1 ∈ R. Therefore we
have reduced the proof to checking that f̄(σiσj) = f̄(σjσi) and that f̄(σiσi+1σi) =
f̄(σi+1σiσi+1) for the relevant indices. However f̄(σiσj) = f̄(σjσi) trivially holds
for any pair i, j since we know that f̄ is conjugation-invariant.

Going back to the definitions, we see after a little calculation that we need to
prove that

(*) τ(Γ1, Γr(σiσi+1), Γr(σiσi+1σi)) = τ(Γ1, Γr(σi+1), Γr(σi+1σiσi+1)) .

In Bn there is an element α such that ασiα−1 = σi+1 (for example α =
σ1σ2 · · ·σn−1). Moreover, for any β ∈ Bn we note that r(β) × r(β) is an auto-
morphism of D(V ) which satisfies r(β) × r(β) · Γr(γ) = Γr(βγβ−1). By applying
property (iv) of Maslov indices with the automorphism r(α)× r(α), we see that we
only need to prove (*) for i = 1, that is, we need to show

τ(Γ1, Γr(σ1σ2), Γr(σ1σ2σ1)) = τ(Γ1, Γr(σ2), Γr(σ2σ1σ2)) .

Of course r(σ1σ2σ1) = r(σ2σ1σ2), so there are four lagrangians involved in this
equation. Appealing to the cocycle property (ii) of Maslov indices, we obtain the
equivalent equation

(**) τ(Γ1, Γr(σ1σ2), Γr(σ2)) = τ(Γr(σ2), Γr(σ1σ2σ1), Γr(σ1σ2)) .

Finally consider the element β = σ−1
2 σ−1

1 . In Bn, conjugation by β takes σ2 to σ1, it
takes σ1σ2σ1 to σ2

1σ2, and σ1σ2 to itself. After applying r(β)×r(β) to the right hand
side of (**), one obtains thus τ(Γr(σ1), Γr(σ2

1σ2), Γr(σ1σ2)). Now apply 1 × r(σ−1
1 )

and you get the left hand side of (**). This concludes the proof of the existence
of f .
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We turn to the uniqueness of Meyer-additive functions. Such a map is clearly
determined by its values on the generators σi of the braid group. What is more,
these generators are all conjugate, as we have seen. Thus f is determined by, say,
the value f(σ1), and there can only be one Meyer-additive function vanishing on σ1,
which is stronger than the statement in the Proposition. �

2.4. The Markov conditions. As announced at the beginning of this section,
one can hope to produce a Markov function by using a sequence of representa-
tions rn : Bn → U(Vn), and using for fn the corresponding normalized, Meyer-
additive function, whose coboundary is the two-cocycle cn. The chief example
seems to be the Burau representation, to be described next. Other (unsuccessful)
attemps by the authors include the Lawrence-Krammer-Bigelow representation, the
representations afforded by Hecke algebras, and those related to the modules of the
quantum group Uq(sl2).

It is easy to write down the conditions for the functions fn to combine into
a Markov function. Let us do this now in the special case, covering the Burau
representation, when

Vn+1 = Vn ⊕ (triv)

as Bn-modules, where (triv) refers to a trivial Bn-module. The additivity of the
Maslov index immediately implies that cn+1(β, γ) = cn(β, γ) for β, γ ∈ Bn (here we
see Bn as a subgroup of Bn+1, suppressing any inclusion map from the notation).
It follows that fn+1, when restricted to Bn, coincides with fn.

The collection (fn) is then a Markov function if and only if

(2.2) cn+1(β, σ±n ) = τ(Γ1, Γrn+1(β), Γrn+1(βσ±
n )) = 0 ,

for β ∈ Bn.

Remark 2.3. It may (and it will) happen that we have at our disposal a collec-
tion of representations rdn : Bdn → U(Vdn) for some increasing sequence of inte-
gers d1, d2, . . ., but that rn is not initially defined for all n. In this case, given an
integer n we shall pick the smallest dm such that n ≤ dm, and define rn to be the
composition of the inclusion Bn → Bdm followed by rdm .

(In practice this will happen with the Burau representation at t = −1, for which
the anti-hermitian form is only non-degenerate for B2n; so for B2n−1 we have to
consider its inclusion into B2n.)

3. The case of the Burau representation

3.1. Definitions. Initially, the Burau representation is the homomorphism Bn →
GLn(Z[t, t−1]) mapping σi to the matrix

Σi =


Ii−1 0 0 0

0 1− t 1 0
0 t 0 0
0 0 0 In−i−1

 .

