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Abstract Hot Flow Anomalies (HFAs) are transients observed at planetary bow shocks, formed by
the shock interaction with a convected interplanetary current sheet. The primary interpretation relies on
reflected ions channeled upstream along the current sheet. The short duration of HFAs has made direct
observations of this process difficult. We employ high resolution measurements by NASA’s Magnetospheric
Multiscale Mission to probe the ion microphysics within a HFA. Magnetospheric Multiscale Mission data
reveal a smoothly varying internal density and pressure, which increase toward the trailing edge of the
HFA, sweeping up particles trapped within the current sheet. We find remnants of reflected or other
backstreaming ions traveling along the current sheet, but most of these are not fast enough to out-run the
incident current sheet convection. Despite the high level of internal turbulence, incident and backstreaming
ions appear to couple gyro-kinetically in a coherent manner.

Plain Language Summary Shock waves in space are responsible for energizing particles and
diverting supersonic flows around planets and other obstacles. Explosive events known as Hot Flow
Anomalies (HFAs) arise when a rapid change in the interplanetary magnetic field arrives at the bow shock
formed by, for example, the supersonic solar wind plasma flow from the Sun impinging on the Earth’s
magnetic environment. HFAs are known to produce impacts all the way to ground level, but the physics
responsible for their formation occur too rapidly to be resolved by previous satellite missions. This paper
employs NASA’s fleet of four Magnetospheric Multiscale satellites to reveal for the first time clear, discreet
populations of ions that interact coherently to produce the extreme heating and deflection.

1. Introduction

The bow shock formed by the impact of the supermagnetosonic solar wind upon the Earth’s magnetosphere
has been the primary research laboratory for shock waves in collisionless plasmas. In addition to slowing,
deflecting, and heating the incident flow, the shock contends with multiple particle species and plasma
fluctuations, giving rise to nonthermal processes including selective acceleration of particles to high ener-
gies, growth of instabilities, and development of non-Maxwellian particle distributions. See Paschmann et al.
(2005), Tsurutani and Stone (1985), and Burgess and Scholer (2015).

The interplanetary magnetic field orientation plays a central role in bow shock physics. Under
quasi-perpendicular geometries, in which the angle 𝜃Bn between the field and shock normal is >45∘, and
Alfvén Mach numbers

>∼ 3, quasi-perpendicular shocks are supercritical. Some incident solar wind ions reflect
and subsequently gyrate into the downstream region. This mechanism turns directed bulk flow energy into
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Figure 1. MMS1 overview of the Hot Flow Anomaly. (a) ion and (b) electron omnidirectional differential energy fluxes
[keV/(cm2⋅s⋅sr⋅keV)] over-plotted with spacecraft potential (black line), (c) alpha particle flux [1/(cm2⋅s⋅sr⋅eV)],
(d) magnetic field strength and (e) GSE components, (f ) electron and ion number densities, (g) bulk speeds and (h,i) GSE
flow components, (j) electron and ion temperatures parallel and perpendicular to B, and (k) thermal, magnetic, and total
pressures and 𝜌V2

x ram pressure. Due to instrumental limitations in the solar wind (see supporting information S1), the
thermal pressures shown in panel (k) are unreliable in the solar wind before and after the Hot Flow Anomaly; see values
from the WIND spacecraft in Table 1. Dashed vertical lines denote the leading inner edge, trailing inner edge, and
trailing compression. MMS = Magnetospheric Multiscale Mission.

internal energy. Under quasi-parallel geometries (𝜃Bn
<∼45∘) some particles can escape upstream forming an

extended turbulent foreshock populated by suprathermal ions.

Hot Flow Anomalies (HFAs) are the result of interplanetary current sheets changing the field orientation over
kinetic scales at the bow shock (Paschmann et al., 1988; Schwartz et al., 1985, 2000; Thomsen et al., 1986, 1988).
They have hot interiors containing flow strongly deflected from the antisunward direction; the over-pressure
causes HFA expansion, driving shocks at one or both edges. Burgess (1989) demonstrated a mechanism
(Burgess & Schwartz, 1988) in which ions reflected under quasi-perpendicular conditions were channeled
upstream by the changing geometry. This process involves interplanetary −V × B electric fields which point
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Figure 2. (a) Sketch of the bow shock-interplanetary current sheet interaction. Arrows show the solar wind magnetic
field directions on either side. (b) 2-D schematic of the intersection of the interplanetary current sheet with the bow
shock showing the approximate orientations of the leading and trailing edges. The structure appears to transit along
the shock front at Vtr due to the convection of the current sheet by the incoming solar wind. Table 1 estimates the HFA
size as 2.3 RE along the shock and 1 RE sunward from the nominal shock surface. HFA = Hot Flow Anomaly.

