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Abstract: The aim of this work was to study the properties of polylatic acid/polyamide 11
(PLA/PA11) blends compatibilized with a multifunctionalized epoxide, Joncryl®, and to evaluate the
performance of such blends processed by Fused Deposition Modeling (FDM) 3D printing, compared
to those produced by injection molding method. Blends containing different Joncryl contents from 0.5
to 3 wt% were prepared by twin-screw extrusion. Evaluation of thermal, rheological and mechanical
properties of such blends proved that Joncryl acted as a compatibilizer. Results showed that Joncryl
effects on blends properties were improved with increasing its content. A significant reduction of
PA11 dispersed phases diameter and an improvement of tensile properties with a ductile behavior
were achieved for the highest Joncryl contents. A significant elongation of PA11 dispersed phases
was observed into FDM filaments and dog bone shaped specimens produced thereafter. Despite this
peculiar morphology, FDM printed samples exhibited only enhanced stiffness but poor reinforcement
and elongation at break in comparison with injected ones.

Keywords: PLA; PA11; polymer blends; compatibilization; additive manufacturing

1. Introduction

Polylactic acid (PLA) is one of the bio-based polymers that generate the most interest, because of its
biodegradability, high tensile strength and modulus. Nevertheless, its relatively poor thermal stability
and significant brittleness may be major drawbacks for other large-scale commercial applications
than packaging. To overcome these drawbacks, the most used and studied methods consist of
adding nanoscaled mineral fillers (nanoparticles) to get a PLA-based nanocomposite or blending
PLA with other polymers, bio-based as well as oil-based [1–9]. The latter strategy has been widely
studied for PLA, because polymer blending is an efficient method commonly used at industrial scale,
allowing properties of different polymers to be combined in order to obtain a new material with
desirable properties. To achieve this objective, compatibilization is often required to improve polymer
compatibility and control morphology.

In this context, polylactic acid/polyamide 11 (PLA/PA11) blends represent a good solution to
get materials with improved thermomechanical properties compared to the ones of neat PLA. Indeed,
polyamide 11 (PA11) is a bio-based polymer derived from castor oil with excellent thermal stability
and high elongation at break and impact strength. Moreover, interfacial interactions and reactions,
better known as interchange reactions, could potentially occur between polyamides and polyesters
during melt blending, leading to an improvement of compatibility [10–15]. Hence, PA11 has been
recently considered as a good candidate for blending with PLA.

Even if some studies have concluded to a partial compatibility with high interfacial interactions
between PLA and PA11 [16–18], literature shows that the immiscibility and incompatibility of these
polymers prevail, which makes compatibilization necessary. Various strategies were studied, most of
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them dealing with reactive pathways by adding catalyst [17,19] to promote ester-amide interchange
reactions, or reactive copolymer containing glycidyl methacrylate (GMA). Such copolymers are
interesting, because GMA is a chemical moiety with epoxide functions, which can react with both
hydroxyl and carboxyl reactive functional end chains of PLA and amine and carboxyl end groups of
PA11. This coupling reaction at interface improves PLA/PA11 adhesion and compatibilizes the blend.

Dong et al. [20] have shown that ethylene glycidyl methacrylate-graft-styrene-co-acrylonitrile
rubber (EGMA-g-AS) has no compatibilizing role in PLA/PA11 blends. Whatever the mixing sequence
tested, EGMA-g-AS was never located at the interface and no decrease of the dispersed PA11 domains
size was observed. Despite this, the development of a salami structure and the localization of
EGMA-g-AS in PLA matrix led to better mechanical properties, with a large increase of ductility
and impact strength, compared to the ones of neat blend.

Walha et al. [21] investigated the effects of incorporation of Joncryl® on the rheological,
morphological and mechanical properties of PLA/PA11 blends. Joncryl® is a styrene-acrylic
multifunctional epoxy copolymer, usually employed as chain extender to enhance polyesters thermal
stability. Two main methods of mixing were used: the first one consisted of introducing all compounds
simultaneously in the extruder and the second one consisted of modifying PLA by premixing it with
Joncryl and then adding PA11. Authors demonstrated the role of Joncryl as a compatibilizer for the
PLA/PA11 system, by the significant decrease of the size of PA11 dispersed phases and the interfacial
tension as well as the improvement of ductility, especially with the second mixing route. Similar
results were obtained by Zolali et al. [22], that used ethylene methyl acrylate-glycidyl methacrylate to
compatibilize a co-continuous PLA/PA11 blend.