(Some authors use the transpose of this matrix, for example in [KT08].)
The ring Z[t, t−1] has an involution σ0 with σ0(t) = t−1. As above we write x̄

instead of σ0(x). Now put

Ωn =


1 0 0 · · · 0

1− t 1 0 · · · 0
1− t 1− t 1 · · · 0
...

...
...

. . .
...

1− t 1− t 1− t · · · 1

 .
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For each i, 1 ≤ i < n, one has TΣi Ωn Σi = Ωn, where TA denotes the transpose of
the matrix A (see [KT08], Theorem 3.1).

Now let K be a field with involution σ, and pick a homomorphism α : Z[t, t−1]→
K compatible with σ0 and σ. Typical examples will be: (i) K = Q(t) or Fp(t) with
involution σ defined by σ(t) = t−1 and α(t) = t, and (ii) K = Q or R or Fp with
trivial involution and α(t) = −1.

We let Vn = Kn and view it as a Bn-module by applying α to the coefficients
of the Burau representation. Likewise, we may see Ωn as a matrix with coefficients
in K. Now we put

Hn = Ωn − TΩn ,

so that THn = −Hn, and also TΣiHn Σi = Hn.
The space Vn is thus anti-hermitian when equipped with the form hn given by

(identifying vectors of Vn with n× 1 matrices):

hn(x, y) = TxHn y .

We are interested in cases when this form is non-degenerate. A simple calculation
leads to

Lemma 3.1 – The determinant of Hn is given by

detHn = (−1)n
[
(1− α(t))n−1 − (

1

α(t)
− 1)n−1

]
.

In particular, when α(t) 6= 1, at most one of detHn and detHn+1 can be zero.

From now on we assume that α(t) 6= 1 so that this determinant is non-zero for
infinitely many values of n.

The form hn is preserved by Bn, so we end up with a map rn : Bn → U(Vn),
as requested in the previous section (and bearing Remark 2.3 in mind). Thus we
have maps

fn : Bn −→WH(K,σ) ,

and we shall prove presently that together they give a Markov function, and thus
a link invariant.

Our first step is to prove the existence of an auxiliary Markov function:

Proposition 3.2 – For each n ≥ 2 and each β ∈ Bn, put
dKn (β) = dn(β) = dimK ker(rn(β)− Idn) .

Then (dn)n≥2 is a Markov function.

Note that the hermitian structure does not come into play here. Also, the char-
acteristic of K may very well be 2 in this Proposition.

Proof. That dn is conjugation-invariant is obvious. We claim that, for any n × n
matrixM , the rank of M̃Σ±n−Idn+1 is one more than the rank ofM−Idn, where M̃
is the (n+ 1)× (n+ 1) matrix obtained from M by adding a 1 in the bottom right
corner. This will imply the result.

It is enough to prove the claim with Σn replaced by its transpose TΣn. We
observe that, adding the last column of M̃TΣn − Idn+1 to the one immediately on
its left, we obtain (

M − Idn ∗
0 −1

)
.

This takes care of Σn. The same operation on M̃TΣ−1
n − Idn+1 gives(

M − Idn ∗
0 −1

t

)
. �
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3.2. The main theorem. Before we turn to the proof of the main result, we quote
Thomas’s criterion for the vanishing of Maslov indices:

Lemma 3.3 (Thomas) – Let `1, `2 and `3 be lagrangians in the anti-hermitian
space U . If

dim(`1 ∩ `2) + dim(`2 ∩ `3) + dim(`3 ∩ `1) = dim `1 + 2 dim(`1 ∩ `2 ∩ `3) ,

then
τ(`1, `2, `3) = 0 .

(Of course dim `1 = dim `2 = dim `3 = 1
2 dimU , so the equality is symmetric

in `1, `2, `3.) For a proof see [Tho08], Proposition 4.1. We may now state

Theorem 3.4 – For each n ≥ 2, let rn : Bn → U(Vn) be the homomorphism
obtained from the Burau representation as above.

There is a unique map

fn : Bn −→WH(K,σ)

with the property that fn(σi) = 0 and

fn(βγ) = fn(β) + fn(γ) + τ(Γ1, Γrn(β), Γrn(βγ)) ,

for β, γ ∈ Bn.
The collection (fn)n≥2 is a Markov function.

Given a link L which is isotopic to the closure β̂ of the braid β ∈ Bn, the
invariant fn(β) will be written ΘK(L) (the dependence on σ and α being implicit).