toward the current sheet on at least one side (Thomsen et al., 1993). Simulations (Burgess & Schwartz, 1988;
Omidi & Sibeck, 2007) support this scenario although statistical studies (Wang et al., 2013; Zhao et al., 2017b)
show that HFA-like signatures are found under wider conditions.

HFAs can have a significant impact on the magnetopause (Sibeck et al., 2000, 1999), producing disturbances
throughout the magnetosphere to the ground (Eastwood et al., 2008, 2011; Hartinger et al., 2013; Zhao et al.,
2017a). They have been observed at the bow shocks of Mercury (Uritsky et al., 2014), Venus (Collinson et al.,
2014, 2015), Mars (Collinson et al., 2012), Jupiter (Valek et al., 2017), and Saturn (Masters et al., 2008, 2009).
They are frequent (>3 per day, Facskó et al., 2008, 2009; Schwartz et al., 2000; ∼7 can be observed within a
12-hr interval, Zhang et al., 2010).

HFAs are typically a few minutes in duration. Mature HFAs have hot interior regions, with a single ion compo-
nent and near-Maxwellian electron distributions (Thomsen et al., 1988). Young HFAs have central regions in
which the solar wind beam is distinct from counter-streaming ions (Lucek et al., 2004; Shestakov & Vaisberg,
2016; Zhang et al., 2010) which may be of magnetosheath origin (Vaisberg et al., 2016), although the central
temperatures are often too high to be explained by a simple conversion of solar wind kinetic energy (Onsager
et al., 1990; Wang et al., 2013).

Recent work (Liu et al., 2017; Turner et al., 2018) explored the energetic particle populations at HFAs. Past work
on HFA formation and heating mechanisms has utilized higher-resolution electromagnetic field data, with
particle information accumulated over ∼3–4 s. Consequently, many details, including proposed turbulent
versus coherent heating and energization mechanisms, are not well resolved. We take advantage of the high
resolution full 3-D velocity-space particle data taken by NASA’s Magnetospheric Multiscale Mission (MMS;
Burch et al., 2016) to study this microphysics.

2. Data
2.1. Instruments
We study a HFA that was captured in burst mode on 28 December 2015 at 05:27 UT. Fast Plasma
Investigation (FPI) electron (ion) measurements have 30 (150) ms cadences (Pollock et al., 2016).
The excellent agreement of the electron and ion densities here suggests that the HFA interior
is very well-characterized by the measurements, although FPI is not able to capture accurately
the cold, low density solar wind plasma with the same accuracy (see supporting information
S1). Fields data (Torbert et al., 2016) including Fluxgate Magnetometer (FGM) magnetic field
(Russell et al., 2016) at 128 vectors per second are used together with electric field measurements derived
from the spin-plane (Lindqvist et al., 2016) and axial (Ergun et al., 2016) booms. The Hot Plasma Composition
Analyzer (HPCA; Young et al., 2016) provides alpha particle data.

2.2. Event Overview
Figure 1 presents an overview of the HFA plasma and field data. The current sheet-bow shock intersection
moves northward as it convects with the solar wind. The orientation of the leading (Earthward) edge at
05:26:52 UT is sketched in Figure 2. Figure 2b shows the high inclination of the current sheet, exaggerated by
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Table 1
Solar Wind Conditions and Current Sheet/HFA Parameters

Parameter Value Units

Spacecraft position (11.1, −4.1, −1.1) Re (GSE)

Model bow shock normala (0.974, −0.219, −0.054) GSE

𝛽i 2.3 <pre , post>avg

VA,cs
21, 29 km/s <pre , post>avg

MAn , Mms 23, 14 Shock Mach numbers <pre,post>avg

Pre-event conditions 05:26:44.000–05:26:49.357

Bpre (−0.824, −2.24, 0.708) nT (GSE)

|Bpre| 2.5 nT

𝜃Bn pre 98 (82) Degrees

np pre (WIND) 8.1 cm−3

Vpre (WIND) (−481, 12, −12 ) km/s (GSE)