The aim of this work was to study the properties of PLA/PA11 blends compatibilized with
a multifunctionalized epoxide, Joncryl®. Compared to Walha et al., our works were dedicated to
optimize mechanical properties of a PLA/PA11 80/20 wt% blend with an extended range of Joncryl
percentage, and to determine the effects of Joncryl on blends morphology and properties.

The second objective was to evaluate the performance of such blends processed by Fused
Deposition Modeling (FDM) 3D printing, compared to those produced by injection molding method.
To the best of our knowledge, this is the first study addressing the application of PLA/PA11 blend for
3D printing, especially FDM. Additive manufacturing or 3D printing recently gained an increasing
interest in industry as well as academic area. Additive manufacturing gathers a lot of processing
techniques, having the ability to produce complex geometries pieces layer by layer with low cost
production, and exhibiting numerous advantages associated with rapid prototyping. But up to now,
few compatible materials with 3D printing are available on the market, restricting its tremendous
potential. PLA is one of the most used polymers for this technology, and PLA based blends are a good
solution to develop materials with specific required properties and to expand the range of 3D printable
materials [23–28].

In the first part, the morphology of blends with different Joncryl contents will be examined to
assess the effectiveness of Joncryl as compatibilizing agent. Then, the effects of Joncryl on thermal and
rheological properties will be evaluated. In the second part, a study of the influence of FDM process
on the morphology and mechanical properties obtained for compatibilized blends, compared to the
ones obtained for injected samples, will be performed.

2. Materials and Methods

2.1. Materials

The polylactide (PLA grade 3251D) used in this study was purchased from NatureWorks
(Minnetonka, MN, USA). It is a semi-crystalline grade. The polyamide 11 (PA11 grade LMFO) was
produced by Arkema (Colombes, France) under the trade name Rilsan®. A commercially available
modified acrylic copolymer with epoxy functions (Joncryl ADR®-4368) was obtained from BASF
(Ludwigshafen, Germany). It has an epoxy equivalent weight of 285 g/mol, an average functionality
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on epoxide of 9 and a weight-average molecular weight Mw of 6800 g/mol. Its chemical structure is
depicted in Figure 1. Table 1 shows some properties of the used materials.

1 
 

 
Figure 1. Chemical structure of Joncryl ADR®-4368, and the general structure of the styrene-acrylic
multifunctional oligomeric chain extenders. R1–R5 are H, CH3, a higher alkyl group or combinations
of them; R6 is an alkyl group. x, y and z are between 1 and 20.

Table 1. Characteristics of the raw materials.

Material Density (g/cm3) Tg (◦C) Tcc (◦C) Tm (◦C)

PLA 1.24 59 * 101 * 170 *
PA11 1.02 - - 190 *

Joncryl 1.08 54 - -

* From Differential Scanning Calorimetry (DSC) experimental data.

2.2. Blend Preparation

Before extrusion, PLA and PA11 pellets were dried under vacuum at 80 ◦C overnight (and Joncryl
15 min). Then, the blends were prepared in a co-rotating twin screw extruder (BC21, Clextral, Firminy,
France), with a screw diameter of 25 mm and an L/D ratio of 48. A vacuum pump (Sterling Fluid
Systems, Manchester, UK) was used to avoid oxidation and hydrolytic degradation during extrusion.
The extrusion temperature profile was 80 ◦C for the feed zone, and 210 ◦C for all the other zones and
the die. A feeding rate of 4 kg/h and a 200 rpm screw speed were applied.

Blends were prepared into two steps. First, PLA and 4 wt% Joncryl were mixed together in the
twin-screw extruder, quenched in cold water and granulated. Then, modified PLA (named PLA-J4)
pellets were dried under vacuum at 80 ◦C overnight, and secondary mixed by twin-screw extrusion
with PA11 and virgin PLA. Through this way, PLA/PA11 80/20 wt/wt blends containing 0 to 3 wt%
of Joncryl, based in total weight of polymer blend, (named PLA80-J0 to J3) were prepared. PLA-J4 was
prepared as a masterbatch, in order to get (by dilution) high Joncryl contents in final blends named
PLA80-Jx (x as Joncryl content, with x ≤ 3). Total residence time in extruder was 3 min for all blends.

At the outlet of twin-screw extruder, blends were obtained as extruded threads, that were
quenched in cold water and granulated to get pellets, used thereafter to produce samples.