Proof. At this stage, it remains to prove

τ(Γ1, Γrn+1(β), Γrn+1(βσ±
n )) = 0

for all β ∈ Bn, see eq. (2.2).
We use Thomas’s criterion (Lemma 3.3). Note that, as explained in Remark 2.3,

the representation rn+1 is the composition of an inclusion Bn+1 → BN for a cer-
tain N , followed by the Burau representation of BN . However for the sake of apply-
ing Thomas’s lemma, all we need is to prove an equality involving the dimensions
of certain subspaces made up from

`1 = Γ1, `2 = Γrn+1(β), `3 = Γrn+1(βσ±
n ) .

For this, we can and we will assume that N = n+ 1 and so that rn+1 is really the
Burau representation of Bn+1 : indeed going into a larger braid group only adds a
common summand to the subspaces in sight, which does not affect the equality of
dimensions to be proved. So we work with the space D(Vn+1) of dimension 2n+ 2.

Let us identify the terms in the lemma. First the intersection Γ1 ∩ Γrn+1(β) is
isomorphic, as a vector space, with ker(rn+1(β)− Id). So its dimension is dn+1(β),
with the terminology of Proposition 3.2. In turn, dn+1(β) = 1 + dn(β), clearly.

Proceeding in a similar fashion with the other terms, we see that the equality to
check is really

1 + dn(β) + dn+1(βσ±n ) + dn+1(σ±n ) =

n+ 1 + 2 dim(ker(rn+1(β)− Id) ∩ ker(rn+1(σ±n )− Id)) .

For simplicity let us now write σ±n for rn+1(σ±n ). It is easy to describe ker(σ±n −Id).
Indeed, let vn ∈ Vn be the vector with coordinates (1, t, t2, . . . , tn−1); it is readily
checked that γvn = vn for all γ ∈ Bn. We see that

ker(σ±n − Id) = Vn−1 ⊕K vn+1 ;

in particular it has dimension n.
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What is more, we see that the dimension of ker(rn+1(β) − Id) ∩ ker(σ±n − Id)
is one more than the dimension of ker(rn+1(β)− Id) ∩ Vn−1. Comparing with the
decomposition Vn = Vn−1 ⊕K vn, we conclude that

dim ker(rn+1(β)− Id) ∩ ker(σ±n − Id) = dim ker(rn(β)− Id) = dn(β) .

Putting together these elementary observations, we find that Thomas’s criterion
reduces to

dn(β) + dn+1(βσ±n ) = 2dn(β) ,

which is guaranteed by Proposition 3.2. This concludes the proof. �

4. Examples & Computations

4.1. Signatures. Let us start with the example of K = R, with trivial involution,
and α(t) = −1. The above procedure yields a link invariant with values in W (R) ∼=
Z (the isomorphism being given by the signature of quadratic forms).

However, Gambaudo and Ghys have proved in [GG05] that the invariant which
is classically called the signature of a link is in fact given by a normalized, Meyer-
additive Markov function (in our terminology). As a result, ΘR(L) must always
coincide with the signature of L.

An obvious refinement is obtained by taking K = Q (and still α(t) = −1). The
invariant ΘQ(L) lives in W (Q). Recall from [MH73] that there is an exact sequence

0 −→W (Z) −→W (Q) −→
⊕
p

W (Fp) −→ 0 .

This sequence is split by the homomorphism W (Q) → W (R) ∼= W (Z). Moreover,
for p odd the group W (Fp) is either Z/2×Z/2 or Z/4 according as p is 1 mod 4 or
not, while W (F2) = Z/2. We obtain the invariants alluded to in the introduction.

We need not restrict ourselves to the case α(t) = −1, however. For example we
may take K = C with the usual complex conjugation, and α(t) = ω, a complex
number of module 1. All of the above generalizes. We obtain a link invariant with
values in WH(C) ∼= Z, whose value on L will be written Θω(L).

When ω is a root of unity at least, Gambaudo and Ghys also prove in loc. cit.
that the so-called Levine-Tristram signature of a link is given by a normalized,
Meyer-additive function, so that it must agree with Θω(L). Again, we obtain a
refinement. Whenever ω is algebraic, the field K = Q(ω) is a number field. There
is an exact sequence

0 −→W (O) −→W (K) −→
⊕
p

W (O/p) −→ 0 ,

where O is the ring of integers inK, and the direct sum runs over the prime ideals p.
Thus the invariant ΘK(L) ∈ WH(K) ⊂ W (K) yields invariants in the Witt rings
of the various fields O/p, which are finite.

