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Abstract The electron dynamics within thin current sheets plays a key role both for the process of
magnetic reconnection and other energy transfer mechanisms but, from an observational point of view, is
not well understood. In this paper we report observations of a reconnecting current sheet with intermediate
guide field BG = 0.5Bin, where Bin is the magnetic field amplitude in the inflow regions. The current sheet
width is comparable to electron spatial scales. It shows a bifurcated structure and is embedded within the
magnetopause current layer with thickness of several ion scales. The electron scale current sheet has strong
out-of-plane and in-plane currents, Hall electric and magnetic fields, a finite magnetic field component
normal to the current sheet, and nongyrotropic electron distributions formed due to finite gyroradius
effects at the boundary of the current sheet. Comparison between test particle simulations and electron
data shows that electrons approaching from the edge of the largest magnetic curvature are scattered to
perpendicular pitch angles in the center of the current sheet while electrons entering from the opposite
side remain close to field aligned. The comparison also shows that an observed depletion in phase space
at antiparallel pitch angles can be explained if an out-of-plane electric field, which due to the guide field
is close to antiparallel to the magnetic field, is present in the center of the current sheet. This electric
field would be consistent with the reconnection electric field, and we therefore interpret the depletion of
electron phase space density as a manifestation of ongoing reconnection.

1. Introduction

Magnetic reconnection (e.g., Biskamp, 2000; Priest & Forbes, 2000; Sonnerup, 1979, and references therein) is a
fundamental plasma process in which the magnetic field topology changes and energy stored in the magnetic
field is transferred to plasma particles, accelerating them. In near-Earth space, magnetic reconnection occurs
both at large-scale boundaries such as the magnetopause (e.g., Mozer et al., 2002; Paschmann et al., 1979;
Sonnerup et al., 1981; Vaivads et al., 2004) and in the magnetotail current sheet (e.g., Nagai et al., 2001; Wygant
et al., 2005), and in more turbulent environments such as the solar wind (e.g., Gosling & Szabo, 2008) and the
magnetosheath (e.g., Phan et al., 2018; Retinò et al., 2007; Sundkvist et al., 2007). Numerical simulations also
suggest that magnetic reconnection can occur within the turbulent environment that can form downstream
of the separatrices, where electron-scale filamentary current sheets can form (e.g., Daughton et al., 2011).
Such filamentary currents have been observed inside a wider reconnection jet at the dayside magnetopause
(Phan et al., 2016).

Magnetic reconnection is a multiscale process, where ions and electrons decouple from the magnetic field
at ion and electron scales, respectively, and form the ion and electron diffusion regions (IDR and EDR). Inside
the ion diffusion region, ion and electron motions differ, giving rise to currents and associated magnetic field
structures (e.g. Sonnerup, 1979). These are referred to as Hall currents and magnetic fields and are commonly
used to identify magnetic reconnection events (e.g., Eastwood et al., 2010; Nagai et al., 2001; Øieroset et al.,
2001). Inside the electron diffusion region of width comparable to the electron inertial length, the electrons
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become demagnetized such that the magnetic field can ultimately diffuse across the plasma and change
topology. For the magnetic connectivity of electrons to change, it is required that B ×

[
∇ × (E + ve × B)

]
≠ 0

(e.g., Hesse & Schindler, 1988; Vasyliunas, 1972). A necessary, but not sufficient, condition is thus that the
electron flow must be nonideal, E + ve × B ≠ 0. Close to and inside the electron diffusion region, the elec-
tric field and sharply curved magnetic fields lead to complex electron trajectories (e.g., Bessho et al., 2014;
Zenitani & Nagai, 2016). The detailed structure of electric and magnetic fields within an electron-scale current
sheet have direct impact on the electron dynamics within the sheet. For example, in the presence of a guide
magnetic field, the reconnection electric field has a component parallel to the magnetic field, and the out-
flow is focused to two opposing separatrices leading to an asymmetric flow pattern (e.g., Hesse et al., 2004;
Pritchett & Coroniti, 2004; Wilder et al., 2017). At the same time, the electron dynamics provides feedback to
the fields, which can lead to modification of the current sheet structure. One such modification is the bifurca-
tion of the current sheet. Bifurcated current sheets are common in space, and while most observations report
thicknesses comparable to ion length scales or larger (Asano et al., 2005; Gosling & Szabo, 2008; Hoshino et al.,
1996; Retinò et al., 2007; Runov et al., 2003), some are comparable to electron scales (Burch & Phan, 2016;
Wygant et al., 2005). In observations, the bifurcation is often attributed to the two slow shocks associated with
a Petscheck-type reconnection exhaust (Gosling & Szabo, 2008; Hoshino et al., 1996).

In situ studies of electron dynamics within electron-scale current sheets in space have historically been chal-
lenging due to the severe constraint imposed by the temporal resolution of particle instruments. Many of
these constraints have been lifted by the Magnetospheric Multiscale (MMS) mission (Burch et al., 2015), mak-
ing the study of many aspects of electron-scale current sheets possible (Burch & Phan, 2016; Burch et al., 2016;
Eriksson et al., 2016; Graham et al., 2017; Lavraud et al., 2016; Norgren et al., 2016). In this study, we report
MMS observations of a bifurcated electron-scale current sheet with a finite guide field, embedded within a
filamented dayside magnetopause current layer. We investigate the electron kinetic structure and magnetic
connectivity, as well as signs of ongoing reconnection.

2. Observations

In this paper we use data from the MMS spacecraft, particle data from the Fast Plasma Investigation (FPI)
(Pollock et al., 2016), magnetic field from the Fluxgate Magnetometer (Russell et al., 2014), and electric field
from the Electric field Double Probe (Ergun et al., 2014; Lindqvist et al., 2014). All the times stated in the paper
are in Coordinated Universal Time (UTC).