Tp pre (WIND) 4 eV

Epre = −V × B (19, −350, −1100) μV/m (GSE)

Post-event conditions 05:27:39.712–05:27:43.608

Bpost (1.95, 1.17, 1.38) nT (GSE)

|Bpost| 2.7 nT

𝜃Bn post 54∘ Degrees

np post (WIND) 6 cm−3

Vpost (WIND) (−495, 3, −18 ) km/s (GSE)

Tp post (WIND) 6 eV

Epost = −V × B (−30, −650, 600) μV/m (GSE)

Current sheet/HFA parameters

Current sheet normal, ncs (0.680, −0.437, −0.590) GSE (Bpost × Bpre)

Vncs ≡ Vsw ⋅ ncs −325 km/s

𝜃BpreBpost 120∘ Degrees (magnetic shear angle)

Epre ⋅ ncs +810 𝜇V/m (⇒ toward CS)

Epost ⋅ ncs -80 𝜇V/m (⇒ toward CS)

nleading (−0.340, 0.633, 0.696) 4SC timing (inner edge)

ntrailing (0.861, 0.007, −0.508) 4SC timing (trailing shock)

Vn leading 234 km/s (4SC timing)

Vn trailing −166 km/s (4SC timing)

ΔV(trailing − leading) ⋅ ncs 68 km/s (HFA expansion)

𝜃Bn trailing 68 Degrees

Vtr
b (77, 228, 473) GSE km/s (CS track along shock)

|Vtr∕Vg|pre , post 0.6 , 0.7 Ratio transit speed to gyration

Size (Vtr × 28 s duration) 2.3 RE

Extent upstream 1.0 RE (to leading/trailing intersection)

Age 218 s (size/expansion speed)

Distance from birth < 18 RE (age ×|Vtr|)

Note. HFA = Hot Flow Anomaly.
aUses dayside empirical fit by Slavin and Holzer (1981). See also Schwartz (1998). bSchwartz et al. (2000).

SCHWARTZ ET AL. 11,523



Geophysical Research Letters 10.1029/2018GL080189

Figure 3. MMS1 reduced ion distributions. (Top) omnidirectional spectrograms, magnetic field magnitude, gyroradii of
protons in the local, 2.5 s smoothed magnetic field. The dashed line is the HFA half-thickness. (A–B) FPI phase-space
distributions reduced by cartesian integration onto the XGSE —(horizontal) current sheet normal (black arrow) plane. The
circled dot and cross show the out-of-plane magnetic field component pre- and post-HFA. Letters correspond to times
of each distribution indicated above the time series panel. The white circle locates the solar wind bulk velocity. The
white lines in pane A(b,e) are velocities with zero component along the current sheet normal in a frame convecting with
the current sheet. (C) Polar versus azimuthal angle skymaps. The thick magenta line represents 90∘ pitch angles in the
spacecraft frame based on the local magnetic field direction, with a star indicating the tip of the field vector. The thin
magenta line is the same but based on the post-HFA field direction. (D–E) Reduced distributions shifted to their bulk
velocity frame and integrated onto the (D) v⟂ − v⟂ and (E) v⟂ − v∥ planes. HFA = Hot Flow Anomaly.

the inclination of the leading edge based on 4-spacecraft timing of the inner boundary (see nleading in Table 1),
that results in a weak northward and antisunward compression (see Lucek et al., 2004, Figure 3) predominantly
transverse to the Sun-Earth line.

The trailing edge shows a strong sunward magnetic compression (Figure 2d) associated with a high Mach
number shock (Fuselier et al., 1987). The compression magnitude is similar to the bow shock crossing 2 min
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later (Figure S2). The orientation of this edge (Figure 2b) is sunward and southward. It will relax to the nominal
bow shock position as the current sheet-bow shock intersection tracks northward.

There is a clear pre- to post-HFA change in interplanetary field orientation (see Figure 2a and Table 1). The
interior density depression (Figure 1f ) is followed by a gradual rise toward the trailing edge compression.
This depression, by an order of magnitude from solar wind values, is much greater than the relative magnetic
field depression ∼2.5. Thus, in addition to the 2-D expansion transverse to B there must be some expansion,
for example, along the current sheet. The HFA interior is hot (Figure 2j) and shows significant flow deflection
(Figures 2h and 2i), primarily in the+z direction, consistent with the overall HFA motion, and deceleration in x.