4.2. The case K = Q(t). Our favorite example is that ofK = Q(t) with σ(t) = t−1

and α(t) = t; in some sense we shall be able recover the signatures of the previous
examples from this one. We shall go into more computational considerations than
above. The reader who wants to know more about the technical details should con-
sult the accompanying Sage script, available on the authors’ webpages. Conversely,
this section is a prerequisite for understanding the code.

Consider β = σ3
1 ∈ B2 as a motivational example. Here L = β̂ is the familiar

trefoil knot.
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Left: the braid σ3
1 .

Right: its closure, the trefoil knot.

When computing ΘQ(t)(L) we are led to perform additions inWH(Q(t), σ). Since
a hermitian form can always be diagonalized, we can represent any element in the
hermitian Witt ring by a sequence of scalars. In turn, these are in fact viewed
in k×/N(K×), where as above k = Kσ and N : K → k is the norm map x 7→ xx̄.
Summing two elements amounts to concatenating the diagonal entries.

Let us turn to the example of the trefoil knot. We relax the notation, and write f
for fn when n is obvious or irrelevant, and we write c for the two-cocycle c(β, γ) =
τ(Γ1, Γr(β), Γr(βγ)), so we have the formula f(βγ) = f(β) + f(γ) + c(β, γ). Now:

ΘQ(t)(L) = f(σ3
1) = f(σ1) + f(σ2

1) + c(σ1, σ
2
1)

= f(σ1) + (f(σ1) + f(σ1) + c(σ1, σ1)) + c(σ1, σ
2
1)

= 0 + 0 + 0 + c(σ1, σ1) + c(σ1, σ
2
1) .

Thus ΘQ(t)(L) is the sum of two Maslov indices, and direct computation shows that
it is represented by [

1,−1,
−2t2 + 2t− 2

t
, 1,−1, 2

]
.

Now, the hermitian form given by the matrix(
−1 0

0 1

)
is hyperbolic and so represents the trivial element in the Witt ring. We conclude
that ΘQ(t)(L) is represented by the form whose matrix is(

−2t2+2t−2
t 0

0 2

)
.

Comparing elements in the Witt ring can be tricky. For example, we need to
be able to tell quickly whether this last form is actually 0 or not. In general, link
invariants need to be easy to compute and compare.

To this end, we turn to the construction of a Laurent polynomial invariant.
There is a well-known homomorphism D : WH(K,σ) → k×/N(K×) given by the
signed determinant : given a non-singular, hermitian n × n-matrix A representing
an element in the Witt ring, then D(A) = (−1)

n(n−1)
2 det(A). This defines a link

invariant with values in k×/N(K×), and for the trefoil we have

D(ΘQ(t)(L)) =
−t2 + t− 1

t
.

(Note how we got rid of the factor 4 = N(2).) This happens to be the Alexander-
Conway polynomial of L; see the next section for more on this.

For the sake of practicalities, let us indulge in some computational details:

Lemma 4.1 – Any element in k×/N(K×) can be represented by a fraction of the
form

D(t)

td
,
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where D(t) is a polynomial in t, of degree 2d, not divisible by t, and which is also
palindromic.

What is more, if D has minimal degree among such polynomials, then it is
uniquely defined up to a square in Q×.

The proof will also indicate an algorithm to compute the minimal D.

Proof. By definition any element is represented by
F (t)

G(t)
,

for some polynomials F and G, so that we may multiply by the norm G(t)G(t−1)
to obtain a Laurent polynomial representative. Since it must be stable under σ, it
has the form

R(t)

td

with R palindromic of degree 2d, not divisible by t.
We turn to the uniqueness. Given a polynomial P , consider P̃ = tdegPP (t−1),

which is again a polynomial. In this notation we have R = R̃. The assignment P 7→
P̃ is multiplicative, that is P̃Q = P̃ Q̃; moreover, performing this operation twice
on a polynomial P not divisible by t gives again P (while in general the power of t
dividing P disappears from ˜̃P , as follows from t̃ = 1). We conclude that, when P
is an irreducible polynomial, prime to t, then P̃ is also irreducible.

Now factor R =
∏
Pαii into a product of powers of prime polynomials. For a

given Pi, we have one of two options. The first possibility is that P̃i is prime to Pi
(for example if Pi = t2 − 2), so that R = R̃ is divisible by PiP̃i. In this case we
divide R/td by the norm of Pαii , which has the effect of replacing R by a polynomial
of smaller degree with all the same properties as R. Do this for all such factors Pi.

The remainding factors Pi of the new R are all of the second type, that is P̃i is
a scalar multiple of Pi (for example Pi = t − 1). Write αi = 2vi + εi with εi = 0
or 1, and divide R by the norm of P vii . Do this for all the factors.