2.3. Standard Samples Preparation

Before samples preparation by injection molding or 3D printing, prepared blends pellets
were dried under vacuum at 80 ◦C overnight. A part of obtained pellets were molded using
a mini injection molding machine (ZAMAK Mercator, Swakina, Poland) into dog bone shaped
samples (ISO 527-2:2012, 1BA standard type) for tensile test. The following parameters were used:
Mold temperature = 80 ◦C, Barrel temperature = 210 ◦C, Injection pressure = 5.2 bars, Melting time of
pellets before injection = 3 min.

The remaining fraction of pellets were first extruded using a single screw extruder (Yvroud, Ingre,
France) at a temperature of 210 ◦C and a flow rate of 7 m/min, to get filaments with a diameter of
2.50 ± 0.1 mm. These filaments were then fed into a Fused Deposition Modeling (FDM) printer (A4v3,
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3ntr, Oleggio, Novare, Italy) to produce samples with the same dimensions as those produced via
injection molding. Printing was performed at 210 ◦C and a flow rate of 65 mm/s. Melted filaments
were deposited with a +/− 45◦ angle on a plate support heated at 60 ◦C.

2.4. Morphological Characterizations

2.4.1. Scanning Electron Microscopy (SEM)

A Scanning Electron Microscopy Quanta 200 FEG (FEI, Hillsboro, OR, USA) was used to observe
blends morphology. The samples were fractured in liquid nitrogen, and fracture surfaces were coated
with carbon. All the micrographs were recorded under high vacuum at an accelerating voltage of 3 kV.

2.4.2. Selective Extraction

For each composition, 900 mg of extruded thread were immersed into 15 mL of chloroform at
room temperature with stirring during 48 h to remove PLA. Then, PA11 nodules were purified by three
washing/centrifugation cycles (10,000 rpm, 5 min) using chloroform and finally collected for analysis.

2.4.3. Laser Diffraction Particle Size Analyzer

A Coulter LS 13230 (Beckman Coulter, Brea, CA, USA) laser diffraction particle size analyzer
instrument was used to determine the size distribution of extracted PA11 nodules. Size measurements
were performed using the micro liquid module (15 mL) in chloroform; obscuration was 10± 2%. Three
measurements were performed for each sample.

Laser diffraction particle size analyzer is an interesting alternative method to characterize
dispersed phases in immiscible polymer blends. In fact, the number of dispersed phases analyzed is
much larger than with conventional images analysis from electron microscopy observations (SEM or
TEM (Transmission Electron Microscopy)).

2.5. Differential Scanning Calorimetry (DSC)

A Pyris Diamond DSC (PerkinElmer Instruments, Waltham, MA, USA) differential scanning
calorimeter was used to measure the thermal characteristics of the blends. Samples of around 15 mg
were cut from the pellets and put in 50 µL sealed aluminum pans. All the experiments were performed
under dry nitrogen as a protective gas (20 mL/min). Three calorimetric scans were performed for each
sample at a heating or cooling rate of 10 ◦C/min. The first heating scan, in which the thermal history
was suppressed, was performed from 30 ◦C to 220 ◦C before a 2 min isothermal scan at 220 ◦C was
applied. Then, the cooling scan went from 220 ◦C to 30◦C, before a 2 min isothermal scan at 30 ◦C was
applied, and finally the second heating scan was performed from 0 ◦C to 220 ◦C.

The thermal characteristics–glass transition temperature (Tg), cold crystallization temperature
(Tcc), enthalpy of cold crystallization (∆Hcc), melting temperature (Tm) and melting enthalpy
(∆Hm)–were determined from the second heating scan. The degree of crystallinity (XC) of the PLA and
PA11 into the blend were calculated using the following equation:

Xc =
4Hm −4Hcc

4Hm
0 ×w

× 100, (1)

∆Hm
0 is the enthalpy of fusion per mole of repeating unit of perfect crystal of infinite size (totally

crystalline polymer). We considered ∆Hm
0 (PLA) = 93 J/g [29] and ∆Hm

0 (PA11) = 200 J/g [30]). w is
the weight fraction of polymer into the blend.

At least two measurements were performed for each sample.
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2.6. Rheological Tests

All samples were prepared using a mini injection molding machine (ZAMAK Mercator, Swakina,
Poland) at 210 ◦C for 3 min with a constant pressure of 5.2 bars in the form of disks of 25 mm
diameter and 1.5 mm thickness. All samples were dried in a vacuum oven at 80 ◦C for 24 h before the
rheological tests.