On 12 November 2015, MMS spent considerable time close to the subsolar point and made several crossings
of the magnetopause. At the magnetopause crossings, the spacecraft observed mainly southward ion jets
(vi,z,GSE = −200 to −400 km/s) as well as southward moving large-scale flux ropes, consistent with the exis-
tence of an X line located north of the spacecraft location. The last complete magnetopause crossing was
associated with a wider and slower ion flow, vi,z,GSE = −150 km/s but had the largest current density. An
overview of this last crossing is shown in Figure 1. At this time, MMS was located at [11.5, 2.8,−0.8] Earth
radii in Geocentric Solar Ecliptic (GSE) coordinates and was in a tetrahedron formation with a separation of
∼15 km. The average magnetic fields in the magnetosphere and magnetosheath were BMSP ≈ [15,−5, 35]
nT and BMSH ≈ [0, 0,−20] nT (GSE; Figure 1a), respectively, corresponding to a magnetic shear angle of 150∘

across the magnetopause. The magnetosphere boundary is located at ∼07:19:18 where the first spike in cur-
rent density is observed (Figure 1b). The current density is calculated as J = nee(vi − ve), where vi and ve

are the ion and electron velocities, respectively, and ne is the electron density, all calculated from the parti-
cle distributions sampled by FPI. To avoid errors associated with small differences between ne and ni , we use
the electron density ne for both the ion and electron contributions to the current. On the magnetospheric
side of this boundary, the hot magnetospheric electrons can be seen at energies above 1,000 eV in the elec-
tron differential energy flux (DEF) spectrogram (Figure 1j). The spacecraft potential is marked with a black
line, below which we observe photoelectrons originating from the spacecraft in the tenuous magnetospheric
plasma environment. In the magnetosphere, there are also cold electrons and ions of magnetospheric origin
(Figures 1i and 1j; e.g., Toledo-Redondo et al., 2016; Yau & André, 1997).

The magnetopause current layer, that is, the transition from the magnetosphere to the relatively unperturbed
magnetosheath (roughly at around 07:19:38 where B ∼ BMSH), is highly structured in the magnetic field
(Figure 1a) with three additional regions of large current density J (Figure 1b). After the initial increase at
about 07:19:16, the ion velocity remains relatively unperturbed throughout the boundary layer (Figure 1c).
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Figure 1. Overview of magnetopause crossing as seen by MMS1. All vectors are given in Geocentric Solar Ecliptic
coordinates. The black-dashed line marks the magnetosphere boundary, and the yellow-shaded region marks the
current sheet we study in detail. The proton gyroradius 𝜌p = 250 km and proton inertial length Lp = 90 km are marked
by black horizontal lines in panel a for reference. (a) Magnetic field. (b) Current density derived from ion and electron
moments. (c) Ion velocity. (d) Electron velocity. (e) Total, parallel, and perpendicular electron temperatures and ion
temperature divided by 10. (f ) Electron and ion thermal pressures and magnetic field pressure. (g) Electron, ion, and
total plasma beta. (h) Electron density. (i) Ion omnidirectional differential energy flux. (j) Electron omnidirectional
differential energy flux. (k) Pitch-angle distribution of electron differential energy flux of energies between in the energy
range 10 to 500 e 10 and 1,000 eV. MMS = Magnetospheric Multiscale; DEF = differential energy flux; UTC = Coordinated
Universal Time.
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The current filamentation is therefore due to the changes in electron velocity ve (Figure 1d), as can be seen
by comparing the structure of ve to J. The ion thermal pressure dominates both the electron thermal pres-
sure (Ti ≈ 10Te; Figure 1e) and the magnetic field pressure (Figure 1f ). While the total pressure remains
constant when crossing the magnetospheric boundary (dashed line), it increases at around 07:19:22 (after
yellow-shaded region). After this increase, the pressure remains constant throughout the rest of the crossing.
The change in total pressure indicates that the magnetopause current layer could be influenced by some mag-
netosheath structure. The relatively large ion pressure is reflected in the plasma beta: 𝛽e ∼ 0.1𝛽i ≈ 𝛽 ∼ 1−10,
except for an interval of 4 s around 07:19:25 where 𝛽i ∼10–100. This means that, within the boundary layer,
the available magnetic energy is small in comparison to the ion thermal energy but comparable or large in
comparison to the electron thermal energy. We therefore expect the local energy conversion processes that
transfer energy between the magnetic field and the plasma within the boundary layer, like magnetic recon-
nection, to have larger observable effect on the electrons. This is consistent with the lack of perturbation in
the ion velocity.

Of the four current sheets, the second observed at about 07:19:21 (shaded yellow) has the largest magnetic
shear Δ𝜃B ≈ 120∘. In comparison, the first current sheet at the border of the magnetosphere has Δ𝜃B ≈ 60∘,
and the two last current sheets have Δ𝜃B ≈ 30∘ and Δ𝜃B ≈ 10∘. The second current sheet also has the largest

magnetic curvature𝝆c =
(

b̂ ⋅ ∇
)

b̂ (shown in Figure 2h), where𝝆c is the curvature vector and b̂ = B∕|B| is the
magnetic field unit vector. Large magnetic curvature indicates a nonplanar current sheet structure, where the
field lines can connect the two sides of the current sheet. In such a current sheet, the magnetic tension can be
released, as during magnetic reconnection (e.g., Biskamp, 2000, and references therein). The combination of
relatively large magnetic shear, large magnetic field curvature, and large electron velocity indicates that this
current might be the main location for the local release of magnetic field tension, the reconfiguring of the
magnetic field, and the transfer of energy between the magnetic field and electrons in this boundary layer.

The pitch-angle distribution of electron DEF shows that throughout the boundary layer, the electron distribu-
tion is typically anisotropic (Figure 1k). Several regions with large transient temperature anisotropies Te,∥ > Te,⟂
(Figure 1e) are present. One particular region is observed immediately after the second (largest shear) cur-
rent sheet. Here the temperature anisotropy is due to a decrease of Te,⟂ leading to a drop of Te. In the center
of this current sheet, Te,∥ ≈ Te,⟂ due to a local relative increase in Te,⟂ associated with an enhancement of
the electron DEF at perpendicular pitch angles (Figure 1k). Such an increase in Te,⟂ and electron DEF around
𝜃 ∼ 90∘ has been seen in both observations and simulations in the vicinity of the electron diffusion region of
magnetic reconnection (Burch et al., 2016; Chen et al., 2016; Lavraud et al., 2016).

In the rest of this paper, we will investigate the second current sheet in more detail. We will investigate
the electron dynamics within and in the vicinity of the current sheet and discuss whether or not magnetic
reconnection is taking place. We will start in the next section by presenting the detailed observations of the
current sheet.

3. Properties of the Largest Shear Current Sheet

In order to obtain a local coordinate system for the current sheet, we perform minimum variance analy-
ses of the magnetic field and current density derived from the magnetic field for the time 07:19:20.116 to
07:19:22.136. All four spacecraft give similar results for the minimum variance analysis of the magnetic field,
and we use the mean maximum variance direction for L = [0.14,−0.71, 0.69]. The normal direction is N =
L×

(
NJ × L

)
= [0.81,−0.29,−0.47], where NJ = [0.84,−0.41,−0.36] is the minimum variance direction of the

current computed using the curlometer method, and the third direction is M = L×N = [−0.54,−0.62,−0.54].
All coordinate vectors are given in GSE coordinates. In the remainder of the paper, unless otherwise stated,
we will present all data in these LMN coordinates.