There results a polynomial, which we still call R, with the same properties as
above, and with the extra feature that it factors as a product R =

∏
Pi where

each Pi is a scalar multiple of P̃i (the various Pi’s being pairiwise coprime). We
now show that this R can be taken for D.

LetQ be any polynomial such thatQ/tq represents the same element in k×/N(K×)
than R/td. We prove that R divides Q, which certainly implies the uniqueness
statement.

Indeed there must exist coprime polynomials F and G and an integer k such
that

RGG̃ = tkQFF̃ .

Pick a prime factor Pi in R. If Pi does not divide Q, then it must divide one of F
or F̃ ; hence P̃i divides the other one. However since P̃i = Pi up to a scalar, we
see that P 2

i divides QFF̃ , so that P 2
i divides RGG̃. We know that P 2

i does not
divide R, so Pi divides one of G or G̃, hence both. We see that F and G have a
factor in common, a contradiction which shows that Pi divides Q. �

Here is another simple invariant deduced from ΘQ(t). Suppose θ is a real number
such that eiθ is not algebraic (this excludes only countably many possibilities for θ).
The assignment t 7→ eiθ gives a field homomorphism Q(t) → C which is compat-
ible with the involutions (on the field of complex numbers we use the standard
conjugation). There results a map

WH(Q(t), σ) −→WH(C) ∼= Z ,
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which we call the θ-signature. It is clear by construction that it agrees with the
invariant Θeiθ presented in §4.1.

Looking at the trefoil again, we obtain the form over C(
2− 4 cos(θ) 0

0 2

)

whose signature is 0 if 0 < θ < π
3 and 2 if π

3 < θ < π (the diagonal entries are
always even functions of θ, so we need only consider the values between 0 and π.)
We may present this information with the help of a camembert :

0 2

This figure is a link invariant.
We may get rid of the restriction on θ. Given an element in WH(Q(t)), pick

a diagonal matrix as representative, and arrange to have Laurent polynomials as
entries. Now substitute eiθ for t, obtaining a hermitian form over C, and consider
the function which to θ assigns the signature of this form. This is a step function s,
which is even and 2π-periodic.

Now, whenever θ is such that eiθ is not algebraic, the value s(θ) is intrinsi-
cally defined by the procedure above, and thus does not depend on the choice of
representative. Since such θ are dense in R, the following is well-defined:

ŝ(θ) = lim
α→θ,α>θ

s(α) .

At least this provides a definition for all θ, though it is not so easy to work with it.
This may well change in the future when we prove that it is possible to work with
the ring Z[ 1

2 , t, t
−1] rather than the field Q(t). This will prove that, at least when θ

is not a “jump” for s, the value ŝ(θ) agrees with Θeiθ .
To give a more complicated example, take σ3

1σ
−1
2 σ2

1σ
1
3σ

3
2σ

1
3 ∈ B4. The braid

looks as follows:

The signed determinant is

3t6 − 9t5 + 15t4 − 17t3 + 15t2 − 9t+ 3

t3
,

where the numerator has minimal degree.
The camembert is



A LINK INVARIANT WITH VALUES IN THE WITT RING 15

0 2 4 6

On the authors’ webpages, the reader will find many examples of links for which
the corresponding camemberts and polynomials are given.

4.3. Comparison with the Alexander-Conway polynomial. Let us expand
a little on the above “coincidence” in the case when L is the trefoil knot, for
which D(ΘQ(t)(L)) happens to be equal to the Alexander-Conway polynomial of L.
And first, since there are several (related) polynomials with that name, let us add
that we consider the polynomial ∇L(s) as defined in [KT08], §3.4.2. It is the only
link invariant with values in Z[s, s−1] satisfying the skein relation

∇L+(s)−∇L−(s) = (s−1 − s)∇L0(s) ,

in standard notation. It follows from this definition that ∇L(s) = ∇L(−s−1),
since L 7→ ∇L(−s−1) is a link invariant satisfying the same skein relation (and
taking the value 1 on the unknot).

It is well known that when L is a knot, rather than just a link, one has ∇L(s) =
PL(s2) for some Laurent polynomial PL. It follows that PL(t) = PL(t−1). Thus PL
defines an element in k×/N(K×), and we may compare it with D(ΘQ(t)(L)).

We have carried a computer experiment, whose result is that for all the knots
we have tested, the Alexander-Conway polynomial and D(ΘQ(t)(L)) are equal
in k×/N(K×). The experiment was conducted on 157 (pairwise non-isotopic)
knots. It is of course reasonable to conjecture that this holds for all knots, though
we do not have a proof of this fact.