The rheological analysis was carried out using a controlled-stress rheometer (MCR 702 TwinDrive,
Anton Paar, Graz, Austria) in a parallel plate geometry (25 mm diameter) and a 1.3 mm gap at 210 ◦C
under dry nitrogen flow. The linear viscoelastic region was determined using strain sweep tests for
the neat polymers at 6.28 rad/s frequency. According to the obtained results, the frequency sweep
tests were performed at a strain of 2%, from 100 to 0.01 rad/s. The stability of samples under the test
conditions was checked using a time sweep test and a less than 7% drop in the complex viscosity was
observed in the experimental time scale of 60 min.

2.7. Tensile Tests

Tensile properties were obtained using a universal tensile machine Zwick Z010 (Zwick Roell,
Ulm, Germany). For each composition, at least five dog bone shaped samples (ISO 527-2:2012 type
1BA standard), prepared by injection molding or FDM as described previously, were tested in ambient
conditions (around 23 ◦C and 50% relative humidity).

Tensile tests were performed first at a cross-head speed of 5 mm/min to determine Young modulus
(E), then at 100 mm/min until material failed. Maximum stress (σm), elongation at break (εb) and
stress at break (σb) were recorded.

2.8. Porosity Measurement

Porosity, defined by the ratio of voids volume (Vvoids) to total volume (Vtotal), of FDM printed
samples was determined to judge their intrinsic brittleness with the following equation:

Porosity(%) =
Vvoids
Vtotal

=

[
1−

dapparent

dabsolute

]
× 100, (2)

where d refers to density, apparent or absolute.
Apparent density is defined as the ratio between the global mass and the global volume of a

material, as it appears including pores. Global mass was measured by weighing samples (complete
dog bone shaped samples) and volume was determined measuring exact dimensions samples with a
vernier caliper.

Absolute density refers to the real density of a material, which means the ratio between the global
mass and the solid volume of a material excluding pores. This density was determined using an
helium pycnometer (Accu Py 1330, Micromeritics, Norcross, GA, USA).

Two samples by composition were used for these measurements.

3. Results and Discussion

3.1. Effects of Joncryl on Blends Morphology and Properties

3.1.1. Blends Morphology

Figure 2 shows SEM images of PLA/PA11 blends prepared by melt extrusion. As expected, all
blends exhibit sea island morphology, with a PLA matrix and PA11 dispersed droplets. We can note
that PA11 dispersed phases diameter seems to decrease with increasing Joncryl content. For Joncryl
content higher than 1.0 wt%, no significant evolution could be observed.
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Figure 2. SEM observations of extruded samples threads in transversal direction.

To confirm this trend, size distribution and average diameter of extracted PA11 nodules, after
PLA dissolution by chloroform, were determined using laser diffraction analysis. As we can see on
Figure 3, a reduction of PA11 dispersed phases volume diameter with increasing Joncryl content is
well observed. Joncryl addition leads to submicronic nodules (Table S1). Compared to neat blend, we
can also note a narrowing of the size distribution with Joncryl addition, which is in good correlation
with SEM observations.
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as a function of Joncryl content.

The observed PA11 diameter reduction shows that Joncryl has an emulsifying effect on the blend,
because of coalescence suppression. Such phenomenon could be associated with compatibilization
due to the chemical reactivity of the epoxide function of Joncryl with the polymers of the blend, i.e.,
amine and acid chain end of PA11 and PLA, respectively, as concluded by Walha et al. [21]. Moreover,
regarding the emulsification curve, a saturation of the reaction at the interface occurs around 1.0 wt%
of Joncryl.
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3.1.2. Thermal Properties and Crystallinity

DSC thermograms and data collected from the second heating scan of neat polymers (PLA, PLA-J4
and PA11) and their blends PLA80-Jx with various Joncryl content (x) are presented in Figure 4 and
Table 2.
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The addition of PA11 to the PLA (PLA80-J0) dramatically increases the PLA crystallinity degree
(Xc). PA11 domains might act as nucleating centers and thereby enhance the crystallization of the PLA
in the blend [31]. For compatibilized blends, the higher the Joncryl content, the higher the PLA cold
crystallization temperature Tcc in the blend. Thus, Tcc is shifted from 98 ◦C (neat blend) to 109 ◦C
(PLA80-J3), which represents an increase of 11 ◦C. At the same time, a slight increase of ∆Hcc is
observed. For Joncryl content higher than 0.5 wt%, we can also note the disappearance of the second
PLA cold crystallization peak. Finally, PLA crystallinity degree drops with increasing Joncryl content
from 22.4% to 1.6%. Similar changes can be noted if PLA-J4 data are compared with pure PLA data.
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Table 2. DSC results obtained from the second heating scan.