Figure 2 shows the spacecraft positions, magnetic fields, magnetic curvature, and current densities as
observed by the four spacecraft. The magnetic fields are shown in Figures 2d–2g. The maximum variance
component BL reverses from Bin ≈ 9 to −11 nT (Figure 2d). This field reversal is accompanied by a bipolar
BM = ±5 nT superposed on a guide field BG ≈ 5 nT ≈ 0.5Bin (Figures 2e-2f ). At the center of the current sheet,
a plateau is formed in both BL and BM. The magnetic field has a finite component in the normal direction
BN ∼ 1–2 nT at the center of the current sheet (Figure 2g). This supports the notion that the two regions on
opposite sides of the current sheet are magnetically connected. We note that BN is small in comparison to BL
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Figure 2. Structure of current sheet as seen by MMS1-4. (a)–(c) Spacecraft configuration. The dashed lines show the
orientation and propagation direction of the boundary obtained from timing analysis. (d) BL . (e) BM. (f ) BM with shifted
time lines corresponding to the velocity vn of the current sheet. (g) BN . (h) Magnetic curvature obtained from the four
spacecraft. (i) JL . (j) JM . (k) JN . The yellow line is the current derived from the magnetic field of the four spacecraft. (right)
Sketch of in-plane (BL and BN , solid lines) and out-of-plane magnetic field (BM , circles), current and electron flow
bifurcation, and relative spacecraft trajectory. MMS = Magnetospheric Multiscale; UTC = Coordinated Universal Time.

and BM, and the sign and amplitude of this component are therefore sensitive to small rotations of the coor-
dinate system. However, a finite BN > 0 is also consistent with the curvature of the magnetic field (Figure 2e)
which starts by curving in toward the center of the current sheet and down in the direction of the electron
flow (opposite to JL in Figure 2i). Both 𝜌c,L and 𝜌c,M are larger on the right-hand side of the current sheet. How-
ever, while 𝜌c,L is only slightly asymmetric, the out-of-plane component of the magnetic field curvature 𝜌c,M is
highly asymmetric. This is due to the combined effect of BG and the bipolar part of BM which adds up to 10 nT
on the left side of the current sheet and cancel each other on the right side of the current sheet. The magnetic
field unit vector b̂ therefore turns from M in the center of the current sheet to L on the right-hand side over a
distance of 10 km, resulting in large 𝜌c,L and 𝜌c,M. The associated radius of curvature has a minimum value of
Rc,min = 45 km. However, since this quantity is derived from four spacecraft, it is possible that sharp turns in
the magnetic field that occur on a scale smaller than the spacecraft separation are not properly captured.

We note that all four spacecraft observe similar fields but that they can be divided into two groups: MMS3-4
observes a slower decrease of BL and a slightly larger JL on the left side of the current sheet than MMS1-2.

NORGREN ET AL. 9226
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To obtain an estimate of the length scale of the current sheet, we perform timing analysis of the observed
fields. By assuming the current sheet is a planar 1-D structure and comparing the delay between the times the
structure is observed by the different spacecraft, we can determine the velocity of the structure in its normal
direction. By doing this for BL, we obtain the average velocity vn ≈ 70 × [−0.15, 0.04,−0.99] km/s (LMN),
corresponding to a relative time delay ΔtMMS1-4 = [0, 0.05,−0.10,−0.08] s for MMS1-4. The normal motion
and alignment of the current sheet relative to the spacecraft are shown in Figures 2a–2c. Figure 2f shows BM

with the time lines shifted such that tnew = t − Δt. We note that there is good correlation at the right side of
the current sheet but a time delay of ΔT12−34 ∼ 0.1 s between MMS1-2 and MMS3-4 on the left side. This can
be both due to temporal and transverse spatial variations.

The length scale calculated from vn is shown on top of Figure 2d. The entire BL reversal occurs over about 30
km, and the distance between the maximum and minimum values of BM is ∼20 km. As a reference to the scale
of the current sheet, we have marked the ion inertial length Lp = 90 km and the ion gyroradius 𝜌p = 250
km for protons in Figure 1a. The thickness of the current sheet is well below ion scales. Outside the current
sheet, both the electron inertial length Le and the electron gyroradius 𝜌e are about 2 km. In the center of the
current sheet, Le ∼ 2 km while 𝜌e ∼ 7 km. The thickness of the current sheet is thus on the same order as 𝜌e

but smaller than the minimal measured curvature radius Rc,min.

Outside the current sheet, both electrons and ions move at the same velocity, frozen into the magnetic field,
E+ve,i ×B = 0. We therefore assume that the current sheet embedded in this flow move at the same velocity,
vplasma ≈ [−190, 50,−45] km/s (LMN), and we can estimate the relative transverse velocity to be vt = |vn −
vplasma,LM| = 180 km/s. The transverse distance covered during the time T = 0.5 s of the complete current
sheet crossing is then Lt = Tvt ≈ 90 km. This is as also an estimate of the minimal transverse length of the
current sheet.

Figures 2i–2k show the current densities, calculated from particle moments, as observed by the four space-
craft. The current density has a tripolar structure in the JL component consistent with the Hall current system
(Sonnerup, 1979). This current system is in turn consistent with the out-of-plane BM, which we identify with
the Hall magnetic field. The JM component has a clearly bifurcated structure with a double peak associated
with the plateau in BL. We therefore conclude that the plateau in BL is a spatial feature and not due to changes
in the current sheet motion. The current density derived from the magnetic field is in good agreement with
the average current density derived from the plasma moments of each spacecraft. The current component
JN in the direction normal to the current sheet shows some oscillations but is small relative to JL and JM as
enforced from the choice of coordinate system.

Figures 3a–3d shows the magnetic field, electron velocity, and electric field as observed by MMS1 (MMS2
observes very similar fields). In the center of the current sheet, ve,L = −600 km/s. The out-of-plane electron
flow has two peaks ve,M ≈ 700 and 1,000 km/s, associated with the double peak in the current density, cen-
tered at the bipolar variations of BM. By decomposing ve into perpendicular and parallel components, we can
see how the flow is divided into comparably large ve,⟂ and ve,∥ (Figure 3c). The structure of the electron flow
is bifurcated in both ve,∥ and ve,⟂, although their respective peaks are displaced with respect to each other.
MMS3-4 only observes a distinct bifurcation in ve,⟂, while ve,∥ is wider and flatter with only a hint of bifurca-
tion (shown for MMS 3 in Figure 5h). The perpendicular components of ve are divided between ve,L on the
leftmost part and extending to the center of the current sheet and ve,M centered on the rightmost part of the
current sheet.