5. Examples related to the Weil representation

5.1. Background on the Weil representation. Consider Sp2n(R), the symplec-
tic group over the reals. Its fundamental group is Z, so this group has a twofold
cover, usually called the metaplectic group and denoted by M2n(R).

The metaplectic group is famous for having a semi-simple representation on
the Hilbert space L2(Rn), called the Weil representation; we refer to [LV80] for
a description. We are chiefly interested in the fact that this representation has a
trace, in the following sense. Let us write T (g) for the operator corresponding to g.
For any smooth function f with compact support on M2n(R), we may define an
operator T̄ (f) by the obvious averaging process, that is

T̄ (f) =

∫
M2n(R)

f(g)T (g)dg .

(Here a unimodular Haar measure is employed.) This operator has a trace in the
naive sense, namely for any Hilbert basis (er)r∈N, one has∑

r

〈T̄ (f)er, er〉 < +∞ .

What is more, the sum above can be computed as the integral∫
M2n(R)

f(g)θn(g) dg .

where θn is a smooth function defined on a dense, open set.
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In [Tho08], Thomas gives a description of the map θn, which we partially repro-
duce below. It turns out that θ−1

n extends to a continuous function on the whole
of M2n(R), which is conjugation-invariant.

Since our construction in the case K = R, α(t) = −1 already considered gives
a map r2n : B2n → Sp2n(R), and since the cohomological considerations of §2.3
guarantee that it lifts to a map B2n →M2n(R), one may wish to use θ−1

n in order to
produce a Markov function. It turns out that this works! In fact the corresponding
link invariant can be expressed in terms of the signature and the Alexander-Conway
polynomial, so it is certainly not new. It is however striking to think that the Weil
representation should have any relationship to links.

Let us turn to the proof. It will be concluded together with the precise statement
of Theorem 5.5.

5.2. An alternative construction of Meyer-additive functions. Let us re-
turn to the setting of §2.3: we fix a representation r : Bn → U(V ), and consider
the composition ρ : Bn → U(D(V )). We keep the notation c for the two-cocycle
produced.

In order to relate Thomas’s construction to our own, we shall present an alter-
native description of the normalized, Meyer-additive function f corresponding to c.
This involves choosing a lagrangian ` in V in an arbitrary way, which is not only
less satisfying but will also only work when V is hyperbolic. For extreme simplicity,
we restrict to the case K = R with trivial involution, so WH(K,σ) = W (R) ' Z.
Also U(V ) = Sp(V ) in this case. This is enough for our purposes, though the
reader can easily generalize what follows.

Having chosen `, we can consider the function µ defined on Sp(V )× Sp(V ) by

µ(g, h) = τ(`, g`, gh`) ∈W (R) .

This is again a two-cocyle on Sp(V ), different from c, and we pull it back to a
two-cocyle on Bn as before. Since H2(Bn,Z) = 0, we deduce the existence of a
map w : Bn → WH(K,σ) whose coboundary is µ. The relationship between f
and w is given by the following Proposition, in which we write β 7→ 〈β〉 for the
homomorphism Bn → Z sending each σi to 1.

Proposition 5.1 – There exists an integer k such that, for any β ∈ Bn we have

f(β) = w(β) + τ(Γβ , Γ1, `⊕ `) + k〈β〉 .

This should be compared to Proposition 1.2 in [Tho08].

Proof. Put f ′(β) = w(β) + τ(Γβ , Γ1, `⊕ `). We shall prove that the function f ′ is
Meyer-additive with respect to c. As a result f − f ′ is a homomorphism Bn → Z;
however the abelianization Babn of the braid group Bn is isomorphic to Z via the
length map, so the Proposition follows.

By definition, after a minor rearrangement of the terms, we need to prove that

τ(Γ1, Γa, Γab)− τ(`⊕ `, `⊕ a`, `⊕ ab`) =

τ(Γab, Γ1, `⊕ `) + τ(Γ1, Γa, `⊕ `) + τ(Γ1, Γb, `⊕ `) ,

for all a, b ∈ Bn (here we write Γa for Γρ(a), and so on). Applying the unitary
automorphism 1 × a (in D(V )), we see that the very last term may be replaced
by τ(Γa, Γab, `⊕ a`). The situation is summed up on the following diagram:
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On this figure, a triangulation of a triangular prism is presented (it is meant to
include 3-simplices). The vertices are decorated with lagrangians, and any trian-
gle with an orientation defines a Maslov index unambiguously (by the dihedral
symmetry property (i)). Choose orientations consistently around the figure.