Table 1 summarizes the HFA and solar wind conditions. The geometry of the bow shock and interplane-
tary current sheet control HFA formation and evolution (Paschmann et al., 1988; Schwartz et al., 1985, 1988;
Thomsen et al., 1988). Figure 2a sketches the current sheet orientation based on the cross product between
the pre- and post-HFA magnetic fields and assuming the sheet is a tangential discontinuity. Figure 2b shows
the orientations of the leading and trailing edges.

Schwartz et al. (2000) introduced the ratio |Vtr∕Vg| between the velocity of the bow shock-current sheet inter-
section point and the gyro-velocity of a specularly reflected ion. Table 1 shows that this ratio is small enough
to give ions reflected at the shock access to the current sheet before convection moves it too far along the
shock. The orientation of the solar wind −V × B electric field points toward the current sheet on both sides,
bringing bow shock-reflected ions toward, rather than away from, the current sheet.

The leading and trailing edge speeds and orientations given in Table 1 were calculated based on four space-
craft timing analysis (e.g., Schwartz, 1998). Projecting the difference between these two edge velocities along
the underlying current sheet normal provides an estimate of the HFA expansion speed of 68 km/s, similar to
other reported values (Liu et al., 2016; Schwartz et al., 1985).

Table 1 also shows calculations of the HFA extent ∼ 2.3 RE along the bow shock. From the intersection of the
two edges, the HFA projects ∼ 1 RE upstream. Table 1 calculates the HFA age and distance from its birth.

3. Results and Discussion
3.1. Ion Kinetics—Early Interior
Figures 3A–3B show ion distributions observed at locations within the HFA, reduced by cartesian integration
onto the plane containing the GSE x axis and current sheet normal. This orientation matches qualitatively
that of Figures 2a and 2b. Figures 3D–3E are similar integrations onto planes related to the magnetic field
(see caption and axis labels). Figure 3A(a) shows the pre-event solar wind beam traveling at Vx ≈ −500 km/s.
The solar wind alpha particles appear as a second peak at Vx ≈ −650 km/s. This region of velocity space
is populated throughout much of the HFA. The white line in Figure 3A(b,e) (omitted elsewhere for clarity)
indicates velocities tangential to the current sheet in a frame convecting with it. Particles traveling upstream
within the current sheet will lie near the sunward (right) portion of this line.

On HFA entry (Figure 3A(b)), peaks remain at the solar wind proton and alpha locations, reduced significantly
in density. Figure 3A(b) shows an extended population with velocities along the convecting current sheet
(along the white line). This extended population may originate from deeper in the HFA or magnetosheath
(Vaisberg et al., 2016).

The solar wind beam persists through the first half of the HFA (row (A)) with only modest spreading and
deflection. It is accompanied by three distinct groups of ions and a broader population (see numbers in
Figure 3A(e)):

1. A low energy population toward the center of the panes (cf. Figure 3A(d)), progressing from the white line to
velocities with a component along the current sheet normal (Figure 3A(e,f )), that is, southward and sunward
relative to the convecting current sheet. This distinct group may have its origins in ions reflected by the bow
shock and channeled along the current sheet as proposed by Burgess (1989).

2. A tight bunch traveling in the +XGSE direction with speeds ∼500–700 km/s most notable in Figure 3A(e).
These may be newly reflected solar wind protons. From C(e) we see that these are close to the broader pop-
ulation discussed below occupying the lower portion of the skymap, most intense near 0∘/360∘ azimuths.
Figures 3D–3E(e) reveal that these ions are not organized by the local magnetic field, consistent with their
large gyroradii in the early portion of the HFA (see the third panel at the top).
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3. A more dispersed sunward population with speeds comparable to the solar wind that peaks below the con-
vection locus. This population is drifting toward the trailing edge of the HFA and may have been reflected
earlier than group (2).

4. However, it is attached to a broader population that fills the upper portion of the panes, connecting
smoothly onto the antisunward solar wind peak. From Figure 3D(e) we see that these ions, together with the
remnant of the solar wind peak, are gyrating about the local magnetic field on the sunward and antisunward
sides from the ion bulk velocity.