Samples
Tg

PLA
(◦C)

Tcc
PLA
(◦C)

∆Hcc
PLA
(J/g)

Tcc2
PLA
(◦C)

∆Hcc2
PLA
(J/g)

Tm
PLA
(◦C)

∆Hm
PLA
(J/g)

Tm
PA11
(◦C)

∆Hm
PA11
(J/g)

Xc
PLA
(%)

Xc
PA11
(%)

PLA 59 101 32.7 156 1.6 170 40.4 - - 6.9 -

PLA-J4 59 104 26.3 152 0.4 166 30.6 - - 4.3 -

PA11 - - - - - - - 193 49.2 - 24.6

PLA80-J0 60 98 18.0 155 2.6 170 34.7 190 8.9 22.4 22.2
PLA80-J0.5 60 101 21.7 155 1.6 169 29.9 190 9.4 11.0 23.6
PLA80-J1 60 106 21.7 - - 168 24.4 189 9.1 3.6 23.0

PLA80-J1.5 60 107 22.4 - - 167 23.5 189 9.4 1.6 23.8
PLA80-J2 61 108 21.7 - - 168 23.6 190 8.9 2.6 22.7
PLA80-J3 60 109 22.8 - - 168 23.9 189 8.2 1.6 21.2

It shows that the observed crystallization modifications are related to structural modification
of PLA chains induced by Joncryl. As a chain extender, Joncryl leads to increase length chains and
their molecular weight. Hence, long-chain branched structures are formed in Joncryl-modified PLA
that increase molecular weight and decrease chains mobility [32]. The presence of branches disrupts
the packing of polymer chains, thus preventing crystallization happening during the cooling step.
As a consequence, crystallinity degree decreases. The reduced chain mobility is responsible for the
increased cold crystallization temperature, as observed by Najafi et al. [33].

Hence, it can be considered that the same behavior also occurs in blends, its intensity being
governed by the PLA-J4 amount. No significant change concerning glass transition and melting
temperatures of each polymer into blends was observed.

3.1.3. Rheological Behavior

Figure 5 illustrates the evolution of the complex viscosity η*, the storage modulus G’ and the
loss modulus G” versus angular frequency of PLA, PLA-J4, PA11 and PLA80-Jx blends (for x = 0; 0.5;
1.5; 3). First, we can note that PLA-J4 has a lower complex viscosity than PLA, but with a crossover
point (between G’ and G”) occurring at lower frequency than PLA. These results might be explained
by the fact that some PLA chains have reacted with Joncryl, increasing the molecular weight or chain
branching and then increasing the relaxation time of the chain [34]. Indeed, Wang et al. [35] have
observed a slight crosslinking and an increase in molecular weight of PLA in the presence of Joncryl.
However, in the other hand, there is probably free Joncryl that has not reacted with any PLA chains,
because it was introduced in excess, and, as Joncryl is a small molecule (η0 = 30.6 Pa·s), it dramatically
contributes to decrease the viscosity of the whole PLA-J4 sample.

The complex viscosity curve of the neat PLA/PA11 blend is located between the values obtained
for the neat polymers. When PLA-J4 is added, complex viscosity is increased with increasing Joncryl
content in the blend over the whole frequency range. This result is in accordance with Walha et al.
works [21]. These authors showed that such behavior can be associated with chemical reaction taking
place between PLA and PA11 and indicates an increase of the intermolecular interactions of the blend
system due to this interfacial reaction. A narrowing of the Newtonian plateau at low frequency is also
observed. It must be noticed that, at low frequency, PLA80-J3 exhibit a yield behavior compared to
the other PLA80-Jx formulations. This yield behavior is identified on the shape of η* at low frequency
that does not reach a plateau and on the behavior of G’ which tends to reach a plateau value at low
frequency. These behaviors are often reported in reactive compatibilization [36–38].

Moreover, PLA80-J3complex viscosity is slightly lower than that of PLA80-J1.5. We can assume
that, between 1.5 and 3 wt% Joncryl, both amine and acid chain end of PA11 and PLA have completely
reacted. The saturation is attained and the excess of Joncryl that didn’t react contributes to decrease
the complex viscosity. In the same way as PLA-J4, an excess of Joncryl decreases the complex viscosity
of the blend PLA80-J3.
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G’ of the neat blend is in between that of the pure polymers from 100 to 10 rad/s, then it diverges
from the rule of mixture as G’ of the PLA80 blend become higher than G’ of the PA11 at lower frequency.
This is due to the well-known shape relaxation behavior [39]. G’ of PLA80-Jx samples raises with
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increasing Joncryl content, because of the appearance of some extended/branched chains as well as an
increase of the entanglement density.