To investigate if the electrons are frozen in to the plasma, we calculate the force terms in the electron momen-
tum equation. The electron pressure divergence (Figure 3e) is calculated from the pressure tensor of the four
spacecraft, and we compare its dominant normal component to the four spacecraft average of EN and (ve×B)N

in Figure 3f. We note that the double peak in EN +
(

ve × B
)

N
at the right side of the current sheet is an arti-

fact of the averaging because the scale size of the structure is comparable or smaller than the spacecraft
separation (Figures 2a–2c). Figure 3g shows separately that EN +

(
ve × B

)
N
≠ 0 for all four spacecraft, with

maximum values of about 5 mV/m, which is substantially larger than the maximum value in the averaged
profile (in Figure 3f ). Similarly, we expect the peak value of ∇ ⋅ Pe∕ne (in Figures 3e and 3f) to be underesti-
mated. Within the errors of the measurements, EN +

(
ve × B

)
N
+
(
∇ ⋅ Pe∕ne

)
N
= 0. Considering the errors, the

M and L components are insignificant. Neither can we identify any significant parallel component. Although
the measurements clearly show that E + ve × B ≠ 0, the calculations of ∇ × (E + ve × B) and subsequently
B×

[
∇ × (E + ve × B)

]
are very noisy throughout large parts of the boundary layer (not shown), and we do not
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Figure 3. Structure of electron flow and forces at the current sheet as seen by MMS1 (a)–(d) and the four spacecraft
(e)–(h). All vectors are in LMN coordinates. (a) Magnetic field. (b) Electron velocity. (c) Electron velocity decomposed into
parallel and perpendicular components. (d) Electric field. (e) Electron pressure divergence. (f ) Force terms in the electron
momentum equation, (E + ve × B)N is approximately balanced by (∇ ⋅ Pe∕ne)N . (g) Electric field in the electron frame
(E + ve × B)N as seen by MMS1-4. (h) Inverse length scales of normal component of gradient of density 𝜖ne

and
divergences of temperature 𝜖Te

and pressure 𝜖Pe
. The temperature divergence contributes the largest part to the

pressure divergence. MMS = Magnetospheric Multiscale; UTC = Coordinated Universal Time.
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Figure 4. Evolution of phase space density of perpendicular electron distribution observed by MMS3 around the time of
the largest amplitude ve,M on the right-hand side of the current sheet. The horizontal axis is the local E × B direction,
while the vertical axis is the local B × (E × B) direction. For reference, we have overplotted arrows marking the fixed LMN
coordinate system. Further away from the center of the current sheet, the higher energy population (∼5,000 km/s)
covers a smaller azimuthal interval. This feature is consistent with the finite gyroradius effect observed both in
simulations and observations of magnetic reconnection.

deem them reliable. We are also unable to calculate ∇×(∇ ⋅Pe∕ne) since ∇ ⋅Pe∕ne is already a four-spacecraft
quantity. Based on this analysis, we can therefore not determine if the motion of the electrons differ from the
motion of the magnetic field (Vasyliunas, 1972).

Figure 3h shows the contributions to the pressure divergence 𝜖Pe
= 𝜖Te

+ 𝜖ne
, where 𝜖Pe

= 3∇ ⋅ Pe∕trace(Pe),
𝜖Te

= 3∇ ⋅ Te∕trace(Te), and 𝜖ne
= ∇ne∕ne. The electron pressure divergence is mainly due to the electron

temperature divergence and, to a smaller extent, the density gradient, indicating that heating may play a
role in the current sheet. This large temperature divergence is associated with nongyrotropic electron dis-
tributions. Figure 4 shows three 2-D slices (with an angular opening of ±15∘) of the electron distributions
in the plane perpendicular to the magnetic field observed by MMS3 at the time of largest amplitudes ve,⟂,M
at the right-hand side of the current sheet (see Figure 5h). The planes are defined by the vectors E × B and
B× (E×B), with B directed out of the plane. The fixed LMN coordinate system is overplotted for reference. All
three distributions show nongyrotropic features at higher energies (∼5,000 km/s). The azimuthal coverage of
these populations becomes progressively smaller the further away from the current sheet center we move.
This behavior is consistent with the finite gyroradius effects reported both in observations and simulations
of magnetic reconnection (Burch et al., 2016; Hesse et al., 2014; Norgren et al., 2016). Recently, Rager et al.
(2018) demonstrated that the electron crescent distributions observed by MMS can be considered as mani-
festations of the electron diamagnetic drift. Although the nongyrotropic electron distributions in this current
sheet do not form distinct crescents, the underlying physics is same. Similar, but less distinct, nongyrotropic
features are also observed on the left-hand side of the current sheet. MMS4 observes similar distributions as
MMS3. MMS1 and MMS2 observe similar distributions as MMS3 and MMS4 on the right side of the current
sheet, while the distributions on the left side of the current sheet observed by MMS1 and MMS2 only show
vague nongyrotropic features.

From the analysis in the two previous paragraphs, we were only able to get an idea of the nature of the perpen-
dicular electron flow. We did not address the origin of the warmer perpendicular population constituting the
nongyrotropic features nor could we investigate the parallel electron flow in any detail. In order to examine
the electron dynamics in more detail and search for signs of ongoing magnetic reconnection, we will therefore
perform test particle simulations and compare the results with observations in the following sections.

Before we continue with more detailed analyses and discussions of the current sheet properties, we make
a comment on the electric field (Figure 3d). None of the electric field components had large amplitudes. In
fact, their amplitudes are close to the errors (∼2 mV/m) of the electric field instrument at these low frequen-
cies. However, the electric field component EN normal to the current sheet could be associated with other
independent measurements, namely, the other force terms in the electron momentum equation,

(
ve × B

)
N

and
(
∇ ⋅ Pe∕ne

)
N

. We therefore deem EN reliable. The other components of the electric field, EM and EL, have
amplitudes comparable or even smaller than EN. And unlike what we could do for EN, we could not relate
them to their respective components in the electron momentum equation. This is also true for an eventual
parallel electric field component E||. Therefore, in section 4.3, we will take a different approach to examine the
possible presence of an out-of-plane electric field EM.
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Figure 5. (a) Magnetic field amplitude. (b) Magnetic moment based on perpendicular thermal velocity of electrons.
(c) and (f ) Electron temperature. (d) and (g) Pitch-angle distribution of electron differential energy flux in the energy
range 10 to 500 eV. The dashed lines mark the expected variation in pitch angle for adiabatic electrons 𝜃m, see equation
(1). (e) and (h) Electron velocity decomposed into parallel and perpendicular components. MMS = Magnetospheric
Multiscale; UTC = Coordinated Universal Time.