These distinct ion populations in the first half of the HFA are qualitatively consistent with our understanding of
HFAs as kinetic phenomena. Collisionless, unmagnetized conditions preserve coherent phase-space features.
It has not proven possible to link the individual features with sources before or after the intersection of the
HFA leading edge with the nominal bow shock. The fall in density requires expansion (inferred from the wider
perspective, see Table 1). Despite the apparent lack of coupling here, the fall in phase-space density requires
dissipation.

Thus, the first half of the HFA interior is characterized by phase-space clumps of ions including both the inci-
dent solar wind and, probably, relics of shock-reflected ions. Overall, these features are distributed in the
direction indicated by the white line (e.g., Figure 3A(b,e)), propagating upstream along and confined by the
current sheet. However, they are moving sunward and southward with respect to that locus, and thus are
unable to remain in step with the current sheet convection by the solar wind. This is consistent with the overall
Vz ∼+200 km/s, less than the 470 km/s of Vtr (Table 1).

3.2. Ion Kinetics—Late Interior
The latter half of the HFA (Figure 3B) sweeps up particles unable to keep up with the current sheet convection.
This region is denser with a stronger magnetic field, so that the gyroradius of a 1 keV proton, typical of the
solar wind, falls below 1,000 km, 1/7th of the HFA half-width. The more energetic protons fill the backstream-
ing hemisphere along the current sheet. This also corresponds to the post-HFA magnetic field direction (thin
magenta line) in Figure 3C.

The solar wind peak bifurcates in Figure 3B(h) connected by a crescent around the magnetic field direction
(Figure 3D(h)). Judging by its displacement from the origin (the center of momentum), it must be balanced in
inertia by the more diffuse population in the right half corresponding to ions traveling along the current sheet
in Figure 3B(h). Thus, here there is sufficient backstreaming density to force the depleted solar wind peak into
mutual gyration. There is also some relative field-aligned motion seen in E(h). This is evidence of a kinematic
rather than turbulent coupling process, although the spread into a crescent may require some scattering in
gyrophase.

There are still discreet features in the antisunward hemisphere from low to solar wind speeds. Two strong
peaks appear in different orientations in Figure 3B(i,j). The larger of these is deflected southward, similar to
that in the trailing edge compression region (Figure 3B(k)) which is the downstream sheath of the trailing
shock. This flow drives the transverse expansion of the trailing edge. Figure 3D(i) shows that the smaller peak
is gyrating around the larger one.

Finally, we note that the diffuse sunward-streaming population within the HFA is not organized by the local
magnetic field, but in general fills the locus bounded by the post-HFA 90∘ pitch angle curve, cf., Figure 3C(i).
While it is tempting to suggest that these ions have their source in the post-HFA quasi-parallel foreshock
(Omidi & Sibeck, 2007), the post-HFA field-aligned backstreaming ions (e.g., C(l)) are far less intense than the
ions found within the HFA. It is possible that they have the same or similar source, but that the interaction with
the HFA, seen in the overall compression from leading to trailing edge, enhances their intensity. If so, they
need to circumvent the trailing edge sheath, where their intensity is already close that seen in the post-HFA
solar wind.

Thus, the latter half of the HFA is characterized by an overall increase in ion density and a compactification
of the phase-space distribution. There remain distinct nongyrotropic ion features that, in the larger magnetic
fields found here, gyrate around their mutual center of momentum. This represents a coherent, kinematic cou-
pling between the incident, antisunward ions and those backstreaming from the bow shock, magnetosheath,
or even internal HFA regions.
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3.3. Alpha Particles
The small, broken signal at twice the solar wind energy per charge seen pre- and post-HFA in Figure 1a are solar
wind alphas. The HPCA instrument discriminates species and Figure 1c shows the alpha particle spectrogram.
HPCA accumulates azimuths over a half spin (10 s). Thus, the narrow solar wind alpha peak persists within the
HFA interior as the small bright repeating feature, weakening in intensity within the HFA. It is accompanied
by a more energetic alpha particle population that fills all azimuths (i.e., is present at all times) within the HFA,
growing more intense toward the latter half of the HFA in common with the protons discussed above. Prior to
entry into the trailing compression region, the alpha peak lowers in energy and is accompanied by a second
narrow alpha population at even lower energies. As these two populations are observed at roughly the same
time, they are at similar flow azimuths, corresponding to antisunward flow. They may contribute to the ions
seen in Figure 3B(j). Together with the more diffuse alpha population this confirms that the solar wind alphas
also participate in HFA dynamics and heating (Galvez et al., 1990) evidenced by deceleration, bifurcation, and
diffuse components.