3.2. Comparison Between Injected and FDM Samples Morphology and Mechanical Properties

3.2.1. FDM Filaments and Dog Bone Shaped Samples Morphology

SEM observations of cross-sections of FDM filaments prepared by single-screw Yvroud extrusion
are shown in Figure 6. They can be compared with Figure S1, depicting SEM micrographs of
cross-sections corresponding to the extrusion direction (longitudinal) performed on extruded threads
obtained by twin-screw extrusion.
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For both extruded threads and FDM filaments, a reduction of PA11 dispersed phase diameters
with increasing Joncryl content is observed, similarly to the previous observations about transverse
cross-sections (Figure 2). Elongated PA11 nodules are observed for a Joncryl content between 1 and
3 wt% in FDM filaments. Moreover, we can note that the higher the Joncryl content, the more important
the number and length of elongated phases, except for PLA80-J3.

It can be considered that the presence of elongated phases results from a decrease of the interfacial
tension, due to the compatibilizing role of the agent Joncryl. But, it could also be the result of a change
in viscosity ratio, that affects the droplets coalescence and breakup mechanisms which governs the
morphology of the polymer blend [40,41]. Indeed, if the matrix viscosity decreases, the viscosity ratio,
defined as the ratio between dispersed phase viscosity and the matrix one’s, increases. In our case, it
was shown previously that from 1.5 wt% of Joncryl in the blend, the viscosity starts to decrease. Hence
from 1.5 wt% of Joncryl, the polymer matrix is composed of PLA and unreacted Joncryl, and the blend
viscosity is decreased. This promotes PA11 elongation by impeding thread break-up.

Concerning PLA80-J2 blend, the aspect ratio of PA11 phases is more important for FDM filaments
than for extruded threads. Supplementary elongation in FDM filament could be explained by the
higher mechanical stresses applied during single-screw extrusion, compared to the ones applied during
twin-screw extrusion to get extruded threads.
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For dog bone shaped samples, processed through 3D printing, elongated PA11 dispersed phases
also appear for all compositions (Figure 7). Figure 7 shows that FDM process induces supplementary
elongation, in addition to filament extrusion.
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3.2.2. Mechanical Properties

The results of tensile properties after injection show that the brittle properties of PLA can be
modified by the addition of Joncryl. The elongation at break is doubled, since it increases from 2.1%
(pure PLA) to 4.3% (PLA-J4), and maximal stress increases too. But, in contrast, adding ductile PA11
to brittle PLA does not improve significantly its mechanical properties, since PLA80-J0 blend shows
a similar behavior than neat PLA (Figure 8a). That is certainly due to a lack of adhesion between
polymers, because of their immiscibility and incompatibility.

Materials 2018, 12, x FOR PEER REVIEW 12 

 

ductile behavior is observed, with the highest elongation at break of 6.9% and 9.8% respectively 
(Figure 8a, Table S2). No significant change of tensile modulus and maximal stress is noticed 
compared to the neat blend. Such behavior indicates that an improved interface between PLA and 
PA11 was established by reactive compatibilization with Joncryl. To confirm this conclusion, SEM 
observations of tensile fracture surface for injected samples were carried out. 

(a) (b) 

Figure 8. Stress–strain curves of injected PLA, PLA-J4 and PLA80-Jx blends (a) and FDM printed 
PLA80-Jx blends (b). 

In comparison with the neat blend, elongation of PA11 dispersed phases in the compatibilized 
blends was observed. After tensile test, this phenomenon is all the more important since Joncryl 
content is high and two cases can be distinguished (Figure 9):  
• For 0≤ x ≤ 1.5: PA11 dispersed phases extend individually but not PLA matrix, because of its 

intrinsic brittle behavior and owing to the lack of interfacial adhesion, leading to a clear brittle 
failure.  

• For x = 2 or 3: PA11 dispersed phases extend with PLA matrix and form an elongated structure, 
leading to a ductile failure.  
Hence, thanks to a sufficient interfacial adhesion, PA11 dispersed phases could transfer 

mechanical stress, more easily at high Joncryl content, to enable a more ductile behavior. 

 

Figure 9. SEM observations of tensile fracture surface for injected PLA80-Jx. 

Figure 8. Stress–strain curves of injected PLA, PLA-J4 and PLA80-Jx blends (a) and FDM printed
PLA80-Jx blends (b).