Now, the cocycle property of Maslov indices ensures that the sum of the indices
on the boundary is zero. Moreover, three of these indices are already zero, by the
lemma below: they are drawn in grey. The result follows. �

We have made use of the following:

Lemma 5.2 – Let g ∈ U(V ) and `, `′ be lagrangians in V , then

τ(Γg, `⊕ g`, `⊕ `′) = 0 .

Proof. Thomas’s representative (as in Lemma 3.3) is of dimension 0. �

5.3. Thomas’s model. Since we are going to rely on the computations by Thomas
in [Tho08], we need to bridge our notation with his.

Identify once and for all W (R) with Z via the signature. The “Weil character” is
the homomorphism γ : W (R)→ C× given by γ(x) = e

i π
4 x; note that in general there

is a Weil character for each embedding ψ : R → C×, and our choice corresponds
to ψ(x) = e2iπx (see [LV80] p. 112). The Weil representation itself also depends
on ψ, and from now we shall only consider the representation corresponding to our
choice of ψ. The consistency is important for Theorem 5.3 below.

Let V denote R2n with the usual symplectic structure, so that Sp(V ) refers to the
group denotedU(V ) in the general situation of §5.2, while in §5.1 we wrote Sp2n(R)
for the same group.

Fix a lagrangian ` for the rest of the discussion. The cocycle µ of §5.2 is de-
fined, and we compose it with γ to obtain a two-cocycle on Sp(V ) with values
in C× (in fact, in the 8-th roots of unity). We are interested in the corresponding
central extension of Sp(V ) which explicitly is the set M1(V ) = Sp(V ) × C× with
multiplication

(g, t) · (h, s) = (gh, ts γ(µ(g, h))) .

The group M1(V ) is “compatible” with our notation so far, and will be used for
explicit constructions.

Consider now the set Gr(V ) of all lagrangians in V . Any pair (g, t) ∈ M1(V )
gives rise to a function tg : Gr(V )→ C× defined by

(†) tg(`
′) = γ(τ(`, g`, g`′, `′)) t .

Conversely given g and the function tg, one can of course recover t as tg(`). So we
can consider the group M2(V ), canonically isomorphic to M1(V ), whose elements
are all pairs (g, tg) where tg : Gr(V )→ C× is a map satisfying (†) for some complex
number t. A word of warning: we borrow the notation tg from Thomas’s paper
already cited, even though it may be slightly misleading in suggesting that tg can
be obtained from g (there is no section Sp(V )→M2(V )).
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Finally within M2(V ), Thomas considers the subgroup Mp(V ) of pairs (g, tg)
such that t2g = m2

g, where mg is some function on Gr(V ) whose definition is irrele-
vant for our purposes. He shows that Mp(V ) is a two-fold cover of the group Sp(V )
(see [Tho08], definition in §5.2, Proposition 5.1 and Proposition 5.3). Since this
cover is non-trivial, it must be a model of what is universally called the metaplectic
group.

We are finally in position to state Thomas’s main result, computing the values
of the function θn introduced in §5.1. It is defined on Mp(V ) and Thomas uses the
notation Tr ρ(g, tg) (our own usage of the letter ρ is unrelated). The following is
Theorem 2A in [Tho08].

Theorem 5.3 (Thomas) – The trace of the Weil representation is given by

θn(g, tg) =
tg(`) · γ(τ(Γg, Γ1, `⊕ `))

|det(g − 1)| 12
.

Let us introduce a few more groups. Let M ′1(V ) be the subgroup of M1(V )
of pairs (g, t) with t an 8-th root of unity, and let M ′2(V ) be the corresponding
subgroup of M2(V ). Since the function mg takes its values also in the 8-th roots

of unity, it is clear that Mp(V ) ⊂M ′2(V ). To finish with, recall the group S̃p(V ),
made of pairs (g, n) with g ∈ Sp(V ) and n ∈ Z with the multiplication using the
cocycle µ.

Lemma 5.4 – The group Mp(V ) is normal in M ′2(V ).

Proof. In [LV80] it is proved that S̃p(V ) has four connected component (for some
appropriate topology which is not the product topology on Sp(V ) × Z); more
precisely in 1.7.11 in loc. cit. one finds the definition of a continuous character

s : S̃p(V ) −→ Z/4

whose fibres are exactly the connected components. What is more, s(g, n) depends
only on n modulo 4.