4. Summary
Using high resolution MMS observations, we probed ion kinetic signatures of a HFA. In the canonical HFA
model (Burgess, 1989; Burgess & Schwartz, 1988; Omidi & Sibeck, 2007), the interaction of an interplane-
tary current sheet with the bow shock results, under suitable conditions, in reflected ions being channeled
upstream along the current sheet where they couple with the solar wind beam. A resulting instability is then
responsible for the strongly deflected, hot, and nearly Maxwellian interior of mature HFAs (Thomsen et al.,
1988; Zhang et al., 2010).

On the other hand, Vaisberg et al. (2016) studied a young HFA in which the solar wind beam is distinct. They
suggested that the hot interior region in their event was the nominal magnetosheath plasma protruding into
the upstream region.

The HFA studied here has not evolved into a nearly Maxwellian state. The first half of the HFA retains a peak at
the nominal solar wind ion energy, but reduced in density (and phase-space density) well below what would
be expected from a 2-D transverse expansion. We identified distinct groups of ions with velocities roughly
aligned with the current sheet and propagating sunward with respect to the incident flow.

Deeper in the HFA, the solar wind component increases in density, while the backstreaming ions form dis-
tinct groups including both narrow sunward moving ions and broader backstreaming distributions unable
to keep pace with the convecting current sheet. These particles drift toward the trailing edge of the HFA.
We attribute the smooth increase in density throughout the HFA interior to such ions being swept up by the
strongly compressed trailing edge.

The latter half of the HFA shows sufficient magnetic field compression to render ions of solar wind energies
magnetized. However, the more diffuse, energetic backstreaming ions are not organized by the local magnetic
field but instead fill a velocity-space hemisphere reminiscent of the current sheet and/or post-HFA interplan-
etary magnetic field. The dominant antisunward population is stretched into a velocity-space crescent, or
appears as two distinct peaks. Analysis reveals that the different ion populations are in mutual gyration around
their common center of momentum.

Thus, despite the presence of high amplitude bulk velocity fluctuations, this resolved gyration reveals a coher-
ent coupling process between the incident and backstreaming ion populations. While we are not able to
follow individual ions to their sources, the discreet, multicomponent nature of the ion populations and their
location in velocity space are consistent with the generic HFA theory of the channeling of reflected particles.

Some of the ion distributions are also reminiscent of contributions by preexisting backstreaming ions
(Vaisberg et al., 2016). Simulations (Omidi & Sibeck, 2007) suggest that in circumstances in which one side of
the current sheet connects to the quasi-parallel bow shock, the HFA tends to form on that side. That is nearly
the case here, although the post-HFA geometry is somewhat oblique (𝜃Bn ∼54∘). While we have shown that
post-HFA field orientation is indeed consistent with the structure of the backstreaming diffuse population
within the latter stages of the HFA, those ions are far more intense than the foreshock beam of ions found
immediately on exiting the HFA.
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5. Conclusions
We have explored kinetic aspects of the structure within a HFA observed near Earth’s bow shock. The
high-cadence MMS FPI plasma measurements reveal fine, unaliased signatures in ion velocity-space. Despite
the high level of fluctuations, these signatures show a systematic evolution from one edge of the HFA to the
other.

Unlike mature HFAs with hot near-Maxwellian cores, this HFA retains a peak in phase-space at/near the inci-
dent solar wind together with backstreaming clumps or diffuse ions which drift toward the HFA trailing edge.
The incident and backstreaming populations couple kinematically through their mutual gyration about the
center of momentum rather than some more turbulent process.

Further work will explore the impact of solar wind alpha particles, which are shown here to display some
of the same characteristics including a persistent diffuse backstreaming population and eventual decelera-
tion/deflection. The electrons support large-amplitude fluctuations within the HFA (see supporting informa-
tion S1); their kinetic characteristics are worthy of a separate investigation.
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