In summary, we observe an electron-scale current sheet embedded within a filamented magnetopause cur-
rent layer of several ion-scale thickness. The electron-scale current sheet has a guide magnetic field BG =
0.5Bin, bifurcated structure, and comparably large parallel and perpendicular currents carried primarily by
electrons. The perpendicular electron flow is balanced approximately equally by the electric field and electron
pressure divergence.

4. Discussion

We have presented observations of a bifurcated current sheet with thickness comparable to electrons scales,
with both parallel and perpendicular electron flows and currents. In this section we will further discuss and
investigate the electron dynamics in the vicinity and within the current sheet, and how they manifest in the
data. We will also discuss what signatures can be interpreted as signs of magnetic reconnection.

Since the current sheet was not located directly at the magnetopause but was embedded into the magne-
topause boundary layer, plasma beta in the immediate vicinity of the current sheet was relatively large, 𝛽i ≈
5–15, while 𝛽e ≈0.5–1.5. Therefore, if magnetic reconnection is indeed ongoing in the current sheet, we
expected it to have larger observable effects on the electrons, which is consistent with the lack of perturbation
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in the ion velocity in the vicinity of the current sheet. However, it is also possible that the observations were
made close to the EDR and that the ion jet was not fully formed (Wilder et al., 2017) or that the neighbor-
ing magnetic and plasma topology prevented the formation of a large-scale ion jet (Phan et al., 2018). In this
event, since we do observe a weak ion jet on a larger scale, it is possible that the current sheet is embedded
in a larger-scale ion exhaust, similar to the simulations by Daughton et al. (2011).

The electron flow in the outflow direction peaked at ve,L = −600 and −1, 000 km/s for MMS1-2 and MMS3-4,
respectively. The expected magnetic reconnection electron outlow speed close to the electron diffusion is
expected to scale with the electron Alfvén speed vA,e = B∕

√
𝜇0nme, where B and n are taken in the electron

inflow region (Shay et al., 2001). Shay et al. (2001) gives vout ∼ vA,eLe∕l, where l is the half thickness of the
current sheet and Le = c∕𝜔pe is the electron interial length inside the current sheet. In the vicinity of the
current sheet, vA,e varies between ∼4,000 km/s on the left side and ∼5,000–6,000 km/s on the right side of
the current sheet, l = 16 km and Le ≈ 2 km both inside and outside the current sheet. As a result vout ≈
500–750 km/s, which is consistent with the observed values. Assuming a dimensionless reconnection rate of
R = vin∕vout = 0.1, the inflow speed should be vin ≈ 50–75 km/s. Due to the relatively low expected value
of vin in conjunction with the errors associated with both the particle instrument and the chosen coordinate
system of the current sheet, vin cannot be reliably determined from measurements.

The reconnection electric field associated with the estimated inflow speed is Er ∼ vinBin ∼ 0.5 mV/m, where
vin = 50 km/s is taken from the last paragraph and Bin ≈ 10 nT is the amplitude of the magnetic field adjacent
to the current sheet. The existence of such a small amplitude, low frequency, electric field is not possible to
infer from the electric field measurements due to instrument uncertainties. However, if such an electric field is
indeed present inside and/or in the vicinity of the current sheet, there might be observable signatures in the
electron data. To investigate this, we will first investigate the adiabatic behavior of electrons. Thereafter, we will
consider the nonadiabatic effects due to magnetic curvature and electric fields on the electron trajectories.

4.1. Electron Dynamics: Adiabatic Electron Motion
We start by investigating the behavior of electrons in the regions outside the current sheet. In these regions,
the magnetic field amplitude B changes slowly (Figure 5a), and the magnetic moment based on Te,⟂: 𝜇Te

=
kBTe,⟂∕B is constant on the left and right side of the current sheet (Figure 5b). This indicates that the electrons
behave adiabatically here. Since𝜇Te

is constant, the change in B is accompanied by a change in Te,⟂ (Figures 5c
and 5f), as the electrons are focused along the weakening magnetic field. At the same time, in the adiabatic
regions, E + ve × B = 0 (Figure 3g), and therefore, the motion of the electrons is tied to the motion of the
magnetic field lines.

The gradient in B, and subsequent change in Te,⟂, is most prominent on the right-hand side of the current
sheet. Here Te,⟂ changes monotonically from 40 eV at the outer edge of the adiabatic region to 30 eV at the
inner edge. This continuous change indicates that electrons tied to adjacent magnetic field lines (or flux tubes)
are from a common source region and have undergone similar processes but are in different stages of pro-
gression, either temporally, spatially, or a combination thereof. Since the behavior of the majority of electrons
in this region outside the center of the current sheet is adiabatic, the process related to the trend observed
in Te,⟂ is in principle reversible. However, if the electrons drift with the magnetic field inward toward the cur-
rent sheet edge, and there become scattered in the curved magnetic field, the process is more likely to be
irreversible. If this is the case, the signatures of the adiabatic region are consistent with the inflow region of
magnetic reconnection. We will examine the behavior of the electrons at the edge of the current sheet in
section 4.2.

In the center of the current sheet, the magnetic moment is not constant, and we investigate to what extent the
electrons bounce adiabatically in the magnetic field minimum. For adiabatic motion in a magnetic minimum,
the variation of the pitch-angle distribution can be described by the angle

𝜃m = sin−1

(√
B

Bref
sin 𝜃ref

)
. (1)

This predicted pitch-angle variation 𝜃m for the inner part of the current sheet is plotted as dashed lines in
Figures 5d (MMS1) and 5g (MMS3). The star (∗) marks the time where Bref = 14 nT and 𝜃ref = 90∘ are taken.
The broadening of the observed electron pitch-angle distribution is only roughly traced by the value pre-
dicted by equation (1), regardless of energy range (not shown). In fact, the entire population is shifted toward
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𝜃 = 0∘. This behavior is different from the observations by Lavraud et al. (2016), where the electron popula-
tion bouncing in the magnetic field minimum was symmetric about 𝜃 = 90∘. The partial fit to 𝜃m indicates two
things. First, some, but not all, of the electrons behave adiabatically in the inner region, bouncing in the mag-
netic field minimum. Second, the electron population is not only affected by the magnetic field but probably
also by some electric field. In the next section we will investigate the electron dynamics that are not related to
adiabatic motion. This includes the transition between the outer regions and the center of the current sheet
in section 4.2 and the effects of an out-of-plane electric field in section 4.3.