The Weil character γ gives a continuous and surjective map

S̃p(V ) −→M ′1(V ) ,

and it is clear that s factors through M ′1(V ). As a result, the group M ′1(V ) also
has four connected components. They are homeomorphic to each other, and each
component is thus a two-fold cover of Sp(V ), since M ′1(V ) is an eight-fold cover.

The connected component G of the identity is a normal subgroup of M ′1(V ),
so it suffices to prove that Mp(V ) = G (identifying M ′1(V ) and M ′2(V )). How-
ever Mp(V ) ⊂ G since Mp(V ) is connected, and since these groups are both
two-fold covers of Sp(V ) one must have Mp(V ) = G. �

5.4. Main result. Let the notation be as in §5.1, so that we work over K = R
with the Burau representation at t = −1, written r2n : B2n → Sp(V ). As in §5.2,
we pick a one-cocycle w whose boundary is the two-cocycle µ, a lagrangian ` being
chosen. The map β 7→ (r2n(β), γ(w(β))) defines a lift

r̃2n : B2n −→M ′1(V )

of r2n. Let us show that we can arrange for r̃2n to take its values in the metaplectic
group. Indeed, one may add any homomorphism Bn → Z to w, so we can certainly
have w(σ1) taking any convenient value, and in particular we can have r̃2n(σ1) ∈
Mp(V ) (as before we see Mp(V ) as a subgroup of M1(V )). Since σi is conjugated
to σ1 in Bn, and in virtue of Lemma 5.4, this forces the image of r̃2n to lie entirely
in Mp(V ).
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Theorem 5.5 – There exists an integer k = kn such that

e
kiπ
4 〈β〉 θ−1

n (r̃2n(β)) = e−
iπ
4 ΘR(β̂)|det(r2n(β)− Id)| 12 .

In particular the collection (e
kniπ

4 θ−1
n ◦ r̃2n)n≥1 can be extended to a Markov func-

tion.

In other words, after a simple renormalization involving the braid “exponent
sum”, the trace of the Weil representation yields an oriented link invariant. We
shall not attempt to compute the value of kn, as the link invariant does not contain
“new” information anyway (see comments in the proof).

Proof. Note that the right hand side of the equation to prove defines a Markov
function, since |det(r2n(β) − Id)| is the absolute value of the Alexander-Conway
polynomial at

√
−1. Of course ΘR(β̂) is the signature of β̂, as already observed.

As for the equality itself, it now follows directly from Theorem 5.3 combined
with Proposition 5.1. �

5.5. Finite fields. The symplectic groups over finite fields also have a Weil repre-
sentation (with no need to go to a two-sheeted cover), so one may wish to try and
use it to obtain more link invariants. This was investigated by Goldschmidt and
Jones in [GJ89]. Here is our interpretation of their results.

Pick K = Fp(t) for an odd prime p, with involution satisfying σ(t) = t−1, and
choose α so that α(t) = t. Our general method produces an invariant ΘFp(t) with
values in WH(Fp(t), σ). We would like to specialize t to a value in some finite
field Fq ; however, there is no field homomorphism Fp(t)→ Fq, so this idea cannot
be pursued literally. When we prove the existence of an invariant in the Witt ring
of Z[ 1

2 , t, t
−1], we shall be able to specialize t directly. For the time being, here is

an ad hoc trick, which amounts to the description given by Goldschmidt and Jones.
Let u = t+ t−1, so that the fixed field of σ is k = Fp(u). Recall that we have an

anti-hermitian space Vn, over the field K, on which Bn acts unitarily. As explained
in §2.2, we may consider the “real part” of the anti-hermitian form, which is a
symplectic form on (Vn)k, that is Vn viewed as a k-vector space. This allows the
formation of Maslov indices, and clearly yields a link invariant, whose value on a
link L is simply the image of ΘFp(t)(L) under the map WH(Fp(t), σ)→W (Fp(u)).
What is noticeable at this point is that the matrices giving the action ofBn on (Vn)k,
as well as the symplectic form, all have their entries in Fp[u, u−1] and thus may be
specialized to a non-zero value of u chosen in any finite field Fq of characteristic p.
If we define our Maslov indices then, we end up with an invariant with values
in W (Fq), which we may call ΘFq .

Let us go back to the trace of the Weil representation of Sp2n(Fq). It was also
computed by Thomas in [Tho08]. His formula (Theorem 2B) shows that the trace
of an element of the form rn(β), where rn : Bn → Sp2n(Fq) is the representation
just defined, can be expressed in terms of ΘFq (β̂) and the invariant of Proposition
3.2 (details will be omitted). In particular, it gives a link invariant.
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