Blending PLA-J4 with PLA and PA11 entails an increase on elongation at break (after injection),
which tends to increase with increasing Joncryl content. At high Joncryl content 2 and 3 wt%, a ductile
behavior is observed, with the highest elongation at break of 6.9% and 9.8% respectively (Figure 8a,
Table S2). No significant change of tensile modulus and maximal stress is noticed compared to the neat



Materials 2019, 12, 485 12 of 18

blend. Such behavior indicates that an improved interface between PLA and PA11 was established
by reactive compatibilization with Joncryl. To confirm this conclusion, SEM observations of tensile
fracture surface for injected samples were carried out.

In comparison with the neat blend, elongation of PA11 dispersed phases in the compatibilized
blends was observed. After tensile test, this phenomenon is all the more important since Joncryl
content is high and two cases can be distinguished (Figure 9):

• For 0≤ x ≤ 1.5: PA11 dispersed phases extend individually but not PLA matrix, because of
its intrinsic brittle behavior and owing to the lack of interfacial adhesion, leading to a clear
brittle failure.

• For x = 2 or 3: PA11 dispersed phases extend with PLA matrix and form an elongated structure,
leading to a ductile failure.
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Hence, thanks to a sufficient interfacial adhesion, PA11 dispersed phases could transfer mechanical
stress, more easily at high Joncryl content, to enable a more ductile behavior.

PA11 dispersed phases size reduction could also contribute to increase elongation at break.
Indeed, this phenomenon leads a better homogeneity of PA11 nodules into blend, as evidenced by
SEM micrographs (Figure 2) and the narrowing of the size distribution (Figure 3), beneficial to tensile
properties enhancement.

Concerning the samples prepared by FDM, as we can observe in Figure 8b, FDM printed samples
show a brittle mechanical behavior, including PLA80-J2 and PLA80-J3 blends that exhibited a ductile
behavior when processed by injection molding. As observed for injected samples, maximal stress tends
to increase with increasing Joncryl content, to reach a maximum of 58.8 MPa for PLA80-J2 (Table S3).
In comparison to the neat blend, Young modulus values are quite similar, except for PLA80-J2 and
PLA80-J3 exhibiting a modulus higher than 3000 MPa.

If we compare FDM printed samples tensile properties to the ones of injected samples, FDM
process can allow more rigid samples to be obtained, that means higher Young’s moduli, especially at
high Joncryl content (Figure 10). This can be ascribed to the aspect ratio of PA11 elongated dispersed
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phases, more important for printed samples in comparison to this for injected dog bone shaped samples
(Figure 7 and Figure S2).
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Nevertheless, it can be mainly noticed that FDM printed samples are more brittle compared to
injected ones, since maximal stress and elongation at break are lower.

Two parameters related to FDM process can be pointed out to explain this difference: the lack of
adhesion between deposited filaments and the porosity. FDM consists in the deposit of melted polymer
flow on a support as aligned threads, that requires enough adhesion between deposited threads in a
same layer or between the subsequent layers.

In the FDM process, melted filaments are extruded through a circular nozzle and deposited
threads are circular, leading to trapped air between them, even if a partial merging and compression
ensure cohesion between them. As a result, voids appear and represent potential cracking areas under
mechanical stress.

Both parameters are involved in the cavitation process, leading to the material’s failure.
To determine to which extent these parameters affect tensile properties of printed samples, their
morphology after the tensile test was observed and their porosity was determined.

3.2.3. Printed Samples Morphology and Porosity

After the tensile test, fracture surface morphology of FDM printed dog bone shaped samples
varies as a function of Joncryl content, as observed for injected samples (Figure 9). Elongation of PA11
dispersed phases was observed, all the more important since Joncryl content is high (Figure 11). Such
observations suggest that adhesion between polymers in the blend would be high enough to ensure a
good mechanical transfer leading to enhanced mechanical properties.

Nevertheless, the experimental results do not support these assumptions. Hence, the lack of
adhesion between the deposited threads and the existence of porosity between them seem to govern
the mechanical behavior and can account for the brittleness of the printed samples in comparison with
the injected ones.
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Figure 11. SEM observations of tensile fracture surface for printed samples.