4.2. Electron Dynamics: Curved Magnetic Field
As deduced from timing analysis, the current sheet thickness was on the order of the local thermal electron
gyroradius, which varied between 2 and 7 km between the edge and the center of the current sheet. It is thus
likely that the electrons can cross a large part of the current sheet during one f−1

ce and meanwhile experience
large changes in the magnetic field. On the other hand, the minimal magnetic curvature radius was Rc,min = 45
km, which indicates that the electron trajectories should be nonchaotic (Buechner & Zelenyi, 1989). However,
since the magnetic curvature is derived from four spacecraft, it is possible that it does not properly capture
the sharpest magnetic field curvatures that occur on scales below the spacecraft separation. Therefore, to
examine the dynamics of the electrons in the curved magnetic field, we perform test particle integrations
in a 1-D magnetic field model based on the observed data: B(N). By using a model magnetic field that only
varies in the normal direction N, we have assumed that the current sheet is translationally invariant along M
and L. The model is based on two Harris current sheets that, in order to create the bifurcated structure, are
displaced with respect to each other in the normal direction. The out-of-plane magnetic field is constructed
by a constant guide field and two Gaussians to represent the Hall field, also displaced with respect to each
other to create the bifurcation, while the normal magnetic field is kept constant:

Bmod
L = B0 + B0,1 tanh

(
N − N1

a1

)
+ B0,2 tanh

(
N − N2

a2

)
, (2)

Bmod
M = BG + BH,1 exp

(
−
(N − N3)2

a2
3

)
+ BH,2 exp

(
−
(N − N4)2

a2
4

)
, (3)

Bmod
N = Bn, (4)

where B0 = −1.5 nT, B0,1 = −4.5 nT, B0,2 = −5.5 nT, BG = 5 nT, BH,1 = 5.5 nT, BH,2 = −4.5 nT, Bn = 1.5 nT, N1 =
N3 = −11 km, N2 = 11 km, N4 = 14 km, a1 = a2 = a3 = 5 km, and a4 = 8 km. These values are chosen to pro-
vide a good fit to the magnetic field observed by MMS1. Figure 6a shows the comparison between the model
magnetic field (dashed lines) and the observed magnetic field (solid lines). Since the current sheet is bifur-
cated, we define the half width l as half the displacement of the two Harris current sheets we used to construct
Bmod

L plus their average individual half width: that is, l = (N2 − N1 + a1 + a2)∕2 = 16 km. For these param-
eters, we can calculate the curvature parameter as defined by Zenitani et al. (2017; we have rewritten their

equation 2 explicitly in terms of the different components of Bmod): 𝜅tot =
|Bn||B0,1+B0,2|

(
l
𝜌0

)1∕2 (
1 + ||| BG

Bn

|||2)3∕4

=
[1.2, 1.0, 0.8], where 𝜌0 = [2.1, 3.4, 4.8] km is the gyroradius about the reference magnetic field B0,1 + B0,2 for
an electron with energy [40, 100, 200] eV, respectively. Since 𝜅tot ∼ 1 for all of these energies, we expect elec-
trons belonging to a large energy range to have chaotic trajectories. For now, we start by solely investigating
the effect of the magnetic field on the particles, and we keep the electric field in the model, Emod = 0. We
start by showing the behavior of four example electrons and thereafter go on to include a larger number to
generalize the results. We shall see that the magnetic field structure leads to different behavior of electrons
entering from opposite sides of the current sheet.

Figures 6h–6j show the trajectories of four electrons; two originating from the left (blue and green) and two
originating from the right (red and black) of the current sheet. For reference, two magnetic field lines based
on the model are shown in yellow. The pitch angle of the electrons throughout their trajectories are overlaid
on the pitch-angle spectrogram of the observed phase space density (PSD) in Figure 6d. Figure 6c shows the
same spectrogram without the overlaid electron pitch angles. The initial pitch angles are close to field aligned,
and the energies are E = 40 eV (thermal) and E = 170 eV. While the trajectories of the electrons entering from
the same side but with different energies are similar, the trajectories of the electrons entering from opposite
sides are disparate. This is a direct consequence of the curvature of the magnetic field. The amplitude of the
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Figure 6. Test particle integration with Emod = 0. (a) Observed (solid) and model (dashed) magnetic field. (b) Observed
(solid) and model (dashed) electric field. (c) Observed pitch-angle spectrogram of electron PSD. (d) Same as (c) but with
overlaid pitch angle and normal position of the four test particles shown in (h)–(j). (e) Electron test particles originating
from the left. (f ) Electron test particles originating from the right. (g) All test electrons originating from both left and
right. (h–j) Example electron trajectories, two originating from left and two from the right. The green circle (red cross)
marks the starting (stopping) locations. Magnetic field lines based on the model is shown in yellow. The magnetic field
curvature is larger at N > 0. Therefore, electrons entering the current sheet from this side are scattered to perpendicular
pitch angles on their inbound leg and form the perpendicular population observed in the center of the current sheet.
Electrons entering from N < 0 are scattered on their outbound leg and can therefore remain relatively field aligned
during the crossing. PSD = phase space density.

guide magnetic field (BG ≈ 5 nT) is similar to the Hall magnetic field (BH ≈ ±5) such that the out-of-plane
magnetic field BM adds up to 10 nT on the left side of the current sheet and vanishes on the right side of
the current sheet. This results in a kink in the magnetic field on the right side, with the associated magnetic
curvature being greater. The electrons that enter from the side of least curvature (left side) manage to follow
the magnetic field on their inbound trajectory because their gyroradius is smaller than the curvature radius.
At the center of the current sheet, their motion is still orderly and trace the magnetic field with little change in
pitch angle, 𝜃 ∼ 0∘. As they reach the side of the largest curvature (right side), they are deflected in the curved
magnetic field and temporarily reach slightly more perpendicular pitch angles (𝜃 ∼ 40∘; see Figures 6h and
6i at N = 10 km and L = 110 km) before they are ejected from the current sheet along the magnetic field. The
electrons originating from the side of the largest curvature (right-hand side) are deflected to perpendicular
pitch angles (60∘ ≲ 𝜃 ≲ 140∘) in the largely curved magnetic field on the inbound leg of their trajectory.
Therefore, they enter the center of the current sheet at large pitch angles and are reflected back and forth
before they exit the current sheet along the magnetic field on the left side.

We have extended this analysis by tracing a total of Ne = 2 × N𝜃 × N𝜙 × NE = 18, 432 electrons in the model
magnetic field, half of which are entering from the left and half from the right. The electrons cover N𝜃 = 12
pitch angles in the range 𝜃 =

[
0∘, 90∘

]
(left) and

[
90∘, 180∘

]
(right), N𝜙 = 24 azimuthal angles (angles per-

pendicular to B), and NE = 32 energy levels in the range E = [14, 670] eV. We let each electron represent an
ensemble of electrons with similar v at the beginning of the trajectory. For each electron and its correspond-
ing trajectory, we assume df∕dt = 0 and assign the phase space density as measured by FPI at the starting
location for the closest corresponding velocity. The results are shown as PSD in Figures 6e–6f, for the energy
range [30, 300] eV. This energy range is smaller than the range of initial energies to account for the change of
energy related to the interaction of the electrons with Emod ≠ 0 as we will study later. We apply this limited
energy range for Emod = 0 to make the comparison more straightforward.

Figure 6e shows the mapping of the electrons entering from the left. At the edge of the current sheet where
the magnetic field has a local maximum (N = −10 km), the electrons go to slightly larger pitch angles. In
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the center of the current sheet, they are focused along the weakening magnetic field. At the right side of
the current sheet, most of the electrons are ejected, while a few are reflected and exit at the side from which
they came.

Figure 6f shows the mapping of electrons originating from the right. As the electrons approach the current
sheet edge, they are focused along the magnetic field. At the current sheet edge (N = 10 km), they are
deflected from 𝜃 ∼ 0∘ to 𝜃 ∼ 90∘ in the highly curved magnetic field. Inside the current sheet, the electrons
bounce in the magnetic field minima before they exit on the left-hand side, less focused along the magnetic
field as opposed to when they entered. The initial deflection from 𝜃 ∼ 0∘ to 𝜃 ∼ 90∘ is quantitatively consistent
with the observations (Figure 6c), and we therefore conclude that the electrons entering from the side of the
largest curvature constitute the major part of the perpendicular electron population present at the center of
the current sheet. The PSD of the test particles in the center of the current sheet is approximately symmetrical
around 𝜃 ∼ 90∘. This is not consistent with the observations that has a depletion of PSD (and DEF) at 𝜃 = 180∘

in the center of the current sheet. This depletion also extends to the left-hand side of the current sheet as
is seen most prominently in the DEF for MMS3 in Figure 5g. We therefore conclude that the behavior in the
center of the current sheet and exit of electrons on the left side of the current sheet is not accurately mod-
eled. We will investigate the cause of this below, including the effect of the electric field. Figure 6g shows the
combined test particle PSD of electrons entering from both left and right. We note that the two populations
remain relatively well separated.

4.3. Electron Dynamics: Finite Electric Field EM

The observed signature of the electron distribution that could not be explained by the magnetic field alone
was the asymmetry in PSD (and DEF) between 𝜃 = 0∘ and 𝜃 = 180∘ in the center and slightly to the left edge
of the current sheet. As the electron population was shifted toward 𝜃 = 0∘ in the center of the current sheet,
we would expect an electric field at the center of the current sheet to be directed antiparallel to the magnetic
field, that is, along ∼ −M. That is, since the electrons entering from the right side of the current sheet travel
antiparallel to B, they would experience a decelerating force due to this electric field. We note that the direc-
tion of EM < 0 is consistent with the expected direction of the reconnection electric field in this topology. In
the remainder of this section, we will therefore investigate more quantitatively what effect an electric field
EM < 0 would have on the electrons. To simplify the following modeling, we have chosen a simple 1-D electric
field model in which Emod

L = Emod
N = 0, and Emod

M tends to zero outside the current sheet. We motivate the rele-
vance of this simplified model in the following way: In the reconnection picture, outside the diffusion regions,
the electric field is perpendicular to B and associated with the convection of plasma in toward the diffusion
regions (e.g., Hesse et al., 2004). Inside the diffusion regions where the particles become demagnetized, the
electric field-particle interaction becomes more complicated and can result in finite acceleration and energy
conversion between the magnetic fields and particles. By applying this simplified model, we thus neglect the
motional electric field associated with convection in the inflow regions but retain the diffusive electric field
associated with the change of magnetic topology and connectivity of particles.

The out-of-plane electric field is given by

Emod
M = Em exp

(
−
(N − N5)2

a2
5

)
, (5)

where N5 = 5 km, a5 = 12 km, and Em = −1 mV/m (Figure 7b), comparable to the expected reconnection
electric field. We have chosen to center the electric field slightly to the right of the current sheet center since
the perpendicular population as mapped in the previous section was also centered slightly to the right of the
center. However, we note that N5 = 0 gives qualitatively similar results (not shown). The trajectories of the
same four electrons as for the case of no electric field (Figure 6) are shown in the same format in Figures 7h–7j.
We can see that the electric field confines the red and black electrons to the right side of the center of the
current sheet. They are initially decelerated and then reflected back toward the right, where the red one exits
and the black one mirrors and repeats the procedure before it exits at the same side it entered from. Both
particles exit the current sheet further downstream (−L) and further out along M from where they entered.
This general direction of motion is consistent with the observed electron velocities (e.g., Figure 3b). The green
and blue electrons entering from the left are instead accelerated as they cross the current sheet and exit on
the right.
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Figure 7. Test particle integration with Emod ≠ 0. (a) Observed (solid) and model (dashed) magnetic field. (b) Observed
(solid) and model (dashed) electric field. (c) Pitch-angle spectrogram of electron PSD. (d) Same as (c) but with overlaid
pitch angle and normal position of the four test particles shown in (h)–(j). (e) Electron test particles originating from the
left. (f ) Electrons test particles originating from the right. (g) All test electrons originating from both left and right. (h–j)
Example electron trajectories, two originating from left and two from the right. The green circle (red cross) marks the
starting (stopping) locations. Magnetic field lines based on the model is shown in yellow. The electric field EM < 0
prevents electrons entering from N > 0 to exit on the opposite side. Electrons entering from N < 0 are instead
accelerated during the crossing. PSD = phase space density.

For this case with Emod
M ≠ 0, we use the same method to map the electron PSD as for the case with Emod

M = 0.
Electrons entering from the left are accelerated by Emod

M at the center of the current sheet and exit on the right
side (Figure 7e). At around N = 4−5 km, the electrons are temporarily deflected to slightly larger pitch angles
as they encounter the largely curved magnetic field and are thereafter ejected. This effect was not apparent
in the mapped PSD for Emod = 0 (Figure 6e), probably because the electrons were not accelerated prior to
the deflection. In Figure 7f, we can see that most electrons coming from the right remain in the center of the
current sheet before they are reflected back out the way they came. This reflection due to the electric field
results in a distinct depletion of both PSD and DEF (not shown) around 𝜃 = 180∘ in the center and on the
left edge of the current sheet (Figures 7f and 7g). In the observations, this depletion is seen by all spacecraft
to different extents. The most distinct depletions are seen by MMS3-4, as can be seen in the DEF for MMS3 in
Figure 5g.