Table 3 summarizes values obtained for porosity and absolute density of FDM printed samples.
It can be noticed that samples have a similar absolute density and their porosity is quite important,
higher to 10% on the whole. The highest porosities were measured for specimens with Joncryl content
between 0.5% and 1.5%. As shown Figure 12, there is a good correlation between porosity and
mechanical properties. Indeed, these compositions have the poorest mechanical properties compared
to other samples. Several hypotheses can be proposed to explain why porosity is higher for these
samples compared to the other compositions.
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Table 3. Values obtained for porosity and absolute density of FDM printed samples.

Samples Porosity (%) Absolute Density (g/cm3)

PLA80-J0 9.91 ± 0.29 1.1981 ± 0.0007
PLA80-J0.5 16.66 ± 2.61 1.1986 ± 0.0033
PLA80-J1 19.93 ± 0.60 1.2006 ± 0.0015

PLA80-J1.5 17.19 ± 6.48 1.2026 ± 0.0003
PLA80-J2 7.47 ± 4.90 1.1974 ± 0.0007
PLA80-J3 12.86 ± 0.37 1.1945 ± 0.0057

First, viscosity of melted polymer during the FDM process could affect the deposition features
of extruded thread. If the melted polymer is too viscous, the extruded thread will undergo few
deformations and is unable to merge easily with the adjacent deposited thread, which creates voids.
On the contrary, if melted polymer is less viscous, less air will be trapped, because the extruded thread
will spread and could merge easily with the adjacent deposited thread.

Another parameter that can explain porosity development is the crystallization process and the
crystallization rate of melted deposited polymer. If polymer has a fast crystallization and a high
crystallinity after cooling, it will entail a shrinking of the deposited thread, which couldn’t easily merge
with the adjacent deposited thread and will create pores.

Further investigations would be necessary to determine the influence of these parameters.

4. Conclusions

Incorporation of Joncryl, a multifunctionalized epoxide, into a PLA/PA11 80/20 blend greatly
improved properties of such a polymer blend, depending on its content. Studies of the morphological,
thermal, rheological and mechanical properties of blends revealed that Joncryl acted as a compatibilizer.
A reduction in PA11 dispersed phases diameter was observed, indicating compatibilization through
coalescence suppression. Regarding the emulsification curve, saturation occured at 1.0 wt% of Joncryl.

PLA matrix cold crystallization changes in the compatibilized blends highlighted extension and
branching reactions on PLA chains modified by Joncryl. The extent of such reactions is enhanced with
increasing Joncryl content. Rheological and mechanical properties followed the same trend.

Complex viscosity of blends during frequency sweep tests increased from 0 to 1.5 wt% of Joncryl.
Such an increase, mostly pronounced at low frequency, is assigned to an interfacial reaction between
PLA and PA11 with Joncryl, as coupling agent. At 3 wt% of Joncryl, a slight reduction of complex
viscosity was observed, that revealed the presence of an excess of Joncryl in the PLA matrix that
didn’t react. Tensile tests showed an enhancement of ultimate mechanical properties (maximal stress
and elongation at break), especially for blends containing 2 and 3 wt% of Joncryl exhibiting a ductile
behavior. This results from an improved interfacial adhesion through reactive compatibilization with
Joncryl, as proved by SEM observations of tensile fracture surfaces. As a matter of fact, tensile tests
show an elongation of PA11 ductile dispersed phases. Moreover, at high Joncryl content, the PLA
matrix could be stretched with PA11 dispersed phases thanks to a high enough interfacial adhesion.

Preparation of compatibilized blends by FDM process led to a significant elongation of PA11
dispersed phases in FDM filaments and dog bone shaped specimens. Occurrence of such morphology
was observed for Joncryl content from 1 to 2 wt%. The aspect ratio of PA11 dispersed phases increases
with Joncryl content. Despite this specific morphology, a priori beneficial to better tensile properties,
FDM printed samples were more brittle compared to injected ones. Their maximal stress and elongation
at break were lower. It is nevertheless interesting to note that higher Young’s moduli could be obtained
with FDM samples at 2 and 3 wt% of Joncryl, probably as a result of highly elongated PA11 dispersed
phases. FDM printed samples’ brittleness can be explained mainly by a lack of adhesion and porosity
between deposited extruded threads during FDM process.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/3/485/s1,
Figure S1: SEM observations of twin-screw extruded threads samples in longitudinal direction, Figure S2: SEM

http://www.mdpi.com/1996-1944/12/3/485/s1
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observations MEB of injected dog bone shaped samples, Table S1: Diameters of PA11 dispersed phases extracted
from PLA80-Jx blends, Table S2: Mechanical properties of injected neat polymers and PLA80-Jx blends, Table S3:
Mechanical properties of FDM printed PLA80-Jx blends.
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