Figure 7g shows the mapping for all the electrons. Based on the similarities seen between the mapped and
the observed data, we draw the conclusion that the depletion of PSD at the left side of the current sheet can
be explained by an out-of-plane electric field EM. That is, the electron mapping suggests there is a small E∥,
consistent with the reconnection electric field (e.g., Pritchett & Coroniti, 2004), present in the observed current
sheet. As a result of this electric field, there is an excess of electrons moving parallel to B on the left side of
the current sheet, explaining the parallel electron flow there. The parallel electron flow on the right side of
the current sheet can be explained by the acceleration of the electrons as they pass the central current sheet.
This parallel electron flow pattern is consistent with the electron flow in numerical simulations of guide field
reconnection (e.g., Pritchett & Coroniti, 2004). We thus propose that these signatures in the electron data are
manifestations of ongoing reconnection. And we identify EM with the reconnection electric field.

The comparison between the observed and mapped PSD, however, is understandably not perfect. The large
difference between the observed and modeled data is the number of electrons exiting on the right side of
the current sheet. We believe this to be a shortcoming of the 1-D model, that is, that the actual current sheet
is not entirely invariant in L. Since we employ a 1-D model, the only direction in which the electrons can enter
and exit the current sheet is the normal direction N. As the particles entering from the right are not exiting
on the left side due to EM, they have to exit on the right. This would lead to an accumulation of PSD and DEF
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on the right side, which we do not observe in the data (Figure 7c). This suggests that in the actual current
sheet, electrons are convected away in the outflow along −L or M (assuming the current sheet is finite in the
out-of-plane direction), in the directions of ve (see, e.g., Figure 3b). That is, the current sheet could be a channel
that removes electrons from the two outer regions, consistent with the magnetic reconnection picture. If this
is the case, it indicates the inflow regions extend over the entire adiabatic regions, since the shift in pitch angle
was continuous.

Another difference between the observed and mapped PSD is the repopulation of electrons at 𝜃 ∼ 180∘ at
N ≈ −15 km. This repopulation is likely due to electrons bouncing parallel to the magnetic field in the inflow
region (Egedal et al., 2009) and is not well described by the simple model we apply.

4.4. Current Bifurcation
In this study, we have shown that the detailed structure of electric and magnetic fields within an electron-scale
current sheet have direct impact on the electron kinetics within the sheet. At the same time, such electron
kinetics provides self-consistent feedback to the fields, which can lead to modification of the current sheet
structure. From the observations, we could see that the bifurcation observed by MMS1-2 was due to currents
carried by both ve,⟂ and ve,∥. For MMS3-4, the bifurcation was mainly due to ve,⟂. The perpendicular flows
were supported by a combination of EN and

(
∇ ⋅ Pe

)
N

on either side of the current sheet. Since both EN and(
∇ ⋅ Pe

)
N

vanish at the center of the current sheet, this leads to a bifurcated electron flow and current den-
sity. This is similar to the recent observation by Wang et al. (2018), although in that event the bifurcation was
less distinct and only due to EN. Since finite EN can readily form in nonreconnecting current sheets, the per-
pendicular bifurcation of this particular current sheet could be explained by the quasi-steady compression as
hypothethized by Schindler and Hesse (2008). In their study, the bifurcation could form without the need of
a finite BN or magnetic reconnection. On the other hand, the description of perpendicular flow is also consis-
tent with the simulation of reconnection onset by Liu et al. (2014). There the bifurcated current was carried by
nongyrotropic components of the electron population. The nongyrotropic electrons were attributed to the
finite gyroradius excursions of the heated electrons from the center of the current sheet.

The bifurcation due to parallel electron flows, as inferred from the particle tracing in section 4.3, could be
attributed to the presence of an electric field with dominant parallel component in the center of the current
sheet. The electric field provided a potential ramp that confined electrons entering antiparallel to the mag-
netic field to the side from which they came, the right. This resulted in a relative excess of electron moving
parallel to the magnetic field at the left side and a resulting parallel electron flow. At the same time, when
electrons entering from the left passed through the current sheet center, they were accelerated by the elec-
tric field, resulting in a larger electron flow to the right of the current sheet center, hence the bifurcation. For
MMS3-4, these two regions were merged (cf. Figures 5d and 5e to 5g and 5h).

5. Summary and Conclusions

In this paper we report observations of an electron-scale current sheet embedded in a broader (several ion
scales) magnetopause current layer. The current sheet has a finite guide field, bifurcated structure and shows
signatures of ongoing magnetic reconnection. Among these signatures are strong out-of-plane currents, Hall
currents and the associated Hall magnetic field, and a finite magnetic field normal to the current sheet, indi-
cating magnetic connectivity between the two sides of the current sheet. The perpendicular currents are
associated with nongyrotropic electron distributions formed through finite gyroradius effects.

The electron distributions show evidence of pitch angle scattering and acceleration consistent with ongoing
magnetic reconnection. By performing test particle simulations in a 1-D current sheet where the model mag-
netic field is based on the observed field, and the electric field is based on the expected field, we find the
following results:

1. The electrons entering from the side of the largest magnetic field curvature are scattered to perpendicular
pitch angles and constitute the heated population in the center of the current sheet. Electrons entering from
the side of the least curvature can stay close to field aligned throughout the current sheet before they are
scattered and simultaneously ejected at the opposite side.

2. The modeled electric field shifted the test particle electrons in the center of the current sheet toward parallel
pitch angles 𝜃 = 0∘, explaining an observed electron depletion at pitch angles 𝜃 = 180∘. The direction
of the modeled electric field is consistent with the direction and magnitude of the reconnection electric
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field in this magnetic topology. We therefore suggest that an out-of-plane electric field, consistent with the
reconnection electric field, is required to explain the observed electron distributions.

Since the reconnecting current sheet was not located directly at the magnetopause but was embedded into
the magnetopause boundary layer, we do not expect it to be directly related to the large-scale energy con-
version associated with magnetopause reconnection. On the other hand, it is possible that the observed
boundary layer itself was formed by such a large-scale magnetopause reconnection event. The role of this
electron scale reconnecting current sheet could therefore be to untangle the twisted magnetic fields that
could have formed in a large-scale turbulent reconnection exhaust, similar to simulations by Daughton et al.
(2011). In the process, this could lead to further acceleration and heating of electrons.
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